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Overview: a brief history of action languages (20 mnt - Chitta)

Actions in AI-literature

It starts with John McCarthy
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Overview: a brief history of action languages (20 mnt - Chitta)

Actions in AI-literature

and in the Winograd challenge
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Overview: a brief history of action languages (20 mnt - Chitta)

Actions in AI-literature
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Overview: a brief history of action languages (20 mnt - Chitta)

Pre-AI

Action, Change and Evolution: importance to KR & R

Historical importance

Applicability to various domains

Various knowledge representation aspects

Various kinds of reasoning
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Overview: a brief history of action languages (20 mnt - Chitta)

Heracleitos/Herakleitos/Heraclitus of Ephesus (c. 500 BC)

as interpreted by Plato in Cratylus

“No man ever steps in the same river twice, for it is not the same river and
he is not the same man.”

Παvτα ρεi καi ouδεv µεvεl

Panta rei kai ouden menei

All things are in motion and nothing at rest.
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Overview: a brief history of action languages (20 mnt - Chitta)

alternative

Alternate interpretation of what Heraclitus said

. . . different waters flow in rivers staying the same.

In other words, though the waters are always changing, the rivers stay the
same. Indeed, it must be precisely because the waters are always changing
that there are rivers at all, rather than lakes or ponds.

The message is that rivers can stay the same over time even though, or
indeed because, the waters change. The point, then, is not that everything
is changing, but that the fact that some things change makes possible the
continued existence of other things.
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Overview: a brief history of action languages (20 mnt - Chitta)

Free will and choosing ones destiny
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Overview: a brief history of action languages (20 mnt - Chitta)

Where does that line of thought lead us?

Change is ubiquitous

But one can shape the change in a desired way

Some emerging KR issues
I How to specify change
I How to specify our desires/goals regarding the change
I How to construct/verify ways to control the change
I How to talk about, understand and reason about actions and change
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Overview: a brief history of action languages (20 mnt - Chitta)

“Action and Change” is encountered often in Computing
as well as other fields

Robots and Agents

Updates to a database
Becomes more interesting when updates trigger active rules

Understanding natural language; interacting in natural langauge

Distributed Systems

Computer programs

Modeling cell behavior
Ligand coming in contact with a receptor

Construction Engineering

. . .
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Overview: a brief history of action languages (20 mnt - Chitta)

Various Kinds of Reasoning

Prediction

Plan verification; control verification

Narratives

Counterfactuals

Causal reasoning

Planning; control generation

Explanation

Diagnosis

Hypothesis generation

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 11 / 198



Overview: a brief history of action languages (20 mnt - Chitta)

Initial Key Issue: Frame Problem

Motivation: How to specify transition between states of the world due
to actions?
A state transition table would be too space consuming!

Assume by default that properties of the world normally do not
change and specify the exceptions of what changes.

I How to precisely state the above?
I Many finer issues!
I To be elaborate upon as we proceed further.
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Overview: a brief history of action languages (20 mnt - Chitta)

Origin of the AI “frame” problem

Leibniz, c.1679
“everything is presumed to
remain in the state in which it
is”

Newton, 1687 (Philosophiae
Naturalis Principia
Mathematica)
An object will remain at rest, or
continue to move at a constant
velocity, unless a resultant force
acts on it.
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Overview: a brief history of action languages (20 mnt - Chitta)

Early work in AI on action and change

1959 McCarthy (Programs with common sense)

1969 McCarthy and Hayes 1969 (Some philosophical problems from
the standpoint of AI) — origin of the “frame problem” in AI

1971 Raphael (The frame problem in problem-solving systems ) —
Defines the frame problem nicely

1972 Sandewall (An approach to the frame problem)

1972 Hewitt (PLANNER)

1973 Hayes (The Frame problem and related problems in AI)

1977 Hayes (The logic of frames)

1978 Reiter (On reasoning by default)
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Overview: a brief history of action languages (20 mnt - Chitta)

Quotes from McCarthy & Hayes 1969

In the last section of part 3, in proving that one person could get into
conversation with another, we were obliged to add the hypothesis
that if a person has a telephone he still has it after looking up a
number in the telephone book. If we had a number of actions to be
performed in sequence we would have quite a number of conditions to
write down that certain actions do not change the values of certain
fluents. In fact with n actions and m fluents we might have to write
down mn such conditions.

We see two ways out of this difficulty. The rest is to introduce the
notion of frame, like the state vector in McCarthy (1962). A number
of fluents are declared as attached to the frame and the effect of an
action is described by telling which fluents are changed, all others
being presumed unchanged.
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Overview: a brief history of action languages (20 mnt - Chitta)

In summary . . .

Action and Change is an important topic in AI

Its historical basis goes back to pre Plato and Aristotle days

In AI it goes back to the founding days of AI

It has a wide applicability

It involves various kind of KR aspects

It involves various kinds of reasoning

It is crucial in understanding and interacting in natural language

Frame problem in AI identified in AI’s early days and has basis in
Leibniz’s and Newton’s work
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Overview: a brief history of action languages (20 mnt - Chitta)

The Yale Shooting Problem: Hanks & McDermott (AAAI
1986)

Nonmonotonic formal systems have been proposed as an extension to
classical first-order logic that will capture the process of human “default
reasoning” or “plausible inference” through their inference mechanisms, just
as modus ponens provides a model for deductive reasoning.

We provide axioms for a simple problem in temporal reasoning which has
long been identified as a case of default reasoning, thus presumably
amenable to representation in nonmonotonic logic. Upon examining the
resulting nonmonotonic theories, however, we find that the inferences
permitted by the logics are not those we had intended when we wrote the
axioms, and in fact are much weaker. This problem is shown to be
independent of the logic used; nor does it depend on any particular temporal
representation.

Upon analyzing the failure we find that the nonmonotonic logics we
considered are inherently incapable of representing this kind of default
reasoning.
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Overview: a brief history of action languages (20 mnt - Chitta)

From examples to formal approaches - action languages

Three schools: Reiter, Sandewall, A and its follow-ups

A Gelfond and Lifschitz (1993): Proposes a solution to the frame problem
and assumes complete information.

Several other languages have been developed to address the ramification
problem (or the indirect effects of actions) and consider other aspects of
actions:

I B (or AL): static causal laws, addressing the ramification problem
[Kartha and Lifschitz (1994); Gelfond and Lifschitz (1998); Baral and
Gelfond (2000)]

I C, C+, BC, and BC+: default and dependent fluents [Gelfond and
Lifschitz (1998); Giunchiglia and Lifschitz (95); Giunchiglia et al.
(1997); Lee and Lifschitz (2003); Lee et al. (2013); Babb and Lee
(2015)]

I Actions with durations, delayed effects [Baral et al. (2002a)]
I Probability [Baral et al. (2002b); Lee and Wang (2018)]
I Observations, history [Baral et al. (1997, 2000)]
I Sensing actions [Son and Baral (2001)]
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Action languages in single agent environments (70 mnt - Son)

Overarching Approach

Dynamic systems as state transitions systems

Going to the Airport Adding the action walk(X ,Y )

Two important notions:

State?

Transition?
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Action languages in single agent environments (70 mnt - Son)

Overarching Approach

Dynamic systems as state transitions systems

Going to the Airport Adding the action walk(X ,Y )

Two important notions: lead to the following questions:

State - what should be the state?

Transition - how to define transitions between states?

These are the two questions for any action language
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Basic Ontologies (Action Languages, Gelfond and Lifschitz
(1993))
Gelfond & Lifschitz. Representing actions in extended logic programs.
Journal of Logic Programming, 1993.

Fluents: property of the world whose value could be changed by
actions (e.g., at(john, home))

Actions: change the state of the world, whose executions create
transitions between states of the world (e.g., drive(home, airport))

Fluent literal: a fluent or its negation (a fluent preceding by ¬)
E.g. at(john, home), ¬at(john, home)

State: two commonly used definitions
I a set of fluents (s ⊆ F : whatever is in s is true; otherwise, it is false) or
I a complete and consistent set of fluent literals, i.e., s is a state if for

every fluent f
F either f or ¬f belongs to s; and
F {f ,¬f } 6⊆ s.

Notion: a literal l is true in a state s
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Language A — Syntax

In A, an action theory is defined over two disjoint sets, a set of fluents F
and a set of actions A, and is a set of statements of the form

a causes f if p1, . . . , pn (1)

a executable if p1 . . . , pn (2)

initially f (3)

where f and pi ’s are fluent literals (a fluent literal is either a fluent g or its
negation ¬g) and a is an action.
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Dynamic Law
A statement of the form (1): a causes f if p1, . . . , pn

is called a dynamic law. It represents the (conditional) effect of action a.
It says that if a is executed and p1, . . . , pn are true then f becomes true.

Dynamic Law: Examples

Stacking a block X on top of block Y causes X to be on Y , X is clear, Y is
no longer clear, and the agent does not hold anything can be expressed by

stack(X ,Y ) causes on(X ,Y )
stack(X ,Y ) causes clear(X )
stack(X ,Y ) causes ¬clear(Y )
stack(X ,Y ) causes handEmpty

Shorthand formalization:
stack(X ,Y ) causes on(X ,Y ), clear(X ),¬clear(Y ), handEmpty

Shooting causes the turkey to be dead and the gun becomes unloaded if the
gun is loaded can be expressed by

shoot causes dead if loaded and
shoot causes ¬loaded if loaded
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Executability Condition (Preconditions)

A statement of the form (2):

a executable if p1 . . . , pn

is a executability condition statement. It states that a can be executed
only if p1, . . . , pn are true.

Examples

A gun can be loaded only when it is not loaded

load executable if ¬loaded

One can pick up a block X only if one’s hand is empty, X is clear,
and X is on the table

pickup(X ) executable if onTable(X ), clear(X ), handEmpty
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Initial State

A statement of the form (3):

initially f

is a initial state statement. It states that f is true in the initial state.

Examples

Initially, the gun is loaded:

initially loaded

Initially, a is on the table, c is on the table, b is on c .
initially onTable(a)
initially onTable(c)
initially on(b, c)
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Action Theory

An action theory is given by a pair (D, I ) where D consists of statements
of the form (1)-(2) and I consists of propositions of the form (3).

Yale Shooting Problem

Represented as an action theory (Dy , Iy )

Iy = { initially ¬dead , initially loaded}

and

Dy =


shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
shoot executable if true
load executable if ¬loaded


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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Language A - Semantics: Intuition

The set of fluents define the states in an action theory.

¬ dead 
loaded 

s1

dead 
¬ loaded 

s4

dead 
loaded 

s2

¬dead 
¬loaded 

s3
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Language A - Semantics: Intuition

The set of fluents define the states in an action theory.
The set of dynamic laws specify the transitions between states in the
domain

shoot

load

shoot

¬ dead 
loaded 

s1

dead 
¬ loaded 

s4

dead 
loaded 

s2

¬dead 
¬loaded 

s3
loadload

shoot
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

States and Transitions What is a state?

Let D be a domain with a set of fluents F .

A state s of F is a complete and consistent set of literals
constructed from F .

complete: ∀f ∈ F .[f ∈ s ∨ ¬f ∈ s]

consistent: ∀f ∈ F .[¬(f ∈ s ∧ ¬f ∈ s)]

Following are some the states in the Yale shooting domain:
s1 = {¬dead , loaded}
s2 = {dead , loaded}
s3 = {¬dead ,¬loaded}
s4 = {dead ,¬loaded}

A fluent f is said to be true (resp. false) in a state s iff f ∈ s
(resp. ¬f ∈ s).
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

States and Transitions What is a transition?

An action a is executable in a state s if there exists
a executable if p1, . . . , pn in D such that p1, . . . , pn are true in s.
Clearly, if a executable if true belongs to D, then a is executable in
every state of D.

The set of effects of an action a in a state s is the set

e(a, s) = {f | a causes f if p1, . . . , pn ∈ D, pi is true in s}.

Define

e(a, s) = {¬f | f ∈ F ∩ e(a, s)} ∪ {f | f ∈ F ,¬f ∈ e(a, s)}

For a domain D, Φ(a, s), the state resulting from executing a in s, is
defined as follows.

1 If a is executable in s, then

Φ(a, s) = s \ e(a, s) ∪ e(a, s)

2 If a is not executable in s, then Φ(a, s) = undefined .
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

States and Transitions: Examples

Dy =


shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
shoot executable if true
load executable if ¬loaded

s1 = {¬dead , loaded}
s2 = {dead , loaded}
s3 = {¬dead ,¬loaded}
s4 = {dead ,¬loaded}

Φ(shoot, s1) =
Φ(load , s1) =
Φ(shoot, s2) =
Φ(load , s2) =
Φ(shoot, s3) =
Φ(load , s3) =
Φ(shoot, s4) =
Φ(load , s4) =
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Φ(load , s1) = undefined (load cannot execute load in s1)
Φ(shoot, s2) =
Φ(load , s2) =
Φ(shoot, s3) =
Φ(load , s3) =
Φ(shoot, s4) =
Φ(load , s4) =
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Φ(load , s1) = undefined (load cannot execute load in s1)
Φ(shoot, s2) = {dead ,¬loaded}
Φ(load , s2) =
Φ(shoot, s3) =
Φ(load , s3) =
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

States and Transitions: Examples

Dy =


shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
shoot executable if true
load executable if ¬loaded

s1 = {¬dead , loaded}
s2 = {dead , loaded}
s3 = {¬dead ,¬loaded}
s4 = {dead ,¬loaded}

Φ(shoot, s1) = s1 \ {dead ,¬loaded} ∪ {dead ,¬loaded}
{dead ,¬loaded}

Φ(load , s1) = undefined (load cannot execute load in s1)
Φ(shoot, s2) = {dead ,¬loaded}
Φ(load , s2) = undefined
Φ(shoot, s3) = {¬dead ,¬loaded}
Φ(load , s3) = {¬dead , loaded}
Φ(shoot, s4) = {¬dead ,¬loaded}
Φ(load , s4) = {¬dead , loaded}

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 30 / 198



Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Transition System of Yale Shooting

s1 = {¬dead , loaded}
s2 = {dead , loaded}
s3 = {¬dead ,¬loaded}
s4 = {dead ,¬loaded}

shoot

load

shoot

¬ dead 
loaded 

s1

dead 
¬ loaded 

s4

dead 
loaded 

s2

¬dead 
¬loaded 

s3
loadload

shoot
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Intuition for Φ(a, s)?

Intuition

When an action is executed, the following can happen

the action directly changes some fluents;

other fluents stay unchanged;

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 32 / 198



Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Intuition for Φ(a, s)?

Intuition

When an action is executed, the following can happen

the action directly changes some fluents; this is what in e(a, s)!

other fluents stay unchanged;

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 32 / 198



Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Intuition for Φ(a, s)?

Intuition

When an action is executed, the following can happen

the action directly changes some fluents; this is what in e(a, s)!

other fluents stay unchanged; this is what in s \ e(a, s)! [frame
problem]
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Intuition for Φ(a, s)?

Intuition

When an action is executed, the following can happen

the action directly changes some fluents; this is what in e(a, s)!

other fluents stay unchanged; this is what in s \ e(a, s)! [frame
problem]

Given a, s, and D, assume that a is executable in s
e(a, s) = {f | a causes f if p1, . . . , pn ∈ D, pi is true in s}
Φ(a, s) = s \ e(a, s) ∪ e(a, s)
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

Reasoning about Plan: the entailment (|=) relation

Φ(a, s): the result of executing the action a in a state s.
Consider a sequence of actions (or plan) α = [a1; . . . ; an]
What are true/false after the execution of α from the initial state?

(D, I ) |= l after α?

Define Φ̂(α, s).

Φ̂([], s) = s

if a is executable in s then Φ̂([a, β], s) = Φ̂(β,Φ(a, s));
otherwise, Φ̂([a, β], s) = undefined

Let s0 be the initial state:

(D, I ) |= l after α

iff Φ̂(α, s0) is defined and l is true in Φ̂(α, s0).
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Action languages in single agent environments (70 mnt - Son) The action language A, state, and transition function

|=: Example

Dy =


shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
shoot executable if true
load executable if ¬loaded

Iy =

{
initially ¬loaded
initially ¬dead

Initial state: s0 = {¬dead ,¬loaded}

(Dy , Iy ) |= loaded after [load ] because
Φ(load , s0) = {¬dead , loaded}.
(Dy , Iy ) |= dead after [load , shoot] because

Φ̂([load , shoot], s0) = Φ(shoot, {¬dead , loaded}) = {dead ,¬loaded}.
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

Static Causal Law

Fluents are related to each others.
Sometime, a change of a fluent’s value causes other fluents to change.
This is often referred to as indirect effects (of actions) or the
ramification problem in RAC.

Examples

Dead turkeys cannot walk
¬walking if dead

One block cannot be on top of two different blocks
false if on(X ,Y ), on(X ,Z ),Y 6= Z ,X 6= Y

A block is on top of another block cannot be on the table
¬onTable(X ) if on(X ,Y ),X 6= Y
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

Static Causal Law

A statement of the form
f if p1, . . . , pn (4)

is a static causal law which represents the relationship between fluents. It
is a constraint stating that whenever p1, . . . , pn are true then f must be
true.

Examples

Dead turkeys cannot walk
¬walking if dead

One block cannot be on top of two different blocks
false if on(X ,Y ), on(X ,Z ),Y 6= Z ,X 6= Y

A block is on top of another block cannot be on the table
¬onTable(X ) if on(X ,Y ),X 6= Y
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

AL Action Theory

An action theory is given by a pair (D, I ) where D consists of statements
of the form (1)-(2) and (4) and I consists of statements of the form (3).

Yale Shooting Problem with Static Causal Laws

Represented as an action theory (Dw
y , I

w
y )

Iwy = { initially ¬dead , initially walking , initially loaded}

and

Dw
y =



shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
¬walking if dead
shoot executable if true
load executable if ¬loaded


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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL What is a state?

Can state be the same as in A (a complete and consistent set
of literals)?
The presence of static causal laws removes some potential states

Potential states:
s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}
s4={¬dead ,¬walking , loaded}
s5={¬dead ,¬walking ,¬loaded}
s6={dead ,¬walking ,¬loaded}
s7={dead ,walking , loaded}
s8={dead ,walking ,¬loaded}

¬ dead 
walking 
loaded 

dead 
¬ walking 
¬ loaded 

dead 
¬ walking 

loaded 

¬ dead 
¬ walking 
¬ loaded 

¬dead 
walking 
¬loaded 

¬ dead 
¬ walking 

loaded 

dead 
walking 
¬ loaded dead 

walking 
loaded 

s1 s6

s2

s3

s4

s5

s7s8
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL What is a state?

Can state be the same as in A (a complete and consistent set
of literals)?
The presence of static causal laws removes some potential states

Potential states:
s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}
s4={¬dead ,¬walking , loaded}
s5={¬dead ,¬walking ,¬loaded}
s6={dead ,¬walking ,¬loaded}
s7={dead ,walking , loaded}
s8={dead ,walking ,¬loaded}

¬ dead 
walking 
loaded 

s1
dead 

¬ walking 
¬ loaded 

s6

dead 
¬ walking 

loaded 

s2

¬dead 
walking 
¬loaded 

s3

¬ dead 
¬ walking 

loaded 

s4

¬ dead 
¬ walking 
¬ loaded 

s5
dead 

walking 
¬ loaded 

s8

dead 
walking 
loaded s7

Need a way to eliminate unrealistic states!
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL What is a state? — Cn(X )

Given a set of literals X , Cn(X ) is the minimal set of literals that

contains X and

satisfies all static laws in D.

Yale Shooting Domain

Has one static law: ¬walking if dead
x1 = {¬dead}
x2 = {dead , loaded}
x3 = {walking ,¬loaded}
x4 = {dead ,walking ,¬loaded}
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contains X and

satisfies all static laws in D.
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States and Transitions in AL What is a state? — Cn(X )

Given a set of literals X , Cn(X ) is the minimal set of literals that

contains X and

satisfies all static laws in D.

Yale Shooting Domain

Has one static law: ¬walking if dead
x1 = {¬dead} Cn(x1) = {¬dead}
x2 = {dead , loaded} Cn(x2) = {dead ,¬walking , loaded}
x3 = {walking ,¬loaded}
x4 = {dead ,walking ,¬loaded}
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States and Transitions in AL What is a state? — Cn(X )

Given a set of literals X , Cn(X ) is the minimal set of literals that

contains X and

satisfies all static laws in D.

Yale Shooting Domain

Has one static law: ¬walking if dead
x1 = {¬dead} Cn(x1) = {¬dead}
x2 = {dead , loaded} Cn(x2) = {dead ,¬walking , loaded}
x3 = {walking ,¬loaded} Cn(x3) = {walking ,¬loaded}
x4 = {dead ,walking ,¬loaded}
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL What is a state? — Cn(X )

Given a set of literals X , Cn(X ) is the minimal set of literals that

contains X and

satisfies all static laws in D.

Yale Shooting Domain

Has one static law: ¬walking if dead
x1 = {¬dead} Cn(x1) = {¬dead}
x2 = {dead , loaded} Cn(x2) = {dead ,¬walking , loaded}
x3 = {walking ,¬loaded} Cn(x3) = {walking ,¬loaded}
x4 = {dead ,walking ,¬loaded}

Cn(x4) = {dead ,walking ,¬walking ,¬loaded}

Sometime, Cn(X ) is inconsistent!

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 39 / 198



Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL What is a state? — Cn(X )
Given a set of literals X , Cn(X ) is the minimal set of literals that

contains X and

satisfies all static laws in D.

Yale Shooting Domain

Has one static law: ¬walking if dead
x1 = {¬dead} Cn(x1) = {¬dead}
x2 = {dead , loaded} Cn(x2) = {dead ,¬walking , loaded}
x3 = {walking ,¬loaded} Cn(x3) = {walking ,¬loaded}
x4 = {dead ,walking ,¬loaded}

Cn(x4) = {dead ,walking ,¬walking ,¬loaded}

Sometime, Cn(X ) is inconsistent!

States in AL
A complete and consistent set of literals s is a state if s = Cn(s).
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL What is a transition?

The notion of executability of an action a in a state s remains the same: if
there exists an executability proposition a executable if p1, . . . , pn in D
such that p1, . . . , pn are true in s then a is executable in s.
The set of effects of an action a in a state s is the set

e(a, s) = {f | a causes f if p1, . . . , pn ∈ D, pi is true in s}.

For a domain description D, Φ(a, s), the set of states that may be reached
by executing a in s, is defined as follows.

1 If a is executable in s, then

Φ(a, s) = {s ′ | Cn(s ′) = Cn((s ∩ s ′) ∪ e(a, s))}

2 If a is not executable in s, then Φ(a, s) = undefined .
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

Why is Φ(a, s) defined like this?

Intuition

When an action is executed in s and the result is a state s ′, the following
can happen

the action directly changes some fluents;

some fluents stay unchanged;

some fluents were changed indirectly.

Given a, s, and D, assume that a is executable in s
e(a, s) = {f | a causes f if p1, . . . , pn ∈ D, pi is true in s}.
Φ(a, s) = {s ′ | Cn(s ′) = Cn((s ∩ s ′) ∪ e(a, s))}
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some fluents stay unchanged;
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

Why is Φ(a, s) defined like this?

Intuition

When an action is executed in s and the result is a state s ′, the following
can happen

the action directly changes some fluents; this is what in e(a, s)!

some fluents stay unchanged; this is what in s ∩ s ′! [frame problem]

some fluents were changed indirectly.

Given a, s, and D, assume that a is executable in s
e(a, s) = {f | a causes f if p1, . . . , pn ∈ D, pi is true in s}.
Φ(a, s) = {s ′ | Cn(s ′) = Cn((s ∩ s ′) ∪ e(a, s))}
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

Why is Φ(a, s) defined like this?

Intuition

When an action is executed in s and the result is a state s ′, the following
can happen

the action directly changes some fluents; this is what in e(a, s)!

some fluents stay unchanged; this is what in s ∩ s ′! [frame problem]

some fluents were changed indirectly. this is what in
Cn((s ∩ s ′) ∪ e(a, s))! [ramification problem]

Given a, s, and D, assume that a is executable in s
e(a, s) = {f | a causes f if p1, . . . , pn ∈ D, pi is true in s}.
Φ(a, s) = {s ′ | Cn(s ′) = Cn((s ∩ s ′) ∪ e(a, s))}
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL: Examples

Dw
y =



shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
¬walking if dead
shoot executable if true
load executable if ¬loaded

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}

Φ(shoot, s1) =
Φ(load , s1) =
Φ(shoot, s2) =
Φ(load , s2) =
Φ(shoot, s3) =
Φ(load , s3) =
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL: Examples

Dw
y =



shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
¬walking if dead
shoot executable if true
load executable if ¬loaded

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}

Φ(shoot, s1) = {{dead ,¬loaded ,¬walking}}
Φ(load , s1) =
Φ(shoot, s2) =
Φ(load , s2) =
Φ(shoot, s3) =
Φ(load , s3) =
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL: Examples

Dw
y =



shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
¬walking if dead
shoot executable if true
load executable if ¬loaded

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}

Φ(shoot, s1) = {{dead ,¬loaded ,¬walking}}
Φ(load , s1) = undefined (cannot execute load in s1)
Φ(shoot, s2) =
Φ(load , s2) =
Φ(shoot, s3) =
Φ(load , s3) =
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shoot causes ¬loaded if loaded
load causes loaded
¬walking if dead
shoot executable if true
load executable if ¬loaded

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
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Φ(shoot, s1) = {{dead ,¬loaded ,¬walking}}
Φ(load , s1) = undefined (cannot execute load in s1)
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

States and Transitions in AL: Examples

Dw
y =



shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
¬walking if dead
shoot executable if true
load executable if ¬loaded

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}

Φ(shoot, s1) = {{dead ,¬loaded ,¬walking}}
Φ(load , s1) = undefined (cannot execute load in s1)
Φ(shoot, s2) = {{dead ,¬loaded ,¬walking}}
Φ(load , s2) = undefined
Φ(shoot, s3) =
Φ(load , s3) =
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States and Transitions in AL: Examples

Dw
y =



shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
¬walking if dead
shoot executable if true
load executable if ¬loaded

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}

Φ(shoot, s1) = {{dead ,¬loaded ,¬walking}}
Φ(load , s1) = undefined (cannot execute load in s1)
Φ(shoot, s2) = {{dead ,¬loaded ,¬walking}}
Φ(load , s2) = undefined
Φ(shoot, s3) = {{¬dead ,walking ,¬loaded}}
Φ(load , s3) =
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States and Transitions in AL: Examples

Dw
y =



shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes loaded
¬walking if dead
shoot executable if true
load executable if ¬loaded

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}

Φ(shoot, s1) = {{dead ,¬loaded ,¬walking}}
Φ(load , s1) = undefined (cannot execute load in s1)
Φ(shoot, s2) = {{dead ,¬loaded ,¬walking}}
Φ(load , s2) = undefined
Φ(shoot, s3) = {{¬dead ,walking ,¬loaded}}
Φ(load , s3) = {{¬dead ,walking , loaded}}
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Transition System of Yale Shooting with Causal Laws

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}
s4={¬dead ,¬walking , loaded}
s5={¬dead ,¬walking ,¬loaded}
s6={dead ,¬walking ,¬loaded}
s7={dead ,walking , loaded}
s8={dead ,walking ,¬loaded}

¬ dead 
walking 
loaded 

dead 
¬ walking 
¬ loaded 

dead 
¬ walking 

loaded 

¬ dead 
¬ walking 
¬ loaded 

¬dead 
walking 
¬loaded 

¬ dead 
¬ walking 

loaded 

dead 
walking 
¬ loaded dead 

walking 
loaded 

s1 s6

s2

s3

s4

s5

s7s8
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Transition System of Yale Shooting with Causal Laws

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}
s4={¬dead ,¬walking , loaded}
s5={¬dead ,¬walking ,¬loaded}
s6={dead ,¬walking ,¬loaded}
s7={dead ,walking , loaded}
s8={dead ,walking ,¬loaded}

¬ dead 
walking 
loaded 

s1
dead 

¬ walking 
¬ loaded 

s6

dead 
¬ walking 

loaded 

s2

¬dead 
walking 
¬loaded 

s3

¬ dead 
¬ walking 

loaded 

s4

¬ dead 
¬ walking 
¬ loaded 

s5
dead 

walking 
¬ loaded 

s8

dead 
walking 
loaded s7
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Transition System of Yale Shooting with Causal Laws

s1={¬dead ,walking , loaded}
s2={dead ,¬walking , loaded}
s3={¬dead ,walking ,¬loaded}
s4={¬dead ,¬walking , loaded}
s5={¬dead ,¬walking ,¬loaded}
s6={dead ,¬walking ,¬loaded}
s7={dead ,walking , loaded}
s8={dead ,walking ,¬loaded}

¬ dead 
walking 
loaded 

dead 
¬ walking 
¬ loaded 

shoot

load
dead 

¬ walking 
loaded 

load

shoot

¬ dead 
¬ walking 
¬ loaded 

¬dead 
walking 
¬loaded 

¬ dead 
¬ walking 

loaded 

dead 
walking 
¬ loaded dead 

walking 
loaded 

s1 s6

s2

s3

s4

s5

s7s8

load

shoot

shoot

shootload
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How To Compute Φ(a, s)?

Given a, s, and D, assume that a is executable in s
e(a, s) = {f | a causes f if p1, . . . , pn ∈ D, pi is true in s}.
Φ(a, s) = {s ′ | Cn(s ′) = Cn((s ∩ s ′) ∪ e(a, s))}

Computing Φ(a, s)

1 Compute e(a, s)

2 Eliminate from s those that are false in e(a, s)

3 Identify maximal sets of atoms X that remain in s and can be joined
together with e(a, s) such that s ′ = Cn(X ∪ e(a, s)) is a consistent
set of literals and is an interpretation.
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States and Transitions: Example

Dy =

 shoot causes dead if loaded shoot executable if true
shoot causes ¬loaded if loaded ¬walking if dead
load causes loaded load executable if ¬loaded

s1 = {¬dead ,walking , loaded}. Computer Φ(shoot, s1)

1 Compute e(shoot, s1) =

2 Eliminate from s1 those that are false in e(shoot, s1):

3 Identify maximal sets of atoms X that remain in s1 and can be joined
together with e(shoot, s1) s.t. s ′ = Cn(X ∪ e(shoot, s1)) is a consistent set
of literals and is an interpretation.
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States and Transitions: Example

Dy =

 shoot causes dead if loaded shoot executable if true
shoot causes ¬loaded if loaded ¬walking if dead
load causes loaded load executable if ¬loaded

s1 = {¬dead ,walking , loaded}. Computer Φ(shoot, s1)

1 Compute e(shoot, s1) = {dead ,¬loaded}
2 Eliminate from s1 those that are false in e(shoot, s1):

3 Identify maximal sets of atoms X that remain in s1 and can be joined
together with e(shoot, s1) s.t. s ′ = Cn(X ∪ e(shoot, s1)) is a consistent set
of literals and is an interpretation.
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States and Transitions: Example

Dy =

 shoot causes dead if loaded shoot executable if true
shoot causes ¬loaded if loaded ¬walking if dead
load causes loaded load executable if ¬loaded

s1 = {¬dead ,walking , loaded}. Computer Φ(shoot, s1)

1 Compute e(shoot, s1) = {dead ,¬loaded}
2 Eliminate from s1 those that are false in e(shoot, s1): remaining from s1:
{walking}

3 Identify maximal sets of atoms X that remain in s1 and can be joined
together with e(shoot, s1) s.t. s ′ = Cn(X ∪ e(shoot, s1)) is a consistent set
of literals and is an interpretation.
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States and Transitions: Example

Dy =

 shoot causes dead if loaded shoot executable if true
shoot causes ¬loaded if loaded ¬walking if dead
load causes loaded load executable if ¬loaded

s1 = {¬dead ,walking , loaded}. Computer Φ(shoot, s1)

1 Compute e(shoot, s1) = {dead ,¬loaded}
2 remaining from s1: {walking}
3 There are only two possibilities: ∅ and {walking}

I X = {walking} then Cn({walking} ∪ e(shoot, s1)) =
Cn({walking , dead ,¬loaded}) = {walking , dead ,¬loaded ,¬walking} -
this is inconsistent

I X = ∅ then Cn(∅ ∪ e(shoot, s1)) = Cn({dead ,¬loaded}) =
{dead ,¬loaded ,¬walking} - this is consistent and complete set of
fluent literals in the domain.

Answer: Φ(shoot, s1) = {{dead ,¬loaded ,¬walking}}
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States and Transitions: Example

D ′y =


shoot causes dead if loaded load executable if ¬loaded
shoot causes ¬loaded if loaded load causes loaded
shoot executable if holding gun ¬walking if dead
alive if ¬dead ¬alive if dead

s1 = {holding gun,¬dead ,walking , loaded , alive}. Φ(shoot, s1) =?

1 Compute e(shoot, s1) = {dead ,¬loaded}
2 remaining from s1: {alive,walking , holding gun}
3 Identify X remaining in s1 s.t. s ′ = Cn(X ∪ e(shoot, s1))

If X = {holding gun} then Cn({holding gun} ∪ e(shoot, s1)) =
{holding gun, dead ,¬loaded ,¬alive,¬walking} — this is consistent and
complete set of fluent literals in the domain. So,

Answer: Φ(shoot, s1) = {{dead ,¬loaded ,¬walking , holding gun,¬alive}}
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AL: Non-Deterministic Domain

Consider a domain with actions a and b, three fluents f , g , h and the
following statements

a, b executable if true
a causes f
b causes ¬g if f
¬h if g , f
¬g if h, f

Φ(a, {g , h,¬f }) = {{f , g ,¬h}, {f , h,¬g}}
This domain is non-deterministic!
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|= in AL

How is |= defined in AL?
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|= in AL

How is |= defined in AL?

Need to consider Φ(a, ω) where ω is a set of states!

a is executable in ω if a is executable in every u ∈ ω
Notation: Φ(a, s) = ∅ when a is not executable in s.

For a set of states ω,

Φ(a, ω) =


⋃

u∈ω Φ(a, u) if ∀u ∈ ω.[Φ(a, u) 6= ∅]

∅ otherwise
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Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

|= in AL

Let α = [a1; . . . ; an] and ω be a set of states.

Φ̂(α, ∅) = ∅
Φ̂([], ω) = ω

Φ̂([a, β], ω) =
⋃

u∈Φ(a,ω) Φ̂(β, u) if Φ̂(β, u) 6= ∅ for every u ∈ Φ̂(β, u).

(D, I ) |= l after α iff Φ̂(α, s0) 6= ∅ and l is true in every u ∈ Φ̂(α, s0)
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Sensing Actions

Disarming a Bomb

A robot needs to disarm a bomb. He
does not know whether the tip of the
bomb was locked or not. Looking at
it will help!

locked or  ¬locked

disarm the bomb when ¬locked => bomb will explode
disarm the bomb when locked => disarmed
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Sensing Actions

Disarming a Bomb

A robot needs to disarm a bomb. He
does not know whether the tip of the
bomb was locked or not. Looking at
it will help!

locked or  ¬locked

disarm the bomb when ¬locked => bomb will explode
disarm the bomb when locked => disarmed

Sensing Actions

1 do not change the state of the world

2 change the beliefs (knowledge) of the reasoner

3 needed for planning and reasoning with incomplete information
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Sensing Actions

Disarming a Bomb

A robot needs to disarm a bomb. He
does not know whether the tip of the
bomb was locked or not. Looking at
it will help!

locked or  ¬locked

disarm the bomb when ¬locked => bomb will explode
disarm the bomb when locked => disarmed

Sensing Actions

1 do not change the state of the world (the robot looking at the tip
does not change anything in the physical world!)

2 change the beliefs (knowledge) of the reasoner (the robot looking at
the tip changes its knowledge!)

3 needed for planning and reasoning with incomplete information
(initially, the robot does not know whether or not the tip is locked).
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AS: AL with Sensing Actions — Syntax

action determines fluent (5)

Intuition: execution of action allows the reasoner to know the value of
fluent.

look determines locked

look at departure screen determines gate of flightX
(might use multi-value fluent)

Action Theory

An action theory in AS is a pair (D, I ) where D consists of statements of
the form (1)-(2), (4), and (5) and I consists of statements of the form (3).
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AS: AL with Sensing Actions — Semantics

Define the transition function Φ. What is a state and what is a
transition?
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AS: AL with Sensing Actions — Semantics

Define the transition function Φ. What is a state and what is a
transition?

Intuition: when an agent has incomplete information

1 its belief consists of a number of possible states that the agent
believes it might be in.

2 execution of a sensing action will help the agent to shrink the set of
possible states.

3 execution of a non-sensing action will create transition between set of
possible states.
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AS: AL with Sensing Actions — Semantics
Define the transition function Φ.

Intuition: when an agent has incomplete information

1 its belief consists of a number of possible states that the agent
believes it might be in.

2 execution of a sensing action will help the agent to shrink the set of
possible states.

3 execution of a non-sensing action will create transition between set of
possible states.

real state 
of the world

belief of 
the agent  

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 52 / 198



Action languages in single agent environments (70 mnt - Son) AL: A+ static causal laws, non-deterministic and sensing actions

AS: AL with Sensing Actions — Semantics
Define the transition function Φ.

Intuition: when an agent has incomplete information

1 its belief consists of a number of possible states that the agent
believes it might be in.

2 execution of a sensing action will help the agent to shrink the set of
possible states.

3 execution of a non-sensing action will create transition between set of
possible states.

real state 
of the world

belief of 
the agent  

real state 
of the world

belief of 
the agent  
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AS: States and Transitions

For a domain D in AS,

(state): A k-state is a pair 〈s,Σ〉 where s is a state and Σ is a set of
states in D.

〈s,Σ〉 is consistent if s ∈ Σ.

An action a is executable in 〈s,Σ〉 if it is executable in s.

ϕ is known to be true in 〈s,Σ〉 if ϕ is true in every u ∈ Σ.

I if a is a non-sensing action:
Φs(a, 〈s,Σ〉) = {〈s ′,Σ′〉 | s ′ ∈ Φ(a, s),Σ′ =

⋃
u∈Σ Φ(a, u)} where

Φ(a, s) is defined as in AL domains
I if a is a sensing action:

Φs(a, 〈s,Σ〉) = {〈s,Σ′〉 | Σ′ = {u ∈ Σ | u ∼f s}} where u ∼f s iff
f ∈ u ∩ s or ¬f ∈ u ∩ s.
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AS: Example

Disarming a Bomb

Db =



disarm causes exploded if ¬locked
disarm causes disarmed if locked
disarm causes ¬exploded if locked
turn causes ¬locked if locked
turn causes locked if ¬locked
disarmed if exploded
¬locked if exploded
look determines locked

Ib =


initially ¬disarmed
initially ¬exploded

locked unknown

Goal: disarmed ,¬exploded
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|= in AS
Define Φ̂ in the same way as in AL but need branches

Conditional Plan
1 An empty sequence of action, denoted by [ ], is a conditional plan.

2 If a is an action then a is a conditional plan.

3 If α1, . . . , αn are conditional plans and ϕj ’s are mutual exclusive
conjunctions of fluent literals then the following is a conditional plan.

Case
ϕ1 → α1

. . .
ϕn → αn

Endcase

4 If α1 and α2 are conditional plans then α1;α2 is a conditional plan.

5 Nothing else is a conditional plan.
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|= in AS

For a set of states ω, and a case plan α:
α = Case

ϕ1 → α1

. . .
ϕn → αn

Endcase

Φ̂(α, σ) =

 Φ̂(αi , σ) if ϕi is known to be true in σ

∅ if there exists no i s.t. ϕi is known to be true in σ
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AS: Example
The set of states of Db:

s1 = {¬disarmed ,¬locked ,¬exploded} s3 = {disarmed ,¬locked ,¬exploded}
s2 = {¬disarmed , locked ,¬exploded} s4 = {disarmed , exploded ,¬locked}
s5 = {disarmed , locked ,¬exploded} s6 = {disarmed , locked , exploded}
s7 = {exploded ,¬disarmed ,¬locked} s8 = {locked , exploded ,¬disarmed}

Σ0 = {s1, s2} — two initial k-states representing the beliefs of the robot:

〈s1,Σ0〉 and 〈s2,Σ0〉

execution of look in the initial k-state results in

〈s1, {s1}〉 and 〈s2, {s2}〉

which means

if the real state of the world is s1, then execution look will help the
robot knows that the tip is ¬locked .

if the real state of the world is s2, then execution look will help the
robot knows that the tip is locked .
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Non-Deterministic Actions

Example

Flipping a coin results in head or tail
(¬head).

action maychange literal1 | · · · | literaln (6)

Intuition: execution of action results in one of the possibilities
literal1, . . . , literaln with the assumption that literal1, . . . , literaln are
mutual exclusive.

flip maychange head | tail

shoot maychange dead | alive
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ASn: AS with Non-Deterministic Actions

What is a state?
What is a transition?
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ASn: AS with Non-Deterministic Actions

What is a state? Use k-state as in AS
What is a transition?
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ASn: AS with Non-Deterministic Actions

What is a state? Use k-state as in AS
What is a transition? Define Φs(a, s).

Need only to specify transitions for non-deterministic actions!

Below: theories without static causal laws.

For theories with static causal laws, similar adaptation is needed.
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ASn: AS with Non-Deterministic Actions
What is a state? Use k-state as in AS
What is a transition? Define Φs(a, s).

Need only to specify transitions for non-deterministic actions!

Below: theories without static causal laws.

For theories with static causal laws, similar adaptation is needed.

Assume that
a maychange l1 | · · · | ln

Define ei = li ∪ {lj | j 6= i , 1 ≤ j ≤ n} (l is the negation of l).
For each state s, let Ω(s) = {s \ ei ∪ ei | i = 1, . . . , n}.

if a is executable in 〈s,Σ〉 then

Φs(a, 〈s,Σ〉) = {〈s \ ei ∪ ei ,
⋃
u∈Σ

Ω(u)〉 | i = 1, . . . , n}

A k-state in Φs(a, 〈s,Σ〉): represents a possibility.

otherwise, Φs(a, 〈s,Σ〉) = ∅.
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ASn: Example

Consider the action

flip maychange head | ¬head

and the current state of the world s = {head}.
Assume that the agent has complete information about the world.
The k-state representing this situation is 〈{head}, {{head}}〉.
Execution of flip in this k-state results to

{〈{head}, {{head}, {¬head}}〉, 〈{¬head}, {{head}, {¬head}}〉}
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|= in ASn

Defined as in AS.
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GOLOG

GOLOG: logic programming language for dynamic domains [Levesque
et al. (1997)].
Motivations:

Ease the development of control programs of dynamic domains (high
level controllers for robots, intelligent software agents, etc.)

Provide a means for reasoning about complex actions.

Note: The language has been extended to ConGolog [De Giacomo et al.
(2000)] to allow concurrency, interrupts, concurrency with priorities, and
concurrent iteration.
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GOLOG: Syntax
Action theories are written in a sorted first-order language with finite
domains, e.g., in the block domain, block is a sort with domain, say,
{a, b, c}; on is a binary fluent of the sort block × block; and pickup is an
unary action of the sort block, etc.

Program: a is an action, φ is a formula p and q are programs

Primitive: a

Test: φ?

Sequence: p; q

Non-deterministic choice of actions: p | q

Conditional: if φ then p else q endif

While-loop: while φ then p endWhile

Procedure: proc p endProc

Non-deterministic choice of arguments: π(X , p)

are programs.
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GOLOG: Example
Consider the block world domain with

constants (of the sort block): a, b, c , d , e

actions such as putdown(x), pickup(x), stack(x , y), unstack(x , y), etc.

fluents such as onTable(x), on(x , y), clear(x), etc.

Some GOLOG programs

make on(x , y): makeClear(x);
if onTable(x) ∧ clear(y)
then [pickup(x); stack(x , y)]
else [makeClear(y); get(x);

stack(x , y)]
endif

makeClear(x) : clear(x)? | ¬clear(x)?
cleanHand ;
while ¬clear(x) then
π(y , z , [(clear(y)∧
above(z , x) ∧ on(y , z))?;
unstack(y , z); putdown(y)])

endWhile

cleanHand : if ¬handEmpty then π(x , [holding(x)?; putdown(x)]) endif

get(x): if onTable(x) then pickup(x)
else π(y , [on(x , y)?, unstack(x , y)]) endif
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GOLOG: Another Example

Delevator consists of

up(N) causes cFloor(N) up(N) executable if cFloor(M),¬opened (M < N)
down(N) causes cFloor(N) down(N) executable if cFloor(M),¬opened (M>N)
turnoff (N) causes ¬on(N) turnoff (N) executable if cFloor(N)
open causes opened
close causes ¬opened
cFloor(M) if ¬cFloor(N)

S =


(go floor(N) : cFloor(N)|up(N)|down(N))

(serve(N) : go floor(N); turnoff (N); open; close)
(serve a floor : π(N, (on(N)?; serve(N)))

(park : if cFloor(0) then open else [down(0); open])
(control : [while ∃N.{0, . . . , k} [on(N)] do serve a floor ]; park)
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GOLOG: Semantics

GOLOG programs are interpreted with respect to traces of the
form s0, a0, s1, a1, . . . , an−1, sn where si+1 ∈ Φ(a, si ) for every
i = 0, . . . , n − 1.

s0, a0, s1, a1, . . . , an−1, sn is a trace for a GOLOG program δ if

δ = a and a is an action, n = 1 and a0 = a;

δ = φ?, n = 0 and φ holds in s0;

δ = δ1; δ2, and there exists an i such that s0a0 . . . si is a trace of δ1

and siai . . . sn is a trace of δ2;

δ = δ1 | δ2, and s0a0 . . . an−1sn is a trace of δ1 or δ2;

δ = if φ then δ1 else δ2 endif, and s0a0 . . . an−1sn is a trace of δ1

if φ holds in s0 or s0a0 . . . an−1sn is a trace of δ2 if ¬φ holds in s0;

. . .
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Action Languages and Related Approaches

Other approaches to reasoning about actions and changes:

situation calculus [McCarthy and Hayes (1969)]

event calculus [Kowalski and Sergot (1986)]

fluent calculus [Thielscher (2000)]

STRIPS [Fikes and Nilson (1971)]

PDDL [Ghallab et al. (1998)]: de facto language for planning systems
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AL vs. PDDL (mostly a 1-1 correspondence, difference in static causal laws)

Driving to the airport domain in PDDL representation

(define (domain airport)

(:predicates (at ?x ?y)

(location ?x) (person ?p) (car ?c))

(:action drive :parameters (?x ?y)

:precondition (and (location ?x) (location ?y)

(person ?p) (at ?p ?x) (car ?c) (at ?c ?x))

:effect (and (at ?c ?y) (at ?p ?y)

(not (at ?c ?x)) (not (at ?p ?x)))))

Problem: δa and Goal in PDDL representation

(define (problem airport-1-1) (:domain airport)

(:objects john car home airport)

(:init person(john) car(car) location(home) location(airport)

at(john,home) at (car,home))

(:goal at(john,airport)))
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in AL
drive(home, airport) executable if at(john, home), at(car , john)
drive(home, airport) causes at(john, airport), at(car , airport)
drive(airport, home) executable if at(john, airport), at(car , airport)
drive(airport, home) causes at(john, home), at(car , home)
¬at(john, airport) if at(john, home)
¬at(car , airport) if at(car , home)
¬at(john, home) if at(john, airport)
¬at(car , home) if at(car , airport)
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in AL
initially at(john, home)
initially at(car , home)

. . .
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AL vs. PDDL

AL PDDL

Action
√

Fluent Predicate
Conditional Effect

√

Executability condition Precondition
Static causal law (allow cyclic) Defined fluent or axiom

(no cyclic)
Ground Instantiations Typed Variables
(Variables: shorthand)

Notes
1 Dealing directly with static causal laws is advantageous [Thiebaux

et al. (2003)].

2 Not many planners deal with static causal laws directly.
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AL vs. PDDL

Example of cyclic static causal laws in AL:

A door is either closed or opened:

door opened if ¬door closed
door closed if ¬door opened

John is either at home or his office:

at home if ¬at office
at office if ¬at home

1 Defined fluents are often not allowed to occur in effects of actions in
some PDDL specifications.

2 PDDL has been extended with other features (e.g., sensing actions,
actions with durations)
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Action languages and causality (30 mnt - Chitta)

1 Overview: a brief history of action languages (20 mnt - Chitta)

2 Action languages in single agent environments (70 mnt - Son)
The action language A, state, and transition function
AL: A+ static causal laws, non-deterministic and sensing actions
GOLOG
Action languages: related approaches and planning

3 Action languages and causality (30 mnt - Chitta)
Pearl’s do-calculus

4 Action languages in multi-agent environments (60 mnt – Son)
mA*, Kripke structure, update models, and transition function
mA* in epistemic planning

5 Action languages in commonsense reasoning (18 mnt - Chitta)
Commonsense reasoning and actions
Acquiring knowledge about actions

6 Open challenges, conclusion, and discussion (12 mnt - Chitta)
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Action languages and causality (30 mnt - Chitta) Pearl’s do-calculus

Excerpts from Book of Why?
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Simpson’s Paradox

The following data is given

Gender Action Recovered? Did not Probability of
recover recovery

Male Took Drug 18 12 0.6
Male Did not take drug 7 3 0.7

Female Took Drug 2 8 0.2
Female Did not take drug 9 21 0.3

Based on the probability calculated you can say that both male and female,
the probability of recovery is high if they did not take the drug.
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Simpson’s Paradox

Based on the probability calculated you can say that both male and female,
the probability of recovery is high if they did not take the drug.
Now if we did not have the gender data, we would have to reconstruct the

table.

Action Recovered? Did not recover Probability of
recovery

Took Drug 20 20 0.5
Did not take drug 16 24 0.4

Based on the new probability calculated you can say that both male and
female, the probability of recovery is high if they took the drug.
So the outcome seems to change based on us knowing the gender of the
collected statistics.
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Shortcoming of traditional conditional probability

X (Treatment) Y (Recovered) Probability

T T 0.25
T F 0.25
F T 0.25
F F 0.25

Consider the above joint probability distribution.

We can calculate P(Recovery | Treatment).

But is that the right way to decided whether treatment should be
given or not.

Pearl proposes to use P(recover | do(given treatment)).

We will show how that value may be different depending on what kind of
causal model leads to the above probability distribution.
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Probabilistic Causal Model

There are two kinds of variables in this model:
I Exogenous (Ex : u1, u2): external to the system
I Endogenous (Ex : x , y): internal to the system

Probabilistic Causal Model is a directed acyclic graph. The value of a
node in this graph is defined by a function whose input are its
parents. Exogenous variables have no parents and have a probability
associated with each of them. All exogenous variables are considered
independent of each other.
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Two Causal Models: X (given treatment, Y (recovered)

u1

x

u2

y

P(u1)=.5 P(u2)=.5 

u1 and u2 are variables that determine x
and y

x = u1; y = u2

u1 u2 x y prob

T T T T 0.25
T F T F 0.25
F T F T 0.25
F F F F 0.25

u4

y

P(u3)=.5 P(u4)=.5 

x

u3

x = u3
y = (x & u4) or (not x & not u4)

Note: u4 may be some generic condition

u3 u4 x y prob

T T T T 0.25
T F T F 0.25
F T F T 0.25
F F F F 0.25
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Joe took the treatment and did not survive
“Did the treatment cause this”
(Had he not taken the treatment would he have survived)

u1

x

u2

y

P(u1)=.5 P(u2)=.5 

u1 u2 x y prob

T T T T 0.25
T F T F 0.25
F T F T 0.25
F F F F 0.25

wrt. new model

T F X=F F ?

P(Y=T | do(X=F))=0
Treatment does not cause death.

u4

y

P(u3)=.5 P(u4)=.5 

x

u3

u3 u4 x y prob

T T T T 0.25
T F T F 0.25
F T F T 0.25
F F F F 0.25

new model

T F X=F T ?

P(Y=T | do(X=F))=1
Treatment caused death.
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Rifleman Example: actions and counterfactuals
We observe that the prisoner died. What is the
probability that the prisoner would be alive if A
(on his own) did not shoot.

U V C A B D prob
T T T T T T p*q
T F T T T T p*(1-q)
F T F T F T (1-p)*q
F F F F F F (1-p)*(1-q)

Based on the observation we need to remove the
last Row and readjust the probabilities: Let S =
1-(1-p)*(1-q)

U V C A = F B D prob
T T T F T T p*q/S
T F T F T T p*(1-q)/S
F T F F F F (1-p)*q/S

U, V are exogenous: p(U)
= P; p (V) = q

A, B, C, D are endogenous

U: Court orders execution

V: Rifleman A is nervous

C: Captain give order

A: Rifleman A shoots

B: Rifleman B shoots

D: Prisoner dies
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3 Steps to Computing Counterfactuals
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Computing Probabilities of Counterfactuals

The prisoner is dead. How likely is it that he would be dead if A had not
shot. P(D−A | D) =?
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Causal model (Formal): From Pearl’s Slides

Causal model

M = 〈U,V ,F 〉 or 〈U,V ,F ,P(u)〉
U - background variables

V - endogenous variables

F - set of functions {U × V \ Vi → Vi}
vi = fi (pai , ui )

Submodel

Mx = 〈U,V ,Fx〉 representing do(x)
Fx = replaces equation for X with X=x

Actions and Counterfactuals

Yx(u) = solution of Y in Mx

P(y | do(x)) P(Yx = y)
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Predicting the Effects of Policies

Surgeon General (1964):

Smoking Cancer P(c | do(s)) ∼ P(c | s)

Tobacco Industry:
Genotype (unobserved)

Smoking Cancer

P(c | do(s)) = P(c)

Combined

Smoking Cancer

P(c | do(s)) = noncomputable
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Predicting the Effects of Policies

Surgeon General (1964):

Smoking Cancer P(c | do(s)) ∼ P(c | s)

Tobacco Industry:
Genotype (unobserved)

Smoking Cancer

P(c | do(s)) = P(c)

Combined

Smoking Cancer

P(c | do(s)) = noncomputable

Combined and refined

Smoking     CancerTar

P(c | do(s)) = computable
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Needed: Algebra of Doing

Available: algebra of seeing

e.g., what is the chance it rained if we see the grass wet?

P(rain | wet) =? {P(wet | rain)P(rain)
P(wet)}

Needed: algebra of doing

e.g., what is he chance it rained if we make the grass wet?

P(rain | do(wet)) =? {P(rain)}
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Rules of Causal Calculus

Rule 1: Ignoring observations (under conditions)

P(y | do{x}, z ,w) = P(y | do{x},w)

Rule 2: Action/observation exchange (under conditions)

P(y | do{x}, do{z},w) = P(y | do{x}, z ,w)

Rule 3: Ignoring actions (under conditions)

P(y | do{x}, do{z},w) = P(y | do{x},w)
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Derivation in Causal Calculus

Smoking     CancerTar

Genotype (unobserved)

P(c | do{s}) = ΣtP(c | do{s}, t)P(t | do{s}) Probability Axioms

= ΣtP(c | do{s}, do{t})P(t | do{s}) Rule 2

= ΣtP(c | do{s}, do{t})P(t | s) Rule 2

= ΣtP(c | do{t})P(t | s) Rule 3
= Σs′ΣtP(c | do{t}, s ′)P(s ′ | do{t})P(t | s) Probability Axioms

= Σs′ΣtP(c | t, s ′)P(s ′ | do{t})P(t | s) Rule 2

= Σs′ΣtP(c | t, s ′)P(s ′)P(t | s) Rule 3
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Action languages and causality (30 mnt - Chitta) Pearl’s do-calculus

Two directions of research

Actual cause—Halpern and Pearl; and then many others

Reasoning about cause and effect from Statistical data—Pearl’s
recent BIG focus
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To recent books by Pearl
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Actual Causes

Simple definition: Suppose f is observed, we can infer that a is an
actual cause of f if f would not be true if a had not been true.

Motivation:

I Hume, Enquiry, 1748: “We may define a cause to be an object followed
by another, . . . , where, if the first object had not been, the second
never had existed.”

I Lewis (1973): “x CAUSED y” if x and y are true, and y is false in the
closest non-x-world.

Problem with the simple definition:
I NECESSITY

F Ignores aspects of sufficiency (Production)
F Fails in presence of other causes (Over determination)

COARSENESS
F Ignores structure of intervening mechanisms.
F Fails when other causes are preempted (Preemption)
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Pearl: Match is the cause here
Sufficiency (Production)

Observation: Fire broke out.
Question: Why is oxygen an awkward explanation?
Answer: Because Oxygen is (usually) not sufficient
P(Oxygen is sufficient) = P(Match is lighted) = low
P(Match is sufficient) = P(Oxygen present) = high
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Pearl: overdetermination
How the counterfactual test fails?

Observation: Dead prisoner with two bullets.
Query: Was A a cause of death?
Answer: Yes, A sustains D against B.
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Pearl: preemption
How the counterfactual test fails?

Which switch is the actual cause of light? S1!

Deceiving symmetry: Light = S1∨ S2
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The desert traveler: Enemy2 is the cause
(Pearl; Pat Suppes)
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Challenges to Halpern & Pearl (1)

Batusov & Soutchanski (2018): “The ontological commitments of
structural causal models resemble propositional logic, they have no
objects, no relationships, no time, no support for quantified causal
queries. Thus, causal models are too coarse to distinguish between
enduring conditions and transitional events, providing only atomic
propositions to model both.

Moreover, causal models represent presence and absence of an event
identically—by assigning a value to a propositional variable. Both of
these deficiencies stem from the lack of a mechanism for modeling
change over time.”

“In contrast to HP whose analysis is based on observing the end
results of interventions, we do so by analyzing the dynamics which
lead to the end results.”
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Challenges to Halpern & Pearl (2)
(Beckers and Vennekens 2012)

Assassin poisons Victims coffee, Victim drinks it and dies. If Assassin
hadn’t poisoned the coffee, Backup would have, and Victim would
have died anyway. Victim would not have died if there had been no
poison in the coffee.

I HP designates Assassin as the actual cause of Dies.

An engineer is standing by a switch in the railroad track. A train
approaches in the distance. She flips the switch, so that the train
travels down the left-hand track, instead of the right. Since the tracks
reconverge up ahead, the train arrives at its destination all the same.

I HP designates the flipping of the switch as a cause of the train arriving
at its destination.

I B & V feel that directing the train from one track to another that
serves exactly the same purpose is not a cause of its arrival.
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Action languages and causality (30 mnt - Chitta) Pearl’s do-calculus

Reasoning about cause and effect from Statistical data

Basic idea: How to reason about P(X | do(Y )) when we have only
statistical data

Pearl proposes ways to do it if causal relations between X, Y and
other related variables follow certain patterns.

I Note: The exact functions connecting the variables need not be known.
Only the arrows between the variables depicting the causal connections
is enough.

An example in the next few slides.
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Action languages and causality (30 mnt - Chitta) Pearl’s do-calculus

Example
Ux

x

Uy

y

Uz

z
Ux

x

Uy

y

Uz

z

Graphical model on effects of new drug: Z -gender, X -drug usage, Y -recovery
(Right: sets the drug usage in the population, results in the manipulated

probability Pm)

P(Y = y | do(X = x)) = ΣzP(Y = y | X = x ,Z = z)P(Z = z)

This equation is called the adjustment formula.
Computes the association between X and Y for each z of Z then averages over
those values.
The right hand side of the equation can be estimated directly from data, since it
consists only of conditional probabilities, each of which can be computed by the
filtering procedure! (Pearl’s book).

Note: no adjustment is needed in a randomized controlled experiment since, in

such a setting, the data are generated by a model which already possesses the

structure of the figure on the right and hence, P = Pm regardless of any factors Z

that affect Y .
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Action languages and causality (30 mnt - Chitta) Pearl’s do-calculus

Example

Ux

x

Uy

y

Uz

z

Sets the drug usage in the population, results in the manipulated probability Pm

Pm(Y =y | X =x ,Z =z)=P(Y =y | Z =z ,X =x) and Pm(Z =z)=P(Z =z) (7)

Z and X are d-separated in the modified model and are, therefore, independent
under the intervention distribution.
This gives Pm(Z = z | X = x) = Pm(Z = z) = P(Z = z)
So
P(Y = y | do(X = x)) = Pm(Y = y | X = x) (by definition)
and that leads to Equation (7).
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Action languages and causality (30 mnt - Chitta) Pearl’s do-calculus

Example

Some derivation:

P(Y = y | do(X = x)) = Pm(Y = y | X = x) (by definition)

= ΣzPm(Y = y | X = x ,Z = z)Pm(Z = z | X = x)

= ΣzPm(Y = y | X = x ,Z = z)Pm(Z = z)

This implies

P(Y = y | do(X = x)) = ΣzP(Y = y | X = x ,Z = z)P(Z = z)
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Action languages in multi-agent environments (60 mnt – Son)

1 Overview: a brief history of action languages (20 mnt - Chitta)

2 Action languages in single agent environments (70 mnt - Son)
The action language A, state, and transition function
AL: A+ static causal laws, non-deterministic and sensing actions
GOLOG
Action languages: related approaches and planning

3 Action languages and causality (30 mnt - Chitta)
Pearl’s do-calculus

4 Action languages in multi-agent environments (60 mnt – Son)
mA*, Kripke structure, update models, and transition function
mA* in epistemic planning

5 Action languages in commonsense reasoning (18 mnt - Chitta)
Commonsense reasoning and actions
Acquiring knowledge about actions

6 Open challenges, conclusion, and discussion (12 mnt - Chitta)
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Motivations: from one to many

Real-world: agents are rarely in isolation

The presence of multiple agents provides a number of challenges in
reasoning about actions and changes

I there are issues that make sense only when considering in multi-agent
environments

F announcement actions: someone tells another about a property of the
world (lying, misleading, truthful announcement)

F ontic actions: the action that changes the world now have additional
effects (creating false beliefs for someone); someone executes an action
might not know the effects of the action!

I all types of actions have effects on both knowledge and beliefs of agents
implication: needs to deal with both knowledge and beliefs of agents!

Note: Philosophers/logician discuss reasoning about knowledge and beliefs
of an agent in multi-agent environment for centuries!

Most earlier frameworks are analogous to transition systems for single-agent
environment.
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Motivations: from one to many in planning

Single-Agent Planning Multi-Agent Planning
Deliberation process for
generating a plan that
transforms the state of the
world from an initial state
to a state satisfying a pre-
defined goal

Generalization of the
single-agent planning
problem to domains where
several agents plan and
act together and have to
share resources, activities,
and goals
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Motivations

Single-Agent Planning Multi-Agent Planning
Involves generating a plan
(sequence of actions, con-
ditional plan, etc.) for the
agent to achieve a prede-
fined goal given a problem
specification

involves coordinating the resources
and activities of multiple “agents”

is concerned with planning by (and
for) multiple agents. It can involve
agents planning for a common goal,
an agent coordinating the plans
(plan merging) or planning of
others, or agents refining their own
plans while negotiating over tasks or
resources.

mA: Action Language for Multi-Agent Domains
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

A Guiding Example
Three agents, A, B, and C , are in a room. In the middle of the room
there is a box containing a coin.

None of the agents knows the state of the coin;

The box is locked and one needs a key to open it; agent A has the key of
the box and everyone knows this;

To learn whether the coin lies heads or tails up, an agent can peek into the
box, if the box is open;

If one agent is looking at the box and a second agent peeks into the box,
then the first agent will conclude that the second agent knows the status of
the coin; the first agent’s knowledge about the coin does not change;

Distracting causes that agent to not look at the box;

Signaling causes such agent to look at the box;

Announcing the state of the coin will make this a common knowledge
among the agents that are listening.
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

A Guiding Example

Planning Problem: A knows head/tail and B knows that A knows that the
coin lies head/tail up and leaves C in the dark
Solution: A Distracts C, A Signals B, A Opens box, A Looks inside
Challenges: reasoning about knowledge/beliefs of other agents common
knowledge—unlimited number of nested knowledge operator
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

A Guiding Example

Representation and reasoning
I Representing beliefs of agents

about
F state of the world
F state of beliefs of agents

Defining transition function
between states: execution of
actions changes

I state of the world
I state of beliefs of agents

Implementation
I Search algorithm for

computing solutions
I Heuristics

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 106 / 198



Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Logic Language

Intuition: Describe properties of the world
I Fluents F

has key(A) open box

I Fluent Formulae (f ∈ F):

ψ ::= > | ⊥ | f | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ¬ψ | ψ1 ⇒ ψ2

Intuition: Agents and their Knowledge/Beliefs
I Agents AG
I Belief Formulae (f ∈ F , a ∈ AG):

ϕ ::= f | Baϕ | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 ∨ ϕ2

open box ∧ Bbobheads ∧ ¬Bannopen box
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Logic Language
Brief Comment

Ba is a modal operator

Depending on the context, we will read Baϕ as
Agent a knows ϕ

or
Agent a believes ϕ
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Logic Language

Group Formulae

How to express statements like
“Everyone knows/believes that the box is open”?

Group Belief (α ⊆ AG): Eαϕ

I E{bob,ann}heads
I Intuition: Eαϕ ≡

∧
a∈α ϕ

Common Belief (α ⊆ AG): Cαϕ

I C{ann,bob,tom}has key(bob)
I Intuition: Cαϕ ≡ E∗αϕ

Definition

Language L(AG,F)
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Semantics

Traditional Propositional Logic: valuation

V : F → {true, false}

Let VF set of all valuations over F .

Kripke Structure: M = 〈S , π,Ba∈AG〉
I S 6= ∅ set of worlds (denoted M[S ])
I π : S → VF (denoted M[π])
I For each a ∈ AG: Ba ⊆ S × S (denoted M[a])

State: (M, s) where
I M is a Kripke structure
I s ∈ M[S ] — the “real” state of the world
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Semantics
Example

A,B A,B,C

heads→true
open_box→false

... 

A,B,C

heads→true
open_box→false

….

heads→false
open_box→false

….

C

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 111 / 198



Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Semantics
Example

M[S ] = {s0, s1}

M[π](s0) =


heads→ true, open→ false,
has key(A)→ true, has key(B)→ false,
has key(C)→ false


M[π](s1) =


heads→ false, open→ false,
has key(A)→ true, has key(B)→ false,
has key(C)→ false


M[A] = M[B] = M[C ] = {(s0, s0), (s1, s1), (s0, s1), (s1, s0)}
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Semantics
Entailment

(M, s) |= f iff M[π](s)(f ) = true

(M, s) |= ϕ1 ∧ ϕ2 iff (M, s) |= ϕ1 and (M, s) |= ϕ2

(M, s) |= ¬ϕ iff (M, s) 6|= ϕ

(M, s) |= Baϕ iff for all t such that (s, t) ∈ M[a] we have (M, t) |= ϕ

(M, s0) |= heads
(M, s1) |= ¬heads
(M, s0) |= BAheads
(M, s0) 6|= BBheads
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Semantics: Entailment
Group Formulae

(M, s) |= Eαϕ iff ∀a ∈ α we have (M, s) |= Baϕ

(M, s) |= Cαϕ iff (M, s) |= E k
αϕ for k ≥ 0

I E 0
αϕ ≡ ϕ

I E k+1
α ≡ Eα(E k

αϕ)
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Semantics: Axioms

K: (Baϕ1 ∧ Ba(ϕ1 ⇒ ϕ2))⇒ Baϕ2

D: ¬Ba⊥
4: Baϕ ⇒ BaBaϕ

5: ¬Baϕ ⇒ Ba¬Baϕ

T: Baϕ ⇒ ϕ

Some typical axiomatic systems:

KD45: Considered typical modeling of Beliefs

KT45 (S5): Modeling of Knowledge
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Semantics: Axioms

Implications on Kripke Structure M:

KD45: All accessibility relations M[a] are
I Serial: for each s ∈ M[S ] there is a t such that (s, t) ∈ M[a]
I Transitive
I Euclidean: for all (s, t) ∈ M[a] and (s, u) ∈ M[a] then (t, u) ∈ M[a]

S5: all accessiblity relations M[a] are
I Reflexive
I Symmetric
I Transitive
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Action Models
A Logic of Communication and Change

L(AG,F)-Substitution:

{f 7→ ϕ | f ∈ F , ϕ ∈ L(AG,F)}

SUBL set of all L(AG,F)-Substitutions
An action occurrence could be perceived as different event by

different agent.

Action Model: Σ=〈Σ,Ra∈AG , pre, sub〉 where

Σ is a set of events

for each a ∈ AG we have that Ra ⊆ Σ× Σ

pre : Σ→ L(AG,F) (preconditions)

sub : Σ→ SUBL (substitutions)

Action Instance: (Σ, e) with e ∈ Σ
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Action Models
Examples
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Action Models
Examples
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Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Updates

Given

M = 〈S , π,Ba∈AG〉 Kripke Structure

Σ = 〈Σ,Ra∈AG , pre, sub〉 Action Model

Update of M by Σ, M ′ = M ⊗Σ:

M ′[S ] = {(s, e) | s ∈ M[S ], e ∈ Σ, (M, s) |= pre(e)}
((s0, e0), (s1, e1)) ∈ M ′[a] iff

I (s0, e0) ∈ M ′[S ] and (s1, e1) ∈ M ′[S ]
I (s0, s1) ∈ M[a]
I (e0, e1) ∈ Ra

M ′[π](s, e)(f ) = true iff f 7→ ϕ in sub(e) and (M, s) |= ϕ
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Updates
Example

head head ¬head
A,B

A,BA,B

σ 

pre: head

A,B σ 

pre: head

A t

pre: T

A,BB

head head 
A,B

= =

s1
s2

(s1,s)

¬head

A,B
A,BA,B

head head 

head

(s1,s)

(s2,t)(s1,t)

B B
A

head ¬head
A,B

A,BA,B

σ 

pre: head

A,B σ 

pre: head

A t

pre: T

A,BB

head 
A,B

= =

s1
s2

(s1,s)

¬head

A,B
A,BA,B

head 

head

(s1,s)

(s2,t)(s1,t)

B B
A
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The Language mA∗: Why?

Kripke structure is suitable for reasoning about knowledge and beliefs
of multi-agents.

Action model could be used for representing and reasoning about
actions and changes
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The Language mA∗: Syntax
Motivations

Back to the Example

Suppose that the agent A would like to know whether the coin lies heads
or tails up. She would also like to let the agent B know that she knows
this fact. However, she would like to keep this information secret from C.

1 Distract C from looking at the box;

2 Signal B to look at the box if B is not looking at the box;

3 Open the box; and

4 Peek into the box.
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The Language mA∗: Syntax
Motivations

Challenges:

Solid logical foundations—model-theoretic, not amenable to
implementation in a search-based planner

DEL:
I Action Models are really more like action occurrences
I May require infinitely many conditional effects to account for all

possible perceptions of the action
I Even when finite, Action Models may have to be big

F Extreme case: B has no idea about whether A performs open or peek;
nor what A knows about B’s perception of this; nor... ⇒ action model
is infinite

Goal

Knowledge Representation = Representation + Reasoning
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The Language mA∗: Syntax
Motivations

A has looked at the coin, while both B and C are distracted, and A can
announce whether the coin lies heads up. However, only agents who are
attentive could listen to what A says. Thus, the action occurrence can
have different effects on the beliefs of the other agents—e.g., whether the
agent is attentive to A.

!

A,B,C

! "B,C

A A,B,C

pre: head pre: # 

! "C

A,B A,B,C

pre: head pre: # 
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mA∗: Syntax
Basics

Language components:

AG set of agent names—e.g., A, B, . . .

F set of fluents—e.g., heads, has key(A), looking(B)

A set of actions—e.g., open, signal(C)
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The Language mA∗: Syntax
Actions

Action Instance

a︸︷︷︸
a∈A

〈α〉︸︷︷︸
α⊆AG

Intuition: action a jointly executed by agents α

Executability Conditions

executable a〈α〉︸︷︷︸
action
instance

if ϕ

Example: executable open〈x〉 if has key(x)
executable signal(y)〈x〉 if looking(x) ∧ ¬looking(y)
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Actions
Action Types:

World Altering (ontic): a〈α〉 causes ` if ϕ

signal(y)〈x〉 causes looking(y)

Sensing: a〈α〉 determines f

peek〈x〉 determines heads

Annoucement: a〈α〉 announces ϕ

shout head〈x〉 announces head

Comparing to a
The set of agents is attached.

Announcement action.
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The Language mA∗: Syntax
Visibility
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Syntax
Visibility

Visibility of Action Effects:

Full Observers: x observes a〈α〉 if ϕ

y observes open〈x〉 if looking(y)

Partial Observers: x aware of a〈α〉 if ϕ

y aware of peek〈x〉 if looking(y)

Oblivious
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Syntax
Visibility

Action Type Full Observers Partial Observes Oblivious
Ontic

√ √

Sensing
√ √ √

Announcement
√ √ √
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Syntax
Domain

Domain

A mA∗ domain is a collection of executability statements, action
descriptions, and visibility statements.

Assumption: action domains are consistent, i.e., for each pairs of action
descriptions

a causes f if ϕ a causes ¬f if ψ
and each state (M, s) we have that (M, s) 6|= ϕ ∧ ψ.

Action Theory

A mA∗ theory is a pair (D, I ) where D is a mA∗ domain and I is a
collection of statements of the type

initially ϕ
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Syntax
Example

initially looking(A)
initially C{A,B,C}(looking(A))
initially C{A,B,C}(has key(A))
initially C{A,B,C}(¬BAheads ∧ ¬BA¬heads)
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The Language mA∗: Transition Function

Intuition: Action language semantics typically based on a transition
function:

Φ : Action× State→ 2State

Our goal: ΦD : AI × S → 2S where:

AI : set of all action instances

S : set of all states (i.e., (M, s))
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The Language mA∗: Transition Function
Preliminary Definitions

Frames of Reference: Given state (M, s) and action instance a:
Full(a,M, s) = {x ∈ AG | [x observes a if ϕ], (M, s) |= ϕ}
Part(a,M, s) = {x ∈ AG | [x aware of a if ϕ], (M, s) |= ϕ}
Obl(a,M, s) = AG \ (Full(a,M, s) ∪ Part(a,M, s))

Note: actions change the frame of reference of future actions;

a = peek〈A〉
(M, s)

execution of signal(B)〈A〉 in (M, s) produces state (M ′, s ′) where
I Full(a,M ′, s ′) = Full(a,M, s)
I Part(a,M ′, s ′) = Part(a,M, s) ∪ {B}
I Obl(a,M ′, s ′) = Obl(a,M, s) \ {B}
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The Language mA∗: Transition Function
Action Models

Ontic Actions: Intuition: two possible events
1 (σ) The action is seen by the agents

1 substitution needs to reflect the effects of the action
2 for all agents in Full(a,M, s)

2 (ε) The agents are unaware of the action
1 substitutions make no change
2 for all agents in Obl(a,M, s)
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The Language mA∗: Transition Functions
Example Ontic
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Transition Function
Sensing Actions

Sensing Actions: Intuition: sensing fluent f , three possible events
1 (σ) the action is seen and f is true

1 For all agents in Full(a,M, s)

2 (τ) the action is seen and f is false
1 For all agents in Full(a,M, s)

3 (σ and τ)
1 For all agents in Part(a,M, s)

4 (ε) the agents are unaware of the action
1 For all agents in Obl(a,M, s)

Since no change of world, all substitutions are empty.
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The Language mA∗: Transition Function
Sensing Actions
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Transition Function
Example Sensing: peek(A)
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The Language mA∗: Transition Function
Announcement Actions

Announcement Actions: Intuition: announcing formula ϕ, three possible
events

1 (σ) the action is seen and ϕ is true
1 For all agents in Full(a,M, s)

2 (τ) the action is seen and ϕ is false
1 For all agents in Full(a,M, s)

3 (σ and τ)
1 For all agents in Part(a,M, s)

4 (ε) the agents are unaware of the action
1 For all agents in Obl(a,M, s)

Since no change of world, all substitutions are empty.
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The Language mA∗: Transition Function
Example Announcement: whisper head

!
"

C

A,B

A,B,C
pre: head 

#

A,B

pre: ¬head 

C pre: $ 
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The Language mA∗: Transition Function

Let (E ,Ed) be the action models for action occurrence a in (M, s).

Temptation: Define

ΦD(a,M, s) =
⋃
e∈Ed

(M, s)⊗ (E , e)

But...
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Transition Function
Problem: False Beliefs

f ¬fB

A,BA

!

A,B

pre: f 

f

A

X
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The Language mA∗: Transition Function

Challenge: False beliefs

(M, s) |= φ but (M, s) |= Bi¬ϕ

Repair: Given a Kripke structure M and a set of agents S ,
Repair(M, S , ϕ): for each i ∈ S and s1 such that (M, s1) |= Bi¬ϕ
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The Language mA∗: Transition Function

Execute action instance a = a〈α〉 in (M, s) with action model (E ,ED)

1 action executable in (M, s) if preconditions are satisfied

2 For ontic actions ΦD(a,M, s) = (M, s)⊗ (E ,ED)

3 For sensing actions where (M, s) |= f and f is sensed
ΦD(a,M, s) = Repair(M,Full(a,M, s), f )⊗ (E ,ED)

4 For sensing actions where (M, s) |= ¬f and f is sensed
ΦD(a,M, s) = Repair(M,Full(a,M, s),¬f )⊗ (E ,ED)

5 for announcement action for ϕ then
ΦD(a,M, s) = Repair(M,Full(a,M, s), ϕ)⊗ (E ,ED)
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The Language mA∗: Transition Function
Example

f ¬fB

A,BA

!

A,B

pre: f 

f

A, B

X
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Action Properties: Ontic Actions

a causes ` if ϕ

if x ∈ Full(a,M, s) and (M, s) |= Bxϕ then ΦD(a,M, s) |= Bx`

if x ∈ Obl(a,M, s) and (M, s) |= Bxη then ΦD(a,M, s) |= Bxη

if x ∈ Full(a,M, s) and y ∈ Obl(a,M, s) and (M, s) |= BxByη then
ΦD(a,M, s) |= BxByη

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 147 / 198



Action languages in multi-agent environments (60 mnt – Son) mA*, Kripke structure, update models, and transition function

Action Properties: Sensing Actions

a determines f

if (M, s) |= f then ΦD(a,M, s) |= CFull(a,M,s)f

if (M, s) |= ¬f then ΦD(a,M, s) |= CFull(a,M,s)¬f

ΦD(a,M, s) |= CPart(a,M,s)(CFull(a,M,s)f ∨ CFull(a,M,s)¬f )

if x ∈ Obl(a,M, s) and (M, s) |= Bxη then ΦD(a,M, s) |= Bxη

if x ∈ Full(a,M, s) and y ∈ Obl(a,M, s) and (M, s) |= BxByη then
ΦD(a,M, s) |= BxByη
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Action Properties: Announcement Actions

a announces ϕ and (M, s) |= ϕ

ΦD(a,M, s) |= CFull(a,M,s)ϕ

ΦD(a,M, s) |= CPart(a,M,s)(CFull(a,M,s)ϕ ∨ CFull(a,M,s)¬ϕ)

if x ∈ Obl(a,M, s) and (M, s) |= Bxη then ΦD(a,M, s) |= Bxη

if x ∈ Full(a,M, s) and y ∈ Obl(a,M, s) and (M, s) |= BxByη then
ΦD(a,M, s) |= BxByη
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Initial State

Initial state described by a collection I of statements:

initially ϕ

Single agent domain: If the set of propositions is finite then a theory has
only finitely many finite models.
Existing literature: a single initial Kripke state
Multi-agent domains:

Models of a theory can be infinite.

If a theory is consistent (has a model) then it has a finite model.

Adding common knowledge operator C usually increases complexity.

In multi-modal logics, a theory can have infinitely many infinite
models even for finite set of propositions.
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Initial State

Assumption

Initial state focuses on what is known

Limit attention to S5 states

Some preliminary definitions:

(M, s) model of theory T if (M, s) |= ψ for each ψ ∈ T

(M, s) equivalent to (M ′, s ′): for each ψ ∈ L(AG,F)

(M, s) |= ψ iff (M ′, s ′) |= ψ
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Initial State

More preliminary definitions:

A complete clause over F is a disjunction of literals
∨|F|

i=1 `i where
{fi | `i = fi ∨ `i = ¬fi} = F

Primitive Formulae
1 ϕ fluent formula

2 C (Biϕ) where ϕ fluent formula

3 C (Biϕ ∨ Bi¬ϕ) where ϕ fluent formula

4 C (¬Biϕ ∧ ¬Bi¬ϕ) where ϕ fluent formula

Note:

we write Kiϕ instead of Biϕ

note that C (Kiϕ) is equivalent to C (ϕ)
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Initial State

Primitive Finitary S5-Theory T

T is composed of primitive formulae

For each complete clause ψ of F and agent i , T contains:
I C (Kiψ), or
I C (Kiψ ∨ Ki¬ψ), or
I C (¬Kiψ ∧ ¬Ki¬ψ)

Finitary S5-Theory T

T is a Finitary S5 Theory if there exists a Primitive Finitary S5 theory H
such that T |= H.
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Initial State

Theorem

For a consistent primitive finitary S5-theory T there is a finite set
µModsS5(T ) such that

1 Each model in µModsS5(T ) is finite;

2 Each S5 model (M, s) of T is equivalent to one model in
µModsS5(T ).

Theorem

Every Finitary S5 Theory T has finitely many finite canonicala models, up
to equivalence.

aA model (M, s) is canonical if for each u, v ∈ M[S ] M[π](u) 6= M[π](v).
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Initial State
Example

1 ϕ
1 initially has key(A)
2 initially heads

2 C (Kiϕ)
1 initially C (KAhas key(A))

3 C (Kiϕ ∨ Ki¬ϕ)
1 initially C (KAheads ∨ KA¬heads)

4 C (¬Kiϕ ∧ ¬Ki¬ϕ)
1 initially C (¬KBheads ∧ ¬KB¬heads)

Computing Initial States: [Son et al. (2014)]
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Forward Search Planner [Le et al. (2018)]
EPF and PG-EPF

Components of a forward search planner:

Pre-Processor: Parsing and build data structure

Initial States Computation

Search Module
I EPF: breadth-first search
I PG-EPF: heuristic search planner
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Forward Search Planner

1: Input: A planning problem P = 〈F ,AG,A,O, s0, φg 〉
2: Output: A solution for P if exists; failed otherwise
3: Compute the initial state given s0: (M i ,Wi )
4: Initialize a priority queue q = [({(M i ,Wi )}, [])]
5: while q is not empty do
6: (Ω, plan) = dequeue(q)
7: If (M,Wd) |= φg for every (M,Wd) ∈ Ω then return plan
8: for action a executable in every (M,Wd) in Ω do
9: Compute Ω′ =

⋃
(M,Wd )∈Ω ΦD(a, (M,Wd))

10: Compute heuristics and insert (Ω′, plan ◦ a) into q
11: end for
12: end while
13: return failed
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Forward Search Planner
Epistemic Planning Graph

Alternation of Epistemic States Levels (K i ) and Action levels (Ai )
1

1For simplicity focus on deterministic observable theories.
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Forward Search Planner
Epistemic Planning Graph

K i Possibly Entails ϕ
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Forward Search Planner
Epistemic Planning Graph

Ai : Actions Potentially Applicable in K i
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Forward Search Planner
Epistemic Planning Graph

K i = K i−1 ∪
⋃

a∈Ai−1
Results(a,K i )
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Forward Search Planner
Epistemic Planning Graph

Example
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Forward Search Planner
Heuristics

level(φ) smallest level such that K i possibly entails φ
Given φg = φ1 ∧ · · · ∧ φk :

hmax(φg ) = max{level(φi ) | 1 ≤ i ≤ k}
hsum(φg ) =

∑k
i=1 level(φi )
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Forward Search Planner
Some Experiments

Selective Communication: SC(3,4) Selective Communication: SC(5,6) Selective Communication: SC(7,8)
|AG| = 3, |F | = 5, |A| = 7 |AG| = 5, |F | = 7, |A| = 9 |AG| = 7, |F | = 9, |A| = 11

L d MEPK RP-MEP EPF PG-EFP L d MEPK RP-MEP EFP PG-EFP L d MEPK RP-MEP EFP PG-EFP

2
1 .01 .1 .01 .02

2
1 .6 .2 .02 .04

5
1 35 .36 .22 TO

3 .2 .5 .02 .07 3 TO 3.2 .02 .04 3 TO 10.7 .22 TO
5 TO 28 .03 .08 4 TO 51.58 .03 .04 4 TO 292 .24 TO

3
1 .02 .1 .02 .06

4
1 .68 .2 .07 TO

7
1 35 .36 1.9 TO

3 .2 .5 .02 .07 3 TO 3.18 .08 TO 3 TO 10.8 1.92 TO
5 TO 30 .02 .06 4 TO 54.78 .08 TO 4 TO 300 1.9 TO

5
1 .05 .1 .08 TO

6
1 .81 .2 .51 .35

9
1 35.7 .32 23.7 1.86

3 .21 .6 .09 TO 3 TO 3.21 .52 .36 3 TO 12.72 24 1.9
5 TO 28 .1 TO 4 TO 51.81 .51 .34 4 TO 312 23.5 1.93
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Forward Search Planner
Some Experiments

Problem L EFP PG-EFP

CC(2,2,3)
|AG| = 2, |F | = 10, |A| = 16

2 .61 .81
5 48.6 2.5
6 278.6 4.3

CC(2,2,4)
|AG| = 2, |F | = 14, |A| = 22

2 22.2 27.5
4 TO 70
7 TO 160

CC(3,2,3)
|AG| = 3, |F | = 13, |A| = 24

2 3.3 2.3
5 257.9 7.9
6 TO 10.3

CC(3,3,3)
|AG| = 3, |F | = 12, |A| = 21

2 .42 .68
5 115.7 2.27
6 TO 3
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ASP Implementation [Pontelli et al. (2012)]
Representing Formulae and States

τ translate formulae to terms, e.g.,

τ(Bi (f ∧ ¬g)) = b(i , and(f , neg(g)))

Representing state (M, s) at time T as facts
I for each u ∈ M[S ]:

st(u,T )

I to identify start state:
real(s,T )

I for each (u, v) ∈ M[i ]
r(i , u, v ,T )

I if fluent literal ` (M, u) |= `:

h(τ(`), u,T )
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ASP Implementation
Entailment

Extend h

h(or(A1,A2),S ,T ) : − h(A1,S ,T ).
h(or(A1,A2),S ,T ) : − h(A2,S ,T ).

n h(b(I ,A),S ,T ) : − r(I ,S ,S1,T ), not h(A, S1,T ).
h(b(I ,A), S ,T ) : − not n h(b(I ,A),S ,T ).
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ASP Implementation
Initial State

m states in initial Kripke structure

1{size(I ) : between(0, I ,m)}1.
st(I , 0) : − I ≥ 0, I ≤ m.
0{h(F ,S , 0)}1 : − st(S , 0), fluent(F ).
0{r(Ag , S1, S2, 0)}1.
1{real(S , 0) : st(S , 0)}1.
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ASP Implementation
Initial State

For each initially ϕ

: − real(S , 0), not h(τ(ϕ),S , 0).

For each initially C (ϕ)

: − real(S , 0), reach(S , S1, 0), not h(τ(ϕ),S1, 0).

For each initially C (Biϕ ∨ Bi¬ϕ)

: − real(S , 0), reach(S ,S1, 0), r(i ,S1, S2, 0),
not h(τ(ϕ),S2, 0), not h(τ(¬ϕ),S2, 0).

For each initially C (¬Biϕ ∧ ¬Bi¬ϕ)

not agree : − real(S , 0), reach(S ,S1, 0),
h(or(b(i , τ(ϕ)), τ(¬ϕ)),S1, 0).

: − not agree.
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Action languages in multi-agent environments (60 mnt – Son) mA* in epistemic planning

ASP Implementation
Initial State

Finally, ensure that the structure is S5:

r(A,S ,S , 0) : − st(S , 0), agent(A).
r(A,S1,S2, 0) : − r(A, S2,S1, 0).
r(A,S1,S3, 0) : − r(A, S1,S2, 0), r(A, S2,S3, 0).

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 170 / 198



Action languages in multi-agent environments (60 mnt – Son) mA* in epistemic planning

ASP Implementation
Observability

y observes a if ϕ

obs(y , a,T ) : −occ(a,T ), real(S ,T ), h(τ(ϕ), S ,T ).

y partially observes a if ϕ

pobs(y , a,T ) : −occ(a,T ), real(S ,T ), h(τ(ϕ),S ,T ).

otherwise for each agent y and action instance a

oth(y , a,T ) : − action(a), occ(a,T ), not obs(y , a,T ),
not pobs(y , a,T ).
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Action languages in multi-agent environments (60 mnt – Son) mA* in epistemic planning

ASP Implementation
Transition Function

executable a if $

possible(a,T ) : − real(S ,T ), h(τ(ϕ),S ,T ).
: − occ(a,T ), not possible(a,T ).

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 172 / 198



Action languages in multi-agent environments (60 mnt – Son) mA* in epistemic planning

ASP Implementation
Transition Function

Mechanical construction of new Kripke state

S1:
¬tail tail

S2:

S3: S4:

tail

A,B,CA,B,C

A,B,C

C C

C C

A,B A,B

S1:
¬tail tail

S2:

A,B,CA,B,C

A,B,C

¬tail
B

Agent C

Agent B

Agent A
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Action languages in multi-agent environments (60 mnt – Son) mA* in epistemic planning

ASP Implementation
Transition Function – Sensing

Interpretation unchanged

h(L,S ,T + 1) : − occ(a,T ), h(L,S ,T ).
h(L,S + M,T + 1) : − occ(a,T ), h(L, S ,T ).

Duplicate states

st(S ,T + 1) : − occ(a,T ), st(S ,T ).
st(S + M,T + 1) : − occ(a,T ), st(S ,T ).
real(S + M,T + 1) : − occ(a,T ), real(S ,T ).
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Action languages in multi-agent environments (60 mnt – Son) mA* in epistemic planning

ASP Implementation
Transition Function – Sensing

Maintain existing relations in original copy

r(A,S1, S2,T + 1) : −occ(a,T ), r(A,S1,S2,T ).

Fully observant agents have sensed fluent f

r(A, S1 + M,S2 + M,T + 1) : −obs(A, a,T ), occ(a,T ),
r(A,S1,S2,T ), h(f ,S1,T ), h(f ,S2,T ).

r(A, S1 + M,S2 + M,T + 1) : −obs(A, a,T ), occ(a,T ),
r(A,S1,S2,T ), h(neg(f ), S1,T ), h(neg(f ),S2,T ).

Partially aware agents

r(A, S1 + M,S2 + M,T + 1) : −pobs(A, a,T ), occ(a,T ),
r(A, S1,S2,T ).

Oblivious agents

r(A, S1 + M,S2,T + 1) : −oth(A, a,T ), occ(a,T ),
r(A,S1,S2,T ).
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Action languages in multi-agent environments (60 mnt – Son) mA* in epistemic planning

ASP Implementation
Planning

Generation of action sequences

1 {occ(A,T ) : action instance(A)} 1 : −T < n.

Goal Satisfaction ϕ

: −real(S , n), h(τ(ϕ), S , n).
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Action languages in commonsense reasoning (18 mnt - Chitta)

1 Overview: a brief history of action languages (20 mnt - Chitta)

2 Action languages in single agent environments (70 mnt - Son)
The action language A, state, and transition function
AL: A+ static causal laws, non-deterministic and sensing actions
GOLOG
Action languages: related approaches and planning

3 Action languages and causality (30 mnt - Chitta)
Pearl’s do-calculus

4 Action languages in multi-agent environments (60 mnt – Son)
mA*, Kripke structure, update models, and transition function
mA* in epistemic planning

5 Action languages in commonsense reasoning (18 mnt - Chitta)
Commonsense reasoning and actions
Acquiring knowledge about actions

6 Open challenges, conclusion, and discussion (12 mnt - Chitta)
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 1: A Property May Prevent an Action

Sentence: The man couldn’t lift his son because he (pronoun) was so
weak.

Question: Who was weak?

Answer Choices: a) man b) son

Required Knowledge:
person1 is weak may prevent person1 lifts someone

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 178 / 198



Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 2: An Action May Cause an Action

Sentence: The city councilmen refused the demonstrators a permit
because they (pronoun) feared violence.

Question: Who feared violence?

Answers Choices: a) councilmen b) demonstrators

Required Knowledge:
group1 fears violence may cause group1 refuses permit
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 3: A Property May Cause an Action

Sentence: The sculpture rolled off the shelf because it (pronoun) was not
anchored.

Question: What was not anchored?

Answer Choices: a) sculpture b) shelf

Knowledge Needed:
object1 is not anchored may cause object1 is rolled off
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 4: An Action May Cause a Property

Sentence: I took the water bottle out of the backpack so that it
(pronoun) would be handy.

Question: What would be handy?

Answer Choices: a) bottle b) backpack

Required Knowledge:
object1 is taken out of something may cause object1 is handy
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 5: An Action May Prevent an Action

Sentence: Beth didn’t get angry with Sally, who had cut her off, because
she (pronoun) stopped and counted to ten.

Question: Who counted to ten?

Answers: a) Beth b) Sally

Required Knowledge:
person1 counts to ten may prevent person1 gets angry
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 6: An Action May be Followed By an Action

Sentence: The customer walked into the bank and stabbed one of the
tellers. He was immediately taken to the hospital.

Question: Who was taken to the hospital?

Answers: a) teller b) customer

Required Knowledge:
person1 is stabbed may be followed by person1 is taken to hospital

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 178 / 198



Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 7: An Action May be Followed by a Property

Sentence: Sam broke both his ankles and he is walking with crutches.
But a month or so from now they (pronoun) should be unnecessary.

Question: What should be unnecessary?

Answer Choices: a) ankles b) crutches

Required Knowledge:
person1’s ankles are broken and person1 walks with crutches may be
followed by crutches are unnecessary
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 8: A Property May be followed by an Action

Sentence: Thomson visited Cooper’s grave in 1765. At that date he
(pronoun) had been dead for five years.

Question: Who had been dead for five years?

Answer Choices: a) Cooper b) Thomson

Knowledge Needed:
person1 is dead may be followed by person1’s grave is visited
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 9: A Property May Cause a Property

Sentence: Sam and Amy are passionately in love, but Amy’s parents are
unhappy about it, because they (pronoun) are fifteen.

Question: Who are fifteen?

Answer Choices: a) Sam and Amy b) Amy’s parents

Knowledge Needed: person1 is in love and person1 is fifteen years old
may cause person1’s parents are unhappy
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 10: Action-action suggestions

Sentence: Steve follows Fred’s example in everything. He influences him
(pronoun) hugely.

Question: Who is influenced?

Answer Choices: a) Steve b) Fred

Knowledge Needed: person1 follows person2’s example in everything
may suggest person1 is influenced by person2
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some commonsense knowledge types centered around
actions
Action knowledge types from Winograd examples

Action examples and commonsense inferences that can be made from them

Knowledge Type 11: Action-property suggestions

Sentence: The fish ate the worm. It (pronoun) was hungry.

Question: What was hungry?

Answer Choices: a) fish b) worm

Knowledge Needed: animal1 eats something may co-occur with animal1
is hungry
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Some Commonsense knowledge types centered around actions

Agent X does action A on/with-respect-to(w.r.t.) agent Y
Action attribute Condition w.r.t. X w.r.t. Y w.r.t. Others

Conditional effect
of this action

condition
effect of A on
X’s attributes
(xEffect, xReact)

effect of A on
Y’s attributes
(oEffect, oReact)

effect of A on the
environment
(oEffect, oReact)

condition
triggers another
action by X
(xWant)

triggers another
action by Y
(oWant)

triggers another
action by another
agent
(oWant)

Executability
Condition

On X On Y
On other agents
or objects in the
environment

Reflective
Condition

On X
(xAttr)

On Y
On other agents
or objects in the
environment

Triggering or
Preceding actions

Another action
by X
(xNeed)

An action by Y
An action by
another agent

About X’s
properties

About Y’s
properties

About properties
of other agents

Preventing conditions
About X’s
attributes

About Y’s
attributes

About other
agents or objects

Preventing actions
Another action
by X

An action by Y
An action by
another agent

Motivation behind
the action

For a desired
property of X
(xIntent)

For a desired
property of Y

For a desired
property of
the world

To trigger another
action by X

To trigger another
action by Y

To trigger action
by another agent
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Action examples and commonsense inferences that can be
made from them

Event Inference Examples Inference aspect

Person X pays Person Y a complement

Person X wanted to be nice xIntent
Person X will feel good xReact
Person Y will feel flattered oReact
Person X will want to chat with
Person Y

xWant

Person Y will smile oEffect
Person Y will complement
Person X back

oWant

Person is flattering xAttr

Person X makes Person Y’s coffee
Person X needs to put the
coffee in the filter

xNeed

Person X gets thanked xEffect

Person X shakes hand with Person Y
Person Y’s hand is extended New
Person Y extends the hand New

Person X throws a ball to Y Person X had a ball New
Person X marries Person Y X and Y are married New
Person X asks help from Person Y Person Y is approachable New
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Additional kinds of commonsense knowledge centered
around actions

Initiation and termination conditions of non instantaneous (and
possibly continuous) actions such as “falling” and “driving”.

Action modifiers: Commonsense knowledge describing the effect of
“eating”, “eating a little” and “eating a lot” can be different.

Actions may have additional attributes such as implements used in the
action or the objects that are target of the action, and commonsense
knowledge about such actions may depend on the specific implement
used for that action or the specific target of the action.

I The effect of hitting a ball is different from hitting a wall which is
different from hitting a car.

I Hitting with a bat is different from hitting with a sledgehammer which
is different from hitting with a feather.
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Additional kinds of commonsense knowledge centered
around actions

Actions together with expectations about those actions

I “Going to sleep” is expected to follow someone feeling sleepy.
I X feels sleepy but continues to work implies X may have a deadline.
I An action A by X may have many possible reaction by Y, and the

particular reaction that takes place may shed additional light such as
on X’s attributes or Y’s attributes: If X attacks Y and Y cries then the
commonsense conclusion about Y would be different from if X attacks
Y and Y counterattacks or if Y ducks.
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Additional kinds of commonsense knowledge centered
around actions

Commonsense knowledge about “perceptions” or sensing actions

I IF X observes/perceives Z then it will do A,
I IF X observes/perceives Z then it will/may conclude event E will

happen’
I IF X observes/perceives Z then it will conclude C
I If X sees lightning then he will conclude that he will hear thunder soon
I If X sees a carjacking he will call 911
I If X hears his baby crying he will console the baby
I If X sees a riot happening he will run away and call police

Commonsense knowledge about “perceptions” followed by an action

I If X touches his kid’s head and it is burning hot he will go to ER
I If X opens the door and sees a package lying then he will bring it inside
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Action languages in commonsense reasoning (18 mnt - Chitta) Commonsense reasoning and actions

Additional kinds of commonsense knowledge centered
around actions

Commonsense knowledge that associate modalities (intentions,
beliefs, and obligations, etc.) with an agent’s action performed
unilaterally or in response to some perceptions

I X put water on a fire implies X believed that the water will put out the
fire

I X put water on a fire implies X intended to put out the fire
I X does not like to do A, but does it every week without being forced

implies X feels obligated to do A

C. Baral and T. C. Son (ASU & NMSU) The AI Universe of “Actions” IJCAI 2019 184 / 198



Action languages in commonsense reasoning (18 mnt - Chitta) Acquiring knowledge about actions

Knowledge acquisition through crowdsourcing: General
technique

Crowdsourcing commonsense knowledge involves designing a well
defined question answering task.

The question answering task contains a large number of input
problems that are automatically created using existing machine
readable resources ( e.g. Google NGram Corpus, existing knowledge
bases, VerbNet).

Each input problem normally contains a scenario ( normally one or
two sentences or an image ) and a set of easy-to-follow questions
from the context, which are given to the crowd workers.

The crowd workers answers those questions.

Those answers, questions and the original context are then combined
together to form a large commonsense knowledge base.
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Action languages in commonsense reasoning (18 mnt - Chitta) Acquiring knowledge about actions

Knowledge acquisition through crowdsourcing in ATOMIC

The descriptions of events (“PersonX feels sleepy”) are automatically
extracted machine readable resources such as stories, books, Google
Ngrams, and Wiktionary idioms.

A fixed set of manually crafted questions are asked to get information
about these actions. For example, the question “What does PersonX
most likely want to do after this event?” seeks knowledge about
possible effects.

But the current work does not ask some important questions.
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Action languages in commonsense reasoning (18 mnt - Chitta) Acquiring knowledge about actions

Going beyond ATOMIC: An example to collect knowledge
about unexpected scenarios.

Input may describe “PersonX feels sleepy” with an optional list of
events that normally follows the scenario ( e.g. “PersonX goes to
bed”, “PersonX closes PersonX’s eyes”) and

then ask the crowd worker to describe what might be an abnormal
outcome (e.g. “ PersonX continues working”) and some most
probable explanations (e.g. “PersonX has an impending deadline”)
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Open challenges, conclusion, and discussion (12 mnt - Chitta)

1 Overview: a brief history of action languages (20 mnt - Chitta)

2 Action languages in single agent environments (70 mnt - Son)
The action language A, state, and transition function
AL: A+ static causal laws, non-deterministic and sensing actions
GOLOG
Action languages: related approaches and planning

3 Action languages and causality (30 mnt - Chitta)
Pearl’s do-calculus

4 Action languages in multi-agent environments (60 mnt – Son)
mA*, Kripke structure, update models, and transition function
mA* in epistemic planning

5 Action languages in commonsense reasoning (18 mnt - Chitta)
Commonsense reasoning and actions
Acquiring knowledge about actions

6 Open challenges, conclusion, and discussion (12 mnt - Chitta)
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Open challenges, conclusion, and discussion (12 mnt - Chitta)

Summary

Action and change has been thought about from pre-Plato, Aristotle
days

AI approach to action and change has its foundations from Leibniz
and Newton (frame problem)

Since the early days of AI there has been a lot of progress in
reasoning about action and change and planning - many theories and
many systems

But all assume input is given in a formal way

Actions also play an important role in Probabilistic reasoning and
statistical inference: But currently only a limited form of action do(l)
- meaning making l true - is being considered
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Open challenges, conclusion, and discussion (12 mnt - Chitta)

Challenges

Challenge 1: How to consider more general actions in the context of
statistical inference

Natural language understanding (NLU) and Question answering (QA)
has a symbiotic relationship with research in reasoning about actions
(RAC)

1 Research in RAC is useful in Natural language QA (NLQA)
2 NLQA suggest many new challenges in RAC

Challenge 2: Using research in RAC for better QA and NLU

Challenge 3: Address RAC issues suggested by NLQA

Challenge 4: Lot of issues in RAC and planning in the multi-agent
domain
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Open challenges, conclusion, and discussion (12 mnt - Chitta)

Some Interesting directions in multi-agent domains

1 Deception:
I Announcing ϕ implies (M, s) |= ϕ
I Lies: announce ϕ such that (M, s) |= ¬ϕ
I Bullshit: announce ϕ such that (M, s) 6|= ϕ and (M, s) 6|= ¬ϕ

2 Static Causal Laws
3 Alternative semantic characterizations

I Non-well-founded set theory
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Open challenges, conclusion, and discussion (12 mnt - Chitta)
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Open challenges, conclusion, and discussion (12 mnt - Chitta)
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