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Abstract. This paper develops a new way of speeding up the GDL-based mes-
sage passing algorithms that solve large-scale Distributed Constraint Optimiza-
tion Problems (DCOPs) in multi-agent systems. In particular, we minimize the
computation and communication costs in terms of time for algorithms such as
Max-Sum, Bounded Max-Sum, Fast Max-Sum, Bounded Fast Max-Sum, and
BnB Max-Sum. To do so, our approach contains three major components: split-
ting the original DCOP representation into clusters, efficiently distributing the
computation/communication overhead among agents and a time efficient domain
pruning technique. We empirically evaluate the performance of our proposed
method in different settings and find that it brings down the completion time
by around 45% for 100− 600 nodes and by up to around 60% for 3000− 10000
nodes compared to the standard approaches that are currently used in DCOPs.

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) are a widely studied frame-
work for solving constraint handling problems of co-operative multi-agent systems
(MAS) [Modi et al.2005]. They have been applied to many real world applications
such as disaster response, sensor networks, traffic control in the form of task allocation
[Ramchurn et al.2010,Zivan et al.2014], meeting scheduling [Maheswaran et al.2004b]
and coalition formation [Cerquides et al.2013]. In DCOPs, such problems are formu-
lated as constraint networks that are often represented graphically. In particular, the
agents are represented as nodes, and the constraints that arise between the agents de-
pending on their joint choice of action are represented by the edges. Each constraint
can be defined by a set of variables held by the corresponding agents related to that
constraint. In more detail, each agent holds one or more variables, each of which takes
values from a finite domain. The agent is responsible for only setting the value of its
own variable(s) but can communicate with other agents. The goal of a DCOP algorithm
is to set every variable to a value from its domain to minimize the constraint violation.

Over the last decade, a number of algorithms have been developed to solve DCOPs
under two broad categories: exact and non-exact algorithms. The former always find an
optimal solution. However, finding an optimal solution for a DCOP is an NP-hard prob-
lem so they exhibit an exponentially increasing coordination overhead as the system
gets larger (e.g. ADOPT [Modi et al.2005], BnB ADOPT [Yeoh et al.2008]), DPOP
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[Petcu2005]). On the other hand, non-exact algorithms sacrifice some solution quality,
but scale well compared to the exact algorithms. These algorithms are further cate-
gorized into greedy and Generalized Distributive Law (GDL) based inference methods.
Greedy approaches (e.g. DSA [Fitzpatrick2003], MGM [Maheswaran et al.2004a]) rely
on local greedy moves which often come up with a solution far from the optimal
one for large and complex problems. On the other hand, GDL-based inference algo-
rithms perform well in practical applications and provide optimal solutions for cycle
free constraint graphs (e.g. Max-Sum [Farinelli et al.2008]) and acceptable solutions
for a cyclic one (e.g. Bounded Max-Sum [Rogers et al.2011]). Notably, these algo-
rithms make efficient use of constrained computational and communication resources
and effectively represent and communicate complex utility relationships through the
network. Nevertheless, due to the following reason scalability remains an open is-
sue for such GDL-based algorithms. Specifically, they perform repetitive maximiza-
tion operations for each constraint to select the locally best configuration of the as-
sociated variables given the local function and a set of incoming messages. To be
precise, a constraint that depends on n variables having domains composed of d val-
ues each, will need to perform dn computations for a maximization operation. As the
system scales up, the complexity of this step grows exponentially and makes Max-
Sum/Bounded Max-Sum too expensive in terms of computational cost. While several
attempts have been sought to reduce the cost of the maximization operation, they typ-
ically limit the applicably of Max-Sum/Bounded Max-Sum within few problem do-
mains [Ramchurn et al.2010,Macarthur et al.2011,Zivan et al.2015] and others rely on
a preprocessing step, thus denying the opportunity of obtaining local utilities at runtime
[Stranders et al.2009,Kim and Lesser2013].

More specifically, previous attempts at scaling up GDL-based algorithms have mainly
focused on reducing the overall cost of the maximization operator mentioned earlier.
However, they overlook an important concern that all the GDL-based DCOP algo-
rithms follow a Standard Message Passing (SMP) protocol where a message is sent
from a node v on an edge e if and only if all messages received at v on edges other than
e [Aji and McEliece2000]. This dependency produces increasing amounts of average
waiting time for agents as the graphical representation of a DCOP becomes larger. As
a consequence, the required time to obtain the solution from the DCOP algorithm (i.e.
completion time) increases, which makes it unusable in practice for a large real world
problem.

To date, this challenge has not been addressed by the DCOP community. As such,
this paper aims to fill this gap by proposing a new general framework (Parallel Message
Passing- PMP) that can be applied to the existing GDL-based message passing algo-
rithms to obtain the same overall result but in significantly less time. Here, we consider
both the computation and communication cost of an algorithm in terms of time. Thus,
we reduce the completion time of a GDL-based algorithm by replacing its SMP by PMP
while maintaining the same outcome in terms of solution quality. It is noteworthy that
the GDL-based algorithms which deal with cyclic graphical representations of a DCOP
(e.g. Bounded Max-Sum, Bounded Fast Max-Sum) initially remove the cycle from the
original constraint graph, then apply the SMP protocol on the acyclic graph to provide
a bounded approximate solution of the problem. In this paper, we reduce the comple-
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tion time of the standard message passing procedure. Therefore, our framework can be
applied on cyclic DCOP by using the same tree formation technique used by Bounded
Max-Sum. Afterwards, PMP can be applied instead of SMP on the transformed acyclic
graph.

Our framework consists of following major contributions. First, PMP provides same
result compared to its SMP counterpart within less time. Here, we do not change the
computation method of the messages, rather we efficiently distribute the overhead of
message passing to the agents to exploit their computational power concurrently. Thus,
we reduce the average waiting time of the agents. To do so, we split the graphical repre-
sentation of a DCOP into several parts (clusters) and execute message passing on them
in parallel. As a consequence of this cluster formation we have to ignore inter cluster
links. Therefore, PMP requires two rounds of message passing and an intermediate step
to recover the values of the ignored links. Second, to further reduce the required time
of expensive intermediate step we introduce a domain pruning algorithm. By doing so,
we advance the state of the art in the following ways:

1. We introduce a new cluster based framework, Parallel Message Passing (PMP),
which efficiently distributes the computational and communicational overhead to
the agents to exploit their computational power concurrently and reduce their aver-
age waiting time before sending messages to solve large-scale DCOPs.

2. We empirically evaluated the performance of our framework in terms of completion
time and compare it with the benchmark algorithms that follow the SMP protocol
in different settings (up to 10,000 of nodes). Our results show a speed up of 45% to
60% with no reduction in solution quality.

2 Problem Formulation

Even though, PMP is a general framework that can be applied to any DCOP related
application domain, we opt for a model that illustrates its application in the task alloca-
tion perspective. Assume, we have a set of discrete variables, X = {x0, x1, . . . , xm},
each variable xi represents a geographic location where an agent needs to be allocated
to do a task(s). Then, F = {F1, F2, . . . , Fn} is a set of functions/factors and each of
the them represents each task. Here, each task Fi might need to be performed by more
than one agent. In this formulation, each agent can do multiple tasks in a single allo-
cation. For example, an information gathering agent might gain situation awareness by
observing two different locations or a rescue agent could perform two different tasks
one after the other based on their priorities. Moreover, D = {D0, D1, . . . , Dm} is a
set of discrete and finite variable domains, each variable xi can take the value from
the domain Di. To be exact, the values in the domain Di is the set of potential agents,
A = {A0, A1, . . . , Aki} to be deployed to the location represented by the variable xi.
By definition, functions have a relation with variables by means of locality, meaning to
accomplish a task (represented by a function) one or more agents need to be deployed
in the location(s) represented by the variable(s). These dependencies generate a bipar-
tite graph, namely factor graph which is commonly used as a graphical representation
(constraint networks) of such DCOPs [Kschischang et al.2001]. Within this model, the
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target is to find the value (agents’ allocation to tasks) of each variable, x∗, such that all
the tasks (functions) in the system can be performed in the best possible way.

x∗ = argmax
x

n∑
i=1

Fi(xi) (1)

For instance, Figure 1 depicts the relationship among variables, functions and agents as
well as a possible outcome of the DCOP (task allocation) problem. Initially, agent A1
takes responsibilities of task1 represented by the factor F1 and the variable x0. Simi-
larly, task2 (F2), variables x1 and x2 are held by agent A2. Now, only these two agents
participate in the optimization process instead of all available agents. Therefore, un-
like traditional DCOP formulation where each agent must take the responsibility of at
least one node (variable/function) of the factor graph, this formulation permits us not to
involve all the agents take this responsibility. Thus, we can avoid unnecessary agents’
involvement in the message passing procedure. Nonetheless, each agent participates in
the optimization process as a domain value for certain variables. At the end of the pro-
cess, the location represented by the variable x0 can be occupied by any of the following
agents {A1, A2, A3, A4, A5}. Similarly, the sets of agents {A1, A2, A3, A6, A7} and
{A4, A2, A5, A6, A7} define the domain of the variables x1 and x2 respectively. The
ultimate goal is to find the appropriate agent from the domain of a particular variable
to be employed in a position conforming to that variable to do the corresponding task
represented by the factor connected to it. Here, the bottom part of Figure 1 presents
a sample scenario of the final result of the optimization process where agents A2, A1
and A5 are going to be placed at the location mapped by the variables x0, x1, and x2

respectively. Specifically, Task1 should be done by agent A2 and A1, similarly with the
help of agent A1, A5 will accomplish task2.

3 The Parallel Message Passing Framework

All GDL-based DCOP algorithms follow the SMP Protocol and this adds a substantial
delay to converge for large-scale systems. To address this, we introduce a new frame-
work (Parallel Message Passing-PMP). PMP is a general framework that can be applied
to any GDL-based DCOP formulation. Notably, both Max-Sum and Bounded Max-Sum
use Equations 2, 3 and 4 for their message passing and they can be directly applied to
the factor graph representation of a DCOP. Here, the variable and function nodes of
the factor graph continuously exchange messages (variable (xi) to function (Fj) (Equa-
tion 2), function (Fj) to variable (xi) (Equation 3)) to compute an approximation of the
impact that each of the agent’s actions has on the global objective function by build-
ing a local objective function Zi(xi). Here, Mi is the set of functions connected to
xi and Nj represents the set of variables connected to Fj . Once the function is built
(Equation 4), each agent picks the value of a variable that maximizes the function by
finding argmaxxi(Zi(xi)). Now, even though some extensions of Max-Sum algorithm
(e.g. Fast Max-Sum [Ramchurn et al.2010], BnB FMS [Macarthur et al.2011]) modify
these equations, our framework can still be applied to those algorithms as we are not
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x0 x1 x2

F2Task1 Task2

Agent A1 Agent A2

Outcome

F1

x0 x1 x2

F2Task1 Task2

Agent A2 Agent A1 Agent A5

Domain (x0) = {A1, A2, A3, A4, A5}

Domain (x1) = {A1, A2, A3, A6, A7}

Domain (x2) = {A4, A2, A5, A6, A7}

Fig. 1: A sample factor graph shows a possible end result of the task allocation problem,
a DCOP as well as the relationship among variables, factors and agents.

altering any equation of the original algorithm.

Qi→j(xi) =
∑

kεMi\j

Rk→i(xi) (2)

Rj→i(xi) = max
xj\i

[Fj(xj) +
∑
kεNj\i

Qk→j(xi)] (3)

Zi(xi) =
∑
jεMi

Rj→i(xi) (4)

Definition 1. (Cluster). A cluster ci is a subgraph of a factor graph FG preserving the
following property: two clusters ci and cj are neighbours if and only if they share a
common variable node (i.e. split node) xij .

Definition 2. (Ignored Values of a Cluster, ignV al(ci)). To achieve the similar solu-
tion quality compared to the algorithms that follow the SMP protocol, it is necessary to
recover the incoming messages (through the split nodes) overlooked during the forma-
tion of clusters. The intermediate step of PMP takes the responsibility of finding those
missing values named as ignV al(ci) for each cluster ci.

Definition 3. (Dependent Acyclic Graph, DG(Ij)). A DG(Ij) is an acyclic directed
graph from the furthest node of the factor graph FG from a split node xij towards it.
During the intermediate step, synchronous operations are performed at the edges of this
graph in the same direction to compute each ignored value of a cluster, ignV al(ci).
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Algorithm 1: Parallel Message Passing
Data: A factor graph, FG consists a set of variables, X = {x1, x2, . . . , xm} and a set of

functions F = {F1, F2, . . . , Fn}
1 NF ← |F |
2 N← NF/NC
3 firstV ar ← min deg(X)
4 node← firstV ar.Function
5 for i← 1 toNC do // Cluster formation
6 count← 0
7 while count < N do // distribute the nodes to each cluster
8 ci.member()← node
9 ci.member()← adj(node)

10 node← adj(adj(node))
11 count← count+ 2

12 ci.member()← node

13 foreach cluster ci ∈ SN in PARALLEL do // First round
of message passing

14 ∀Q(ci)← ∅
15 ∀R(ci)← ∅
16 Max− Sum(ci): Message Passing Only // Equation 2 and

Equation 3

17 for i← 1 toNC in PARALLEL do // Intermediate step
of PMP

18 ignV al(ci)← intermediateStep(ci)

19 for i← 1 toNC in PARALLEL do // Second round of
message passing

20 (∀Q(ci) \QignEdge(ci))← ∅
21 QignEdge(ci)← ignV al(ci)
22 ∀R(ci)← ∅
23 Max− Sum(ci): Complete // Equation 2, Equation 3 and

Equation 4

Now, PMP (Algorithm 1) uses a similar means to compute messages as its SMP
counterpart. For example, Max-Sum messages are used when our framework is applied
to the Max-Sum algorithm. Similarly, Fast Max-Sum messages are used when applied
to the Fast Max-Sum. Even so, PMP reduces the completion time by splitting the factor
graph into clusters (Definition 1) and independently running the message passing on
those clusters in parallel. As PMP ignores inter cluster links (i.e. messages) during
the formation of cluster, it is not possible to obtain the similar solution quality as the
original algorithm by executing only one round of message passing. This is why PMP
includes two rounds of message passing with the addition of an intermediate step. The
role of the intermediate step is to generate the ignored values (Definition 2) for the split
node(s) of a cluster so that the second round can use these as initial values for the split
node(s) to generate the same messages as the original algorithm.

Cluster Formation: PMP operates on a factor graph FG of a set of variables X and
a set of functions F. Specifically, lines 1 − 14 of Algorithm 1 generate NC clusters by
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Algorithm 2: intermediateStep(Cluster ci)
Input: A set of clusters, C = {c1, c2, . . . , cr} with their corresponding Cluster Heads,

CH = {ch1, ch2, . . . , chr}
Output: Ignored values, iV al(ci) of dependent edges, I = {I1, I2, . . . , Ik} for the

cluster ci
1 chi ← StatusMessage(∀CH \ chi) ∧Mr // required utility and

messages received by chi
2 l← |I|
3 for j ← 1 to l do
4 cp ← adjCluster(ci, Ij)
5 dCountcp ← totalAdjCluster(cp)
6 if dCountcp == 1 then // Cluster having only one neighbour

cluster
7 DG(Ij)← READY DG(Ij)
8 else if dCountcp > 1 then // Cluster having more than one

neighbour cluster
9 if Ij .nodep ∈ cp then

10 dNode← Ij .nodep
11 while dNode 6= ∅ do // Formation of dependent acyclic graph
12 DG(Ij)← dNode
13 dNode← adj(dNode)

14 if {Fn1 , Fn2 , . . . , Fng} ∈ DG(Ij) then
15 Ij .values← sync(Fn1 ⊕ Fn2 ⊕ . . .⊕ Fng )// Operations on DG(Ij)
16 iV al(ci)← Ij .values
17 return iV al(ci)

splitting FG. Line 3 gets a special variable node (firstV ar), which is a variable having
minimum degree and related to only one function (min deg(X)). Then, line 4 initial-
izes the node (function) which is connected to firstV ar. The for loop of lines 5 − 14
iteratively adds the member nodes to each cluster ci. The while loop (lines 7− 12) iter-
ates as long as the member count for a cluster ci remains less than the maximum nodes
per cluster (N). For instance, in Figure 2 original factor graph is divided into 3 clusters:
c1, c2, c3. The for loop in lines 13−16 acts as the first round of message passing, which
involves only computing and sending the variable to function (Equation 2) and function
to variable (Equation 3) messages within those clusters having only single neighbour-
ing cluster (only c1 and c2 in Figure 2) in parallel. Unlike the first round, all the clusters
participate in the second round of message passing in parallel (lines 19 − 23). In the
second round, instead of using the null values for initializing all variable to function
messages, here in line 21 we exploit recovered ignored values (Definition 2) from the
intermediate step (lines 17 − 18) as initial values for split variable nodes and the rest
of the messages are initialized as null (lines 20, 22). We briefly explain this intermedi-
ate step of PMP shortly. Finally, PMP will converge with Equation 4 by computing the
value Zi(xi) and hence finding argmaxxi(Zi(xi)).

Detail of Intermediate Step: A key part of PMP is the intermediate step (Algo-
rithm 2) which takes a cluster (ci) provided by line 18 of Algorithm 1 as an input and
returns ignored values (Definition 2) for each of the ignored links of that cluster. A rep-
resentative of each cluster ci (cluster head chi) performs the operation of intermediate
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Algorithm 3: Domain pruning to compute DFj→Fp
(xi) in intermediate step of

PMP
Input: Local utility of factor Fj(xj): sorted independently by each states of the domain

of xj ; Incoming messages from the neighbour(s) of Fj other than Fp.
Output: Range of values of the states over which maximization will be computed.

1 Let, {d1,d2, . . . ,dr} be the states of the domain
2 m←

∑
k∈(Cj\Fp)

max(DFk→Fj (xt))

3 for i← 1 to r do // for each states of the domain
4 p← maxdi(Fj(xj))
5 b←

∑
k∈(Cj\Fp)

valp(DFk→Fj (xt))

6 t← m− b
7 s← getV al() // pick a value from di less than p
8 if t ≥ p− s then
9 return valueRangedi [p, s)

10 else
11 goto Line 7

step. Initially, each cluster head needs to receive the StatusMessages from rest of the
cluster heads (line 1 of Algorithm 2). Each StatusMessage contains the factor graph
structure along with the utility information. A cluster head also requires a factor to split
variable message from each of the participated clusters of the first round (Mr). Notably,
StatusMessages can be formed and exchanged during the time of the first round, thus it
does not incur additional delay. The for loop in lines 3−16 computes the ignored values
for each split node of the cluster ci by generating a Dependent Acyclic Graph, DG(Ij)
(Definition 3). If a neighbouring cluster related to a split node has no other cluster(s) to
depend on then there is no need for further computation as the ignored value is immedi-
ately ready after the first round (lines 6-7). On the other hand, if it has other clusters to
rely on then further calculations in the graph are required, so need to find each node of
that graph DG(Ij) (lines 8-13). Line 10 initializes the first node of DG(Ij). The while
loop (lines 11− 13) repeatedly forms that graph through extracting the adjacent nodes
from the first selected node, dNode. Finally, synchronous executions from the farthest
node to the start node (split node) of DG(Ij) produce the desired value, Ij .values for
the edge, Ij (line 15), which is eventually the required value for that split node of the
cluster ci, which will be used as initial value during the second round of message pass-
ing. For example, x3 is a split node for cluster c1 in Figure 2 and {119, 126} is the
ignored value computed by the intermediate step. Now, instead of {0, 0} the second
round uses {119, 126} as initial value for node x3.

During intermediate step, the entire operation is performed on a single machine
(cluster head) for each cluster. Therefore, apart from receiving the Mr values which
is literally a message from the participating clusters of first round, there is no commu-
nication cost in this step. This produces a significant reduction of communication cost
(time) in PMP. Moreover, Figure 3 shows how we can avoid the computation of variable
to factor messages in the intermediate step as they are redundant and produce no further
significance in this step. For instance, it is redundant to compute variable to factor mes-
sages (x4 → F8, x1 → F8, x2 → F8, x3 → F8) during the computation of the message
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Fig. 2: Worked example of SMP and PMP (participating clusters: first round- (c1, c2),
second round- (c1, c2, c3)).

F8 → x0 (i.e. F8 → F7) in the intermediate step of PMP. However, each synchronous
execution within the DG(Ij) is as expensive as a factor to variable message and can be
computed using the Equation 5. This equation retains similar properties as Equation 3
but the receiving node is a function node instead of a variable node. Here, Cj denotes
the set of indexes of the functions connected to function Fj in the Dependent Acyclic
Graph, DG(Ij) of intermediate step and variable xt ∈ {adj(Fk) ∧ adj(Fj)}.
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Fig. 3: Single Computation within intermediate step.

DFj→Fp
(xi) = max

xj\xi

[Fj(xj) +
∑

k∈Cj\Fp

DFk→Fj
(xt)] (5)
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Domain Size Reduction During Intermediate Step: Note that Equation 5 still re-
quires a significant amount of computation due to the potentially large parameter do-
main size. Given this, in order to further improve the computational efficiency, we pro-
pose a novel algorithm to reduce the domain size over which maximization needs to be
computed (Algorithm 3). This algorithm requires incoming messages from the neigh-
bour(s) of a function in DG(Ij) and each local utility be sorted independently by each
state of the domain. Specifically, this sorting can be done before computing the Sta-
tusMessage during the time of the first round. Therefore it does not incur an additional
delay. The for loop in lines 3 − 11 generates the range of the value for which we will
always find the maximum value and discards the rest. In more detail, we generate a
base case (t) by subtracting the addition of corresponding values for the maximum of
the a state (p) from the addition of maximum values of the incoming message(s) (lines
4-5). Then, a value s is picked from the sorted list of that state which is less than p
(line 7). Finally, if it is greater than or equal to p − s then the desired maximization
must be found within the range of [p, s) otherwise we need to pick smaller value of
s and repeat the checking (lines 8-11). Note that, PMP itself reduces completion time
significantly. Thus, only if the maximization operator has to deal with a large domain
size then Algorithm 3 should be used alongside.

4 Empirical Evaluation

Fig. 4: Completion Time: Standard Message Passing (No. of Cluster=1); Parallel Mes-
sage Passing (No. of Cluster>1)). Number of Tasks: 100 − 600 (Without domain
pruning).

We now evaluate the performance of PMP to show how effective it is in terms of
completion time compared to the benchmarking algorithms that follow SMP protocol.
We generated different instances of the task allocation problem that have varying num-
bers of tasks 100 − 10, 000. In our settings, we consider those tasks as function nodes
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Fig. 5: Completion Time: Standard Message Passing (No. of Cluster=1); Parallel Mes-
sage Passing (No. of Cluster>1)). Number of Tasks: 3000 − 10000 (Without domain
pruning).

Fig. 6: Completion Time: Standard Message Passing (No. of Cluster=1); Parallel Mes-
sage Passing (No. of Cluster>1)). Number of Tasks: 100− 600 (With domain prun-
ing).
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Fig. 7: Completion Time: Standard Message Passing (No. of Cluster=1); Parallel Mes-
sage Passing (No. of Cluster>1)). Number of Tasks: 3000−10000 (With domain prun-
ing).

and randomly generating factor graphs by connecting variable nodes to them. We con-
sider the number of clusters 2−99 for the factor graph of 100−600 function nodes and
2− 149 for the rest. This ranges were chosen because the best performances are always
found within this range.

Figures 4-7 illustrates the comparative measure on completion time for algorithms
that follow the SMP and PMP protocols for different factor graphs. Even though PMP
can be applied to any existing GDL-based algorithms, for the results of Figures 4-7 we
consider the Max-Sum and Bounded Max-Sum. Afterwards, we illustrate other possible
scenarios (extensions of Max-Sum) in Table 1 to summarize their performance. Each
line of Figures 4-7 represents the result of both SMP (Number of Clusters= 1) and
PMP (Number of Clusters> 1). Note that, domain pruning in the intermediate step
(Algorithm 3) of PMP is not applied for the results shown in the Figure 4 and 5 (non-
expensive maximization operator), however, this method is applied to the Figure 6 and
7 (expensive maximization operator). According to the graphs of Figures 4-7, the best
performance of PMP can be found if the number of clusters are picked from the range
around (5−25). However, for the smaller factor graphs this range becomes smaller. For
example, in Figure 4, where we are dealing with a factor graph of 100 function nodes the
best results are found within the range (5-15) clusters, afterwards, PMP performs worse
compared to its SMP counterpart. Notably, for the larger factor graphs the comparative
performance of PMP is more substantial in terms of completion time. Moreover, it can
be ascertained from the results that after reaching to its pick with a certain number of
clusters, performance of PMP drops steadily with the increase of the number of clusters
and this trend is common for each scenario. As observed, PMP running over a factor
graph with 100-200 function nodes achieves around 18% to 30% performance gain
(Figure 4) over its SMP counterpart. On the other hand, if we apply our domain pruning
technique on this same setting, the gain increases to around 37% to 53% (Figure 6).
Remarkably, when larger factor graphs (400-600 functions) are considered, PMP takes
31% to 36% less time than Max-Sum if domain pruning is not applied and 43% to 58%
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less time is consumed if applied. Finally, Figure 5 and 7 depict that this performance
gain reaches around 33% to 39% for the factor graph having 3000 to 10,000 function
nodes without domain pruning and 45% to 61% with domain pruning.

Extensive simulation results show that a PMP based algorithm always take less
time than its SMP counterpart if it can be applied by carefully considering the number
of clusters for a certain scenario. However, completion time of such algorithms mainly
depends on few issues. First, average time to compute an expensive Factor to Variable
message (Tcp1). Second, average time to compute a non-expensive variable to factor
message (Tcp2). Finally, average time to transmit a message between nodes (Tcm). The
ratio of these values would be different as in the literature we have several extensions
of Max-Sum, which eventually produce differences in the performance gain we show
in Figures 4-7. In summary, we present the range of performance gain in Table 1 con-
sidering different possible scenarios with corresponding examples.

Table 1: Performance of PMP compared to SMP in different possible scenarios in terms
of completion time.

Factor Graph (1000 functions) Gain (%) Example
(Tcp1 > Tcp2) ∧ (Tcp1 ≈ Tcm) 35-60 MS
(Tcp1 � Tcp2) ∧ (Tcp1 > Tcm) 24-44 MS
(Tcp1 ≈ Tcp2) ∧ (Tcp1 ≈ Tcm) 35-61 FMS or MS
(Tcp1 ≈ Tcp2) ∧ (Tcp1 < Tcm) 37-64 FMS or MS

Fig. 8: Total Number of messages: SMP vs PMP.

Even though, PMP reduces the completion time of message passing algorithms, it
requires more messages to be exchanged because of the additional round of message
passing. Figure 8 illustrates the comparative results of PMP and SMP in terms of total
number of messages for factor graphs with number of factors 50 − 1200 with average
5 variables connected to a factor. PMP needs 27 − 45% more messages than SMP for
factor graph having less than 500 function nodes and 15 − 25% more messages for
factor graph more than 500 nodes. As more messages are exchanged at the same time
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in PMP due to the parallel execution, this phenomena does not affect the performance
in terms of completion time.

5 Conclusions

We propose a framework which significantly reduces the required completion time of
GDL-based message passing algorithms. Our approach is applicable to all the exten-
sions of the Max-Sum algorithm and adaptable to any DCOP formulation which uses
the factor graph as a graphical representation. We provide a significant reduction in
completion time of such algorithms up to around 45 − 60% for different scenarios
with large number of nodes. To achieve this performance, we introduce a cluster based
method to parallelize the message passing procedure. Additionally, a domain reduction
algorithm is proposed to further minimize the cost of the expensive maximization op-
erator. Given this, by using the PMP framework, we now can indeed use GDL-based
algorithms to efficiently solve large real world DCOPs. Future work will look at finding
a method to determine the appropriate number of clusters for a certain scenario.
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