Planning with Preferences using Logic Programming

Tran Cao Son Enrico Pontelli

Department of Computer Science
New Mexico State University
{tson |epontell }@cs.nmsu.edu

Abstract. We present a declarative languag®P, for the specification of prefer-
ences between possible solutions (or trajectories) of a planning problem. This novel
language allows users to elegantly express non-trivial, multi-dimensional prefer-
ences and priorities over them. The semantic$®f allows the identification of
most preferred trajectoriefor a given goal. We also provide an answer set program-
ming implementation of planning problems wigP preferences.

1 Introduction

Planning—in its classical sense—is the problem of finding a sequence of actions that
achieves a predefined goal. Most of the research in Al planning has been focused on
methodologies and issues related to the development of efficient planners. To date, several
efficient planning systems have been developed (e.g., see [18]). These developments can
be attributed to the discovery of good domain-independent heuristics, the use of domain-
specific knowledge, and the development of efficient data structures used in the implemen-
tation of the planning algorithms. Logic programming has played a significant role in this
line of research, providing a declarative framework for the encoding of different forms of
knowledge and its effective use during the planning process [24].

However, relatively limited effort has been placed on addressing several important as-
pects in real-world planning domains, suctpén qualityandpreferences about plani
many real world frameworks, the space of feasible plans to achieve the goal is dense, but
many of such plans, even if executable, may present undesirable features. In these frame-
works, it may be simple to find a solution; rather, the challenge is to produce a solution
that is considered satisfactory w.r.t. the needs and preferences of the user. Thus, feasible
plans may have a measure of quality, and only a subset may be considered acceptable.
These issues can be illustrated with the following example:

Example 1. Itis 7 am anBob, a Ph.D. student, is at home. He needs to be at school at

8 am. He can take a bus, a train, or a taxi to go to school, which will take him 55, 45, or
15 minutes respectively. Taking the bus or the train will reqBiod to walk to the nearby
station, which may take 20 minutes. However, a taxi can arrive in only 5 minutes. When
in need of a taxiBob can call either theMakelt50 or the PayByMetertaxi company.
Makelt50will charge a flat rate of$50 for any trip, whilePayByMetethas a fee schedule

of $20 for the trip to school. If he takes the bus or the train, tBab will spend only$2.

Bob, being a student, prefers to pay less whenever possible. It is easy to see that there are

* The research has been partially supported by NSF grants EIA0220590, EIA0130887,
CCR9875279, CCR9820852, and CCR9900320.



only twofeasibleplans forBobto arrive at school on time for his exam: calling one of the
two taxi companies. However,RayByMetertaxi would be preferable, aBob wants to
save moneyn this case, both plans are feasible Botis preference is the deciding factor
to select which plan he will follow.

The example shows that users’ preferences play a decisive role in the choice of a plan.
Thus, we need to be able to evaluate plan components at a finer granularity than simply as
consistent or violated. In [20], it is argued that users’ preferences are likely more impor-
tant in selecting a plan for execution, when a planning problem has too many solutions. It
is worth observing that, with a few exceptions like the system SIPE-2 with metatheoretic
biases [20], most planning systems do not allow users to specify their preferences and use
them in finding plans. The responsibility in selecting the most appropriate plan rests solely
on the users. It is also important to observe tiraferencesre different fromgoalsin a
planning problem; a plamustsatisfy the goal, while it may or may not satisfy the pref-
erences. The distinction is analogous to the separation betwadmndsoft constraints

[3]. E.g., if Bob'sgoalis to spend at most $2 to go to school, then he does not have any
feasible plans to arrive at school on time.

In this paper, we will investigate the problem of integrating users’ preferences into a
planner. We will develop a high-level language for the specification of user preferences,
and then provide a logic programming implementation of the language, based on answer
set programming. As demonstrated in this work, normal logic programs with answer set
semantics [13] provide a natural and elegant framework to effectively handle planning
with preferences. We divide the preferences that a user might have in different categories:

e Preference about a statéhe user prefers to be in a stat¢hat satisfies a property
rather than a stat€ that does not satisfy it, even though both satisfy his/her goal,
e Preference about an actiothe user prefers to perform the actionwhenever it is
feasible and it allows the goal to be achieved;
e Preference about a trajectoryhe user prefers a trajectory that satisfies a certain prop-
erty ¢ over those that do not satisfy this property;
e Multi-dimensional Preferenceshe user has aetof preferences about the trajectory,
with an ordering among them. A trajectory satisfying a more favorable preference is
given priority over those that satisfy less favorable preferences.
It is important to observe the difference betwegand+ in the above definitionss is
a stateproperty, wherea® is a formula over the whol&ajectory (from the initial state
to the state that satisfies the given goal). We will also demonstrate how the language for
expressing preferences can be realized using Answer Set Programming (ASP).
Related Work: This work is a continuation of our previous work [25], in which we rely on
prioritized default theories to express limited classes of preferences between trajectories.
This work is also influenced by other works on exploitishgmain-specific knowledde
planning (e.g., [2, 24]), in which domain-specific knowledge is expressed as a constraint
on the trajectories achieving the goal, and hencehigrd constraint

Numerous approaches have been proposed to integrate preferences in the planning
process. Eiter et al. introduced a framework for planning with action costs using logic
programming [9]. Each action is assigned an integer cost, and plans with the minimal cost
are considered optimal. Costs can be either static or relative to the time step in which the
action is executed. [9] also presents the encoding of different preferences, such as shortest
plan and the cheapest plan. Our approach also emphasizes the use of logic programming,



but differs in several aspects. Here, we develogealarative languagdor preference
representation. Our language can express the preferences discussed in [9], but it is more
high-level and flexible than the action costs approach. The approach in [9] also does not
allow the use of fully general dynamic preferences. Other systems have adopted fixed
types of preferences, e.g., shortest plans [6, 4].

Our proposal has similarities with the approach based on metatheories of the planning
domain [19, 20], where metatheories provide characterization of semantic differences be-
tween the various domain operators and planning variables; metatheories allow the gener-
ation of biases to focus the planner towards plans with certain characteristics.

The problem of maintaining and managing preferences has been investigated in the
framework of constraint programming (e.g., [3, 11]). Constraint solving has also been pro-
posed for the management of planning in presence of action costs [15].

Considerable effort has been invested in introducing preferences in logic program-
ming. In [7] preferences are expressed at the level of atoms and used for parsing disam-
biguation in logic grammars. Rule-level preferences have been used in various proposals
for selection of preferred answer sets in answer set programming [5, 8, 23].

Our language allows the representation of several types of preferences similar to those
developed in [14] for decision-theoretic planners. The main difference is that we use logic
programming while their system is probability based. Our approach also differs from the
works on using Markov Decision Processes (MDP) to find optimal plans [22]; in MDPs,
optimal plans are functions from states to actions, thus preventing the user from selecting
preferred trajectories without changing the MDP specification.

2 Preliminary — Answer Set Planning

In this section we review the basics of planning using logic programming with answer
set semantics-Answer Set Planning (or ASH)7]. We will assume that the effect of
actions on the world and the relationship between fluents in the world are expressed in
an appropriate language. In this paper, we will make use of the ontologies of the action
description languagB [12]. In B, an action theory is defined over two disjoint sets—the
set of actions\ and the set of fluents; an action theory is a pai{D, I), whereD is a set
of propositions expressing the effects of actions, the relationship between fluents, and the
executability conditions of actiong;is a set of propositions representing the initial state
of the world. For example, the action of calling a taxi has the effect of the taxi arriving,
and it is represented i as:call_taxi causestaxi_arrived. Realistically, should one
need to execute this action one has to have enough money. This is expreSsieyl tine
proposition: call_taxi executableif has_enough_money. In this paper, we will assume
thatl is complete, i.e., for every fluerfte F, I contains eitheyf or — f.

The semantics of an action theory is given by the notion stiade—a consistent set
of fluent literals (i.e., fluents and negated fluents) that satisfies the relationship between
fluents—and aransition functiond that specifies the result of the execution of an action
a in a states, denoted byd(a, s). A trajectory of an action theory D, I) is a sequence
S0a181 - - - ansy, Wheres;'s are statesg;’s are actions, and,;; € &(s;,a;41) fori €
{0,...,n — 1}. A states satisfies a fluent litergf, denoted by |= f, if f € s. Since our
main concern in this paper is not the language for representing actions and their effects,
we omit here the detailed definition 5f[12].

A planning problem is specified by a trip|®, I, G), where(D, I) is an action theory
andG is a fluent formula (a propositional formula based on fluent literals) representing



the goal. A possible solution @D, I, G) is a trajectorysga; $1 - . . Gy Sm, Wheresy = I
ands,, = G. In this case, we say that the trajectory achigWes
Answer set planning [17] solves a planning problébh I, G) by translating it into a

logic program/I (D, I, G) consisting ofdomain-dependentiles that describ®, I, and
G anddomain-independemtiles that generate action occurrences and represent the tran-
sitions between states. Besides the planning problé(d, I, G) requires an additional
parameter: the maximaéngth of the trajectory that the user can accept. The two key
predicates of (D, I,G) are:

e holds(f,t)—the fluent literalf holds at the time moment and

e occ(a,t) —the actiorn occurs at the time moment
holds(f,t) can be extended to defif@lds(¢,t) for an arbitrary fluent formula, which
states that holds at the time. Details about the prograff (D, I, G) can be found in
[24]. The key property of the translation ¢D, I, G) into II(D, I,G) is that it ensures
that each trajectory achieving corresponds to an answer setiéf D, I, ), and each
answer set of (D, I, G) corresponds to a trajectory achieviGd24]. Answer sets of the
programl/I(D, I, G) can be computed using answer set solvers susmaslels[21], dlv
[10], cmodels[1], or jsmodels[16].

3 A Language for Planning Preferences Specification

In this section, we introduce the languaB@ for planning preference specification. Let
(D, I,Q) be a planning problem, with actioms and fluents; let 7 be the set of all

fluent formulaePP is defined as special formulae oveandF. We subdivide preferences

in different classedasic desiresatomic preferencesandgeneral preferences

3.1 Basic Desires

A basic desire is a formula expressing a preference about a trajectory. For ex@oifse,

basic desire is to save money; this implies that he prefers to use the train or the bus to
go to school, which, in turn, means that a preferred trajectorérshould contain the
actiontake_bus or take_train. This preference could also be expressed by a formula that
forbids the fluentazi_arrived to become true in every state of the trajectory. These two
alternatives of preference representation are not always equivalent. The first one represents
the desire of leaving a state by a specific group of actions while the second one represents
the desire of being in certain states. Basic desires are constructed bystatimglesires
and/orgoal preferencedntuitively, a state desire describes a basic user preference to be
considered in the context of a specific state. A state desingplies that we prefer a state

s such thats = . A state desirecc(a) implies that we prefer to leave stataising the
actiona. In many cases, it is also desirable to talk about the final state of the trajectory—
we call this agoal preferenceThese are formally defined next.

Definition 1 (State Desires and Goal Preferences) (primitive) state desire is either a
formulay wherep € Fp, or a formula of the formvcc(a) wherea € A.
A goal preferences a formula of the forngoal(p) wherey is a formula inFr.

We are now ready to define a basic desire that expresses a user preference over the
trajectory. As such, in addition to the propositional connectiveg, -, we will also use
the temporal connective®ext, always until, andeventually.

Definition 2 (Basic Desire Formula).A Basic Desire Formule a formula satisfying one
of the following conditions:



e a goal preference is a basic desire formula;

e a state desirep is a basic desire formula;

e given the basic desire formulag;, 2, thenys A pa, ©1 V @2, —p1, NExt(p:),
until (1, v2), alwaysp; ), andeventually(¢) are also basic desire formulae.

To express thaBobwould like to take the train or the bus to school, we can write:
eventually(occ(take_bus) V occ(take_train)).

If Bobdoes not desire to call a taxi, we can wridways—occ(call -tazi)). We could also

write: always(—taxi_arrived). Note that these encodings have different consequences—

the second prevents taxis to be present independently from whether it was called or not.
The definition above is used to develop formulae expressing a desire regarding the

structure of trajectories. In the next definition, we will specify when a trajectory satisfies a

basic desire formula. In a later section, we will present logic programming rules that can

be added to the prografd (D, I, G) to compute trajectories that satisfy a basic desire. In

the following definitions, given a trajectory = spa1 $1 - - - a, 8, the notationy[i] denotes

the trajectorys;a;118;41 - GnSn.

Definition 3 (Basic Desire Satisfaction).Leta = sgai1s1a28s - - - a, s, b€ @ trajectory,
and lety be a basic desire formulax satisfiesy (written asa = o) iff
e p =goal(y)ands, = ¢

p=1 € Frandsy E ¥

v = occ(a), a; = a, andn > 1

@ =11 Nipg, a = ¥y anda = ¢y

=11V, aE1h O =P

e =-wanda £ ¢

© = next(y), a[1] E v, andn > 1

© = always(yp) andV(0 < i < n) we have that[i] = ¢

= eventually(y)) and3(0 < ¢ < n) such that[i] E v

© = until (¢p1,12) and3(0 < ¢ < n) suchthat/(0 < j < i) we have that[j] = ¢,
andalfi] = s.

Definition 3 allows us to check whether a trajectory satisfies a basic desire. This will
also allow us to compare trajectories. Let us start with the simplest form of trajectory
preference, involving a single desire.

Definition 4 (Ordering between Trajectories w.r.t. Single Desire).Let ¢ be a basic
desire formula and letv and 5 be two trajectories. The trajectory is preferred to the
trajectory 3 (denoted asy <, ) if a = p andj = .

We say thatx and § are indistinguishable (denoted as ~, () if one of the two
following cases occur(i) a = p and g = ¢, or (i) a = p and g - ¢.

Whenever itis clear from the context, we will omifrom <, and~,,. We will also allow
a weak form of single preference;

Definition 5 (Weak Single Desire Preference)l ety be a desire formula and let, 5 be
two trajectories« is weakly preferred t@ (denoted <, 3) iff a <, Bor a =, 5.

Proposition 1. The relation=, defines a partial order over the trajectories.



These definitions are also expressive enough to describe a significant portion of prefer-
ences that frequently occur in real-world domains. Since some of them are particularly
important, we will introduce some syntactic sugars to simplify their use:
e (Strong Desire) given the desire formulag, p2, @1 < @2 denotesp; A —ps.
¢ (Weak Desire) given the desire formulag, p2, ©1 < o denotesp; V —p,.
e (Enabled Desire) given two actions, as, we will denote witha; <€ as the formula
executable(ar) N executable(az) = occ(ar) < occ(az). This can be extended to
include disjunction (or group) of actions on each side of the formula.

Definition 6 (Most Preferred Trajectory w.r.t. Single Desire). Let ¢ be a basic desire
formula. A trajectorya is said to be amost preferred trajectorw.r.t. ¢, if there is no
trajectory 8 such thatg <, .

Note that in the presence of preference, a most preferred trajectory might require extra
actions that would have been otherwise considered unnecessary as shown below.

Example 2.Let us enrich the theory from Example 1 with an action calbeg coffee
which allowsBob to have coffee. He can do it only at the station. To say Budtprefers

to have coffee before he takes the exam, we wgtel(havecoffeg. Any plan satisfying
this preference requird®bto stop at the station before taking the exam. E.g., wdalts

a taxiand thertakes the taxi to schodd a valid trajectory foBobto achieve his goal, this
is not a most preferred trajectory; inste&mb has to take the taxi to the station, buy the
coffee, and then go to school. Besides the actiobugfcof fee that is needed foBobto
get the coffee, the most preferred trajectory requires the actidiniohg to the station
which is not necessary Bobdoes not have the preference of having the coffee.

3.2 Atomic Preferences and Chains

Basic desires allow users to specify their preferences and can be used in selecting trajec-
tories which satisfy them. From the definition of a basic desire formula, we can assume
that users always have a set of desire formulae and that their desire is to find a trajectory
that satisfies all formulae. In many cases, this proves to be too strong and results in situ-
ations where no preferred trajectory can be found. For exartipleandcostare often

two criteria that a person might have when making a travel plan. This two criteria are of-
ten in conflict, i.e., transportation method that takes little time often costs more. It is very
unlikely that he/she can get a plan that can satisfy both criteria. Consider Example 1, it is
obvious thaBobcannot have a plan that costs him only two dollars and allows him to get
to destination quickly. To address this problem, we allow a new type of formatamic
preferenceswhich represents an ordering between basic desire formulae.

Definition 7 (Atomic Preference).Anatomic preference formuia defined as a formula
of the typep; <o < -+ < ¢, (n>1) whereyps, . .., ¢, are basic desire formulae.

The intuition behind an atomic preference is to provide an ordering between different
desires—i.e., it indicates that trajectories that satisfyare preferable to those that sat-

isfy o9, etc. Clearly, basic desire formulae are special cases of atomic preferences. The
definitions of~ and< are extended to compare trajectories w.r.t. atomic preferences.

Definition 8 (Ordering Between Trajectories w.r.t. Atomic Preferences)Let «, 3 be
two trajectories, and le¥ = ¢ < @9 < - - - < ¢, be an atomic preference formula.
e «, 8 are indistinguishable w.r.& (written asa ~y () if Vi.[1<i<n = a =, 3].



e «is preferred tog w.r.t. & (written asa <y ) if 3(1 < i < n) such that
(@) V(1 <j <i)we have thaty ~,, 3, and(b) a <, 3.
We will say thatv <y S if eithera <y B or a =y .

We can show that this version efis a partial order (with~ as underlying equivalence).
Proposition 2. Let¥ be an atomic preference; thety is a partial order.
A trajectorya is most preferred if there is no other trajectory that is preferred to

Example 3.Let us continue with the theory in Example 2. To simplify the representation,
we will assume that each action is associated with a degree of safety. We will also write
bus, train, taxiy, taris, andwalk to say thatBob takes the bus, train, taxi witRay-
ByMeteror Makelt5Q or walk, respectively. The following is a desire expressing Bodi
prefers to get the fastest possible way to go to school:

time = always(taxiy V taxia <° bus V train V walk)
On the other hand, when he is not in a huBgb prefers to get the cheaper way to go to
school: cost = alwaySwalk V bus V train <€ taxiy V taxis)
These two preferences can be combined into different atomic preferences, e.g.,

time < cost or cost < time.

The first one is more appropriate fBobwhen he is in a hurry while the second one is
more appropriate foBob when he has time. The trajectoty = so walk s; bus so iS
preferred to the trajectory = sg call_taxi(PayByMeter) s taxiy s, with respect to
the preferenceost <1 time, i.€.,a <costatime 3. (fOr brevity, we omit the description of
the states;’s.) However,5 <iime<cost Q-

3.3 General Preferences
A general preference is constructed from atomic preferences as follows.

Definition 9 (General Preferences)A general preference formula is a formula satisfying

one of the following conditions:

e An atomic preferenc# is a general preference;

o If U1, W, are general preferences, thén&w,, ¥, | ¥y, and!¥; are general preferences;

e Given a collection of general preferencés W, ..., ¥, then?; <, <--- ¥ isa
general preference.

Intuitively, the operatorg., |,! are used to express different ways to combine preferences.
Syntactically, they are similar to the operationsv, — in the construction of basic desire
formulae. Semantically, they differ from the operationsv, — in a subtle way. For ex-
ample, given two fluent formulag and, it is easy to see that bothV ¢ and¢ | v

are general preferences. Although both express our preference over trajectories, the first
formula representssingle preferencevhile the second one provideso different criteria

and we have no preference between them.

Definition 10 (Ordering Between Trajectories w.r.t. General Preferences)Let ¥ a
general preference and, 5 two trajectories.
e The trajectoryu is preferred ta3 (« <yg 3) if:
— ¥ is an atomic preference and <y 3
— U =9&¥s, <y, 5anda <y, ﬂ
— U =" | Yy and: (i) a <y, fanda ~y, 0;or (i) a <g, fanda ~y, G; or
(iii) o <, fanda <y, B



— U=l andf <y, aora =y, 3

— U =9 - <%, and there existd < ¢ < k such that:(i) V(1 < 5 < i) we
have thate =g, 8 , and(ii) « <y, 8.

e The trajectoryux is indistinguishable from the trajectory (o =~y 0) if:

— W is an atomic preference and~y .

— ¥ = Wl&WQ, o Xy, ,6, o Xy, ﬁ

— ¥ =y | Us, ~y, ﬁ, anda ~w, ﬁ

— ¥ =Y anda ~y, 5.

— U =" - qY, and foralll <i <k we have that =y, (.

Again, we can prove thaty is an equivalence relation an¢ly is a partial ordering.
Proposition 3. If ¥ is a general preference, thesy is an equivalence relation.

Proposition 4. Let¥ be a general preference. Theqy is a transitive relation and the
relation < is a partial order (with~ as base equivalence).

A trajectory« is most preferred if there is no trajectory that is preferred.to

Example 4.Let us continue with the theory of Example 3. Assume that the safest trans-
portation mode is either theain or the expensivéakelt50cab. The preference

safety = always(train V walk V taziz <€ busV taxiy)
says thatBob prefers to move around using the safest transportation mode. Further, he
prefers safety over time and cost, so we write: fety <1 (time&cost).

4 Computing Preferred Trajectories

In this section, we address the problem of computing preferred trajectories. The ability to
use the operators, —, v as well ask, |, ! in construction of preference formulae allows us

to combine several preferences into a preference formula. For example, if a user has two
atomic preference® and®, but does not prefef over® or vice versa, he can combine
them in to a single preference A & < ¥ vV & << -¥ A —¢. The same can be done if

¥ or ¢ are general preferences. Thus, without lost of generality, we can assume that we
only have one preference formula to deal with. Given a planning problen, G) and

a preference formula, we are interested in finding a preferred trajectargchievingG

for . We will show how this can be done in answer set programming. We achieve that by
encoding each basic desipeas a set of rule$/,, and developing two sets of rulds,,;
andil,,.¢. I1;.: checks whether a basic desire is satisfied by a trajedifyy.s consist of

rules that, when used with tmeaximize construct osmodelswill allow us to find a most
preferred trajectory with respect to a preference formula. SIA¢B, I, G) has already
been discussed in Section 2, we will begin by definihg

4.1 Encoding of Desire Formulae

The encoding of a desire formula is similar to the encoding of a fluent formula in [24].
In our encoding, we will use the predicaf@rmula as a domain predicate. The set
{formula(l,1) | 1 is a fluent litera} will belong to II,. Each of the atoms in this set
declares that each literal is also a formula. Next, each basic desire fopmilbbe asso-
ciated with a unique name,. If ¢ is a fluent formula then it is encoded by a set of atoms
of the form formula(.,.) and is denoted by,,. For exampley = f A g will be given
anamengsg, and is encoded by the formujfrmula(nsag, conjunction(f, g)). For

other types of desire formuld],, is defined as follows.



— If o = goal(¢) thenIl, = ry, U {desire(n,), goal(ng)};

— If pisafluent formula thetdl, = r, U {desire(n,)};

— If ¢ = occ(a) thenIl, = {desire(n,), happen(n,,a)};

— If o =1 Ao thenll, = II,, UII,, U{desire(n,),and(ny, ny, , Np, ) }

— If o =1 Vo thenll, = II,, U Il,, U{desire(n,), or(ng, ne, , Ny, };

— If o = =g thenll, = II4 U {desire(n,), negation(n,,ne)};

— If ¢ = next(¢) thenll, = II; U {desire(n,), next(n,, ng)};

— If ¢ = until (¢1, p2) thenll, = I, U Il,, U{desire(n,), until(n,,ny,,ney,)};

— If ¢ = always(¢) thenll, = II, U {desire(n,), always(ngy, ng)};

— If ¢ = eventually(¢) thenll, = II, U {desire(n,), eventually(ny, ng)}.
4.2 Il..; — Rules for Checking of Basic Desire Formula Satisfaction
We now present the set of rules that check whether a trajectory satisfies a basic desire for-
mula. Recall that an answer set of the progiiD, I, G) will contain a trajectory where
action occurrences are recorded by atoms of the fewrtu, t) and the truth value of fluent
literals is represented by atoms of the falwids(f,t), wherea € A, f is a fluent literal,
andt is a time moment betweehandiength. I1,,, defines the predicatestisfy(F,T)
whereF andT are variables representing a basic desire and a time moment, respectively.
The satisfiability of a fluent formula at a time moment will be defined by the predicate
h(F,T) — which is defined based on the predichtéds and the usual logical operators
such as\, v, —. Intuitively, satisfy(F,T) says that the basic desifeis satisfied by the
trajectory starting from the time momeéht They are defined based on the structuré'of
Some of the rules afI,,; are given next.

satisfy(F,T) « desire(F), goal(F), satisfy(F,length). Q)
satisfy(F,T) « desire(F), happen(F, A),occ(A,T). )
satisfy(F,T) « desire(F), formula(F,G), h(G,T). 3)
satisfy(F,T) « desire(F),and(F, F1, F»), satisfy(F1,T), satisfy(Fz2,T). 4
satisfy(F,T) « desire(F),negation(F, F1),not satisfy(F1,T). (5)
satisfy(F,T) « desire(F),until(F, F1, F2), during(F1,T,T), satisfy(F2,T1). (6)
satisfy(F,T) « desire(F),always(F, F1), during(F1,T,length+1). @]
satisfy(F,T) « desire(F), next(F, F1), satisfy(Fi, T +1). (8)
during(F1,T,T1) «— T < Ty — 1,desire(F1), satis fy(F1,T), during(F1, T + 1,T1). (9)
during(F1,T,Th) «— T =T — 1,desire(F1), satisfy(F1,T). (20)

In the next theorem, we prove the correctnest gf,. We need some additional notation.
Let M be an answer set of the progralf{ D, I, G). By a,; we denote the trajectory
80G0 - - - Gn—15n, Where(i) occ(a;,i) € M fori € {0,...,n — 1} and(ii) s; = {f |
holds(f,i) € M} fori € {0,...,n}. For a trajectoryx = soag . .. an_15n, leta™! =
{occ(ai,i) |1 €{0,...,n—1} U {holds(f,i) | f € s;,i €{0,...,n}. We have:

Theorem 1. Let(D, I, G) be a planning problem and be a basic desire formula. Lét’
be an answer setdf (D, I, G). Thenayy = ¢ iff I1,UIL,:U(an) " Esatis fy(ng, 0).

The theorem allows us to compute a most preferred traject@madels LetI1(D, I, G, ¢)

be the program consisting of tié&(D, I, G) U II, U I, and the rule
maximize{satisfy(n,,0) = 1,not satisfy(n,,0) =0}.  (11)

Note that rule (11) means that answer sets in whietis fy(n,,0) holds are most pre-

ferred.smodelswill first try to compute answer sets éf in which satis fy(n,, 0) holds;



only when no answer set with this property exists, other answer sets are considered. (The
currentimplementation agimodelshas some restrictions on using theximize construct;
our jsmodelssystem can now deal with this construct properly.)

Theorem 2. Let (D, I, G) be a planning problem ang be a basic desire formula. For
every answer se¥ of I1(D, I, G, ), ays is @ most preferred trajectory w.ri.

The above theorem gives us a way to compute a most preferred trajectory with respect
to a basic desire. We will now generalize this approach to deal with general preferences
using themaximize function. The intuition is to associate to the different components

of the preference formula weight these weights are then used to obtain a weight for
each trajectory (based on what components of the preference formula are satisfied by
the trajectory). Thenaximize function can be used to handle these weights and guide the
search of the preferred trajectory. In generalfidéte a general preference. We will develop
aweight functionwy, which maps each trajectory to a number and satisfies the following
properties(i) if & <y G thenwyg (o) > wy(B), and(ii) if o =~y § thenwy (a) = wy(5).

A weight function satisfying the two properties (i)-(ii) is calledahmissibleveight func-

tion. Obviously, ifwy is admissible, we have the following theorem.

Proposition 5. Let¥ be a general preference formula ang («) be an admissible weight
function. If « is a trajectory such thatvy (o) is maximal, themy is a most preferred
trajectory w.r.t.w.

The above proposition implies that we can compute a most preferred trajectory using
smodelsif we can implement an admissible weight function.

4.3 Computing An Admissible Weight Function
Let¥ be a general preference. We will now show how an admissible weight funetion
can be built in a bottom-up fashion. We begin with basic desires.

Definition 11 (Basic Desire Weight).Let ¢ be a basic desire formula and let be a
trajectory. The weight of the trajectoryw.r.t. the desirep is a function defined as
wy(a) = 1if a = ¢ andw,(a) = 0, otherwise.

The next proposition shows that for a basic degirev, is admissible.
Proposition 6. Lety be a basic desire. Then,, is an admissible weight function.

The weight function of an atomic preference is defined on the weight function of basic
desires occurring in the preference as follows.

Definition 12 (Atomic Preference Weight).Lety = ¢ < @2 < - -+ < ¢, be an atomic
preference formula. The weight of a trajecteryw.r.t. ¢/ is defined as follows:

k —r
wy (@) = 307, (2877 X we, (@)
Again, we can show that the above function is admissible.

Proposition 7. Lety = 1 < ¢y < -+ < ¢, be an atomic preference. Them, is an
admissible weight function.

We are now ready to define an admissible weight function w.r.t. a general preference.

Definition 13 (General Preference Weight)Let¥ be a general preference formula. The
weight of a trajectoryy w.r.t. ¥ (wg (o)) is defined as follows:



— if ¥ is an atomic preference then the weight is defined as in definition 12.

— if ¥ = &1 &P, thenwy () = wy, () + wy, (a)

— if & =" | Uy thenwy (a) = wy, () + wy, (@)

— if ¥ = ¥ thenwy (o) = mazx(¥1) — wy, (o) wheremaz(¥;) represents the
maximum weight that a trajectory can achieve on the preference forniylae

— if U =¥ < Wl thenwy (o) = maz(¥2) x wy, (a) + we, ()

We prove the admissibility ofy in the next proposition.
Proposition 8. If ¥ is a general preference, theny is an admissible weight function.

Propositions 6-8 show that we can compute an admissible weight functiobottom-
up from the weight of each basic desire occurringZinWWe are now ready to define the
set of ruleslT,,.;(¥) which consists of the rules encoditigand the rules encoding the
computation ofvy . Similar to the encoding of desires, we will assign a new, distinguished
namen to each preference formula which is not a desire, occurring in and encode
the preferences in the same way we encode the desires. To save space, we omit here the
details of this stepll,,.(¥) define two predicatesy(p, n) andmaz(p,n) wherep is a
preference name andis the weight of the current trajectory with respect to the preference
p. w(p,n) (resp.max(p,n)) is true if the weight (resp. maximal weight) of the current
trajectory with respect to the preferences n.
1. For each desiré, I1,,..s(d) contains the rules
w(d, 1) « satisfy(d). w(d,0) — not satisfy(d). max(d,2) — .
2. For each atomic preferenge= @1 <2 <1- - -<lpg, Il 5 (¢) consists obleﬂpref(apk)
and the next two rules:
w(ng, S) — w(ng,, N1),w(ng,, Na), ..., w(ng,, Ng), S = ZF2F""N,.
maz(ng, 2871 + 1) « .
3. For each general preferenge
o if ¥ is an atomic preference thé#,,.;(¥) is defined as in the previous item.
o if U =0 &W, or¥ = U |W, thenlly,.;(¥) consists offl,,. s (¥1 )V, (¥2) and
w(ng, S) «— w(ng,, N1), w(ng,, Na2), S = N; + Na.
max(ng, S) — max(ng,, N1), max(ng,, N2), S = Ny + Ns.
o if ¥ =¥, thenlIl,,.;(¥) consists oflI,,,..s(¥:) and the rules
w(ng, S) — w(ng,, N),max(ng,, M),S =M +1— N.
max(ng, S) — maz(ng,, M),S =M + 1.
o if U =¥ W, thenll,, . (¥) consists ofll e (¥1) U I, ;(¥2) and rules
w(ng, S) «— w(ng,, N1), max(ng,, Ma), w(ng,, N2), S = Ma * N1 + Na.
max(nw, S) — mazx(ng,, N1), maz(ng,, N2), S = Ny Ny + Ny + 1.
The next theorem proves the correctnessipf. s (¥).

Theorem 3. Let ¥ be a general preference. For every answer eof I71(D, I, G) we
have thatll,.. ¢ (¥) U 54t U () ™ | w(ng, w) iff we (ap) = w.

The above theorem implies that we can compute a most preferred trajectory by (i) adding
ey (W) U 4. to II(D, I, G) and (ii) computing an answer s&f in whichw(ng, w)
is maximal. A working implementation of this is availablejgmodels

1 without loss of generality, we describe the encoding only for chains of length 2.



4.4 Some Examples of Preferences iRP

We will now present some preferences that are common to many planning problems and
have been discussed in [9]. LéD, I, G) be a planning problem. In keeping with the
notation used in the previous section, we yg® denote (i.e.,p = G).

Preference for shortest trajectory: formula based encodingAssume that we are inter-
ested in trajectories achievingwhose length is less than or equalA simple encoding

that allows us to accomplish such goal is to make use of basic desirage8y(p) we
denote the formulanext(next(next - - - (next(y)) - - -)).

Let us define the formula‘(y) (0 < i < n) as follows:
o(p)=¢ o'(p) = Nj—o mext’(p) A next(y)
Finally, let us consider the formuksiort(n, @) defined as
short(n, ¢) = 0%(p) <ot (p) Qo*(p) <+ < 0™()

Proposition 9. Leta be a most preferred trajectory w.rdhort(n, ¢). Thena is a short-
est length trajectory satisfying the goal

Preference for shortest trajectory: action based encodingl'he formula based encoding
short(n, ¢) requires the bound to be given. We now present another encoding that does
not require this condition. We introduce two additional fictions actignp andnoop and
a new fluentended. The actionstop will be triggered when the goal is achievedjop
is used to fill the slot so that we can compare between trajectories; the dhuént will
denote the fact that the goal is achieved. Again, we appeal to the users for the formal repre-
sentation of these actions. Furthermore, we add the conditiered to the executability
condition of any actions ifD, I') and to the initial staté. Then we can encode the con-
dition of shortest length trajectory, denoteddiwrt, as

always((stop V noop) < (a1 V...V ag))
whereay, . .., a; are the actions in the original action theory.

Proposition 10. Let « be a most preferred trajectory w.rthort. Thena is a shortest
length trajectory satisfying the goal.

Cheapest PlanLet us assume that we would like to associate a e@stto each actiom

and determine trajectories that have the minimal cost. Since our comparison is done only
on equal length trajectories, we will also introduce the two actiarg andstop with no

cost and the fluentnded to record the fact that the goal has been achieved. Further, we
introduce the fluentCost to denote the cost of the trajectory. Initially, we set the value

of sCost to 0 and the execution of actianwill increase the value ofCost by c(a). The
preferenceyoal(sCost(m)) < goal(sCost(m + 1)) ... < goal(sCost(M)) wherem and

M are the estimated minimal and maximal cost of the trajectories, respectively. Note that
we can haven = 0 andM = max{c(a) | a is an action x length.

5 Conclusion

In this paper we presented a novel declarative language, daiRedor the specification

of preferences in the context of planning problems. The language nicely integrates with
traditional action description languages (efs),and it allows elegant encoding of com-
plex preferences between trajectories. The language proviledarativeframework for

the encoding of preferences, allowing users to focus on the high-level description of pref-
erences (more than their encoding—as in the approaches based on utility fun@igns).



allows the expression of complex preferences, including multi-dimensional preferences.
We also demonstrated thHB{P preferences can be effectively and easily handled in a logic
programming framework based on answer set semantics.

The work is still in its preliminary stages. The implementation of the required cost
functions in thgsmodelssystem is almost complete, and this will offer us the opportunity
to validate our ideas on large test cases and to compare with related work such as that in
[9]. We also intend to explore the possibility of introducing temporal operators at the level
of general preferences. These seem to allow for very compact representation of various
types of preferences; for example, a shortest plan preference can be encoded simply as:

always((occ(stop) V oce(noop)) < (oce(ay) V ...V oce(ag)))

if a1, ...,a; are the possible actions.

References

1. Y. Babovich. “CMODELS” www.cs.utexas.edu/users/tag/cmodels.html
2. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for
planning.Artificial Intelligence 116(1,2):123-191, 2000.
3. S. Bistarelli et al. Labeling and Partial Local Consistency for Soft Constraint Programming. In
Practical Aspects of Declarative Languag&pringer Verlag, 2000.
. A.L. Blum and M.L. Furst. Fast Planning through Planning Graph Analysdi¥.90, 1997.
. G. Brewka and T. Eiter. Preferred answer sets for extended logic progfddnd 09, 1999.
. A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checkidgurnal of
Artificial Intelligence Research3:305-338, 2000.
7. B. Cui and T. Swift. Preference Logic Grammars: Fixed Point Semantics and Application to
Data StandardizatiorArtificial Intelligence 138(1-2):117-147, 2002.
8. J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic
programs.Theory and Practice of Logic Programming(2):129-187, March 2003.
9. T. Eiter et al. Answer Set Planning under Action CostJELIA. Springer Verlag, 2002.
10. T. Eiter et al. The KR Systenllv : Progress Report, Comparisons, and Benchmarks$ntin
Conf. on Principles of Knowledge Representation and Reasppaygs 406—417, 1998.
11. F. Fages, J. Fowler, and T. Sola. Handling Preferences in Constraint Logic Programming with
Relational Optimization. I®PLILP Springer Verlag, 1994.
12. M. Gelfond and V. Lifschitz. Action languageSTAl, 3(6), 1998.
13. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. ICLP’88.
14. P. Haddawy and S. Hanks. Utility Model for Goal-Directed Decision Theoretic Planners. Tech-
nical report, University of Washington, 1993.
15. H. Kautz and J.P. Walser. State-space Planning by Integer OptimizatidAAln1999.
16. H. Le, E. Pontelli, T.C. Son. A Java Solver for Answer Set Programming, NMSU, 2003.
17. V. Lifschitz. Answer set planning. ICLP, pages 23-37, 1999.
18. D. Long et al. International Planning Competition.
19. K.L. Myers. Strategic Advice for Hierarchical PlannersKIR'96.
20. K.L. Myers and T.J. Lee. Generating Qualitatively Different Plans through Metatheoretic Bi-
ases. INM\AAI 1999.
21. |. Niemeh and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal logic programs. lPNMR Springer, pages 420-429, 1997.
22. M.L. Putterman.Markov Decision Processes — Discrete Stochastic Dynamic Programming
John Willey & Sons, Inc., New York, NY, 1994.
23. T. Schaub et al. A Comparative Study of Logic Programs with PreferetisgAal, 2001.
24. T.C. Son, C. Baral, and S. Mcllraith. Domain dependent knowledge in planning - an answer set
planning approach. IhDPNMR Springer, pages 226-239, 2001.
25. T.C. Son and E. Pontelli. Reasoning about actions in prioritized default the@fgLI1A, 2002.

o o b



