
A Tool for Knowledge Base Integration and Querying

Omar Elkhatib, Enrico Pontelli, Tran Cao Son
Department of Computer Science

New Mexico State University
{okhatib | epontell | tson }@cs.nmsu.edu

Abstract

We present a system (ASP−PROLOG) which provides a
tight and well-defined integration of a multi-paradigmlogic
programming system(CIAO Prolog) andAnswer Set Pro-
gramming (ASP). The combined system allows the dy-
namic exchange of information between modules encoded
using different logic programming paradigms. Each module
might support a different form of reasoning (e.g., constraint
solving, non-monotonic reasoning, functional-style computa-
tions), and modules are dynamic in nature, allowing a natural
exchange of results and knowledge between them.

Introduction
In recent years, we have witnessed the development of sev-
eral efforts to incorporate semantics and knowledge-based
reasoning in question and answering (QA) systems (e.g.,
(Harabagiu 2001; Vicedo 2000; Pasca 2000)). This is nec-
essary as queries, e.g., concerning actions, require the abil-
ity to deal with domain and commonsense knowledge, of-
ten not explicit in the text being processed. It is impractical
to expect a single-paradigm framework to provide features
that adequately support all forms of knowledge represen-
tation and reasonings. For example, commonsense knowl-
edge can be nicely represented and manipulated using a non-
monotonic logic programming language (e.g.,Answer Set
Programming (ASP)), but this framework is inadequate to
deal with numeric reasoning or with reasoning based on pro-
cessing large corpora. Thus, making an effective use of dis-
tinct sources of knowledge in QA tasks requires the ability to
combine different models of knowledge representation and
allow them to interact during the QA tasks.

Systems like CIAO Prolog (Hermenegildoet al. 1999)
provide, through an articulated module system, the ability
to develop communicating modules, that employ different
flavors of logic programming. For example, in the case of
CIAO, we can integrate traditional Prolog modules, modules
based onConstraint Logic Programming (CLP)(over Finite
Domains or over Reals), and modules with fuzzy logic pro-
gramming capabilities. On the other hand, CIAO, as well
as all the other general Prolog environments, do not provide
any direct support for logic-based paradigms that naturally

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

support commonsense and non-monotonic reasoning—such
as Answer Set Programming (Niemela 1999). ASP is a com-
putation paradigm in which logical theories serve as prob-
lem specifications and solutions are represented bycollec-
tions of minimal models (answer sets)—a significant depar-
ture from the traditional goal-oriented and tuple-at-a-time
view of computations of Prolog and CLP.

Most existing ASP inference engines are stand-alone sys-
tems, and have been extended to provide front-ends that are
suitable to encode different types of knowledge. In spite of
these extensions, there are aspects of reasoning that cannot
be conveniently expressed in ASP:
• The development of an ASP program is mostly viewed

as a monolithic batch process, and it does not support an
interactive development of programs (as it is possible in
the case of Prolog), where one can immediately explore
the results of simply adding/removing rules.

• ASP systems offer very limited capabilities for reason-
ing on thewhole classof answer sets associated to a pro-
gram, e.g., to perform selection of models according to
user-defined criteria. These activities are very important
in many application domains—e.g., to express soft con-
straints and preference on models.

• ASP systems require grounding of programs before the
computation of the answer sets—thus, making reasoning
in presence of large domains (e.g., reasoning about num-
bers) impractical.

• ASP systems are independent systems; interaction with
other languages can be performed only through low level
and complex APIs.

We propose a system, calledASP−PROLOG, that repre-
sents a tight and semantically well-defined integration of
ASP in Prolog. The language is developed using the mod-
ule and class capabilities of CIAO Prolog.ASP−PROLOG
allows programmers to assemble a variety of different mod-
ules to create a program; along with the traditional types
of modules supported by CIAO Prolog, it allows the pres-
ence of an arbitrary number ofASP modules, each being a
collection of ASP rules and facts. Each Prolog module can
access any ASP module (using the traditional module qual-
ification of Prolog), read its content, access its answer sets,
and modify it (using the traditionalassert andretract
predicates).

Brief Semantic Foundations
Let us consider a language signature〈F ,V, Π〉, where
• V is a denumerable set of variables;
• F is a set of function symbols; in particular,F = FP ∪
FA ∪ FC , whereFP are calleduser functions,FA are
calledASPfunctions, andFC are calledinterfacefunc-
tions. We assumeFA ⊆ FP andFA finite.

• Π is a set of predicate symbols, andΠ = ΠP ∪ΠA∪ΠC ,
wheretrue , false ∈ ΠP ∩ ΠA, ΠP are calleduser-
definedpredicates,ΠA are calledASP-definedpredicates,
andΠC are calledInterfacepredicates. In this work, we
will focus onΠC = {assert , retract , models }.

• FA ∪ΠA ⊆ FC .
We denote withar(f) the arity off ; we assume that∀f ∈
FA : ar(f) = 0, andassert , retract , andmodels
are all unary predicates.

The language adopted is multi-sorted, and it is based on
the two sortsP (Prolog) andA (ASP). Each function (pred-
icate) symbolf in FP (ΠP) has sortPar(f) → P (Par(f)).
Each function (predicate) symbolf in FA (ΠA) has sort
Aar(f) → A (Aar(f)). Also, the symbols inFA and ΠA

are of sortA ∪ P. The sortA is used to identify terms and
atoms that belong to ASP modules, whileP is used for the
construction of Prolog modules. We assume that terms and
atoms are well-formed w.r.t. sorts. An atom built using sym-
bols fromΠA andFA ∪ V is called anASP-atom; an atom
built using symbols fromFP ∪V andΠP is called aProlog-
atom; an atom built using symbols fromFC ∪ V andΠC is
anInterface-atom.

Definition 1 An ASP-literal is an ASP-atomA or its
negation-as-failure (i.e.,not A). An ASP clausehas the
formA :− L1, . . . , Ln whereA is a ground ASP-atom, and
L1, . . . , Ln are ground ASP-literals.

Definition 2 AnASP constraintis a conjunctionL1 ∧ . . .∧
Lk of primitive ASP constraints of the type:
• an ASP-literal (A or not A); or
• a formula of the typeα : L whereα is a Prolog term and
L is an ASP-literal.

Definition 3 An Interface constraint is a conjunction
L1 ∧ . . . ∧ Lk (k ≥ 0) of primitive interface con-
straints of the type assert (A :−B1, . . . , Bn) or
retract (A :−B1, . . . , Bn) or models (t), where
A :−B1, . . . , Bn is an ASP clause,t is a P-term.

Definition 4 AASP−PROLOG rule is a formula:
H :− C1, C2 [] B1, . . . , Bk

whereH, C1, C2, andB1, . . . , Bk are a Prolog-atom, an
ASP-constraint, an Interface constraint, and Prolog-atoms,
respectively. A staticASP−PROLOG rule is a rule that
does not containassert or retract .

Definition 5 An ASP−PROLOG program1 is a pair
〈Pr,As〉 wherePr is a set ofASP−PROLOG rules and
As is a set of ASP rules. A static program is a program
〈Pr,As〉 where all rules inPr are static.

1For simplicity, we focus on a single ASP module.

Operational Semantics
Let us denote withHA (HP) the Herbrand universe built us-
ing the symbols inFA (FP). The notationH will represent
the complete Herbrand universe. We will also use the nota-
tionBA (resp.BP , B) to denote the Herbrand base obtained
from the symbols ofFA ∪ ΠA (resp. FP ∪ ΠP , F ∪ Π).
Let us start by focusing on static programs. The absence of
assert and retract guarantees that the content of the
As part of the program will remain unchanged throughout
the execution.

Let P = 〈Pr,As〉 be a staticASP−PROLOG pro-
gram. The componentAs is a standard answer-set program
(Niemela 1999); let us denote with

M(As) = {M ⊆ BA | M is an answer set ofAs}
The semantics forP can be derived as a natural exten-

sion of the semantics of pure logic programming; the notion
of model should simply be extended to accommodate for
the meaning of ASP-constraints and interface constraints.
The only additional element we require is a map used to
“name” the models of theAs part of the program. Let
ν : M(As) → HP be an injective function, called the
model-naming function. Then, a pairI = 〈M, ν〉 is a model
of the program ifM ⊆ BP and it satisfies all thePr rules;
I satisfies a ground primitive ASP-constraint and interface
constraint if:
• A is an ASP-literal, then〈M, ν〉 |= A iff
∀S ∈M(As) (S |= A)

• A is an ASP-constraint of the formt : B, then〈M,ν〉 |=
A iff ∃S ∈M(As) (ν(S)=t ∧ S|=B)

• A is a primitive interface constraint of the
type models (t), then 〈M, ν〉 |= A iff ∃S ∈
M(As) (ν(S)=t)

It is easy to extend these definitions to entailment of an arbi-
trary goal and to define the concept of satisfaction of clauses.
Given a fixed model naming functionν, there is a unique
minimal model〈M, ν〉 of P , according to the orderingv
defined as:〈M1, ν〉 v 〈M2, ν〉 iff M1 ⊆ M2.

Let us now proceed in extending the semantics structure
when updates to the ASP theory are allowed through the
assert and retract interface constraints. We will fo-
cus on an operational semantics. LetR be acomputation
rule (Lloyd 1987)—i.e., a functionR : B∗ → B which is
used to select a subgoal.

Definition 6 A stateis a tuple〈G, σ, τ, As〉 where
• G ∈ B∗ is called thegoal list
• σ is a substitution(i.e., a function fromV toH)
• τ is a (partial) functionτ : HP → 2BA called model
retrieval function
• As is an ASP-program.

Given a programP = 〈Pr,As〉, theinitial stateis the tuple
〈G0, ε, τ0, As〉, whereG0 is the initial goal,ε is the empty
substitution, andτ0 is the function that is undefined for every
input.

Given a listĀ, we denote with[Ai/B]Ā the list obtained by
replacing the elementAi with the elementB, and withĀ\Ai

the list obtained by removingAi. Entailment is defined via
a transition relation between states.

Definition 7 Let 〈G, σ, τ, As〉 be a state. The relation
〈G, σ, τ, As〉 `R 〈G′, σ′, τ ′, As′〉

holds ifR(G) = A and:
• if A is a P-atom, then there is a ruleH :− B̄ ∈ Pr, such
thatθ = mgu(A,H), σ′ = σ ◦ θ, τ = τ ′, As = As′, and
G′ = ([A/B̄]G)θ.
• if A is an ASP-literal, then there is a ground substitution
θ for A such that∀S ∈ M(As) (S |= Aθ), G′ = (G \
{A})θ, σ′ = σ ◦ θ, τ ′ = τ , As′ = As.
• if A is of the formt : H, then there is a ground-
ing substitutionθ for t : H such thatτ(tθ) is defined,
τ(tθ) ∈ M(As), τ(tθ) |= Hθ, G′ = (G \ {A})θ,
σ′ = σ ◦ θ, τ = τ ′, As = As′.
• if A is of the formmodels (t), then there is a grounding
substitutionθ for t such thatτ(tθ) is defined,τ(tθ) ∈
M(As), G′ = (G \ {A})θ, σ′ = σ ◦ θ, τ ′ = τ , and
As′ = As.
• if A is of the formassert(r) , thenG′ = G \ {A},
σ′ = σ, As′ = As ∪ {r}, K is a set of terms fromHP

(model names) such that|K| = |M(As′)| and
− for eacht ∈ K we have thatτ(t) is undefined
− s1, . . . , sr is an enumeration ofK
− S1, . . . , Sr is an enumeration ofM(As)
− τ ′ = τ ◦ {s1 7→ S1, . . . , sr 7→ Sr}
• if A is of the formretract (r), θ is a grounding sub-
stitution such thatrθ ∈ As, then G′ = (G \ {A})θ,
σ′ = σ ◦ θ, As′ = As \ {rθ}, K is a set of terms from
HP (model names) such that|K| = |M(As′)|
− for eacht ∈ K we have thatτ(t) is undefined
− s1, . . . , sr is an enumeration ofK
− S1, . . . , Sr is an enumeration ofM(As)
− τ ′ = τ ◦ {s1 7→ S1, . . . , sr 7→ Sr}

Given a programP = 〈Pr,As〉 and a goalG, we say that
P |= Gσ iff 〈G, ε, τ0, As〉 `∗R 〈∅, σ, τ, As′〉.

TheASP−PROLOG System
TheASP−PROLOG system has been developed as an ex-
tension of the CIAO Prolog system (Hermenegildoet al.
1999). The choice of CIAO was fairly natural, being a flex-
ible Prolog system, with a rich set of features aimed at fa-
cilitating the extension of the language (e.g., module system
and object oriented capabilities). ASP modules are handled
by Smodels(Niemela 1999).

Concrete Syntax
The abstract syntax presented in the previous section has
been refined in the implementation ofASP−PROLOG
to better match the characteristics of Prolog. Each
ASP−PROLOG program is composed of a collection of
modules. We recognize two types of modules:Prolog
modules—which contain standard CIAO Prolog code—and
ASPmodules—each containing an ASP program. We will
use an ASP program—calledplan.lp —that solves plan-
ning problems in the block world domain, as a running ex-
ample to illustrate the most important syntactically features
of our system. For our purpose, it is enough to know that
plan.lp consists of rules specifying the initial configura-
tion, the goal configuration, and the effects of the actions

(e.g.,move(a, b) will make a on b if nothing is on top of
b, a) in this domain. The program has a parameter (steps)
that determines the length of the plan. An execution of this
program is obtained by issuing

lparse -c steps=5 plan.pl | smodels 0
which will return all the answer sets ofplan.pl , each cor-
responding to a plan of length 5. We will now detail the
syntax ofASP−PROLOG.

Module Interface Prolog modules are required to declare
their intention to access any ASP modules; this is accom-
plished through the declarations

:− use asp (modulename, file name, parameters)

where themodulenameis the name used to address the ASP
module,file nameis the file containing the ASP code, and
parametersis a list of name/value parameters, to be passed
to the ASP module.

Example 1 A CIAO module might refer to the ASPplan
module as follows:
:- module(program1, [blocks solve/0]).
:- use asp(plan,’plan.lp’,[steps(0)]).
The first line defines the CIAO module namedprogram1
which exports the predicateblocks solve . The second
line declares thatprogram1 will access the ASP module
plan with parametersteps whose value is initiated with 0.

Interface Constraints A number of predicates allows
Prolog modules to query and manage ASP modules:
• model/1 : in ASP−PROLOG, models of an ASP mod-

ule can be retrieved using names;model binds its ar-
gument to the term representing the (internal) name of a
model. This predicate has to be qualified with the ASP
module on which it is meant to be applied. E.g., the goal
plan:model(Q) will instantiate the variableQ with the
(name of the) first model ofplan.pl . The goal will fail
if the programplan.pl does not have an answer set.

• total answer sets/1 : the predicate is satisfied if
the argument is the number of answer sets of the ASP
module. E.g., plan:total answer sets(X), X>0
succeeds ifplan.pl has at least one answer set.

• assert/1 and retract/1 : the argument of these
predicates is a list of ASP rules. The effect ofassert is
to add all the rules in the list to the ASP module, while
retract will remove the rules from the ASP module.
For example, if we are interested only in plans that do not
move blocka on the table during their execution, we can
add an ASP-constraint that prevents the occurrence of the
actionmove(a, table). From Prolog, we can issue
plan:assert([:-move(a, table, T), time(T)])
which will add the constraint “:-move(a, table,
T), time(T). ” to plan.pl . We provide also
non-backtrackable versions of these predicates
(assert nb/1 and retract nb/1), where the
ASP updates are not undone upon backtracking.

• change parm/1 : most ASP inference engines allow
the user to specify (typically as command-line arguments)
various parameters that affect the ASP computation (e.g.,
initial value for constants). The predicatechange parm
allows the user to read and modify the value of such pa-

rameters dynamically. The following Prolog fragment al-
lows us to change thesteps parameter ofplan.pl :
blocks solve :-

plan:total answer sets(X), X>0,
chk condition(1, X, Q),
print solution(Q, 0).

blocks solve :-
plan:change parm([steps(V)]),
V1 is V+1, plan:change parm([steps(V1)]),
blocks solve.

Here,chk condition will check whether a plan sat-
isfies certain condition or not andprint solution
will print the solution to the screen. The first call to
change parm will instantiateV to the current value of
steps , while the second will modify the value of the
constant.

• compute/2 : this predicate has been introduced to
specifically match another control feature provided by
Smodels—it allows the presence of a compute statement,
used to establish bounds on the number of models and to
specify elements that have to be present in all the mod-
els. Thecompute predicate allows the Prolog module to
dynamically affect these properties. For example, if we
want to limit the maximum number of models to 3 in the
ASP moduleplan and have all models containp, then
we can issue the goalplan : compute(3,[p]).

• clause/2 : this predicate is used to allow a Prolog mod-
ule to access the rules of an ASP module—in the same
spirit as theclause predicate is employed in Prolog to
access the Prolog rules present in the program. The two
arguments represent respectively the head and the body of
the rule.
Example 2 Let us assume that the ASP modulexyz con-
tains the following rules forp: p(a) :− q(a), r(a) and
p(b) :− r(b). Then the Prolog goalxyz:clause(p(X),
Y) has two solutions:

{X 7→ a, Y 7→ (q(a), r(a))} {X 7→ b, Y 7→ r(b)}
Observe that, due to the fact that the syntax ofSmodelsis
not ISO-compliant, certainSmodelsconstructs (e.g., car-
dinality and weight constraints) have a slightly different
syntactic representation when used within Prolog modules.
For example, if an ASP module (e.g., moduleplan) con-
tains the rulep :− 1{r, s, t}2. then the execution of the goal
plan:clause(p,X) will produce the substitution

{X 7→′ {}′(1, (r, s, t), 2)}.
ASP Constraints The syntax used to express ASP con-
straints is the same one described in the abstract syntax.
E.g., if we would like to find plans that do not move block
a to the table (represented by the atommove(a, table, t)
wheret is some number between0 andsteps), we can use
the following rules:

chk condition(Y, , Q) :-
plan:model(Y, Q), chk cond(Q), !.

chk condition(Y,X,Q):-Y=<X,Y1 is Y+1,
chk condition(Y1, X, Q).

chk cond(Q) :-
Q: move(a, table,), !, fail.

chk cond().
The next group of rules extract a plan from an answer set

and display it on the screen:
print solution(Q, T) :-

Q:move(, , T), !, print sol(Q, T),
T1 is T+1, print solution(Q, T1).

print solution(,).
print sol(Q, T) :- Q:move(X, Y, T),

format(‘‘ ∼q on ∼q time ∼q’’,
[X,Y,T]), nl, fail.

print sol(,).

System Implementation
The system is composed of two parts, apreprocessorand
the actual CIAO Prolog system.

Preprocessing The input to the preprocessor is composed
of (i) the main Prolog module (Pr); (ii) a collection of CIAO
Prolog modules (m1,m2, . . . , mn); and(iii) a collection of
ASP modules (e1, e2, . . . , em). The output of the preproces-
sor is: a modified version of the main Prolog module (NP);
for each CIAO Prolog modulemi, a modified CIAO Prolog
versionnmi; and for each ASP moduleei, a CIAO module
(imi) and a class definition (ci).2

The transformation of the Prolog modules consists of a
simple rewriting process, used to adapt the syntax of the in-
terface constraints and make it compatible with CIAO Pro-
log’s syntax. For example, the rules passed as arguments to
assert andretracts have to be quoted to allow the pe-
culiarities of ASP syntax to be accepted. The transformation
of each ASP module leads to the creation of two entities that
will be employed during the actual program execution: an
interface moduleand amodel class. These are described in
the following subsections. The preprocessor will also auto-
matically invoke the CIAO Prolog toplevel and load all the
appropriate modules for execution. The interaction with the
user is the same as the standard CIAO Prolog toplevel.

Public Part
Export List

Private
Data

Module
Initialization

* access ASP file & parameters
* computation of initial models
* generation of model objects
* interface initialization

MODELS
* Internal ASP Program representation
* Model Objects
* Backtracking checkpoints
* Support Tables

* interface predicates
 - assert/1, assert_nb/1
 - retract/1, retract_nb/1
 - models/2, total_stable_models/1
 - compute/2, change_parm/1

Figure 1: Structure of the Interface Module

Interface Modules The preprocessor generates one inter-
face module for each ASP module present in the original
input program. The interface module is implemented as a
standard CIAO Prolog module and it provides the client Pro-
log modules with the predicates used to access and manage
the ASP module. The interface module is created for each
ASP module by instantiating a generic module skeleton.

The overall structure of the interface module is illustrated
in Figure 1. The module has an export list which includes

2CIAO provides the ability to define classes and create class
instances (Pineda & Bueno 2002).

all the predicates used to manipulate ASP modules (e.g.,
assert , retract , model) as well as all the predicates
that are defined within the ASP module.

The definition of the various exported predicates (except
for the predicates defined in the ASP module) is derived by
instantiating a generic definition of each predicate. Each
module has an initialization part, which is in charge of set-
ting up the internal data structures and invoke the ASP solver
(Smodels) for the first time on the ASP module. The result
of the computation of the models will be encoded as a col-
lection of Model Objects(see the description of the Model
Classes in the next subsection). The module will maintain
a number of internal data structures, including a represen-
tation of the ASP code, a representation of the parameters
to be used for the computation of the answer sets (e.g., val-
ues of constants), a list containing the objects representing
the models of the ASP module, a counter of the number of
answer sets currently present, etc.
Model Classes The preprocessor generates a CIAO class
definition for each ASP module. The objects obtained from
the instantiation of such class will be used to represent the
individual models of the ASP module. Prolog modules can
obtain reference to these objects (e.g., using themodel
predicate supplied by the interface module) and use them
to directly query the content of one model. The definition
of the class is obtained through a straightforward parsing of
the ASP module, to collect the names of the predicates de-
fined in it; the class will provide a public method for each of
the predicates present in the ASP module. The class defines
also a public methodadd/1 which is used by the interface
module to initialize the content of the model.

Each model is stored in one instance of the class; the ac-
tual atoms representing the model are stored internally in the
objects as facts of the forms(〈fact 〉).

Examples

Planning: Let us continue with the example of the block-
world planning problem. We have three blocksa, b andc .
Initially, block a is on blockb, block b is on the table and
block c is on the table. The goal state is: blockb is on c ,
blockc is ona and finally blocka is on the table. The objec-
tive is to determine what block moves (represented by facts
of the typemove(source,destination,time)) are
required to achieve the goal state—assuming that we can
move only one block at a time, and we can move only blocks
that are not covered by other blocks. The Prolog module al-
lows the user to
• use the Prolog program to explore the space of possible

plans—e.g., if we do not want to accept plans that move
blocka to blockb, then we can add the goal
setof(T,(plan:model(Y,Q),Q:move(a,b,T)),[])

which will determine a model (if any) that does not con-
tain any fact of the formmove(a,b,T) .

• we can perform selection of models according to
some quantitative criteria. For example, if we as-
sume that eachmoveop action has a cost—i.e.,
the facts generated during planning have the form
move(source,dest,time,cost) , then the follow-

ing code can be used to select the most expensive plan un-
der $5000:
setof(X,plan:model(X),List),

find plan(List,P,Cost), Cost < 5000.
find plan([], ,5000).
find plan([M|Rest],MM,MC) :−

find plan(Rest,M1,C1),
findall(C,M:move(, , ,C),Costs),
sum list(Costs, Cost),
(Cost > C1, Cost < 5000 ->

MM = M, MC=Cost; MM = M1, MC=C1).

QA with Multiple Knowledge Sources: Let us elaborate
the travel domain QA problem described in (Baral et al.
2005). The problem is to model a travel domain, spec-
ify an instance wherejohn is traveling fromparis to
baghdad , and perform reasoning about consequences of
the travel (e.g., location of his laptop depending on whether
john was arrested during the trip).
Traveling Domain and Commonsense Knowledge:this is
encoded in an ASP module (let’s call ittrip know). It
will encode knowledge about flights, how they can be used
to get to a destination (through multiple hops), etc.; omitting
most details due to lack of space, we can have description of
actions:

act(embark(F,N)):- flight(F),person(N).
...

Similarly, we can describe the fluents, e.g.,

fluent(onboard(N,F)):- person(N),flight(F).
...

Actions have preconditions and effects, e.g.,

h(at(Name,City),T+1):-h(partic(Name,Trip),T),
occ(disembark(Flight,Name),T),
exec(disembark(Flight,Name),T),
destination(Flight,City), time(T).

exec(disembark(Flight,Name),T):-
action(disembark(Flight,Name)),
h(en_route(Flight,Dest),T), time(T),
h(onboard(Name,Flight),T).

Static causal laws relate fluents, e.g.,

h(at(Obj,City),T) :- h(at(Pers,City),T),
h(has(Pers,Obj),T), person(Pers),
obj(Obj),city(City), time(T),
not ˜h(at(Obj,City),T).

Various axioms will also be needed, e.g., to address the
frame problem:

h(F,T+1) :- h(F,T), fluent(F), not ˜h(F,T+1).
˜h(F,T+1) :- ˜h(F,T), fluent(F), not h(F,T+1).

At each point in time we expect only one action to occur;
using the choice rules of Smodels:

1{occ(A)}1 :- action(A).

Collection of facts can be used to describe specific prob-
lem, instances; e.g., each flight:

flight(xyz). depart(xyz,paris).
destination(xyz,baghdad). ...

Web Access Module:note that the description of the specific
instance of a problem requires two sources of information;
one is the description of objects and participants, one is the
description of flights. The second source of information, in
the real world, is acquired from web sites; let us assume
that the description of the flights is stored on the Web, as
an XML file, at URL http://www.xx.xxx/travel.
xml . travel.xml , then we can develop a Prolog module
that extracts the facts from the XML file and feeds them to
the ASP module, e.g., (using CIAO’s PiLLoW library for
web access and manipulation)

get_flight(NAME) :-
url_info(’www.xx.xxx/travel.xml’,UI),
fetch_url(UI,[],R), member(content(C),R),
xml2terms(R,XML),
extract_xml_fligh(NAME,XML,Info),
Info=env(flight,[name=Name],Details),
trip_know:assert(flight(NAME)),
member(depart(City1),Details),
trip_know:assert(depart(NAME,City1)),
member(arrive(City2),Details),
trip_know:assert(destination(NAME,City1)),...

CLP Module: Similarly to what discussed in (Baral et al.
2005), we can make use of CLP to handle the numeric parts,
of the computation, e.g., dates. The answer sets obtained
from the ASP moduletrip know provide “virtual” time
steps when different actions occur. The CLP module will
need to associate more precise information to this steps—
i.e., locate the “real” time when the different actions occur.
The computation will be driven by the answer sets produced
by the ASP module. E.g., if we have facts describing the du-
ration of each leg (duration(Flight,Length)) and
layover in each city (layover(City,Length)), then
we can use CLP to estimate the arrival times at each destina-
tion, and answer questions of the type “If an arrest warrant
for john is issued on March 15 at 1pm in London, can he
make it to Baghdad?”, using CLP rules as:

safe :- model(Q),
compute_arrival(london, Time1,Q),
Q: layover(london,Time2),
convert(march,15,13,00,Time3),
Time1+Time2 #< Time3.

compute_arrival(City,ArriveTime,Q) :-
Q: start_time(T),
recur_arrival(paris,City,T,ArriveTime,Q).

recur_arrival(Dest,Dest,T,T,_).
recur_arrival(City,Dest,T1,T2,Q) :-

Q:layover(City,Lay),
Q:h(at(john,City),T),
Q:occ(embark(john,Flight),T),
Q:destination(Flight,City1),
Q:duration(Flight,Dur),
T3 is T1+Lay+Dur,
recur_arrival(City1,City,T3,T2,Q).

Here we assume that time is expressed using an absolute
number (andconvert dates and times into absolute num-
bers). In turn, the CLP module can explore alternative routes
computed by the ASP for desirable properties; for example,
if we are seeking whether the traveler can find a route that
will allow him to be in london on March 15th at 1pm, we

can simply write:

?- findall(Q,trip_know:model(Q),List),
member(Model, List),
compute_arrival(london, Time1,Model),
Model: layover(london, Time2),
convert(march,15,13,00,Time3),
Time1 #<= Time3, Time3 #<= Time1+Time2.

Prolog’s backtracking will explore the different models
(different routes to get to destination) and see if one allows
john to be inlondon at the desired time.

Conclusion and Future Work
In this paper we presentedASP−PROLOG, a system
which provides a tight integration between CIAO Prolog
and ASP. The system allows to create programs which are
composed of Prolog modules and ASP modules. ASP mod-
ules contain either complete or fragments of ASP programs,
Prolog modules are capable of accessing ASP modules, to
read and/or modify their content—through the traditional
Prolog assert and retract predicates. Prolog mod-
ules are also capable of accessing the answer sets of each
ASP module, and use them during the execution—e.g., to
solve goal against them. The prototype implementation of
ASP−PROLOG, built using CIAO Prolog andSmodels,
is available atwww.cs.nmsu.edu/˜okhatib/asp_
prolog.html .

We will continue the development ofASP−PROLOG;
in particular, we wish to investigate the possibility of a re-
verse communication process, where the ASP modules are
capable of proactively requesting information from the Pro-
log modules—an investigation is in progress to allow ASP
modules to make use of CLP capabilities.

References
Baral, C. et al. 2005. Textual Inference by Combining Multiple
Logic Programming Paradigms. InAAAI Workshop on Inference
for Textual Question Answering.

Eiter, T. et al. 1998. The KR Systemdlv : Progress Report,
Comparisons, and Benchmarks. In KR’98, 406–417.

Gelfond, M., and Lifschitz, V. 1988. The Stable Model Semantics
for Logic Programs. In ICLP, 1070–1080. MIT Press.

Harabagiu, S. 2001. Just-In-Time Question Answering. InNL-
PRS, 27–34.

Hermenegildo, M., et al. 1999. The CIAO Multi-Dialect Com-
piler and System. InParallelism and Implementation of Con-
straint Logic Programming. Nova Science. 65–85.

Lloyd, J. 1987.Foundations of Logic Progr. Springer.

Niemela, I. 1999. Logic Programs with Stable Model Semantics
as a Constraint Programming Paradigm.Annals of Mathematics
and AI, 25:241–273.

Pasca, M. 2000. Open-domain Factual Answer Extraction. In
Technical Report, SMU.

Pineda, M., and Bueno, F. 2002. The O’Ciao Approach to Object
Oriented Logic Programming. InColloquium on Implementation
of Constraint Logic Programming Systems.

Vicedo, J.L. 2000. A Semantic Approach to Question Answering
Systems.TREC-9, 440-445.

