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Answer Set Programming.

Introduction — Answer Set Programming

Answer set programming is a new programming paradigm. It is introduced in the late

90’s and manages to attracts the intention of different groups of researchers thanks to its:

• declarativeness: programs do not specify how answers are computed;

• modularity: programs can be developed incrementally;

• expressiveness: answer set programming can be used to solve problems in high

complexity classes (e.g. Σ2
P , Π2P , etc.)

Answer set programming has been applied in several areas: reasoning about actions and

changes, planning, configuration, wire routing, phylogenetic inference, semantic web,

information integration, etc.
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Answer Set Programming.

Purpose

• Introduce answer set programming

• Provide you with some initial references, just in case

• . . . you get excited about answer set programming
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Answer Set Programming.

Outline

• Foundation of answer set programming: logic programming with answer set semantics

(syntax, semantics, early application).

• Answer set programming: general ideas and examples

• Application of answer set programming in

– Knowledge representation

– Constraint satisfaction problem

– Combinatoric problems

– Reasoning about action and change

– Planning and diagnostic reasoning

• Current issues
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Answer Set Programming. Logic Programming and Answer Set Semantics

Terminologies – many brorrowed from classical logic

• variables: X, Y, Z, etc.

• object constants (or simply constants): a, b, c, etc.

• function symbols: f, g, h, etc.

• predicate symbols: p, q, etc.

• terms: variables, constants, and f(t1, . . . , tn) such that tis are terms.

• atoms: p(t1, . . . , tn) such that tis are terms.

• literals: atoms or an atom preceded by ¬.

• naf-literals: atoms or an atom preceded by not.

• gen-literals: literals or a literal preceded by not.

• ground terms (atoms, literals) : terms (atoms, literals resp.) without variables.

Tran Cao Son 6



Answer Set Programming. Logic Programming and Answer Set Semantics

First Order Language, Herbrand Universe, and Herbrand Base

• L – a first order language with its usual components (e.g., variables, constants,

function symbols, predicate symbols, arity of functions and predicates, etc.)

• UL – Herbrand Universe of a language L: the set of all ground terms which can be

formed with the functions and constants in L.

• BL – Herbrand Base of a language L: the set of all ground atoms which can be

formed with the functions, constants and predicates in L.

• Example:

– Consider a language L1 with variables X, Y ; constants a, b; function symbol f of

arity 1; and predicate symbol p of arity 1.

– UL1 = {a, b, f(a), f(b), f(f(a)), f(f(b)), f(f(f(a))), f(f(f(b))), . . .}.

– BL1 = {p(a), p(b), p(f(a)), p(f(b)), p(f(f(a))), p(f(f(b))),

p(f(f(f(a)))), p(f(f(f(b)))), . . .}.
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Answer Set Programming. Logic Programming and Answer Set Semantics

Logic Programs – Syntax

A logic program rule is of the form

a0 ← a1, . . . , an,not an+1, . . . ,not an+k (1)

where a’s are atoms (of a first order language L); not a is called a naf-atom.

• a0 – head (the left hand side)

• a1, . . . , an – body (the right hand side)

Definition 1 A logic program is a set of logic programming rules.

The language L of a program Π is often given implicitly.

Remark 1 From now on, we will say a rule (resp. a program) instead of a logic

programming rule (resp. a logic program), for short;

Special cases:

• a0 ← – (n = 0) is called a fact ;

• ← a1, . . . , an – (a0 is missing) is called a constraint or a goal ;

• k = 0 – the rule is called a positive rule.
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Answer Set Programming. Logic Programming and Answer Set Semantics

Main Definitions

• ground(r,L): the set of all rules obtained from r by all possible substitution of

elements of UL for the variables in r.

• Example 1 Consider the rule “p(f(X))← p(X).” and the language L1. Then

ground(r,L1) will consist of the following rules:

p(f(a))← p(a).

p(f(b))← p(b).

p(f(f(a)))← p(f(a)).

p(f(f(b)))← p(f(b)).
...

• For a program Π:

– ground(Π,L) =
⋃

r∈Π ground(r,L)

– LΠ: The language of a program Π is the language consists of the constants,

variables, function and predicate symbols (with their corresponding arities)

occurring in Π. In addition, it contains a constant a if no constant occurs in Π.

– ground(Π) =
⋃

r∈Π ground(r,LΠ).
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Answer Set Programming. Logic Programming and Answer Set Semantics

Example 2 – Π:

p(a).

p(b).

p(c).

p(f(X))← p(X).

– ground(Π):

p(a)←.

p(b)← .

p(c)← .

p(f(a))← p(a).

p(f(b))← p(b).

p(f(c))← p(c).

p(f(f(a)))← p(f(a)).

p(f(f(b)))← p(f(b)).

p(f(f(c)))← p(f(c)).
...
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Answer Set Programming. Logic Programming and Answer Set Semantics

Intuition and Examples of Using LP (Positive Programs)

• Meaning of a rule

– A positive rule “a0 ← a1, . . . , an” can be viewed as the disjunction

a0 ∨ ¬a1 ∨ . . . ∨ ¬an which says that if a1, . . . , an are true then a0 is true.

– A rule “a0 ← a1, . . . , an,not an+1, . . . ,not an+k” states that if a1, . . . , an are

true and none of the an+1, . . . , an+k can be proven to be true then a0 is true.

– A constraint “← a1, . . . , an,not an+1, . . . ,not an+k” holds if some ai (1 ≤ i ≤ n)

is false or some aj (n + 1 ≤ j ≤ n + k) is true.

• Knowledge representation using LP-rules

flies(X)← bird(X). “if X is a bird, then X flies”

wet grass← sprinkler on. “The grass is wet if the sprinkler is on”

rain← humid, hot. “hot and humid causes rain”

love(X, Y )← love(Y, X). “Love is a symmetric relationship”
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Answer Set Programming. Logic Programming and Answer Set Semantics

Herbrand Interpretation

Definition 2 The Herbrand universe (resp. Herbrand base) of Π, denoted by UΠ

(resp. BΠ), is the Herbrand universe (resp. Herbrand base) of LΠ.

Example 3 For

Π = {p(X)← q(f(X), g(X)). r(Y )←}

the language of Π consists of

• two function symbols: f (arity 1) and g (arity 2);

• p, q, and r are predicate symbols;

• variables X, Y ; and

• a (added) constant a.

UΠ = ULΠ
= {a, f(a), g(a), f(f(a)), g(f(a)), g(f(a)), g(g(a)), f(f(f(a))), . . .}

BΠ = BLΠ
= {p(a), q(a, a), r(a), p(f(a)), q(a, f(a)), r(f(a)), . . .}

Definition 3 (Herbrand Interpretation) A Herbrand interpretation of a program

Π is a set of atoms from its Herbrand base.
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Answer Set Programming. Logic Programming and Answer Set Semantics

Semantics – Positive Programs without Constraints

Let Π be a positive proram and I be a Herbrand interpretation of Π. I is called a

Herbrand model of Π if for every rule “a0 ← a1, . . . , an,” if a1, . . . , an are true with

respect to I (or a1, . . . , an ⊆ I) then a0 is also true with respect to I .

Definition 4 The least Herbrand model for a program Π is called the minimal model

of Π and is denoted by MΠ.

Computing MP . Let Π be a program. We define a fixpoint operator TΠ that maps a

set of atoms (of program Π) to another set of atoms as follows.

TΠ(X) = {a | a ∈ BΠ,

there exists a rule

a← a1, . . . , anin Π s. t. ai ∈ X}
(2)

Note: By a← a1, . . . , an in Π we mean there exists a rule b← b1, . . . , bn in Π (that

might contain variables) and a ground substitution σ such that a = bσ and ai = biσ.

Remark 2 The operator TΠ is often called the van Emden and Kowalski’s iteration

operator.
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Answer Set Programming. Logic Programming and Answer Set Semantics

Some Examples

For Π = {p(f(X))← p(X). q(a)← p(X).}
we have

UΠ = {a, f(a), f(f(a)), f(f(f(a))), . . .}

and

BΠ = {q(a), p(a), p(f(a)), p(f(f(a))), . . .}

Computing TΠ(X):

• For X = BΠ, TΠ(X) = {q(a)} ∪ {p(f(t)) | t ∈ UΠ}.

• For X = ∅, TΠ(X) = ∅.

• For X = {p(a)}, TΠ(X) = {q(a), p(f(a))}.

• We have that MΠ = ∅ (Why?).
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Answer Set Programming. Logic Programming and Answer Set Semantics

Properties of TΠ

• TΠ is monotonic: TΠ(X) ⊆ TΠ(Y ) if X ⊆ Y .

• TΠ has a least fixpoint that can be computed as follows.

1. Let X1 = TΠ(∅) and k = 1

2. Compute Xk+1 = TΠ(Xk). If Xk+1 = Xk then stops and return Xk.

3. Otherwise, increase k and repeat the second step.

Note: The above algorithm will terminate for positive program Π with finite BΠ.

We denote the least fix point of TΠ with T∞Π (∅) or lfp(TΠ).

Theorem 1 MΠ = lfp(TΠ).

Theorem 2 For every positive program Π without constraint, MΠ is unique.
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Answer Set Programming. Logic Programming and Answer Set Semantics

More Examples

• For Π1 = {p(X)← q(f(X), g(X)). r(Y )←}

we have that

UΠ1 = {a, f(a), g(a), f(f(a)), g(f(a)), g(f(a)), g(g(a)), f(f(f(a))), . . .}

BΠ1 = {p(a), q(a, a), r(a), p(f(a)), q(a, f(a)), r(f(a)), . . .}

Computing MΠ:

X0 = TΠ1(∅) = {r(a), r(f(a)), r(g(a)), r(f(f(a))), ...}
X1 = TΠ1(X0) = X0

So, lfp(Π1) = {r(a), r(f(a)), r(g(a)), r(f(f(a))), ...}.

• For Π2 = {p(f(X))← p(X). q(a)← p(X).}

UΠ2 = {a, f(a), f(f(a)), f(f(f(a))), . . .}

BΠ2 = {q(a), p(a), p(f(a)), p(f(f(a))), . . .}

Computing MΠ2:

X0 = TΠ2(∅) = ∅
X1 = TΠ2(X0) = X0

So, lfp(Π2) = ∅.
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Answer Set Programming. Logic Programming and Answer Set Semantics

• For Π3 = {p(f(X))← p(X). q(a)← p(X). p(b).}

UΠ3 = {a, b, f(a), f(b), f(f(a)), f(f(b)), f(f(f(a))), . . .}

BΠ3 = {q(a), q(b), p(a), p(b), p(f(a)), p(f(b)), p(f(f(a))), . . .}

Computing MΠ3:

X0 = TΠ3(∅) = {p(b)}
X1 = TΠ3(X0) = {p(b), q(a), p(f(b))}
X2 = TΠ3(X1) = {p(b), q(a), p(f(b)), p(f(f(b)))}
. . .

So, lfp(TΠ3) = {q(a)} ∪ {p(f i(b)) | i = 0, 1, . . .}.

• For Π4 = {p← a. q ← b. a← .}, MΠ4 = {a, p}.

• For Π5 = {p← p.}, MΠ5 = ∅

• For Π6 = {p← p. q ← .}, MΠ6 = {q}.

• For Π7 = {p(b). p(c). p(f(X))← p(X).},MΠ7 = {p(fn(b)) | n =

0, . . . , } ∪ {p(fn(c)) | n = 0, 1. . . . , }
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Answer Set Programming. Logic Programming and Answer Set Semantics

Entailment

For a program Π and an atom a, Π entails a (with respect to the minimal model

semantics), denoted by Π |= a, iff a ∈MΠ.

We say that Π entails ¬a (with respect to the minimal model semantics), denoted by

Π |= ¬a, iff a ∈MΠ.

Example 4 Let

Π =



























p(f(X)) ← p(X).

q(a) ← p(X).

p(b).

We have that MΠ = lfp(TΠ) = {q(a)} ∪ {p(f i(b)) | i = 0, 1, . . .}
where f i(b) = f(f(. . . (f(b)))) (f repeated i times)

So, we say:

Π |= q(a),

Π |= ¬q(b), and

Π |= p(f i(b)) for i = 0, 1, . . .
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Answer Set Programming. Logic Programming and Answer Set Semantics

Entailment – Another Example

Example 5 • Consider the parent-child database with facts of the form p(X, Y )

(X is a parent of Y ). We can define the ancestor relationship, a(X, Y ) (X is an

ancestor of Y ), using the following rules

Πa =











a(X, Y ) ← p(X, Y ).

a(X, Y ) ← p(X, Z), a(Z, Y ).

Given the set of facts I = {p(a, b), p(b, c), p(c, d)}, let Π = Πa ∪ I. We can easily

compute

MΠ = I ∪ {a(X, Y ) | p(X, Y ) ∈ I} ∪ {a(a, c), a(a, d), a(b, d)}

So, Π |= a(a, c) and Π |= a(a, d), i.e., a is an ancestor of c and d; on the other

hand, Π |= ¬a(d, a), i.e., d is not an ancestor of a.
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Answer Set Programming. Logic Programming and Answer Set Semantics

• Consider a directed graph G described by a set of atoms of the form edge(X, Y ).

The following program can be used to determine whether there is a path

connecting two nodes of G.

ΠG =



















































































reachable(X, Y ) ← edge(X, Y )

reachable(X, Y ) ← edge(X, Z), reachable(Z, Y )

edge(a, b) ←
edge(b, c) ←
edge(c, a) ←
. . .

It can be shown that for every pair of nodes p and q of the graph G,

reachable(p, q) belongs to MΠG
iff there exists a path from p to q in the graph G.

Remark 3 Reasoning using positive programs assumes the closed world assumption

(CWA): anything, that cannot be proven to be true, is false.
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Answer Set Programming. Logic Programming and Answer Set Semantics

Semantics – General Logic Programs without Constraints

Recall that a program is a collection of rules of the form

a← a1, . . . , an,not an+1,not an+k.

Let Π be a program and X be a set of atoms, by ΠX we denote the program obtained

from ground(Π) by

1. Deleting from ground(Π) any rule a← a1, . . . , an,not an+1,not an+k for that

{an+1, . . . , an+k} ∩X 6= ∅, i.e., the body of the rule contains a naf-atom not al and

al belongs to X ; and

2. Removing all of the naf-atoms from the remaining rules.

Remark 4 The above transformation is often referred to as the Gelfond-Lifschitz

transformation.

Remark 5 ΠX is a positive program.

Definition 5 A set of atoms X is called an answer set of a program Π if X is the

minimal model of the program ΠX.

Theorem 3 For every positive program Π, the minimal model of Π, MΠ, is also the

unique answer set of Π.
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Answer Set Programming. Logic Programming and Answer Set Semantics

Detailed Computation

• Consider Π2 = {a← not b. b← not a.}. We will show that its has two answer

sets {a} and {b}

S1 = ∅ S2 = {a} S3 = {b} S4 = {a, b}

ΠS1
2 : ΠS2

2 : ΠS3
2 : ΠS4

2 :

a← a←
b← b←

M
Π

S1
2

= {a, b} M
Π

S2
2

= {a} M
Π

S3
2

= {b} MPS4 = ∅

M
Π

S1
2
6= S1 M

Π
S2
2

= S2 M
Π

S3
2

= S3 M
Π

S4
2
6= S4

NO Y ES Y ES NO

• Assume that our language contains two object constants a and b and consider

Π = {p(X)← not q(X). q(a)←}. We show that S = {q(a), p(b)} is an answer set

of Π. We have that ΠS = {p(b)← q(a)←} whose minimal model is exactly S. So,

S is an answer set of Π.
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Answer Set Programming. Logic Programming and Answer Set Semantics

• Π4 = {p← not p.} We will show that P does not have an answer set.

S1 = ∅, then ΠS1
4 = {p←} whose minimal model is {p}. {p} 6= ∅ implies that S1 is

not an answer set of Π4.

S2 = {p}, then ΠS2
4 = ∅ whose minimal model is ∅. {p} 6= ∅ implies that S2 is not an

answer set of Π4.

This shows that P does not have an answer set.

In computing answer sets, the following theorem is useful:

Theorem 4 Let Π be a program.

1. Let r be a rule in ground(P ) whose body contains an atom a that does not occur

in the head of any rule in ground(P ). Then, S is an answer set of Π iff S is an

answer set of ground(P ) \ {r}.

2. Let r be a rule in ground(P ) whose body contains a naf-atom not a that does not

occur in the head of any rule in ground(P ). Let r′ be the rule obtained from r by

removing not a. Then, S is an answer set of P iff S is an answer set of

ground(P ) \ {r} ∪ {r′}.
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Answer Set Programming. Logic Programming and Answer Set Semantics

Examples about Answer Sets

Remark 6 A program may have zero, one, or more than one answer sets.

• Π1 = {a← not b.}.

Π1 has a unique answer set {a}.

• Π2 = {a← not b. b← not a.}.

The program has two answer sets: {a} and {b}.

• Π3 = {p← a. a← not b. b← not a.}

The program has two answer sets: {a, p} and {b}.

• Π4 = {a← not b. b← not c. d← .}

Answer sets: {d, b}.

• Π5 = {p← not p.}

No answer set.

• Π6 = {p← not p, d. r ← not d. d← not r.}

Answer set {r}.
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Answer Set Programming. Logic Programming and Answer Set Semantics

Entailment w.r.t. Answer Set Semantics

• For a program Π and an atom a, Π entails a, denoted by Π |= a, if a ∈ S for every

answer set S of Π.

• For a program Π and an atom a, Π entails ¬a, denoted by Π |= ¬a, if a 6∈ S for

every answer set S of Π.

• If neither Π |= a nor Π |= ¬a, then we say that a is unknown with respect to Π.

Remark 7 Π does not entail a DOES NOT IMPLY that Π entails ¬a, i.e., reasoning

using answer set semantics does not employ the closed world assumption.

Example 6 • Π1 = {a← not b.}.

Π1 has a unique answer set {a}. Π1 |= a, Π1 |= ¬b.

• Π2 = {a← not b. b← not a.}.

The program has two answer sets: {a} and {b}. Both a and b are unknown

w.r.t. Π2.

• Π3 = {p← a. a← not b. b← not a.}

The program has two answer sets: {a, p} and {b}. Everything is unknown.
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Answer Set Programming. Logic Programming and Answer Set Semantics

• Π3 = {a← not b. b← not c. d← .}

Answer sets: {d, b}. Π3 |= b; Π3 |= ¬a; etc.

• Π4 = {p← not p.}

No answer set. p is unknown.

• Π5 = {p← not p, d. r ← not d. d← not r.}

Answer set {r}. Π5 |= r; Π5 |= ¬p; etc.

• Π6 = {p← not a. p← not b. a← not b. b← not a.}

Two answer sets: {p, a} and {p, b}. So, Π6 |= p but Π6 6|= a and Π6 6|= ¬a?

(likewise b).

• Π7 = {q ← not r. r ← not q. p← not p. p← not r.}

One stable model: {p, q}. So, Π7 |= p and Π7 |= q.
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Further intuitions behind the semantics

• A set of atoms S is closed under a program Π if for all rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an.

in Π, {a1, . . . , am} ⊆ S and {am+1, . . . , an} ∩ S = ∅ implies that a0 ∈ S.

• A set of atoms S is said to be supported by Π if for all p ∈ S there is a rule of the

form p← a1, . . . , am,not am+1, . . . ,not an.

in Π, such that {a1, . . . , am} ⊆ S and {am+1, . . . , an} ∩ S = ∅.

• A set of atoms S is an answer set of a program Π iff (i) S is closed under Π and (ii)

there exists a level mapping function λ (that maps atoms in S to a number) such that

for each p ∈ S there is a rule in Π of the form p← a1, . . . , am,not am+1, . . . ,not an.

such that {a1, . . . , am} ⊆ S, {am+1, . . . , an} ∩ S = ∅ and λ(p) > λ(ai), for

1 ≤ i ≤ m.

• Note that (ii) above implies that S is supported by Π.
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Answer Set Programming. Logic Programming and Knowledge Representation

Commonsense Reasoning

Our knowledge

• is often incomplete (it does not contain complete information about the world), and

• contains defaults (rules which have exceptions, also called normative sentences).

• contains preferences between defaults (prefer a conclusion/default).

For this reasons, we often jump to conclusions (ignore what we do not now), and know

to deal with exceptions and preferences.

Example 7 We know

Normally, birds fly.

Normally, computer science students can program.

Normally, students work hard.

Normally, things do not change.

Normally, students do not watch TV.

Normally, the speed limit on highways is 70 mph.

Normally, it is cold in December.

From this, we make conclusions such as Tweety flies if we know that Tweey is a bird;

Monica can program if she is a computer science student; etc.

Tran Cao Son 29



Answer Set Programming. Logic Programming and Knowledge Representation

Representing Defaults

Normally, a’s are b’s. b(X)← a(X),not ab(r, X)1

Normally, birds fly. flies(X)← bird(X),not ab(bird fly, X)

Normally, animals have four legs.

numberoflegs(X, 4)← animal(X),not ab(animal, X)

Normally, fishs swim. swim(X)← fish(X),not ab(fish, X)

Normally, computer science students can program.

can program(X)← student(X), is in(X, cs),not abp(X)

Normally, students work hard.

hard working(X)← student(X),not ab(X)

Typically, classes start at 8am.

start time(X, 8am)← class(X),not ab(X)
1
r is the ’name’ of the statement; ab(X) or abr(X) can also be used.
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Example 8 (Birds) Suppose that we know

• r1: Normally, birds fly.

• r3: Penguins are birds.

• r3: Penguins do not fly.

• r4: Tweety is a penguin.

• r5: Tim is a bird.

Πb =























































r1 : flies(X) ← bird(X),not ab(r1, X)

r2 : bird(X) ← penguin(X)

r3 : ab(r1, X) ← penguin(X)

r4 : penguin(tweety) ←
r5 : bird(tim) ←

Answer set of Πb: ?
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Πb =























































r1 : flies(X) ← bird(X),not ab(r1, X)

r2 : bird(X) ← penguin(X)

r3 : ab(r1, X) ← penguin(X)

r4 : penguin(tweety) ←
r5 : bird(tim) ←

Answer set of Πb:

{bird(tim), f lies(tim), penguin(tweety), ab(r1, tweety), bird(tweety)

Πb |= flies(tim) and Πb |= ¬flies(tweety)
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Defaults – Example

Example 9 (Animals) Consider the following information:

• Normally lions and tigers are cats.

• Sam and John are lions.

• Sam is not a cat.

• Sam is a sea lion.

This information can be represented by the following program

Πa =







































































r1 : cat(X) ← lion(X),not ab(r1, X)

r2 : cat(X) ← tiger(X),not ab(r2, X)

r3 : lion(X) ← sea lion(X)

r4 : ab(r1, X) ← sea lion(X)

r5 : sea lion(sam) ←
r6 : lion(john) ←

We can check that Πa entails that sam is a lion but not a cat while john is a cat

which is a lion.
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Defaults – More Examples

Example 10 • We know that computers are normally fast machines, the

commodore is a slow machine because it is an old one. This can be represented

by the following program:

Πc =







































r1 : fast machine(X) ← computer(X),not ab(X)

r2 : old(X) ← comodore(X)

r3 : computer(X) ← comodore(X)

r4 : ab(X) ← old(X)

• The Boeing 747, concord, and FA21314 are airplanes. Airplanes normally fly

unless they are out of order. FA21314 is out of order.

Πairplanes =







































































r1 : flies(X) ← airplane(X),not ab(X)

r2 : ab(X) ← out of order(X)

r3 : airplane(boeing 747) ←
r4 : airplane(concord) ←
r5 : airplane(fa21324) ←
r6 : out of order(fa21324) ←
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Answer Set Programming.

Extensions of Logic Programming
and Computing Answer Sets

Additional Features for Knowledge Representation and Reasoning

To add expressiveness and make logic programming a more suitable language for

knowledge representation and reasoning, additional features and constructors are

introduced:

• classical negation: instead of atoms, literals are used in the rule

l0 ← l1, . . . , ln,not ln+1, . . . ,not ln+k

where li is a literal (an atom a or its negation ¬a). This will allow us to represent and

reason with negative information.

• epistemic disjunction: rule is allowed to have epistemic disjunction in the head

l0 or . . . or lm ← lm+1, . . . , lm+n,not lm+n+1, . . . ,not lm+n+k

where or is a epistemic disjunction. This rule states that if lm+1, . . . , lm+n are true

and there is no reason for believing that the lm+n+1, . . . , lm+n+k are true then at least

one of the l0, . . . , lm is believed to be true.

• nested expression: allowing not not l.
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and Computing Answer Sets

• weighted-atom:

l{l0 = w0, . . . , lk = wk,not lk+1 = wk+1, . . . ,not lk+n = wk+n}u

where li’s are a literal, wi are integers, and l and u are two integers. This atom is true

with respect to a set of literals S if

l ≤
0≤j≤k

∑

lj∈S
wj +

k+1≤j≤k+n
∑

lj 6∈S
wj ≤ u

Special case: choice atom – wi = 1 for every i.

Programs with weight constraints are defined by allowing weight atoms to appear in

place of atoms.

• Answer set semantics: defined accordingly. See for example,

– M. Gelfond and V. Lifschitz, “Classical negation in logic programs and disjunctive

databases,” New Generation Computing, 1991, pp. 365-385.

– V. Lifschitz, L. R. Tang and H. Turner, ”Nested expressions in logic programs,”

Annals of Mathematics and Artificial Intelligence, Vol. 25, 1999, pp. 369-389.

– I. Niemelä and P. Simons. Extending the Smodels System with Cardinality and

Weight Constraints.Logic-Based Artificial Intelligence, pp. 491-521. Kluwer

Academic Publishers, 2000.
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Using Classical Negation

Πb =























































r1 : flies(X) ← bird(X),not ab(r1, X)

r2 : bird(X) ← penguin(X)

r3 : ab(r1, X) ← penguin(X)

r4 : penguin(tweety) ←
r5 : bird(tim) ←

• In the bird example, “Penguins do not fly” is more intuitive than “Normally, penguins

do not fly.” So, r3 of Πb should be changed to

r′3 : ¬flies(X)← penguin(X).

Doing so will make the program Πb inconsistent! Obviously, r1 does not account for

the class of birds who do not fly. We should change the rule r1 to

r′1 : flies(X)← bird(X),not ab(r1, X),not ¬flies(X)

The new program, Π′b = Πb \ {r1, r3} ∪ {r′1, r
′
3} will correctly answer the same

questions such as “does Tim flies” and “does Tweety fly?”
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• Suppose that we have a list of professor and their courses:

Professor Course

mike ai

sam db

staff C

where staff stands for “someone” – an unknown professor – who might be different

than mike and sam.

This list can be expressed by a set of atoms of the form teach(P, C) (P teaches C):

teach(mike, ai), teach(sam, db), and teach(staff, c).

By default, we know that if a professor P teaches the course C, then (P, C) will be

listed (and hence the atom teach(P, C) will be present.) Thus, by default, professor

P does not teach the course C if teach(P, C) is not present. The exception to this

rule are the courses taught by “staff”. This leads to the following two rules:

¬teach(P, C) ← not teach(P, C),not ab(P, C).

ab(P, C) ← teach(staff, C)

This will allow us to conclude that mike teaches ai but we do not know whether he

teaches c or not.
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Answer Sets of Programs with Constraints

For a set of ground atoms S and a constraint c

← a0, . . . , an,not an+1, . . . ,not an+k

we say that c is satisfied by S if {a0, . . . , an} \ S 6= ∅ or {an+1, . . . , an+k} ∩ S 6= ∅.
Let Π be a program with constraints. Let

ΠO = {r | r ∈ Π, r has non-empty head}

(ΠO is the set of normal logic program rules in Π) and

ΠC = Π \ ΠO

(ΠC is the set of constraints in Π).

Definition 6 A set of atoms S is an answer sets of a program Π if it is an answer

set of ΠO and satisfies all the constraints in ground(ΠC).

Example 11 Π2 = {a← not b. b← not a.} has two answer sets {a} and {b}.
But, Π′2 = {a← not b. b← not a. ← not a} has only one answer set {a}.
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Computing Answer Sets

• Complexity: The problem of determining the existence of an answer set for finite

propositional programs (programs without function symbols) is NP-complete. For

programs with disjunctions, function symbols, etc. it is much higher.

A consequence of this property is that there exists no polynomial-time algorithm for

computing answer sets.

Special cases: answer sets of positive programs without function symbols can be

computed in polynomial time in the size of the program.

A good survey on the complexity and expresiveness of different classes of logic

programs can be found in

– Chitta Baral. Knowledge representation, reasoning and declarative problem

solving, Cambridge University Press, 2003.

• Answer set solvers: Programs that compute answer sets of (finite and grounded)

logic programs. Two main approaches:
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– Direct implementation: Due to the complexity of the problem, most solvers

implement a variation of the generate-and-test algorithm. The advantage of this

approach is that we are free to invent! Many systems:

∗ Smodels available at http://www.tcs.hut.fi/Software/smodels/

∗ Dlv available at http://www.dbai.tuwien.ac.at/proj/dlv/

∗ deres available at http://www.cs.engr.uky.edu/ai/deres.html

∗ nomore available at http://www.cs.uni-potsdam.de/~linke/nomore/

– Using SAT solvers: A program Π is translated into a satisfiabilty problem FΠ

and a call to a SAT solver is made to compute solution of FΠ. The main task of

this approach is to write the program for the conversion from Π to FΠ. Recent

discoveries ensure that there is an one-to-one correspondence between solutions of

FΠ and answer sets of Π (e.g., see paper from the ASSAT web site). Two

systems:

∗ Cmodels available at

http://www.cs.utexas.edu/users/tag/cmodels.html

∗ ASSAT available at http://assat.cs.ust.hk/

Remark 8 Most of the above systems make use of lparse, a grounding program for

logic programs with function symbols (typed) and weight constraints. The program is

available at the Smodels web site.
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Remark 9 A Java implementation of Smodels, called Jsmodels, is available at

http: // www. cs. nmsu. edu/ ~hle/ jsmodel. html .

Usage of lparse and Smodels

• lparse: a preprocessor for programs using as input to Smodels. Some restrictions

apply:

– Finite domains: every variable is typed and has a finite domain;

– Safe rule: variables appear in the head of a rule must occur in the body of the

rule, in a predicate that specifies the domain of the variable;

– Built-in predicates: assign, plus, minus, etc.. (see lparse user’s manual for

more). Do not use them in your programs or you will get errors.

• Command line:

lparse <options> prog1 prog2 ... | smodels number of models
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Brief History and References

• Answer set programming was introduced in

– V. W. Marek, M. Truszczynski. Stable models and an alternative logic

programming paradigm. In The Logic Programming Paradigm, K.R. Apt, V.W.

Marek, M. Truszczynski, D.S. Warren (eds.), pp. 375-398. Springer-Verlag, 1999.

– I. Niemelä. Logic programming with stable model semantics as a constraint

programming paradigm. Annals of Mathematics and Artificial Intelligence,

25(3,4):241–273, 1999.

• Take off thanks to the development of several answer set solvers (Smodels and Dlv),

• the application of answer set programming in several applications such as planning,

system configuration, cryptography, NASA’s application, etc.

• 2001: first symposium on answer set programming: “Answer Set Programming:

Towards Efficient and Scalable Knowledge Representation and Reasoning,”

http://www.cs.nmsu.edu/~tson/ASP2001/csp01.html.

• 2002 – now: several symposia on ASP (http://wasp.unime.it/).

• 2001 – now: several papers on answer set programming have been published.
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Main Idea

Given a problem P , whose solutions are S1, . . . , Sn which can be computed by

• generating a hypothetical solution and

• testing whether it is really a solution.

This process is very similar to the process of computing answer sets of a logic program

Π: given a program Π its answer sets can be computed by

• generating a set of atoms X and

• checking whether X is an answer set of Π

This gives us the idea: Solve P by representing P as a logic program ΠP whose answer

sets correspond one-to-one to S1, . . . , Sn using the follong steps:

• Repesenting P as ΠP ;

• Computing answer sets of ΠP ; and

• Converting answer sets of ΠΠ to solutions of P
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Graph Coloring

1

2

3

4

5

1

2

3

4

5

Coloring

Figure 1: Graph Coloring Problem

Problem: Given a (bi-directed) graph and three colors red, green, and yellow. Find a

color assignment for the nodes of the graph such that no edge of the graph connects two

nodes of the same color.
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Graph Coloring

Example 12 (Graph coloring problem) Given a (bi-directed) graph and three

colors red, green, and yellow. Find a color assignment for the nodes of the graph such

that no edge of the graph connects two nodes of the same color.

• Representation: A graph can be specified by

– the set of nodes and

– the set of edges.

• Solution: A mapping from the set of nodes to the set of colors

{red, green, yellow} such that no edge connects two nodes of the same color.

• Solving the problem (manualy):

– Numbering the nodes from 1 to n

– Assigning each node a color

– Checking if the assignment is a solution, i.e., satisfies the constraints no

edge connects two nodes of the same color
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Graph Coloring – Program

Writing a program to solve the graph coloring problem:

• Graph representation:

– The nodes: node(1), . . . , node(n).

– The edges: edge(i, j).

• Solution repesentation: use the predicate color(X, Y ) - node X is assigned the color

Y .

• Generating the solutions: Each node is assigned one color. The three rules

color(X, red) ← not color(X, green),not color(X, yellow). (3)

color(X, green) ← not color(X, red),not color(X, yellow). (4)

color(X, yellow) ← not color(X, green),not color(X, red). (5)

or the weighted rule

1{color(X, red), color(X, yellow), color(X, green)}1← node(X).

can be used. (The weighted rule says that each node should be colored using exactly

one color.)

Tran Cao Son 50



Answer Set Programming. Examples

• Checking for a solution: needs to make sure that no edge connects two nodes of the

same color. This can be represented by a constraint:

← edge(X, Y ), color(X, C), color(Y, C). (6)

%% prog1

%% representing the graph

node(1). node(2). node(3). node(4). node(5).

edge(1,2). edge(1,3). edge(2,4). edge(2,5). edge(3,4). edge(3,5).

%% each node is assigned a color

color(X,red):- not color(X,green), not color(X, yellow).

color(X,green):- not color(X,red), not color(X, yellow).

color(X,yellow):- not color(X,green), not color(X, red).

%% constraint checking

:- edge(X,Y), color(X,C), color(Y,C).

Try with lparse prog1 | smodel 1 or lparse prog1 | smodel 0 and see

the result.
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prog1 can be divided into three group of rules

• Rules for describing the graph;

• Rules for generating the hypothetical solutions; and

• Rules for checking the correctness of the solutions.

It is a good practice to separate the rules into two files: (a) the first file contains rules for

describing the graph (let us called this file prog11, for our example, this program

contains the first two lines of prog1); and (b) the second file contains other rules. (let us

called this file prog12 which contains the other rules of prog1).

Command line: lparse prog11 prog12 | smodels
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Correctness of prog1

Let us denote the program prog1 developed for a graph G by ΠG.

•What is to prove? (one-to-one mapping between solutions of G and answer sets of

ΠG.) Intuitively, this means

– If ΠG has an answer set then the 3-coloring problem for G has a solution and vice

versa.

– If ΠG does not have an answer set then the coloring problem of G has no solution.

• How can we prove this?

– Take an answer set S of ΠG, construct a solution for the coloring problem of G

from S.

– Take a color mapping M , which is a solution for the problem, construct an answer

set for ΠG.
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We can prove the following theorems.

Theorem 5 Let S be an answer set of ΠG. Then, the 3-coloring problem of G has

a solution corresponds to S.

Proof. We prove the following:

1. For every node k of the graph G, S contains one and only one atom from the set

C = {color(k, red), color(k, green), color(k, yellow)}, i.e., S ∩ C has only one

element. Assume that it is not the case. Then, there are only three cases: S contains

zero, two, or three elements of the set C. Assume that

Case 1: S does not contain any element from C. Then, ΠS
G contains

color(k, red)← node(k). (because of rule (3))

color(k, green)← node(k). (because of rule (4))

color(k, yellow)← node(k). (because of rule (5))

Because k is a node of G, we can easily see that color(k, red), color(k, yellow), and

color(k, green) belong to the minimal model of ΠS
G. Thus, S cannot be an answer set of

ΠG because it cannot be equal the minimal model of ΠS
G. This contradicts the

assumption that S is an answer set of ΠG. Hence, this case cannot happen.

Case 2: S contains two elements from C. Since the three colors are equivalent and so,

without loss of generality, we assume that S contains color(k, red) and color(k, green);

and it does not contain color(k, yellow). Then, ΠS
G will not contain any rule whose

head is an atom belonging to C. (all the rules of the form (3)-(5) for X = k are
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removed). This implies that the minimal model of ΠS
G cannot contain any element of C.

This implies that S cannot be an answer set of ΠG because it cannot be equal the

minimal model of ΠS
G. Again, this contradicts the assumption that S is an answer set of

ΠG. Hence, this case cannot happen.

Case 3: S contains all elements of C. This is similar to the second case, i.e., ΠS
G does

not contain any rule whose head is a member of C, and hence, S would not be an

answer set of ΠG.

The three cases show that for each node k, S contains 1-and-only-1 member of the set

{color(k, red), color(k, green), color(k, yellow)}.
2. Now we need to show that the color mapping specified by the answer set S is a

solution to the coloring problem.

Let 1, . . . , n be the nodes of the graph and c1, . . . , cn be the color such that

color(i, ci) ∈ S for i = 1, . . . , n. We need to show that if edge(i, j) belongs to G then

ci 6= cj. Again, we prove by contradiction. Let assume that there is an edge (p, q) in G

and cp = cq. This means that the body of the rule (6) for edge(p, q), color(p, cp), and

color(q, cq) is satisfied. This means that S is not an answer set of ΠG, i.e., our

assumption contradicts the fact that S is an answer set of ΠG. Thus, our asssumption is

incorrect, i.e., we have proved that for every edge (i, j) of G, ci 6= cj. This shows that S

corresponds to a solution of the 3-coloring problem for G.
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Theorem 6If the 3-coloring problem for G has a solution M then ΠG has an

answer set correcsponds to M .

Proof. Let 1, . . . , n be the nodes of the graph. Consider a solution for the 3-coloring

problem for G. Let c1, . . . , cn be the color of the node i = 1, . . . , n, respectively. We will

show that the set of atoms

S = {node(i) | i = 1, . . . , n} ∪ {edge(i, j) | (i, j) is an edge of G}∪
{color(i, ci) | i = 1, . . . , n}

is an answer set of ΠG.

Let us compute ΠS
G. We can see that ΠS

G consists of the following rules:

• the rules defining the graph, i.e., the rules node(1)← .... node(n)← (nodes of the

graph) and the rules edge(i, j)← if (i, j) is an edge of G.

• for each node i, one rule of the form color(i, ci)← node(i) which comes from one of

the rules (3)-(5).

• for each edge (i, j), three constraints:

← edge(i, j), color(i, red), color(j, red)

← edge(i, j), color(i, yellow), color(j, yellow)

← edge(i, j), color(i, green), color(j, green)
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We need to show that S is the minimal model of ΠS
G that does not violates any of the

constraints.

Let X0 = {node(i) | i = 1, . . . , n} ∪ {edge(i, j) | (i, j) is an edge of G}.
Obviously, TΠS

G
(∅) = X0 and

TΠS
G
(X0) = S, and TΠS

G
(S) = S. (*)

Furthermore, because for every edge (i, j), ci 6= cj, we can conclude that there exists no

edge (i, j) in G and a color C ∈ {red, green, yellow} such that S contains color(i, C)

and color(j, C). This is equivalent to say that the constraints in ΠS
G are satisfied by S.

Together with (*), we conclude that S is an answer set of ΠG.
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n-Queens

Q

Q

Q

Q

Q

Q

Q

 Q

Figure 2: 4-queens Problem

Problem: Place n queens on a n× n chess board so that no queen is attacked (by

another one).
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n-Queens

• Representation: the chess board can be represented by a set of cells cell(i, j) and

the size n.

• Solution: Each cell is assigned a number 1 or 0. cell(i, j) = 1 means that a queen is

placed at the position (i, j) and cell(i, j) = 0 if no queen is placed at the position (i, j)

• Generating a possible solution:

– cell(i, j) is either true or false

– select n cells, each on a column, assign 1 to these cells.

• Checking for the solution: ensures that no queen is attacked
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n-Queens – writing a program

Use a constant n to represent the size of the board

col(1..n). // n columns

row(1..n). // n rows

Since two queens can not be on the same column, we know that each column has to have

one and only one queen. Thus, using the weighted-rule

1{cell(I, J) : row(J)}1← col(I).

we can make sure that only one queen is placed on one column. To complete the

program, we need to make sure that the queens do not attack each other.

• No two queens on the same row

← cell(I, J1), cell(I, J2), J1 6= J2.

• No two queens on the same column (not really needed)

← cell(I1, J), cell(I2, J), I1 6= I2.

• No two queens on the same diagonal

← cell(I1, J1), cell(I2, J2), |I1− I2| = |J1− J2|

Tran Cao Son 60



Answer Set Programming. Examples

%% prog2

%% representing the board, using n as a constant

col(1..n). % n column

row(1..n). % n row

%% generating solutions

1 {cell(I,J) : row(J)}:- col(I).

% two queens cannot be on the same row/column

:- col(I), row(J1), row(J2), neq(J1,J2), cell(I,J1), cell(I,J2).

:- row(J), col(I1), col(I2), neq(I1,I2), cell(I1,J), cell(I2,J).

% two queens cannot be on a diagonal

:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 > I2,

cell(I1,J1), cell(I2,J2), eq(I1 - I2, J1 - J2).

:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 < I2,

cell(I1,J1), cell(I2,J2), eq(I2 - I1, J1 - J2).

Command line: lparse -c n=?? prog2 | smodels
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Tile covering problem

Covering with 1 
by 2 tiles

Figure 3: 4 x 4 Tile Covering Problem

Problem: Given a slightly damaged chess board (n× n). Find a covering of the board

using m 1× 2-tiles so that all the good squares on the board are covered. If no such

covering exists, report there is no solution.
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Tile covering problem

• Problem: Given a slightly damaged chess board (n× n). Find a covering of the

board using m 1× 2-tiles so that all the good squares on the board are covered. If no

such covering exists, report there is no solution.

• Representation:

• the board

− dimension

− damaged/good cells

• the tiles with their coverage

As with N-queens problem, we can use the two predicates row() and col() to

represent the possible board cells

We can use bad(i, j) to indicate that the cell (i, j) is damaged We can use the

predicate cell(i, j, t) to represent the information that the cell (i, j) is covered by the

tile t
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• Generating a possible solution: We assign each tile a number. Then we can

assign a tile to a location. Since each tile covers two and only two cells, we can used

the weighted-rule:

2cell(I, J, T ) : col(I) : row(J)2← tile(T ).

to generate a possible solution.

• Checking for a solution: We need to check for the following constraints:

– bad cell needs not be covered

– no two tiles on the same cell

– The cells covered by a tile must be neightbor

– The cells covered by a tile cannot lie on a diagonal

The result program prog3:

% representation of the board

% col(.) and row(.) as in the queen example

% bad(.) for damaged cell

% ntiles is a constant for the number of tiles

col(1..n). row(1..n). tile(1..ntiles).
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bad(1,1). bad(3,2).

% generating possible solutions

2 {cell(I,J,T) : col(I) : row(J) } 2 :- tile(T).

% bad cell needs not be covered

:- col(I), row(J), tile(T), bad(I,J), cell(I,J,T).

% one tile over one cell only

:- col(I),row(J),tile(T1),tile(T2),neq(T1,T2),cell(I,J,T1),cell(I,J,T2).

% cell covered by the same tile must be neightbor

% (not far from each other)

:- tile(T), cell(I1,J1,T), cell(I2,J2,T), col(I1), col(I2),

row(J1), row(J2), I1 - I2 > 1.
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:- tile(T), cell(I1,J1,T), cell(I2,J2,T), col(I1), col(I2),

row(J1), row(J2), J1 - J2 > 1.

% they cannot be on a diagonal

:- tile(T), cell(I1,J1,T), cell(I2,J2,T), col(I1), col(I2),

row(J1), row(J2), neq(I1,I2), neq(J1,J2).
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Making it Shorter

col(1..n). row(1..n). tile(1..ntiles). %represenation

#domain tile(T;T1;T2).

#domain col(I;I1;I2).

#domain row(J;J1;J2).

bad(1,1). bad(3,2).

2 {cell(I,J,T) : col(I) : row(J) } 2 :- tile(T). %generating ..

:- bad(I,J), cell(I,J,T). % bad cell needs not ..

:- cell(I,J,T1),cell(I,J,T2),neq(T1,T2). % one cell one tile

:- cell(I1,J1,T), cell(I2,J2,T), I1 - I2 > 1. % neightbor only ..

:- cell(I1,J1,T), cell(I2,J2,T), J1 - J2 > 1.

:- cell(I1,J1,T), cell(I2,J2,T), neq(I1,I2), neq(J1,J2). % no diagonal
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K-clique

• Problem: Given a number k and a graph G. We say that G has a clique of size k if

there is a set of k different vertices (nodes) in G such that each pair of vertices from

this set is connected through an egde.

• Representation:

• Graph (node() and edge())

• Clique (clique(N)) to say that node N belongs to the clique if clique(N) is true;

otherwise it does not belong to the clique.

• Generating a solution: Selecting k nodes – this is equivalent to assigning k atoms

of the set

{clique(1), . . . , clique(n)}

the truth value true. This can be achieved by the rule

k{clique(N) : node(N)}k.
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• Checking for a solution: if every pair of the selected nodes is connected then this

is a solution; otherwise it is not a solution. This means that there exists no pair (I, J)

such that clique(I) and clique(J) are true but edge(I, J) is not true.

← clique(I), clique(J), I 6= J,not edge(I, J).

% prog4

node(1..5). % nodes

#domain node(N1;N2).

edge(1,2). edge(1,3). edge(2,3). % edges

edge(1,4). edge(1,5).

edge(N1,N2):- edge(N2,N1). % bi-directed

k {clique(N):node(N)} k. % generating solution

:- clique(N1), clique(N2), neq(N1,N2), not edge(N1,N2).
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Constraint Satisfaction Problem

• Problem: A constraint satisfactory problem (CSP) consists of

– a set of variables v1, . . . , vk;

– a set of possible values for each variable, called the domain of the variable;

– a set of constraints where a constraint can be either a allowed combination of

variables or a prohibited combination of variables;

– sometime, an optimal constraint on some objective function.

• Solution: An assignment of variables such that non of the constraints is violated.

• Idea for solving using CSP answer set programming:

– rules for specifying the domains of variables

– rules for generating a possible solution

– rules for checking the constraints
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Examples of CSP – n-Queens Problem

The n-queens problem could be viewed as a CSP:

• Variables: n-pairs (x1, y1), . . . , (xn, yn), each represents a queen

• Domains of each variable: 1 ≤ xi, yi ≤ n

• Prohibited constraints: for every pair of i 6= j, xi 6= xj, yi 6= yj, and

|xj − xi| 6= |yj − yi|.

• We do not have constraints for allowed combination.
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Examples of CSP – Combinatorial Auction

A company sells A a number of products p1, . . . , pn to m customers c1, . . . , cm. Each

customer bids on some of the items. The set of the items for customer ci will be denoted

by si. A customer wins a bid would imply that he gets everything he wants. The

company wants to get maximal profit. How should A decide who wins the auction?

Let bi denote the bid of customer i. Then, the problem is to find the value for bi, i.e., the

variables of the problem are bi’s.

The domain of each variable is {0, 1}.
We do not allow that two customers get the same item. This gives the prohibited

combination: ¬(bi ∧ bk) for every pair i 6= k if si ∩ sk 6= ∅.
The company wants to get maximal profit means that the sum

Σn
i=1bipbi

should be maximum where pbi is the value of the item pi offered by customer i.
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Example 13 There are three items a, b, and c. Customer 1 wants a for $US 2 and b

for $US 4. Customer 2 wants a for $US 1 and c for $US 6. Who should win?

The problem has two variables: b1 and b2; s1 = {a, b} and s2 = {b, c}. s1 ∩ s2 6= ∅.
This means that we have a constraint ¬(b1 ∧ b2), i.e., we cannot sell to both 1 and 2.

Then, the constraint to maximize Σn
i=1bipbi makes us decide that 2 wins, i.e, we should

sell to 2.
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Solving CSP by Answer Set Programming

Given a CSP problem P , we define ΠP as a program consists of the following rules

• for each variable vi and each element cij in the domain of vi, ΠP contains a rule

vi(cij)

• for each variable vi, ΠP contains the rule

1{vi(ci1), . . . , vi(cinj
)}1

• for each allowed combination co which allows vi1, ldots, vij to take a value c∗i1, . . . , c
∗
ij
,

ΠP contains the following three rules:

– constraint(co)←
– satisfied(co)← vi1(c

∗
i1
), . . . , vij(c

∗
ij
)

– ← constraint(co),not satisfied(co).

which have the final effect of requiring vil to be assigned to the value cij .
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• for each prohibited combination co that disallows vi1, ldots, vij to take a value

c∗i1, . . . , c
∗
ij
, ΠP contains the constraint:

← v1(c
∗
1), . . . , vn(c∗n).

NOTE: We simplify the problem a little bit here. A constraint co might place

conditions on only few variables – not all. Also, a variable might occur in more than

one allowed combination.
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A Program for n-Queens as CSP

Describing the variables:

x1(1). x1(2). . . . x1(n). . . . x2(1). x2(2). . . . x2(n).

y1(1). y1(2). . . . y1(n). . . . yn(1). yn(2). . . . yn(n).

For the prohibited combination xi 6= xj we have:

← x1(1), x2(1). ← x1(1), x3(1) . . . ← x1(1), xn(1).

← x1(2), x2(2). ← x1(2), x3(2) . . . ← x1(2), xn(2).

. . .

← x1(n), x2(n). ← x1(n), x3(n) . . . ← x1(n), xn(n).

Similar rules are written for the prohibited combination yi 6= yj.

Rules for the prohibited combination |xi − xi| 6= |yi − yj|: for each pair i 6= j

← xi(c1), yi(r1), xj(c2), yj(r2),

abs(c1, r1, a1), abs(c2, r2, a2), a1 6= a2.

where abs(p, q, p− q)← p ≥ q and abs(p, q, q − p)← p < q are the two additional

rules.
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Answer Set Programming. Reasoning about Actions and Changes

An Example – A Variation of the Yale Shooting Problem

Consider the story: Matt – a turkey – is walking along the road. Jimmy – a hunter – is

coming from the opposite direction. He takes out a loaded gun and shoots at Matt.

There are several questions that arise given the above story:

• Is Matt still alive?

• Is the gun still loaded?

• Is Jimmy walking?

• Does Jimmy have the same number of guns?

• etc.

Problems:

• the frame problem – compact representation of what does not change after the

execution of an action.

• the ramification problem – reasoning about indirect effects of actions.
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Frame and Ramification Problem

Consider the story: Matt – a turkey – is walking along the road. Jimmy – a hunter – is

coming from the opposite direction. He takes out one of his loaded guns and shoots at

Matt.

From the story, we know that the action “shoot” occurs. Commonsense tells us that the

turkey will be dead and the gun becomes unloaded if it can hold at most one bullet.

However, several other properties of the environment stay unchanged after the action

has completed. For instance,

• the road does not change its direction;

• the number of bullets in the other guns of Jimmy does not change;

• the number of guns belonging to Jimmy does not change

• the amount of water in the lake nearby does not change; etc.

• etc.

We also know that if Matt is hit by the gun, he will be dead and if he is dead he cannot

not continue walking.
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The Language A

A is a high-level action language for representing and reasoning about actions and

change. It has a simple and independent semantics based on transition system. It is

introduced in

• M. Gelfond and V. Lifschitz: “Representing Actions and Change by Logic Programs”,

Journal of Logic Programming, vol. 17, Num. 2,3,4, pp. 301–323, 1993.

Several extensions of A have been proposed. We will use AL, which is introduced in

• C. Baral, M. Gelfond: “Reasoning agents in Dynamic Domains.” Logic Based

Artificial Intelligence , Edited By J. Minker, Kluwer 2000
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In AL, an action theory is defined over two disjoint sets, a set of fluents (a fluent is a

property whose value changes over time) and a set of actions, and is a set of

propositional propositions of the form

a causes f if p1, . . . , pn (7)

f if p1, . . . , pn (8)

initially f (9)

where f and pi’s are fluent literals (a fluent literal is either a fluent g or its negation ¬g,

written as neg(g)) and a is an action. (7), referred as dynamic law, represents the

(conditional) effect of action a. (8) is a static law which represents the relationship

between fluents. Propositions of the form (9), also called v-propositions, are used to

describe the initial situation. An action theory is given by a pair (D, I) where D consists

of propositions of the form (7)-(9) and I consists of propositions of the form (9). D and

I will be called the domain description and initial state, respectively. We assume that

for each fluent f , initially f or initially ¬f belongs to I but not both.
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Example 14 (Story) • To say that initially, the turkey is walking and not dead,

we write

initially ¬dead and initially walking

• Initially, the gun is loaded

initially loaded

• Shooting causes the turkey to be dead if the gun is loaded can be expressed by

shoot causes dead if loaded and shoot causes ¬loaded if loaded

• Un/Loading the gun causes the gun to be un/loaded

load causes leaded and unload causes ¬loaded

• Dead turkeys cannot walk

¬walking if dead

So, the action theory is

Iy = { initially ¬dead, initially walking, initially loaded}

and

Dy =











shoot causes dead if loaded shoot causes ¬loaded if loaded

load causes leaded ¬walking if dead










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Semantics

dead, -walking, 
loaded

dead, -walking, 
-loaded

load

shoot

-dead, -walking, 
loaded

shoot

load shoot

load

-dead, walking, 
-loaded

-dead, -walking, 
-loaded

-dead, walking, 
loaded

shoot

shoot

load

load
shoot

shoot

Figure 4: Transition Diagram for (Dy, Iy)

Each node represents a state: a consistent and complete set of fluent literals satisfying

all the static laws in Dy. (Picture)
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• Each node represents a state: a consistent and complete set of fluent literals satisfying

all the static laws in Dy.

• A fluent literal l holds in a state s if l ∈ s.

• Each directed link between two states s1 and s2 represents a transition from s1 to s2

due to the execution of the action (the label of the link). s2 is called a possible next

state.

• Transition function Φ specifies the set of possible next states:

Φ(a, s) = {s′ | s′ is a possible next state}.

For example,

Φ(shoot, s1) = {s2}

where s1 = {loaded, walking,¬dead} and s2 = {¬loaded,¬walking, dead}.

• Φ is extended to define Φ̂ by

– Φ̂([], s) = {s}

– Φ̂([a1, . . . , an], s) =
⋃

s′∈Φ(a1,s) Φ̂([a2, . . . , an], s
′).

The entailment relation of (D, I) is defined by:

D |= f after a1, . . . , an iff f holds in every state in Φ̂([a1, . . . , an], s0). (10)
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Interested Questions in Reasoning About Actions and Changes

Given an action theory (D, I), we are often interest in the following questions/problems:

• Projection: What will be true/false after the execution of the sequence of action

a1, . . . , am from the initial state? Or, whether

(D, I) |= f after a1, . . . , an (11)

holds for a given fluent literal f .

• Planning: Which sequence of actions will changes the world from the initial state into

a state that satisfies a given fluent literal f? Or, find a sequence of action a1, . . . , am

such that f will be true after the execution of the sequence of action a1, . . . , am from

the initial state.

Remark 10 We can easily generalize the result to answer questions with respect to a

fluent formula.
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A Logic Program for Projection (Computing |=)

Given an action theory (D, I) and a sequence of actions α = [a1, . . . , an], we want to

know what is true and what is false after the execution of α from the initial state. In

other words, for every fluent f , we want to know whether

(D, I) |= f after a1, . . . , an

holds or not.

We will compute |= using logic programming. For each action theory (D, I), we define a

program π(D, I) as follows. The language of π(D, I) contains the following predicates:

• holds(F, T ): this states that the fluent literal F holds at time T .

• occ(A, T ): action A occurs at time moment T .

• time(T ): denotes the time moment T .
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and we make sure that the following property holds:

(D, I) |= f after a1, . . . , an iff π(D, I) |= holds(f, n)

where the first |= symbol represents the entailment relation defined in (10) and the

second |= symbol represents the entailment relation defined by the answer set semantics

of π(D, I).

The program π(D, I) is defined as follows:

• For each dynamic law “a causes f if f1, . . . , fn”, π(D, I) contains the following

rule:

holds(f, T + 1) ← time(T ), occ(a, T ), holds(f1, T ), . . . , holds(fn, T ). (12)

• For each static law “f if f1, . . . , fn” , π(D, I) contains the rule:

holds(f, T + 1) ← time(T ), holds(f1, T ), . . . , holds(fn, T ). (13)

• For each v-proposition “ initially f”, π(D, I) contains the rule

holds(f, 0). (14)

• For each fluent f , π(D, I) will also contain the well-known inertial rules :

holds(f, T + 1) ← time(T ), f luent(f), holds(f, T ),not holds(¬f, T + 1).

holds(¬f, T + 1) ← time(T ), f luent(f), holds(¬f, T ),not holds(f, T + 1).
(15)
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Remark 11 π(D, I) also contains some rules that make the encoding more compact.

(See example).

Let πn be the set of rules of π(D, I) in which the time variable takes the value from 0 to

n. Let π = πn ∪ {occ(a1, 0), . . . , occ(an, n− 1)}. The following can be proven:

Theorem 5 For every action theory (D, I), a sequence of actions a1, . . . , an, and a

fluent f ,

(D, I) |= f after a1, . . . , an

iff

π |= holds(f, n),

i.e., holds(f, n) belongs to every answer set of the program π.
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Example – One Gun

For the Yale-Shooting problem we have the following rules (See proga1):

% Defining time %defining fluents

time(0..length). fluent(loaded). fluent(dead). fluent(walking).

% Defining actions

action(load). action(shoot).

% The initial state

holds(loaded, 0). holds(neg(dead), 0). holds(walking, 0).

% Representing action’s effects

holds(dead, T+1) :- time(T), occ(shoot, T), holds(loaded, T).

holds(neg(loaded), T+1) :- time(T), occ(shoot, T).

holds(loaded, T+1) :- time(T), occ(load, T).

% Static law

holds(neg(walking), T) :- holds(dead, T).
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% Defining fluent literals/Contrary literals

literal(F):- fluent(F). literal(neg(F)):- fluent(F).

contrary(F, neg(F)):- fluent(F). contrary(neg(F), F):- fluent(F).

% The inertial rule

holds(F,T+1):- literal(F), time(T), holds(F,T),

contrary(G,F), not holds(G,T+1).

To determine whether

(D, I) |= dead after shoot,

we compute the answer sets of the program π = π1 ∪ occ(shoot, 0) using the command

lparse -c length=1 proga1 a1inst | smodel 0

where the file a1inst contains the two facts: occ(shoot, 0). It is easy to verify that

holds(dead, 1) belongs to every answer set of π and thus (D, I) |= dead after shoot.

Remark 12 The constant length is used to specify the length of the action sequence.
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Considering Executability Condition

Sometime, an action requires some condition for it to be executable. In AL, this is

called an executability condition and is described by a proposition of the form

a executable if p1 . . . , pn (16)

which says that a can only be executed if the fluent literals p1 . . . , pn hold.

For instance, Jimmy (the hunter) can only execute the action shoot if he is not

wounded. This is expressed by

shoot executable if ¬wounded

Introducing executability condition requires some changes:

• In the transition diagram, the link with the label a between s and s′ exists only if a is

executable in s and s′ is a possible state reached after executing a.
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• In the program π(D, I), for each proposition (16), we add a rule

possible(A, T )← holds(p1, T ), . . . , holds(pn, T ).

Furthermore, we add a constraint

← occ(A, T ),not possible(A, T )

to π(D, I) which forbids A to occur when its executability condition is not satisfied.

π(D, I) can be used in the same way for projection as before.
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Another Example — The Block World Domain

c

b a

Figure 5: A Block World Domain

In this domain we have 3 blocks a, b, c. Each block is either on the table or on top of

another block. They form tower like b and c (a tower of 2 blocks), and a (a tower of one

block). The top block of a tower can be moved to the table or on top of another tower.

To move a block, that is not on top of a tower, we need to move all the blocks above it.

Furthermore, we are interested in building a new tower or finding out where a block is

located, whether a block is on the table, on top of some other block, etc.

We will write on(X, Y ) to denote that block X is on block Y ; We will also use t as a

constant to denote the table. We write move(X, Y ) to represent the action that moves

X on top of Y .
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c

b a

Figure 6: A Block World Domain

The set of fluents F is

{on(X, Y ) | X, Y ∈ {a, b, c, t}}\({on(X, X) | X ∈ {a, b, c, t}∪{on(t, X) | X ∈ {a, b, c}).

Furthermore, the set of actions A is

{move(X, Y ) | X, Y ∈ {a, b, c}, X 6= Y } ∪ {move(X, t) | X ∈ {a, b, c}}.
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We begin with describing the initial state:

Ib =



























initially on(c, b)

initially on(b, t)

initially on(a, t)

In addition, we also have that

initially ¬on(X, Y ) where on(X, Y ) ∈ F \ {on(c, b), on(b, t), on(a, t)}. The domain

Db contains of the following propositions

Db =



















































































































move(a, b) executable if ¬on(c, a),¬on(c, b),¬on(b, a),¬on(a, b)

move(a, t) executable if ¬on(c, a),¬on(b, a)

. . .

move(a, b) causes on(a, b)

move(a, t) causes on(a, t)

. . .

¬on(a, t) if on(a, b)

¬on(a, c) if on(a, b)

. . .
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A Program for the Block World Domain

% Defining the time constants and objects

time(0..length). block(a). block(b). block(c).

% Defining fluents

fluent(on(X,Y)):- block(X), block(Y), neq(X,Y).

fluent(on(X,t)):- block(X).

% Defining an additional fluent whose value is determined by others

fluent(clear(X)):- block(X).

% Defining actions

action(move(X,Y)):- block(X), block(Y), neq(X,Y).

action(move(X,Y)):- block(X), table(Y).
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% Static law

holds(neg(on(X,Y)), T):- time(T),

block(X), block(Y), neq(X,Y),

block(Z), neq(X,Z), neq(Y,Z), holds(on(X,Z), T).

holds(neg(on(X,Y)), T):- time(T),

block(X), block(Y), neq(X,Y), holds(on(X,t), T).

holds(neg(on(X,t)), T):- time(T),

block(X), block(Y), neq(X,Y), holds(on(X,Y), T).

holds(neg(clear(X)), T):- time(T),

block(X), block(Y), neq(X,Y),

fluent(on(Y,X)), holds(on(Y,X), T).

holds(clear(X), T):- time(T),

block(X), not holds(neg(clear(X)), T).

% Executability condition

possible(move(X,t),T):- block(X), time(T), holds(clear(X), T).
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possible(move(X,Y),T):- time(T), block(X), block(Y), neq(X,Y),

holds(clear(X), T), holds(clear(Y), T).

:- action(A), time(T), occ(A,T), not possible(A,T).

% Representing action effects

holds(on(X,Y), T+1):- time(T),

block(X), block(Y), neq(X,Y), occ(move(X,Y), T).

holds(on(X,t), T+1):- time(T), block(X), occ(move(X,t), T).

% The initial state

holds(on(c,b), 0).

holds(on(a,t), 0).

holds(on(b,t), 0).

holds(neg(F), 0):- fluent(F), not holds(F, 0).

% Defining fluent literals/Contrary literals
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literal(F):- fluent(F). literal(neg(F)):- fluent(F).

contrary(F, neg(F)):- fluent(F). contrary(neg(F), F):- fluent(F).

% The inertial rule

holds(on(X,Y), T+1) :-

block(X), block(Y), neq(X,Y),

time(T),

holds(on(X,Y), T),

not holds(neg(on(X,Y)), T+1).

holds(on(X,t), T+1) :-

block(X), block(Y), neq(X,Y),

time(T),

holds(on(X,t), T),

not holds(neg(on(X,t)), T+1).

We then can use Smodels to answer query like

(Db, Ib) |= on(a, c) ∧ on(c, t) after [move(c, t), move(a, c)]
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Planning

Answer set planning was introduced in

• V. Lifschitz, “Answer set planning,” in Proceedings of the 1999 International

Conference on Logic Programming, 1999, pp. 23-37.

• V. Subrahmanian and C. Zaniolo, “Relating stable models and ai planning domains,”

In Proceedings of the International Conference on Logic Programming, 1995, pp.

233–247.

A planning problem is specified by a triple 〈D, I, ϕ〉 where (D, I) is an action theory

and ϕ is a fluent formula (or goal), representing the goal state. A sequence of actions

a1, . . . , am is a plan for ϕ if

(D, I) |= ϕ after a1, . . . , am.
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Given a planning problem 〈D, I, ϕ〉, answer set planning solves it by translating it into a

logic program Π(D, I, ϕ) that has two components:

• The program π(D, I): this program describes the action theory (D, I).

• The set of rules for describing the goal and generating action occurrences:

– for each f ∈ ϕ, Π(D, I, ϕ) contains the rule

← not holds(f, length). (17)

which guarantees that f holds at the time moment length

– a rule of the form

1{occ(A, T ) : action(A)}1← time(T ), T < length. (18)

which states that at any moment of time, one and only one action must occur. We

add the condition T < length to not allow actions to occur at the time length.

Remark 13 Correctness of Π(D, I, ϕ) can be found in

• Tran Cao Son, Chitta Baral, Tran Hoai Nam, and Sheila McIlraith,

“Domain-Dependent Knowledge in Answer Set Planning,” ACM TOCL.
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Answer Set Planning – Examples

• Suppose that we are interested in the planning problem (Dy, Iy, dead), we need to add

the following rules to this program:

:- not holds(dead, length).

1{occ(A,T) : action(A)} 1 :- time(T), T < length.

Generating an answer set for this, we will find a plan shoot.

• For the block world domain, to check whether the goal situation in the next Figure

can be achieved
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c

b a

Initial

a

b

c

Goal
we add the following rule to the program:

1 {occ(A,T) : action(A) } 1 :- time(T), T < length.

:- not goal(length).

goal(T):- time(T), holds(on(c,t), T),

holds(on(b,c), T), holds(on(a,b), T).

Computing an answer set, we obtain an answer set containing the atoms

occ(move(b,c),1) occ(move(a,b),2) occ(move(c,t),0) which represent the

plan move(c, t), move(b, c), move(a, b).
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Another Example — Missionaries and Cannibals

% Defining the constants

time(0..length).

number(0..3).

missionary(1..3). cannibal(1..3).

location(l1). location(l2). % two banks

% X missionaries and Y cannibals are at location L

fluent(at(X,Y,L)):- missionary(X),cannibal(Y),location(L).

% the boat is at location L

fluent(boat_at(L)):- location(L).

% X missionaries and Y cannibals move from one bank to another bank

action(cross(I,J,L)):-

number(I), number(J), location(L), I+J <= 2, I+J > 0.
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% effects of crossing

holds(at(M+P,N+Q,L1),T+1):-

time(T),

number(M), number(N), location(L),

number(P), number(Q), action(cross(M,N,L)),

occ(cross(M,N,L), T), location(L1), neq(L,L1),

holds(at(P,Q,L1), T).

holds(boat_at(L1),T+1):-

time(T),

number(M), number(N), location(L),

action(cross(M,N,L)), location(L1), neq(L,L1),

occ(cross(M,N,L), T).

holds(neg(boat_at(L)),T+1):-

time(T),

number(M), number(N), location(L),

action(cross(M,N,L)),

occ(cross(M,N,L),T).
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holds(at(P-M,Q-N,L),T+1):-

time(T),

number(M), number(N), location(L),

number(P), number(Q), action(cross(M,N,L)),

occ(cross(M,N,L), T),

holds(at(P,Q,L), T).

% executability condition

possible(cross(I,J,L), T):-

time(T),

number(I), number(J), location(L),

number(P), number(Q), action(cross(I,J,L)),

holds(boat_at(L), T),

holds(at(P, Q, L), T), P>=I, Q>=J.

% initial condition

holds(at(3,3,l1),0).

holds(at(0,0,l2),0).

holds(boat_at(l1),0).
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% constraint

:- number(I), number(J), location(L), I+J <= 2, I+J>0,

time(T), occ(cross(I,J,L), T), not possible(cross(I,J,L), T).

not_good :- number(I), number(J), location(L),

time(T), holds(at(I,J,L), T), I < J, I > 0.

:- not_good.

% goal

:- not goal(length).

goal(T):- time(T), holds(at(3,3,l2), T).

goal(T+1):- time(T), goal(T).

1 { occ(A, T): action(A) } 1 :- time(T), not goal(T).
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Diagnosis

Reference

• Chitta Baral, Sheila McIlraith, and Tran Cao Son. Formulating diagnostic problem

solving using an action language with narratives and sensing, Proceedings of the

International Conference on the Principles of Knowledge Representation and

Reasoning (KRR’00), 2000, pages 311-322.

Consider the following narrative

• 9am: John arrived at work and turned the light on. As usual, the light went on and

John started his daily work.

• 12 pm: John turned off the light and went to lunch.

• 1pm: John turned on the light when he got back from lunch. The light did not go on.

• 1:15pm: The company’s electrician arrived. He replaced the bulb and turned on the

light, the light did not go on. He then checked the fuses and replaced one which was

blown. The light is back.
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Narrative Description – General Idea

&%
'$

&%
'$

&%
'$

&%
'$

- - -
¬light on light on ¬light on ¬light on

turn on turn off turn on

s0 s1 s2 s3

The narrative can be described by a triple (SD, COMPS, OBS) where

• SD is an action theory describing actions (e.g. turn on, turn off, replace bulb, etc.)

and their expected outcomes and relationships between fluents. It includes also

actions that are beyond the control of the agents such as break(bulb) causes the bulb

to be broke.

• COMP is a set of objects that can be broken (bulb, fuse, ...); for each object o, an

action of the form break(o) with the outcome ab(o), indicating that o is broken, is

included in SD.

• OBS is a set of observations that describes the history of the world (might be

incomplete) in term of which actions were executed, when they were executed relative

to each other, and what are the outcomes of the actions;
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The Narrative as a System

We illustrate the concepts using the example. Let Sys = (SD, {bulb}, OBS) be a

ssytem with

SD =







































(r1) turn on causes light on if ¬ab(bulb)

(r2) turn off causes ¬light on

(r3) ¬light on if ab(bulb)

(r4) break(bulb) causes ab(bulb)

and

OBS =
























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


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






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
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
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






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
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



























(o1) turn on occurs at s0

(o2) turn off occurs at s1

(o3) turn on between s2, s3

(o4) s0 precedes s1

(o5) s1 precedes s2

(o6) s2 precedes s3

(o7) ¬light on at s0

(o8) light on at s1

(o9) ¬light on at s2

(o10) ¬light on at s3
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Diagnostic Reasoning Process

Address the questions

• when does a system need a diagnosis?

Answer: When there are inconsistency between observations and expected outcomes;

or when the system does not have a model if we remove all actions break(o) from SD.

• what are the diagnoses?

Answer: Additional action occurrences that help explain the indescrepancies

between observations and expected outcomes.

• how to fix a system that needs a diagnosis?

Answer: Collecting enough information and executing test actions if necessary so

that a diagnosis is singed out. Thereafter, executing the repair actions necessary to fix

the system.
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Diagnostic Reasoning Process – A Summary

Answer the question: when a system needs a diagnosis and what are the diagnoses.

• generating candidate diagnoses based on an incomplete history of events that have

occurred and observations that have been made.

• in the event of multiple candidate diagnoses, performing actions to enable observations

that will discriminate candidate diagnoses. The selection of a particular action is often

biased towards confirming the most likely diagnosis, or the one that is easiest to test.

• generating (possibly with conditional) plans, comprising both world-altering actions

and sensing actions, to discriminate candidate diagnoses.

• updating the space of diagnoses in the face of changes in the state of the world, and in

the face of new observations.
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The Narrative as a Logic Program – General Idea

Given a system description (SD, COMPS, OBS) with

• SD: a set of propositions of the form a causes f if p1, . . . , pn or f if p1, . . . , pn;

this set of propositions describes the normal system behavior;

• COMPS: a set of components that can be broken

• OBS: a set of observations representing a narrative of the system.

We will write a logic program Π(SD, COMPS, OBS) (or Π for short) to compute

diagnoses. Π will need to contain the following parts:

• rules for generating a sequence of actions

• rules for checking if the generated sequence of actions is a possible diagnosis; this

includes

– rules that assign situations to time moments – this assignement must respect the

ordering between situations in the observations

– rules that make sure that observations are satisfied.
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Elements of Π – Part 1

Constants: time, situations, actions, fluents, and literals

time(0..length).

% define situations

sit(s0). sit(s1). sit(s2). sit(s3).

% actions

action(turn_on). action(turn_off). action(break(bulb)).

% fluents

fluent(light_on). fluent(ab(bulb)).

% literal

literal(F):- fluent(F). literal(neg(F)):- fluent(F).

contrary(F, neg(F)):- fluent(F). contrary(neg(F), F):- fluent(F).
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Elements of Π – Part 2

Effects of actions (similar to what has been done in the part on reasoning about

actions/planning).

holds(light_on, T+1):- time(T),

occ(turn_on, T), holds(neg(ab(bulb)), T).

holds(neg(light_on), T+1):- time(T), occ(turn_off, T).

holds(ab(bulb), T+1):- time(T), occ(break(bulb), T).

holds(neg(light_on), T):- time(T), holds(ab(bulb), T).

% inertial axiom

holds(F, T+1):- time(T), literal(F), contrary(F, G),

holds(F, T), not holds(G, T+1).
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Elements of Π – Part 3

Satisfying all the observations

% specifying the set of observations situation order

prec(s0,s1). prec(s1,s2). prec(s2,s3).

% fluent observations

at(neg(light_on), s0). at(neg(ab(bulb)), s0). at(light_on, s1).

at(neg(light_on), s2). at(neg(light_on), s3).

% action observations

between(s0,s1,turn_on). between(s2,s3,turn_on).

Tran Cao Son 116



Answer Set Programming. Reasoning about Actions and Changes

Elements of Π – Part 4

Satisfying all the observations

% generating situation order each situation happens at a time moment

1 {happens(S, T): time(T) } 1 :- sit(S).

% s0 is always at the time moment 0

:- time(T), happens(s0,T), T > 0.

:- time(T), happens(s3,T), T < length.

:- time(T1), time(T2), sit(S1), sit(S2),

happens(S1,T1), happens(S2,T2), prec(S1,S2), T1>T2.

:- time(T1), time(T2), sit(S1), sit(S2), action(A),

happens(S1,T1), happens(S2,T2), between(S1,S2,A), neq(T2,T1+1).

% generating action occurrences

{occ(A, T): action(A)} 1 :- time(T), T < length.
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Elements of Π – Part 4

Satisfying all the observations

% fluent observations

holds(F, T):- time(T), literal(F), sit(S), at(F, S), happens(S, T).

% constraints, making sure that action occurrences happen

% as they are observed

:- time(T1), time(T2), action(A), action(A1),

between(S1,S2,A), happens(S1,T1), occ(A1,T1), neq(A1, A).

occ(A, T1):- time(T1), action(A), between(S1,S2,A), happens(S1,T1).

:- time(T), action(A1), action(A2), neq(A1,A2), occ(A1, T), occ(A2, T).

% constraints that eliminate inconsistency model

:- time(T), fluent(F), holds(F, T), holds(neg(F), T).
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lparse -c length=5 bulb | smodels

smodels version 2.26. Reading...done

Answer: 1

Stable Model:

occ(turn_on,0)

occ(turn_off,1)

occ(turn_on,2)

occ(break(bulb),3)

occ(turn_on,4)

happens(s3,5) happens(s2,4) happens(s1,1) happens(s0,0)

prec(s2,s3) prec(s1,s2) prec(s0,s1)
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Other Applications – References

• E. Erdem, V. Lifschitz and M. Wong, Wire routing and satisfiability planning, in

Proc. CL-2000, 2000.

• E.Erdem, V. Lifschitz and D. Ringe, Temporal phylogenetic networks and logic

programming, Theory and Practice of Logic Programming.

• T. Eiter: Data Integration and Answer Set Programming. LPNMR 2005: 13-25

• E. Erdem, V. Lifschitz, L. Nakhleh and D. Ringe, Reconstructing the evolutionary

history of Indo-European l anguages using answer set programming, PADL-2003.

• M. Balduccini and M. Gelfond: Diagnostic Reasoning with A-Prolog, TPLP,

3(4-5):425-461, 2003.

• M.Balduccini, M.Gelfond, M.Nogueira, R.Watson,M.Barry: An A-Prolog decision

support system. for the space shuttle, AAAI Spring 2001 Symposium, Mar 2001

• K. Heljanko and I. Niemelä. Bounded LTL Model Checking with Stable Models,

TPLP, 3 (4-5): 519-550, 2003.
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Theoretical Issues

• Language development: extensions to allow new language constructors that are

useful for knowledge representation. For example, there is a growing interest in

developing logic programs with

– aggregates,

– ordered disjunction, and

– constraint atoms

This includes the introduction of new constructors and the semantics of the programs

with these constructors. Some references:

– N. Pelov, Semantics of logic programs with aggregates, Ph.D. Thesis, Department

of Computer Science, K.U.Leuven, Leuven, Belgium, April, 2004.

– W. Faber, N. Leone, and G. Pfeifer, Recursive aggregates in disjunctive logic

programs: Semantics and complexity. Proceedings of JELIA 04.

– L. Liu and M. Truszczynski, Properties of Programs with Monotone and Convex

Constraints. Proceedings of AAAI-05.
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– G. Brewka, I. Niemelä, and T. Syrjänen. Logic Programs with Ordered

Disjunction. To appear in Computational Intelligence, 20(2), 333-357, 2004.

– T. C. Son, E. Pontelli, and I. Elkabani: A Translational Semantics for Aggregates

in Logic Programming, NMSU-CS-2005-005.

• New characterization of answer sets: this includes the study of the semantics

here-and-there, the characterization of answer sets using rule graphs, or the

relationship between graph coloring and answer sets. Some references:

– V. Lifschitz, D. Pearce and A. Valverde, Strongly equivalent logic programs, ACM

Transactions on Computational Logic, Vol. 2, 2001, pp. 526-541.

– P. Ferraris and V. Lifschitz, Weight constraints as nested expressions, Theory and

Practice of Logic Programming, Vol. 5, 2005, pp. 45–74.

– K. Konczak, T. Linke, T. Schaub: Graphs and Colorings for Answer Set

Programming: Abridged Report. LPNMR 2004: 127-140

– S. Costantini, O. M. D’Antona, A. Provetti: On the equivalence and range of

applicability of graph-based representations of logic programs. Inf. Process. Lett.

84(5): 241-249 (2002)

• Study of properties of programs: building block results for normal logic programs as

well as programs within the new language (e.g. with new language constructor) are
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studied. In particular, theorems

– on the conditions for equivalence between logic programs (strong/weak equivalent)

– that can easy the process of proving properties of a programs (e.g. correctness of

programs),

– that provide new insight in the definition of answer set semantics,

– that open the door for new way to compute answer sets,

are sought.

More references

• F. Lin and X. Zhao, On odd and even cycles in normal logic programs In Proc. of

AAAI-04. pp. 80-85

• F. Lin, Reducing Strong Equivalence of Logic Programs to Entailment in Classical

Propositional Logic In Proc. of KR-02.

• F. Lin, Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT solvers

• J. Lee, A Model-Theoretic Counterpart of Loop Formulas, Proc IJCAI-05.

• M. Gebser and T. Schaub, Loops: Relevant or Redundant, LPNMR-05.

• F. Lin, Y. Chen, Discovering Classes of Strongly Equivalent Logic Programs,

IJCAI-05.
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Implementation Issues

• Development of answer set solvers: Current answer set solvers have restrictions on

the type of atoms that can be considered (e.g., ground programs, no recursive

aggregates, etc.) Providing new answer set solvers that can deal with more expressive

programs is the goal of developers of new answer set solvers. Some attempts can be

found in

– T. Eiter, M. Fink, H. Tompits, S. Woltran: Strong and Uniform Equivalence in

Answer-Set Programming: Characterizations and Complexity Results for the

Non-Ground Case. AAAI 2005: 695-700.

– T. Eiter, W. Faber, M. Fink, G. Pfeifer, S. Woltran: Complexity of Answer Set

Checking and Bounded Predicate Arities for Non-ground Answer Set

Programming. Answer Set Programming 2003

– T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, S. Perri, G. Pfeifer: System

Description: DLV with Aggregates. LPNMR 2004: 326-330

– I. Elkabani, E. Pontelli, T. C. Son: SmodelsA - A System for Computing Answer

Sets of Logic Programs with Aggregates. LPNMR 2005: 427-431
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– E. Pontelli, T. C. Son, I. Elkabani: Smodels with CLP? A Treatment of

Aggregates in ASP. LPNMR 2004: 356-360.

• Development of tools and programming environment: References on the integration

of answer set programming into other languages and an interactive environment for

answer set programming can be found in

– O. El-Khatib, E. Pontelli, T. C. Son: ASP-PROLOG: A System for Reasoning

about Answer Set Programs in Prolog. PADL 2004: 148-162

– O. El-Khatib, E. Pontelli, T. C. Son: Justification and debugging of answer set

programs in ASP. AADEBUG 2005: 49-58
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