
Planning with Preferences using Logic Programming?

Tran Cao Son Enrico Pontelli

Department of Computer Science
New Mexico State University

{tson |epontell }@cs.nmsu.edu

Abstract. We present a declarative language,PP , for the specification of prefer-
ences between possible solutions (or trajectories) of a planning problem. This novel
language allows users to elegantly express non-trivial, multi-dimensional prefer-
ences and priorities over them. The semantics ofPP allows the identification of
most preferred trajectoriesfor a given goal. We also provide an answer set program-
ming implementation of planning problems withPP preferences.

1 Introduction
Planning—in its classical sense—is the problem of finding a sequence of actions that
achieves a predefined goal. Most of the research in AI planning has been focused on
methodologies and issues related to the development of efficient planners. To date, several
efficient planning systems have been developed (e.g., see [18]). These developments can
be attributed to the discovery of good domain-independent heuristics, the use of domain-
specific knowledge, and the development of efficient data structures used in the implemen-
tation of the planning algorithms. Logic programming has played a significant role in this
line of research, providing a declarative framework for the encoding of different forms of
knowledge and its effective use during the planning process [24].

However, relatively limited effort has been placed on addressing several important as-
pects in real-world planning domains, such asplan qualityandpreferences about plans. In
many real world frameworks, the space of feasible plans to achieve the goal is dense, but
many of such plans, even if executable, may present undesirable features. In these frame-
works, it may be simple to find a solution; rather, the challenge is to produce a solution
that is considered satisfactory w.r.t. the needs and preferences of the user. Thus, feasible
plans may have a measure of quality, and only a subset may be considered acceptable.
These issues can be illustrated with the following example:

Example 1. It is 7 am andBob, a Ph.D. student, is at home. He needs to be at school at
8 am. He can take a bus, a train, or a taxi to go to school, which will take him 55, 45, or
15 minutes respectively. Taking the bus or the train will requireBob to walk to the nearby
station, which may take 20 minutes. However, a taxi can arrive in only 5 minutes. When
in need of a taxi,Bob can call either theMakeIt50 or the PayByMetertaxi company.
MakeIt50will charge a flat rate of$50 for any trip, whilePayByMeterhas a fee schedule
of $20 for the trip to school. If he takes the bus or the train, thenBob will spend only$2.
Bob, being a student, prefers to pay less whenever possible. It is easy to see that there are

? The research has been partially supported by NSF grants EIA0220590, EIA0130887,
CCR9875279, CCR9820852, and CCR9900320.

only twofeasibleplans forBob to arrive at school on time for his exam: calling one of the
two taxi companies. However, aPayByMetertaxi would be preferable, asBob wants to
save money.In this case, both plans are feasible butBob’s preference is the deciding factor
to select which plan he will follow.

The example shows that users’ preferences play a decisive role in the choice of a plan.
Thus, we need to be able to evaluate plan components at a finer granularity than simply as
consistent or violated. In [20], it is argued that users’ preferences are likely more impor-
tant in selecting a plan for execution, when a planning problem has too many solutions. It
is worth observing that, with a few exceptions like the system SIPE-2 with metatheoretic
biases [20], most planning systems do not allow users to specify their preferences and use
them in finding plans. The responsibility in selecting the most appropriate plan rests solely
on the users. It is also important to observe thatpreferencesare different fromgoalsin a
planning problem; a planmustsatisfy the goal, while it may or may not satisfy the pref-
erences. The distinction is analogous to the separation betweenhard andsoftconstraints
[3]. E.g., if Bob’sgoal is to spend at most $2 to go to school, then he does not have any
feasible plans to arrive at school on time.

In this paper, we will investigate the problem of integrating users’ preferences into a
planner. We will develop a high-level language for the specification of user preferences,
and then provide a logic programming implementation of the language, based on answer
set programming. As demonstrated in this work, normal logic programs with answer set
semantics [13] provide a natural and elegant framework to effectively handle planning
with preferences. We divide the preferences that a user might have in different categories:
• Preference about a state:the user prefers to be in a states that satisfies a propertyφ

rather than a states′ that does not satisfy it, even though both satisfy his/her goal;
• Preference about an action:the user prefers to perform the actiona, whenever it is

feasible and it allows the goal to be achieved;
• Preference about a trajectory:the user prefers a trajectory that satisfies a certain prop-

ertyψ over those that do not satisfy this property;
• Multi-dimensional Preferences:the user has asetof preferences about the trajectory,

with an ordering among them. A trajectory satisfying a more favorable preference is
given priority over those that satisfy less favorable preferences.

It is important to observe the difference betweenφ andψ in the above definitions.φ is
a stateproperty, whereasψ is a formula over the wholetrajectory (from the initial state
to the state that satisfies the given goal). We will also demonstrate how the language for
expressing preferences can be realized using Answer Set Programming (ASP).
Related Work: This work is a continuation of our previous work [25], in which we rely on
prioritized default theories to express limited classes of preferences between trajectories.
This work is also influenced by other works on exploitingdomain-specific knowledgein
planning (e.g., [2, 24]), in which domain-specific knowledge is expressed as a constraint
on the trajectories achieving the goal, and hence, is ahard constraint.

Numerous approaches have been proposed to integrate preferences in the planning
process. Eiter et al. introduced a framework for planning with action costs using logic
programming [9]. Each action is assigned an integer cost, and plans with the minimal cost
are considered optimal. Costs can be either static or relative to the time step in which the
action is executed. [9] also presents the encoding of different preferences, such as shortest
plan and the cheapest plan. Our approach also emphasizes the use of logic programming,

but differs in several aspects. Here, we develop adeclarative languagefor preference
representation. Our language can express the preferences discussed in [9], but it is more
high-level and flexible than the action costs approach. The approach in [9] also does not
allow the use of fully general dynamic preferences. Other systems have adopted fixed
types of preferences, e.g., shortest plans [6, 4].

Our proposal has similarities with the approach based on metatheories of the planning
domain [19, 20], where metatheories provide characterization of semantic differences be-
tween the various domain operators and planning variables; metatheories allow the gener-
ation of biases to focus the planner towards plans with certain characteristics.

The problem of maintaining and managing preferences has been investigated in the
framework of constraint programming (e.g., [3, 11]). Constraint solving has also been pro-
posed for the management of planning in presence of action costs [15].

Considerable effort has been invested in introducing preferences in logic program-
ming. In [7] preferences are expressed at the level of atoms and used for parsing disam-
biguation in logic grammars. Rule-level preferences have been used in various proposals
for selection of preferred answer sets in answer set programming [5, 8, 23].

Our language allows the representation of several types of preferences similar to those
developed in [14] for decision-theoretic planners. The main difference is that we use logic
programming while their system is probability based. Our approach also differs from the
works on using Markov Decision Processes (MDP) to find optimal plans [22]; in MDPs,
optimal plans are functions from states to actions, thus preventing the user from selecting
preferred trajectories without changing the MDP specification.

2 Preliminary – Answer Set Planning
In this section we review the basics of planning using logic programming with answer
set semantics—Answer Set Planning (or ASP)[17]. We will assume that the effect of
actions on the world and the relationship between fluents in the world are expressed in
an appropriate language. In this paper, we will make use of the ontologies of the action
description languageB [12]. In B, an action theory is defined over two disjoint sets—the
set of actionsA and the set of fluentsF; an action theory is a pair(D, I), whereD is a set
of propositions expressing the effects of actions, the relationship between fluents, and the
executability conditions of actions;I is a set of propositions representing the initial state
of the world. For example, the action of calling a taxi has the effect of the taxi arriving,
and it is represented inB as:call taxi causestaxi arrived. Realistically, should one
need to execute this action one has to have enough money. This is expressed inB by the
proposition: call taxi executableif has enough money. In this paper, we will assume
thatI is complete, i.e., for every fluentf ∈ F, I contains eitherf or¬ f .

The semantics of an action theory is given by the notion of astate—a consistent set
of fluent literals (i.e., fluents and negated fluents) that satisfies the relationship between
fluents—and atransition functionΦ that specifies the result of the execution of an action
a in a states, denoted byΦ(a, s). A trajectory of an action theory(D, I) is a sequence
s0a1s1 . . . ansn wheresi’s are states,ai’s are actions, andsi+1 ∈ Φ(si, ai+1) for i ∈
{0, . . . , n− 1}. A states satisfies a fluent literalf , denoted bys |= f , if f ∈ s. Since our
main concern in this paper is not the language for representing actions and their effects,
we omit here the detailed definition ofB [12].

A planning problem is specified by a triple〈D, I, G〉, where(D, I) is an action theory
andG is a fluent formula (a propositional formula based on fluent literals) representing

the goal. A possible solution to〈D, I, G〉 is a trajectorys0a1s1 . . . amsm, wheres0 |= I
andsm |= G. In this case, we say that the trajectory achievesG.

Answer set planning [17] solves a planning problem〈D, I, G〉 by translating it into a
logic programΠ(D, I, G) consisting ofdomain-dependentrules that describeD, I, and
G anddomain-independentrules that generate action occurrences and represent the tran-
sitions between states. Besides the planning problem,Π(D, I,G) requires an additional
parameter: the maximallength of the trajectory that the user can accept. The two key
predicates ofΠ(D, I,G) are:
• holds(f, t) – the fluent literalf holds at the time momentt; and
• occ(a, t) – the actiona occurs at the time momentt.

holds(f, t) can be extended to defineholds(φ, t) for an arbitrary fluent formulaφ, which
states thatφ holds at the timet. Details about the programΠ(D, I, G) can be found in
[24]. The key property of the translation of〈D, I, G〉 into Π(D, I,G) is that it ensures
that each trajectory achievingG corresponds to an answer set ofΠ(D, I,G), and each
answer set ofΠ(D, I,G) corresponds to a trajectory achievingG [24]. Answer sets of the
programΠ(D, I,G) can be computed using answer set solvers such assmodels[21], dlv
[10], cmodels[1], or jsmodels[16].

3 A Language for Planning Preferences Specification
In this section, we introduce the languagePP for planning preference specification. Let
〈D, I, G〉 be a planning problem, with actionsA and fluentsF; let FF be the set of all
fluent formulae.PP is defined as special formulae overA andF. We subdivide preferences
in different classes:basic desires, atomic preferences, andgeneral preferences.

3.1 Basic Desires
A basic desire is a formula expressing a preference about a trajectory. For example,Bob’s
basic desire is to save money; this implies that he prefers to use the train or the bus to
go to school, which, in turn, means that a preferred trajectory forBobshould contain the
actiontake bus or take train. This preference could also be expressed by a formula that
forbids the fluenttaxi arrived to become true in every state of the trajectory. These two
alternatives of preference representation are not always equivalent. The first one represents
the desire of leaving a state by a specific group of actions while the second one represents
the desire of being in certain states. Basic desires are constructed by usingstate desires
and/orgoal preferences. Intuitively, a state desire describes a basic user preference to be
considered in the context of a specific state. A state desireϕ implies that we prefer a state
s such thats |= ϕ. A state desireocc(a) implies that we prefer to leave states using the
actiona. In many cases, it is also desirable to talk about the final state of the trajectory—
we call this agoal preference. These are formally defined next.

Definition 1 (State Desires and Goal Preferences).A (primitive) state desire is either a
formulaϕ whereϕ ∈ FF , or a formula of the formocc(a) wherea ∈ A.
A goal preferenceis a formula of the formgoal(ϕ) whereϕ is a formula inFF .

We are now ready to define a basic desire that expresses a user preference over the
trajectory. As such, in addition to the propositional connectives∧,∨,¬, we will also use
the temporal connectivesnext, always, until , andeventually.

Definition 2 (Basic Desire Formula).A Basic Desire Formulais a formula satisfying one
of the following conditions:

• a goal preferenceϕ is a basic desire formula;
• a state desireϕ is a basic desire formula;
• given the basic desire formulaeϕ1, ϕ2, thenϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ¬ϕ1, next(ϕ1),
until (ϕ1, ϕ2), always(ϕ1), andeventually(ϕ) are also basic desire formulae.

To express thatBobwould like to take the train or the bus to school, we can write:
eventually(occ(take bus) ∨ occ(take train)).

If Bobdoes not desire to call a taxi, we can write:always(¬occ(call taxi)). We could also
write: always(¬taxi arrived). Note that these encodings have different consequences—
the second prevents taxis to be present independently from whether it was called or not.

The definition above is used to develop formulae expressing a desire regarding the
structure of trajectories. In the next definition, we will specify when a trajectory satisfies a
basic desire formula. In a later section, we will present logic programming rules that can
be added to the programΠ(D, I,G) to compute trajectories that satisfy a basic desire. In
the following definitions, given a trajectoryα = s0a1s1 · · · ansn, the notationα[i] denotes
the trajectorysiai+1si+1 · · · ansn.

Definition 3 (Basic Desire Satisfaction).Let α = s0a1s1a2s2 · · · ansn be a trajectory,
and letϕ be a basic desire formula.α satisfiesϕ (written asα |= ϕ) iff

• ϕ = goal(ψ) andsn |= ψ

• ϕ = ψ ∈ FF ands0 |= ψ

• ϕ = occ(a), a1 = a, andn ≥ 1
• ϕ = ψ1 ∧ ψ2, α |= ψ1 andα |= ψ2

• ϕ = ψ1 ∨ ψ2, α |= ψ1 or α |= ψ2

• ϕ = ¬ψ andα 6|= ψ

• ϕ = next(ψ), α[1] |= ψ, andn ≥ 1
• ϕ = always(ψ) and∀(0 ≤ i ≤ n) we have thatα[i] |= ψ

• ϕ = eventually(ψ) and∃(0 ≤ i ≤ n) such thatα[i] |= ψ

• ϕ = until (ψ1, ψ2) and∃(0 ≤ i ≤ n) such that∀(0 ≤ j < i) we have thatα[j] |= ψ1

andα[i] |= ψ2.

Definition 3 allows us to check whether a trajectory satisfies a basic desire. This will
also allow us to compare trajectories. Let us start with the simplest form of trajectory
preference, involving a single desire.

Definition 4 (Ordering between Trajectories w.r.t. Single Desire).Let ϕ be a basic
desire formula and letα and β be two trajectories. The trajectoryα is preferred to the
trajectoryβ (denoted asα ≺ϕ β) if α |= ϕ andβ 6|= ϕ.

We say thatα and β are indistinguishable (denoted asα ≈ϕ β) if one of the two
following cases occur:(i) α |= ϕ andβ |= ϕ, or (ii) α 6|= ϕ andβ 6|= ϕ.

Whenever it is clear from the context, we will omitϕ from≺ϕ and≈ϕ. We will also allow
a weak form of single preference;

Definition 5 (Weak Single Desire Preference).Letϕ be a desire formula and letα, β be
two trajectories.α is weakly preferred toβ (denotedα ¹ϕ β) iff α ≺ϕ β or α ≈ϕ β.

Proposition 1. The relation¹ϕ defines a partial order over the trajectories.

These definitions are also expressive enough to describe a significant portion of prefer-
ences that frequently occur in real-world domains. Since some of them are particularly
important, we will introduce some syntactic sugars to simplify their use:

• (Strong Desire) given the desire formulaeϕ1, ϕ2, ϕ1 < ϕ2 denotesϕ1 ∧ ¬ϕ2.
• (Weak Desire) given the desire formulaeϕ1, ϕ2, ϕ1 <w ϕ2 denotesϕ1 ∨ ¬ϕ2.
• (Enabled Desire) given two actionsa1, a2, we will denote witha1 <e a2 the formula

executable(a1) ∧ executable(a2) ⇒ occ(a1) < occ(a2). This can be extended to
include disjunction (or group) of actions on each side of the formula.

Definition 6 (Most Preferred Trajectory w.r.t. Single Desire). Let ϕ be a basic desire
formula. A trajectoryα is said to be amost preferred trajectoryw.r.t. ϕ, if there is no
trajectoryβ such thatβ ≺ϕ α.

Note that in the presence of preference, a most preferred trajectory might require extra
actions that would have been otherwise considered unnecessary as shown below.

Example 2.Let us enrich the theory from Example 1 with an action calledbuy coffee,
which allowsBob to have coffee. He can do it only at the station. To say thatBobprefers
to have coffee before he takes the exam, we write:goal(havecoffee). Any plan satisfying
this preference requiresBobto stop at the station before taking the exam. E.g., whilecalls
a taxiand thentakes the taxi to schoolis a valid trajectory forBobto achieve his goal, this
is not a most preferred trajectory; instead,Bobhas to take the taxi to the station, buy the
coffee, and then go to school. Besides the action ofbuy coffee that is needed forBob to
get the coffee, the most preferred trajectory requires the action ofdriving to the station,
which is not necessary ifBobdoes not have the preference of having the coffee.

3.2 Atomic Preferences and Chains
Basic desires allow users to specify their preferences and can be used in selecting trajec-
tories which satisfy them. From the definition of a basic desire formula, we can assume
that users always have a set of desire formulae and that their desire is to find a trajectory
that satisfies all formulae. In many cases, this proves to be too strong and results in situ-
ations where no preferred trajectory can be found. For example,time andcostare often
two criteria that a person might have when making a travel plan. This two criteria are of-
ten in conflict, i.e., transportation method that takes little time often costs more. It is very
unlikely that he/she can get a plan that can satisfy both criteria. Consider Example 1, it is
obvious thatBobcannot have a plan that costs him only two dollars and allows him to get
to destination quickly. To address this problem, we allow a new type of formulae,atomic
preferences, which represents an ordering between basic desire formulae.

Definition 7 (Atomic Preference).Anatomic preference formulais defined as a formula
of the typeϕ1 ¢ ϕ2 ¢ · · ·¢ ϕn (n≥1) whereϕ1, . . . , ϕn are basic desire formulae.

The intuition behind an atomic preference is to provide an ordering between different
desires—i.e., it indicates that trajectories that satisfyϕ1 are preferable to those that sat-
isfy ϕ2, etc. Clearly, basic desire formulae are special cases of atomic preferences. The
definitions of≈ and≺ are extended to compare trajectories w.r.t. atomic preferences.

Definition 8 (Ordering Between Trajectories w.r.t. Atomic Preferences).Let α, β be
two trajectories, and letΨ = ϕ1 ¢ ϕ2 ¢ · · ·¢ ϕn be an atomic preference formula.
• α, β are indistinguishable w.r.t.Ψ (written asα ≈Ψ β) if ∀i.[1≤i≤n ⇒ α ≈ϕi β].

• α is preferred toβ w.r.t. Ψ (written asα ≺Ψ β) if ∃(1 ≤ i ≤ n) such that
(a) ∀(1 ≤ j < i) we have thatα ≈ϕj β, and(b) α ≺ϕi β.

We will say thatα ¹Ψ β if eitherα ≺Ψ β or α ≈Ψ β.

We can show that this version of¹ is a partial order (with≈ as underlying equivalence).

Proposition 2. LetΨ be an atomic preference; then¹Ψ is a partial order.

A trajectoryα is most preferred if there is no other trajectory that is preferred toα.

Example 3.Let us continue with the theory in Example 2. To simplify the representation,
we will assume that each action is associated with a degree of safety. We will also write
bus, train, taxi1, taxi2, andwalk to say thatBob takes the bus, train, taxi withPay-
ByMeteror MakeIt50, or walk, respectively. The following is a desire expressing thatBob
prefers to get the fastest possible way to go to school:

time = always(taxi1 ∨ taxi2 <e bus ∨ train ∨ walk)
On the other hand, when he is not in a hurry,Bobprefers to get the cheaper way to go to
school: cost = always(walk ∨ bus ∨ train <e taxi1 ∨ taxi2)
These two preferences can be combined into different atomic preferences, e.g.,

time ¢ cost or cost ¢ time.
The first one is more appropriate forBob when he is in a hurry while the second one is
more appropriate forBob when he has time. The trajectoryα = s0 walk s1 bus s2 is
preferred to the trajectoryβ = s0 call taxi(PayByMeter) s′1 taxi1 s′2 with respect to
the preferencecost ¢ time, i.e.,α ≺cost¢time β. (for brevity, we omit the description of
the statessi’s.) However,β ≺time¢cost α.

3.3 General Preferences
A general preference is constructed from atomic preferences as follows.

Definition 9 (General Preferences).A general preference formula is a formula satisfying
one of the following conditions:

• An atomic preferenceΨ is a general preference;
• If Ψ1, Ψ2 are general preferences, thenΨ1&Ψ2, Ψ1 | Ψ2, and!Ψ1 are general preferences;
• Given a collection of general preferencesΨ1, Ψ2, . . . , Ψk, thenΨ1 ¢ Ψ2 ¢ · · ·¢ Ψk is a
general preference.

Intuitively, the operators&, |, ! are used to express different ways to combine preferences.
Syntactically, they are similar to the operations∧,∨,¬ in the construction of basic desire
formulae. Semantically, they differ from the operations∧,∨,¬ in a subtle way. For ex-
ample, given two fluent formulaeφ andψ, it is easy to see that bothφ ∨ ψ andφ | ψ
are general preferences. Although both express our preference over trajectories, the first
formula represents asingle preferencewhile the second one providestwo different criteria
and we have no preference between them.

Definition 10 (Ordering Between Trajectories w.r.t. General Preferences).Let Ψ a
general preference andα, β two trajectories.

• The trajectoryα is preferred toβ (α ≺Ψ β) if:
− Ψ is an atomic preference andα ≺Ψ β

− Ψ = Ψ1&Ψ2, α ≺Ψ1 β andα ≺Ψ2 β

− Ψ = Ψ1 | Ψ2 and: (i) α ≺Ψ1 β andα ≈Ψ2 β; or (ii) α ≺Ψ2 β andα ≈Ψ1 β; or
(iii) α ≺Ψ1 β andα ≺Ψ2 β

− Ψ =! Ψ1 andβ ≺Ψ1 α or α ≈Ψ1 β

− Ψ = Ψ1 ¢ · · · ¢ Ψk, and there exists1 ≤ i ≤ k such that:(i) ∀(1 ≤ j < i) we
have thatα ≈Ψj β , and(ii) α ≺Ψi β.

• The trajectoryα is indistinguishable from the trajectoryβ (α ≈Ψ β) if:
− Ψ is an atomic preference andα ≈Ψ β.
− Ψ = Ψ1&Ψ2, α ≈Ψ1 β, α ≈Ψ2 β.
− Ψ = Ψ1 | Ψ2, α ≈Ψ1 β, andα ≈Ψ2 β.
− Ψ =! Ψ1 andα ≈Ψ1 β.
− Ψ = Ψ1 ¢ · · ·¢ Ψk, and for all1 ≤ i ≤ k we have thatα ≈Ψi

β.

Again, we can prove that≈Ψ is an equivalence relation and¹Ψ is a partial ordering.

Proposition 3. If Ψ is a general preference, then≈Ψ is an equivalence relation.

Proposition 4. Let Ψ be a general preference. Then≺Ψ is a transitive relation and the
relation¹ is a partial order (with≈ as base equivalence).

A trajectoryα is most preferred if there is no trajectory that is preferred toα.

Example 4.Let us continue with the theory of Example 3. Assume that the safest trans-
portation mode is either thetrain or the expensiveMakeIt50cab. The preference

safety = always(train ∨ walk ∨ taxi2 <e bus ∨ taxi1)
says thatBob prefers to move around using the safest transportation mode. Further, he
prefers safety over time and cost, so we writesafety ¢ (time&cost).

4 Computing Preferred Trajectories
In this section, we address the problem of computing preferred trajectories. The ability to
use the operators∧,¬,∨ as well as&, |, ! in construction of preference formulae allows us
to combine several preferences into a preference formula. For example, if a user has two
atomic preferencesΨ andΦ, but does not preferΨ overΦ or vice versa, he can combine
them in to a single preferenceΨ ∧ Φ ¢ Ψ ∨ Φ ¢ ¬Ψ ∧ ¬Φ. The same can be done if
Ψ or Φ are general preferences. Thus, without lost of generality, we can assume that we
only have one preference formula to deal with. Given a planning problem〈D, I,G〉 and
a preference formulaϕ, we are interested in finding a preferred trajectoryα achievingG
for ϕ. We will show how this can be done in answer set programming. We achieve that by
encoding each basic desireϕ as a set of rulesΠϕ and developing two sets of rulesΠsat

andΠpref . Πsat checks whether a basic desire is satisfied by a trajectory.Πpref consist of
rules that, when used with themaximizeconstruct ofsmodelswill allow us to find a most
preferred trajectory with respect to a preference formula. SinceΠ(D, I, G) has already
been discussed in Section 2, we will begin by definingΠϕ.

4.1 Encoding of Desire Formulae
The encoding of a desire formula is similar to the encoding of a fluent formula in [24].
In our encoding, we will use the predicateformula as a domain predicate. The set
{formula(l, l) | l is a fluent literal} will belong to Πϕ. Each of the atoms in this set
declares that each literal is also a formula. Next, each basic desire formulaϕ will be asso-
ciated with a unique namenϕ. If ϕ is a fluent formula then it is encoded by a set of atoms
of the formformula(., .) and is denoted byrϕ. For example,ϕ = f ∧ g will be given
a name,nf∧g, and is encoded by the formulaformula(nf∧g, conjunction(f, g)). For
other types of desire formula,Πϕ is defined as follows.

− If ϕ = goal(φ) thenΠϕ = rφ ∪ {desire(nϕ), goal(nφ)};
− If ϕ is a fluent formula thenΠϕ = rϕ ∪ {desire(nϕ)};
− If ϕ = occ(a) thenΠϕ = {desire(nϕ), happen(nϕ, a)};
− If ϕ = ϕ1 ∧ ϕ2 thenΠϕ = Πϕ1 ∪Πϕ2 ∪ {desire(nϕ), and(nϕ, nϕ1 , nϕ2)};
− If ϕ = ϕ1 ∨ ϕ2 thenΠϕ = Πϕ1 ∪Πϕ2 ∪ {desire(nϕ), or(nϕ, nϕ1 , nϕ2)};
− If ϕ = ¬φ thenΠϕ = Πφ ∪ {desire(nϕ), negation(nϕ, nφ)};
− If ϕ = next(φ) thenΠϕ = Πφ ∪ {desire(nϕ), next(nϕ, nφ)};
− If ϕ = until (ϕ1, ϕ2) thenΠϕ = Πϕ1 ∪Πϕ2 ∪ {desire(nϕ), until(nϕ, nϕ1 , nϕ2)};
− If ϕ = always(φ) thenΠϕ = Πφ ∪ {desire(nϕ), always(nϕ, nφ)};
− If ϕ = eventually(φ) thenΠϕ = Πφ ∪ {desire(nϕ), eventually(nϕ, nφ)}.

4.2 Πsat – Rules for Checking of Basic Desire Formula Satisfaction
We now present the set of rules that check whether a trajectory satisfies a basic desire for-
mula. Recall that an answer set of the programΠ(D, I, G) will contain a trajectory where
action occurrences are recorded by atoms of the formocc(a, t) and the truth value of fluent
literals is represented by atoms of the formholds(f, t), wherea ∈ A, f is a fluent literal,
andt is a time moment between0 andlength. Πsat defines the predicatesatisfy(F, T)
whereF andT are variables representing a basic desire and a time moment, respectively.
The satisfiability of a fluent formula at a time moment will be defined by the predicate
h(F, T) – which is defined based on the predicateholds and the usual logical operators
such as∧,∨,¬. Intuitively, satisfy(F, T) says that the basic desireF is satisfied by the
trajectory starting from the time momentT . They are defined based on the structure ofF .
Some of the rules ofΠsat are given next.

satisfy(F, T) ← desire(F), goal(F), satisfy(F, length). (1)

satisfy(F, T) ← desire(F), happen(F, A), occ(A, T). (2)

satisfy(F, T) ← desire(F), formula(F, G), h(G, T). (3)

satisfy(F, T) ← desire(F), and(F, F1, F2), satisfy(F1, T), satisfy(F2, T). (4)

satisfy(F, T) ← desire(F), negation(F, F1), not satisfy(F1, T). (5)

satisfy(F, T) ← desire(F), until(F, F1, F2), during(F1, T, T1), satisfy(F2, T1). (6)

satisfy(F, T) ← desire(F), always(F, F1), during(F1, T, length+1). (7)

satisfy(F, T) ← desire(F), next(F, F1), satisfy(F1, T + 1). (8)

during(F1, T, T1) ← T < T1 − 1, desire(F1), satisfy(F1, T), during(F1, T + 1, T1). (9)

during(F1, T, T1) ← T = T1 − 1, desire(F1), satisfy(F1, T). (10)

In the next theorem, we prove the correctness ofΠsat. We need some additional notation.
Let M be an answer set of the programΠ(D, I, G). By αM we denote the trajectory
s0a0 . . . an−1sn, where(i) occ(ai, i) ∈ M for i ∈ {0, . . . , n − 1} and (ii) si = {f |
holds(f, i) ∈ M} for i ∈ {0, . . . , n}. For a trajectoryα = s0a0 . . . an−1sn, let α−1 =
{occ(ai, i) | i ∈ {0, . . . , n− 1} ∪ {holds(f, i) | f ∈ si, i ∈ {0, . . . , n}. We have:

Theorem 1. Let〈D, I, G〉 be a planning problem andϕ be a basic desire formula. LetM
be an answer set ofΠ(D, I, G). Then,αM |= ϕ iff Πϕ∪Πsat∪(αM)−1|=satisfy(nϕ, 0).

The theorem allows us to compute a most preferred trajectory insmodels. LetΠ(D, I, G, ϕ)
be the program consisting of theΠ(D, I, G) ∪Πϕ ∪Πsat and the rule

maximize{satisfy(nϕ, 0) = 1, not satisfy(nϕ, 0) = 0}. (11)
Note that rule (11) means that answer sets in whichsatisfy(nϕ, 0) holds are most pre-
ferred.smodelswill first try to compute answer sets ofΠ in whichsatisfy(nϕ, 0) holds;

only when no answer set with this property exists, other answer sets are considered. (The
current implementation ofsmodelshas some restrictions on using themaximizeconstruct;
our jsmodelssystem can now deal with this construct properly.)

Theorem 2. Let 〈D, I, G〉 be a planning problem andϕ be a basic desire formula. For
every answer setM of Π(D, I, G, ϕ), αM is a most preferred trajectory w.r.t.ϕ.

The above theorem gives us a way to compute a most preferred trajectory with respect
to a basic desire. We will now generalize this approach to deal with general preferences
using themaximize function. The intuition is to associate to the different components
of the preference formula aweight; these weights are then used to obtain a weight for
each trajectory (based on what components of the preference formula are satisfied by
the trajectory). Themaximize function can be used to handle these weights and guide the
search of the preferred trajectory. In general, letΨ be a general preference. We will develop
aweight function, wΨ , which maps each trajectory to a number and satisfies the following
properties:(i) if α ≺Ψ β thenwΨ (α) > wΨ (β), and(ii) if α ≈Ψ β thenwΨ (α) = wΨ (β).
A weight function satisfying the two properties (i)-(ii) is called anadmissibleweight func-
tion. Obviously, ifwΨ is admissible, we have the following theorem.

Proposition 5. LetΨ be a general preference formula andwΨ (α) be an admissible weight
function. If α is a trajectory such thatwΨ (α) is maximal, thenα is a most preferred
trajectory w.r.t.Ψ .

The above proposition implies that we can compute a most preferred trajectory using
smodelsif we can implement an admissible weight function.

4.3 Computing An Admissible Weight Function
Let Ψ be a general preference. We will now show how an admissible weight functionwΨ

can be built in a bottom-up fashion. We begin with basic desires.

Definition 11 (Basic Desire Weight).Let ϕ be a basic desire formula and letα be a
trajectory. The weight of the trajectoryα w.r.t. the desireϕ is a function defined as
wϕ(α) = 1 if α |= ϕ andwϕ(α) = 0, otherwise.

The next proposition shows that for a basic desireϕ, wϕ is admissible.

Proposition 6. Letϕ be a basic desire. Thenwϕ is an admissible weight function.

The weight function of an atomic preference is defined on the weight function of basic
desires occurring in the preference as follows.

Definition 12 (Atomic Preference Weight).Let ψ = ϕ1 ¢ ϕ2 ¢ · · · ¢ ϕk be an atomic
preference formula. The weight of a trajectoryα w.r.t. ψ is defined as follows:

wψ(α) =
∑k

r=1(2
k−r × wϕr (α))

Again, we can show that the above function is admissible.

Proposition 7. Let ψ = ϕ1 ¢ ϕ2 ¢ · · · ¢ ϕk be an atomic preference. Thenwψ is an
admissible weight function.

We are now ready to define an admissible weight function w.r.t. a general preference.

Definition 13 (General Preference Weight).LetΨ be a general preference formula. The
weight of a trajectoryα w.r.t. Ψ (wΨ (α)) is defined as follows:

− if Ψ is an atomic preference then the weight is defined as in definition 12.
− if Ψ = Ψ1&Ψ2 thenwΨ (α) = wΨ1(α) + wΨ2(α)
− if Ψ = Ψ1 | Ψ2 thenwΨ (α) = wΨ1(α) + wΨ2(α)
− if Ψ = ! Ψ1 thenwΨ (α) = max(Ψ1) − wΨ1(α) wheremax(Ψ1) represents the
maximum weight that a trajectory can achieve on the preference formulaeΨ1.
− if Ψ = Ψ1 ¢ Ψ2

1 thenwΨ (α) = max(Ψ2)× wΨ1(α) + wΨ2(α)

We prove the admissibility ofwΨ in the next proposition.

Proposition 8. If Ψ is a general preference, thenwΨ is an admissible weight function.

Propositions 6-8 show that we can compute an admissible weight functionwΨ bottom-
up from the weight of each basic desire occurring inΨ . We are now ready to define the
set of rulesΠpref (Ψ) which consists of the rules encodingΨ and the rules encoding the
computation ofwΨ . Similar to the encoding of desires, we will assign a new, distinguished
namenφ to each preference formulaφ, which is not a desire, occurring inΨ and encode
the preferences in the same way we encode the desires. To save space, we omit here the
details of this step.Πpref (Ψ) define two predicates,w(p, n) andmax(p, n) wherep is a
preference name andn is the weight of the current trajectory with respect to the preference
p. w(p, n) (resp.max(p, n)) is true if the weight (resp. maximal weight) of the current
trajectory with respect to the preferencep is n.
1. For each desired, Πpref (d) contains the rules

w(d, 1) ← satisfy(d). w(d, 0) ← not satisfy(d). max(d, 2) ← .
2. For each atomic preferenceφ = ϕ1¢ϕ2¢· · ·¢ϕk, Πpref (φ) consists of∪k

j=1Πpref (ϕk)
and the next two rules:

w(nφ, S) ← w(nϕ1 , N1), w(nϕ2 , N2), . . . , w(nϕk
, Nk), S = Σk

1 2k−rNr.
max(nφ, 2k+1 + 1) ← .

3. For each general preferenceΨ ,
• if Ψ is an atomic preference thenΠpref (Ψ) is defined as in the previous item.
• if Ψ = Ψ1&Ψ2 or Ψ = Ψ1|Ψ2 thenΠpref (Ψ) consists ofΠpref (Ψ1)∪Πpref (Ψ2) and

w(nΨ , S) ← w(nΨ1 , N1), w(nΨ2 , N2), S = N1 + N2.
max(nΨ , S) ← max(nΨ1 , N1),max(nΨ2 , N2), S = N1 + N2.

• if Ψ =! Ψ1 thenΠpref (Ψ) consists ofΠpref (Ψ1) and the rules
w(nΨ , S) ← w(nΨ1 , N),max(nΨ1 ,M), S = M + 1−N.
max(nΨ , S) ← max(nΨ1 ,M), S = M + 1.

• if Ψ = Ψ1 ¢ Ψ2 thenΠpref (Ψ) consists ofΠpref (Ψ1) ∪Πpref (Ψ2) and rules
w(nΨ , S) ← w(nΨ1 , N1),max(nΨ2 , M2), w(nΨ2 , N2), S = M2 ∗N1 + N2.
max(nΨ , S) ← max(nΨ1 , N1),max(nΨ2 , N2), S = N2 ∗N1 + N2 + 1.

The next theorem proves the correctness ofΠpref (Ψ).

Theorem 3. Let Ψ be a general preference. For every answer setM of Π(D, I,G) we
have thatΠpref (Ψ) ∪Πsat ∪ (αM)−1 |= w(nΨ , w) iff wΨ (αM) = w.

The above theorem implies that we can compute a most preferred trajectory by (i) adding
Πpref (Ψ) ∪Πsat to Π(D, I,G) and (ii) computing an answer setM in whichw(nΨ , w)
is maximal. A working implementation of this is available injsmodels.

1 Without loss of generality, we describe the encoding only for chains of length 2.

4.4 Some Examples of Preferences inPP
We will now present some preferences that are common to many planning problems and
have been discussed in [9]. Let〈D, I, G〉 be a planning problem. In keeping with the
notation used in the previous section, we useϕ to denoteG (i.e.,ϕ = G).
Preference for shortest trajectory: formula based encoding.Assume that we are inter-
ested in trajectories achievingϕ whose length is less than or equaln. A simple encoding
that allows us to accomplish such goal is to make use of basic desires. Bynexti(ϕ) we
denote the formula:next(next(next · · · (next︸ ︷︷ ︸

i

(ϕ)) · · ·)).

Let us define the formulaσi(ϕ) (0 ≤ i ≤ n) as follows:
σ0(ϕ) = ϕ σi(ϕ) =

∧i−1
j=0 ¬nextj(ϕ) ∧ nexti(ϕ)

Finally, let us consider the formulashort(n, ϕ) defined as
short(n, ϕ) = σ0(ϕ) ¢ σ1(ϕ) ¢ σ2(ϕ) ¢ · · ·¢ σn(ϕ)

Proposition 9. Letα be a most preferred trajectory w.r.t.short(n, ϕ). Thenα is a short-
est length trajectory satisfying the goalϕ.

Preference for shortest trajectory: action based encoding.The formula based encoding
short(n, ϕ) requires the boundn to be given. We now present another encoding that does
not require this condition. We introduce two additional fictions actionsstop andnoop and
a new fluentended. The actionstop will be triggered when the goal is achieved;noop
is used to fill the slot so that we can compare between trajectories; the fluentended will
denote the fact that the goal is achieved. Again, we appeal to the users for the formal repre-
sentation of these actions. Furthermore, we add the condition¬ended to the executability
condition of any actions in(D, I) and to the initial stateI. Then we can encode the con-
dition of shortest length trajectory, denoted byshort, as

always((stop ∨ noop) <e (a1 ∨ . . . ∨ ak))
wherea1, . . . , ak are the actions in the original action theory.

Proposition 10. Let α be a most preferred trajectory w.r.t.short. Thenα is a shortest
length trajectory satisfying the goalϕ.

Cheapest Plan.Let us assume that we would like to associate a costc(a) to each actiona
and determine trajectories that have the minimal cost. Since our comparison is done only
on equal length trajectories, we will also introduce the two actionsnoop andstop with no
cost and the fluentended to record the fact that the goal has been achieved. Further, we
introduce the fluentsCost to denote the cost of the trajectory. Initially, we set the value
of sCost to 0 and the execution of actiona will increase the value ofsCost by c(a). The
preferencegoal(sCost(m)) ¢ goal(sCost(m + 1)) . . . ¢ goal(sCost(M)) wherem and
M are the estimated minimal and maximal cost of the trajectories, respectively. Note that
we can havem = 0 andM = max{c(a) | a is an action} × length.

5 Conclusion
In this paper we presented a novel declarative language, calledPP, for the specification
of preferences in the context of planning problems. The language nicely integrates with
traditional action description languages (e.g.,B) and it allows elegant encoding of com-
plex preferences between trajectories. The language provides adeclarativeframework for
the encoding of preferences, allowing users to focus on the high-level description of pref-
erences (more than their encoding—as in the approaches based on utility functions).PP

allows the expression of complex preferences, including multi-dimensional preferences.
We also demonstrated thatPP preferences can be effectively and easily handled in a logic
programming framework based on answer set semantics.

The work is still in its preliminary stages. The implementation of the required cost
functions in thejsmodelssystem is almost complete, and this will offer us the opportunity
to validate our ideas on large test cases and to compare with related work such as that in
[9]. We also intend to explore the possibility of introducing temporal operators at the level
of general preferences. These seem to allow for very compact representation of various
types of preferences; for example, a shortest plan preference can be encoded simply as:

always((occ(stop) ∨ occ(noop)) ¢ (occ(a1) ∨ . . . ∨ occ(ak)))
if a1, . . . , ak are the possible actions.

References
1. Y. Babovich. “CMODELS”,www.cs.utexas.edu/users/tag/cmodels.html .
2. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for

planning.Artificial Intelligence, 116(1,2):123–191, 2000.
3. S. Bistarelli et al. Labeling and Partial Local Consistency for Soft Constraint Programming. In

Practical Aspects of Declarative Languages, Springer Verlag, 2000.
4. A.L. Blum and M.L. Furst. Fast Planning through Planning Graph Analysis.AIJ, 90, 1997.
5. G. Brewka and T. Eiter. Preferred answer sets for extended logic programs.AIJ, 109, 1999.
6. A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checking.Journal of

Artificial Intelligence Research, 13:305–338, 2000.
7. B. Cui and T. Swift. Preference Logic Grammars: Fixed Point Semantics and Application to

Data Standardization.Artificial Intelligence, 138(1–2):117–147, 2002.
8. J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic

programs.Theory and Practice of Logic Programming, 3(2):129–187, March 2003.
9. T. Eiter et al. Answer Set Planning under Action Cost. InJELIA. Springer Verlag, 2002.

10. T. Eiter et al. The KR Systemdlv : Progress Report, Comparisons, and Benchmarks. InInt.
Conf. on Principles of Knowledge Representation and Reasoning, pages 406–417, 1998.

11. F. Fages, J. Fowler, and T. Sola. Handling Preferences in Constraint Logic Programming with
Relational Optimization. InPLILP Springer Verlag, 1994.

12. M. Gelfond and V. Lifschitz. Action languages.ETAI, 3(6), 1998.
13. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. ICLP’88.
14. P. Haddawy and S. Hanks. Utility Model for Goal-Directed Decision Theoretic Planners. Tech-

nical report, University of Washington, 1993.
15. H. Kautz and J.P. Walser. State-space Planning by Integer Optimization. InAAAI, 1999.
16. H. Le, E. Pontelli, T.C. Son. A Java Solver for Answer Set Programming, NMSU, 2003.
17. V. Lifschitz. Answer set planning. InICLP, pages 23–37, 1999.
18. D. Long et al. International Planning Competition.
19. K.L. Myers. Strategic Advice for Hierarchical Planners. InKR’96.
20. K.L. Myers and T.J. Lee. Generating Qualitatively Different Plans through Metatheoretic Bi-

ases. InAAAI, 1999.
21. I. Niemel̈a and P. Simons. Smodels - an implementation of the stable model and well-founded

semantics for normal logic programs. InLPNMR, Springer, pages 420–429, 1997.
22. M.L. Putterman.Markov Decision Processes – Discrete Stochastic Dynamic Programming.

John Willey & Sons, Inc., New York, NY, 1994.
23. T. Schaub et al. A Comparative Study of Logic Programs with Preferences.IJCAI, 2001.
24. T.C. Son, C. Baral, and S. McIlraith. Domain dependent knowledge in planning - an answer set

planning approach. InLPNMR, Springer, pages 226–239, 2001.
25. T.C. Son and E. Pontelli. Reasoning about actions in prioritized default theory. InJELIA, 2002.

