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Abstract. We present a system (ASP− PROLOG) which provides a
tight and well-defined integration of Prolog and Answer Set Program-
ming (ASP). The combined system enhances the expressive power of
ASP, allowing us to write programs that reason about dynamic ASP
modules and about collections of stable models. These features are vital
in a number of application domains (e.g., planning, scheduling, diagno-
sis). We describe the design of ASP− PROLOG along with its implemen-
tation, realized using CIAO Prolog and Smodels.

1 Introduction

Stable model semantics [4] is a widely accepted approach to provide semantics
to logic programs with negation. Stable model semantics relies on the idea of
accepting multiple minimal models as a description of the meaning of a pro-
gram. In spite of its wide acceptance and its extensive mathematical founda-
tions, stable models semantics have only recently found its way into “practical”
logic programming. The recent successes have been sparked by the availabil-
ity of efficient inference engines (such as Smodels [13], Cmodels [7], ASSAT
[9], and DLV [3]) and a substantial effort towards understanding how to write
programs under stable models semantics [12, 11, 8]. This has led to the devel-
opment of a novel programming paradigm, commonly referred to as Answer Set
Programming (ASP). ASP is a computation paradigm in which logical theories
(Horn clauses with negation) serve as problem specifications and solutions are
represented by collection of models. ASP has been concretized in a number of
related formalisms—e.g., disjunctive logic programming [3]. In comparison to
other non-monotonic logics, ASP is syntactically simple and, at the same time,
very expressive. ASP has been adopted in various domains (e.g., [8, 5, 14]).

Most existing ASP inference engines have been extended to provide front-
ends that are suitable to encode different types of knowledge. Smodels provides
a rich set of built-in structures to express choices, weight-constraints, and re-
stricted forms of optimizations. DLV provides different classes of constraint rules
(e.g., weak constraints), aggregates, and alternative front-ends (e.g., diagnosis,
planning), allowing the development of programs in specific applications domains
using very high-level languages. In spite of these extensions, there are aspects of
reasoning that cannot be conveniently expressed in ASP:



• The development of an ASP program is mostly viewed as a monolithic and
batch process. Most existing ASP systems offer only a batch approach to
execution of programs—programs are completely developed, they go through
a “compilation” process, executed and finally stable models are proposed
to the user. The process lacks of any level of interaction with the user.
In particular, it does not directly support an interactive development of
programs (as it is possible in the case of Prolog), where one can immediately
explore the results of simply adding/removing rules.

• ASP programmers can control the computation of stable models through the
rules that they include in the logic program. Nevertheless, ASP systems offer
very limited capabilities for reasoning on the whole class of stable models
associated to a program—e.g., to perform selection of models according to
user-defined criteria or to compare across models. These activities are very
important in many application domains—e.g., to express soft constraints on
models, to support preferences when using ASP to perform planning.

• ASP systems are independent systems; interaction with other languages can
be performed only through low level and complex APIs; this prevents pro-
grammers from writing programs that manipulate ASP programs and stable
models as first-class citizens. We would like to be able to write programs
in a high-level language (Prolog in this case), which are capable to access
ASP programs, modify their structure (by adding or removing rules and
facts), and access and reason with stable models. This type of features is
essential in many ASP applications. For example, ASP planners require to
pre-specify the maximum length of the plan; the ability to access and modify
ASP programs would allow us to write programs that automatically modify
the length of the plan until a plan with the desired property is found.

In this project we propose a system, called ASP− PROLOG. The system rep-
resents a tight and semantically well-defined integration of ASP in Prolog. The
language is developed using the module and class capabilities of CIAO Prolog.
ASP− PROLOG allows programmers to assemble a variety of different modules
to create a program; along with the traditional types of modules supported by
CIAO Prolog, it allows the presence of an arbitrary number of ASP modules,
each a collection of ASP rules and facts. Each Prolog module can access any ASP
module (using the traditional module qualification of Prolog), read its content,
access its models, and modify it (using the traditional assert and retract).

We are not aware of any system with the same capabilities as ASP− PROLOG.
Relatively limited work has been presented exploring effective ways of integrat-
ing ASP in the context of other programming languages. Smodels provides a very
low level API [17] which allows C++ programs to use Smodels as a library. DLV
does not document any external API, although a Java wrapper has been recently
announced [1]. XASP [2] proposes an interface from XSB to the API of Smodels.
It provides a subset of the functionalities of ASP− PROLOG, with a deeper
integration with the capabilities of XSB of handling normal logic programs.



2 Brief Semantic Foundations

In this section, we discuss the semantic foundation of ASP− PROLOG and
motivate the basic constructions of the language. For simplicity, we will assume
a pure Prolog system, though in the real systems, full-blown Prolog will be
allowed.

2.1 Language Formalization

Let us consider a language signature 〈F ,V,Π〉, where
• V is a denumerable set of variables;
• F is a set of function symbols; in particular, F = FP ∪FA ∪FC , where FP

are called user functions, FA are called ASP functions, and FC are called
interface functions. We assume that FA ⊆ FP and FA is finite.

• Π is a set of predicate symbols; in particular, Π = ΠP ∪ΠA ∪ΠC , where
true, false ∈ ΠP ∩ΠA and
– ΠP are called user-defined predicates;
– ΠA are called ASP-defined predicates;
– ΠC are called Interface predicates. In this presentation we will limit our

attention to ΠC = {assert, retract, models}.
• FA ∪ΠA ⊆ FC .

The function ar determines the arity of the various symbols. We assume that
∀f ∈ FA : ar(f) = 0, and assert, retract, and models are all unary predicates.

The language adopted is multi-sorted, and it is based on the two sorts P (i.e.,
Prolog) and A (i.e., ASP). The language should meet the following requirements:
• each function (predicate) symbol f in FP (ΠP ) has sort Par(f) → P (Par(f));
• each function (predicate) symbol f in FA (ΠA) has sort Aar(f) → A (Aar(f));
• the symbols in FA and ΠA are of sort A and P at the same time.

Intuitively, the sort A is used to identify terms and atoms that belong to ASP
modules, while P is used for the construction of Prolog modules. We assume that
terms and atoms are well-formed w.r.t. sorts. An atom built using symbols from
ΠA and FA∪V is called an ASP-atom; an atom built using symbols from FP ∪V
and ΠP is called a Prolog-atom; an atom built using symbols from FP ∪ V and
ΠC is called an Interface-atom.

Definition 1. An ASP-literal is either an ASP-atom or a formula of the type
not A, where A is an ASP-atom. An ASP clause is a rule of the form

A :− L1 ∧ . . . ∧ Ln (1)
:− L1 ∧ . . . ∧ Ln (2)

where A is a ground ASP-atom, and L1, . . . , Ln are ground ASP-literals. Rules
of type (2) are known as constraint rules.

Definition 2 (ASP constraint). An ASP constraint is a formula of the type
L1 ∧ . . . ∧ Lk, where k ≥ 0 and each Li is



• an ASP-literal (A or not A); or
• a formula of the type α : L where α is a P-term and L is an ASP-literal.

Definition 3 (Interface Constraints). An Interface constraint is a conjunc-
tion L1 ∧ . . . ∧ Lk (k ≥ 0) of interface atoms of the type

assert(A :−B1, . . . , Bn) retract(A :−B1, . . . , Bn) models(t)
where A :−B1, . . . , Bn is an ASP clause and t is a P-term.

Definition 4 (ASP− PROLOG rule). A ASP− PROLOG rule is a formula
of the form

H :− C1, C2 [] B1, . . . , Bk

where H, C1, C2, and B1, . . . , Bk are a Prolog-atom, an ASP-constraint, an
Interface constraint, and Prolog-atoms, respectively.

A static ASP− PROLOG rule (or, simply, a static rule) is a ASP− PROLOG
rule that does not contain any interface constraint based on assert or retract.

Definition 5 (ASP− PROLOG program). A ASP− PROLOG program1 is a
pair 〈Pr,As〉 where Pr is a set of ASP− PROLOG rules and As is a set of
ASP rules. A static ASP− PROLOG program is a ASP− PROLOG program
〈Pr,As〉 such that all the rules in Pr are static.

For example, the following is an ASP clause: p(a) :− q(a)∧ r(b) where p, q, r are
in ΠA and a, b are in FA.

2.2 Operational Semantics

Let us denote with HA ( HP ) the Herbrand universe built using the symbols in
FA (FP ). The notation H will represent the complete Herbrand universe. We
will also use the notation BA (resp. BP , B) to denote the Herbrand base obtained
from the symbols of FA ∪ΠA (resp. FP ∪ΠP , F ∪Π).

Let us start by focusing on static programs. The absence of assert and
retract operations in the interface constraints guarantees that the content of
the As part of the program will remain unchanged throughout the execution.

Let P = 〈Pr,As〉 be a static ASP− PROLOG program. The component As
is a standard answer-set program [12]; let us denote with

M(As) = {M ⊆ BA | M is a stable model of As}
The semantics for P can be derived as a natural extension of the semantics

of pure logic programming; the notion of model should simply be extended to
accommodate for the meaning of ASP-constraints and interface constraints. The
only additional element we require is a map used to name the models of the
As part of the program; let ν : M(As) → HP be an injective function, called
the model-naming function. Then, a pair 〈M,ν〉 is a model of the program if
M ⊆ BP and it satisfies all the Pr rules; in particular, the model will satisfy a
ground ASP-constraint and interface constraint if:
1 For the sake of simplicity we focus on a single ASP module; the presentation can be

easily generalized to accommodate multiple ASP modules.



• A is an ASP-literal, then 〈M,ν〉 |= A iff ∀S ∈M(As).S |= A
• A is an ASP-constraint of the form t : B, then 〈M,ν〉 |= A iff ∃S ∈
M(As).(ν(S)=t∧S|=B)

• A is an interface constraint of the type models(t), then 〈M, ν〉 |= A iff
∃S ∈M(As).ν(S)=t

It is straightforward to extend these definitions to deal with entailment of an
arbitrary goal and to define when clauses are satisfied by the model. Observe
that, given a program P = 〈Pr,As〉 and a fixed model naming function ν, we
have that there exists a unique minimal model 〈M, ν〉 of P , according to the
ordering v defined as: 〈M1, ν〉 v 〈M2, ν〉 iff M1 ⊆ M2.

Let us now proceed in extending the semantics structure when updates to the
ASP theory are allowed through the assert and retract interface constraints.
We will focus on a top-down operational semantics.

Definition 6 (Update). Given a program P = 〈Pr,As〉 and an interface con-
straints p, we define the update of P w.r.t. p (i.e., U(P, p)) as follows:

U(P, p) =
{ 〈Pr,As ∪ {r}〉 if p = assert(r)
〈Pr,As \ {r}〉 if p = retract(r)

Let R be a computation rule [10]—i.e., a function R : B∗ → B which is used to
select a subgoal; in particular we will denote with RProlog the computation rule
that selects always the leftmost subgoal.

Definition 7 (State). A state is a tuple 〈G, σ, τ, As〉 where
• G ∈ B∗ is called the goal list
• σ is a substitution (i.e., a function from V to H
• τ is a function τ : HP → 2BA called model retrieval function
• As is an ASP-program.

Given a program P = 〈Pr,As〉, the initial state is the tuple 〈G0, ε, τ0, As〉, where
G0 is the initial goal, ε is the empty substitution (i.e., the function such that forall
X ∈ V.ε(X) = X), and τ0 is the function that is undefined for every input.

The notion of entailment is defined through a transition relation between states.

Definition 8 (Derivation Step). Let 〈G, σ, τ, As〉 be a state. The relation
〈G, σ, τ, As〉 |−R〈G′, σ′, τ ′, As′〉

holds if:
• R(G) = A
• if A is a P-atom, then there exist a rule H :− B̄ ∈ Pr, such that θ =
mgu(A,H), σ′ = σ ◦ θ, τ = τ ′, As = As′, and G′ = ([A/B̄]G)θ.
• if A is an ASP-literal, then there exists a ground substitution θ for A such
that ∀S ∈M(As).S |= Aθ, G′ = (G \ {A})θ, σ′ = σ ◦ θ, τ ′ = τ , As′ = As.
• if A is of the form t : H, then there exists a grounding substitution θ for t :
H such that τ(tθ) is defined, τ(tθ) ∈M(As), τ(tθ) |= Hθ, G′ = (G \ {A})θ,
σ′ = σ ◦ θ, τ = τ ′, As = As′.
• if A is of the form models(t), then there exists a grounding substitution θ
for t such that τ(tθ) is defined, τ(tθ) ∈M(As), G′ = (G \{A})θ, σ′ = σ ◦ θ,
τ ′ = τ , and As′ = As.



• if A is of the form assert(r), then G′ = G \ {A}, σ′ = σ, As′ = As∪{r},
K is a set of terms from HP (model names) such that
– |K| = |M(As′)|
– for each t ∈ K we have that τ(t) is undefined
– s1, . . . , sr is an enumeration of K
– S1, . . . , Sr is an enumeration of M(As)
– τ ′ = τ ◦ {s1 7→ S1, . . . , sr 7→ Sr}

• if A is of the form retract(r), θ is a grounding substitution such that
rθ ∈ As, then G′ = (G \ {A})θ, σ′ = σ ◦ θ, As′ = As \ {rθ}, K is a set of
terms from HP (model names) such that
– |K| = |M(As′)|
– for each t ∈ K we have that τ(t) is undefined
– s1, . . . , sr is an enumeration of K
– S1, . . . , Sr is an enumeration of M(As)
– τ ′ = τ ◦ {s1 7→ S1, . . . , sr 7→ Sr}

Definition 9 (Entailment). Given a program P = 〈Pr,As〉 and a goal G, we
say that P |= Gσ iff 〈G, ε, τ0, As〉 |−∗R〈∅, σ, τ, As′〉.

3 The ASP− PROLOG System

The ASP− PROLOG system has been developed as an extension of the CIAO
Prolog system [6]. The choice of CIAO was fairly natural, being a flexible Prolog
system, with a rich set of features aimed at facilitating the extension of the
language (e.g., module system and object oriented capabilities). The handling
of the ASP modules is left to the Smodels system [13].

3.1 Concrete Syntax

The abstract syntax presented in the previous section has been refined in the
ASP− PROLOG system to better match the characteristics of Prolog. Each
ASP− PROLOG program is composed of a collection of modules. We recognize
two types of modules: Prolog modules—which contain standard CIAO Prolog
code—and ASP modules—each contains an ASP program. We will use an ASP
program—called plan.pl—that solves planning problems in the block world do-
main, as a running example to illustrate the most important syntactically fea-
tures of our system. For our purpose, it is enough to know that plan.pl consists
of rules specifying the initial configuration (left side of Fig 1), the goal configu-
ration (right side of Fig 1), and the effects of the actions (e.g., move(a, b) will
make a on b if nothing is on top of b, a) in this domain. The program has an
input parameter called steps that determines the (maximal) length of the plan.
A call to this program looks like

lparse -c steps=5 plan.pl | smodels 0
which will return all stable models of plan.pl, each corresponds to a plan of
length 5. We will now detail the syntax of ASP− PROLOG.
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Fig. 1. A planning problem in the block world domain with 5 blocks a, b, c, d, and e.

Module Interface Prolog modules are required to declare their intention to
access any ASP modules; this is accomplished through the declarations

:− use asp(module name,file name)
:− use asp(module name,file name, parameters)

where the module name is the name used to address the ASP module, file name
is the file containing the ASP code, and parameters is a list of parameters with
their values, to be passed from the Prolog module to the ASP module.

Example 1. A CIAO module might refer to the ASP module plan as follows:

:- module(program1, [blocks_solve/0]).
:- use_asp(plan, ’plan.lp’, [(steps, 0)]).

The first line defines the CIAO module named blocks solve. The second line
declares that blocks solve will access the ASP module plan with parameter
steps whose value is initiated with 0.

Interface Constraints We have provided a number of predicates that allow
Prolog modules to query and manage ASP modules:

– model/2: in ASP− PROLOG models of an ASP module can be retrieved
using indices; the model predicate relates an index number to the term rep-
resenting the corresponding model. The model predicate has to be qualified
with the ASP module on which it is meant to be applied. E.g., the goal

plan:model(1, Q)

will allow a Prolog module to access the first model of the module plan.pl.
More precisely, variable Q will be instantiated with the first model of plan.pl.
The goal will fail if the program plan.pl does not have a stable model.2

– total stable model/1: the predicate is satisfied if the argument is the num-
ber of models of the ASP module. For example,

plan:total stable model(X), X>0
will succeed if plan.pl has at least one stable model and fails otherwise.

– assert/1 and retract/1: the argument of these predicates is a list of ASP
rules. The effect of assert is to add all the rules in the list to the ASP
module, while retract will remove the rules from the ASP module. For ex-
ample, if we are interested only in plans that do not move block a on the

2 model is a simplified version of models/1 described earlier.



table during their execution, we can add a ASP-constraint that prevents the
occurrence of the action move(a, table). From a Prolog module, we can issue

assert(plan:[(:-move(a, table, T), time(T))])

which will add the constraint “:-move(a, table, T), time(T).” to plan.pl.
– assert nb/1 and retract nb/1: the ASP− PROLOG system provides also

an alternative version of the assert and retract predicates. The main dif-
ference is that the modifications derived from assert and retract, as il-
lustrated in the semantics description in Section 2, will be undone during
backtracking, while the modifications to an ASP module performed using
assert nb and retract nb will remain unaffected by backtracking.

– change parm/1: most ASP inference engines allow the user to specify (typ-
ically as command-line arguments) various parameters that affect the ASP
computation (e.g., initial value for constants); the predicate change parm al-
lows the user to read and modify the value of such parameters dynamically.
The following Prolog fragment allows us to change the steps parameter of
plan.pl:

blocks_solve :- plan:total_stable_models(X), X>0,
chk_condition(1, X, Q), print_solution(Q, 0).

blocks_solve :- plan:change_parm([(steps,V)]), V1 is V+1,
plan:change_parm([(steps,V1)]), blocks_solve.

Here, the predicate chk condition will check whether a plan satisfies certain
condition or not (see below) and print solution will print the solution to
the screen. The first call to change parm will instantiate V to the current
value of steps, while the second will modify the value of the constant.

– compute/2: this predicate has been introduced to specifically match another
control feature provided by Smodels—it allows the presence of a compute
statement, used to establish bounds on the number of models and to specify
elements that have to be present in all the models. The compute predicate
allows the Prolog module to dynamically affect these properties. For exam-
ple, if we want to limit the maximum number of models to 3 in the ASP
module plan, then we can issue the goal plan : compute(3, ).

– clause/2: this predicate is used to allow a Prolog module to access the rules
of an ASP module—in the same spirit as the clause predicate is employed in
Prolog to access the Prolog rules present in the program. The two arguments
represent respectively the head and the body of the rule.

Example 2. Let us assume that the ASP module plan contains the following
rules defining the predicate p:

p(a) :− q(a), r(a). p(b) :− r(b).

Then the Prolog goal plan:clause(p(X), Y) has two solutions:

{X 7→ a, Y 7→ (q(a), r(a))} {X 7→ b, Y 7→ r(b)}



Observe that, due to the fact that the syntax of Smodels is not ISO-compliant,
certain Smodels constructs (e.g., cardinality and weight constraints) have a
slightly different syntactic representation when used within Prolog modules. For
example, if an ASP module (e.g., module plan) contains the rule

p :− 1{r, s, t}2.
then the execution of the goal plan:clause(p,X) will produce the substitution
{X 7→′ {}′(1, (r, s, t), 2)}.

ASP Constraints The syntax used to express ASP constraints is the same one
described in the abstract syntax. E.g., if we would like to find plans that do not
move block a to the table (represented by the atom move(a, table, t) where t is
some number between 0 and steps), we can use the following rules:

chk_condition(Y, _, Q) :- plan:model(Y, Q), chk_cond(Q), !.
chk_condition(Y, X, Q) :- Y=<X, Y1 is Y+1, chk_condition(Y1, X, Q).
chk_cond(Q) :- Q: move(a, table, _), !, fail.
chk_cond(_).

The next group of rules extract a plan from a stable model and display it on the
screen:

print_solution(Q, T) :- Q:move(_, _, T), !, print_sol(Q, T),
T1 is T+1, print_solution(Q, T1).

print_solution(_, _).
print_sol(Q, T) :- Q:move(X, Y, T), display(’move ’), display(X),

display(’ on ’), display(Y), display(’ at time ’),
display(T), nl, fail.

print_sol(_, _).

3.2 System Implementation

The overall structure of the implementation is depicted in Figure 2. The system
is composed of two parts, a preprocessor and the actual CIAO Prolog system.

Prolog
Modules

ASP
Modules

ASP-Prolog
PreProcessor

CIAO
Prolog

ASP-Prolog
Goals

Answer
Substitutions

Updated
Prolog

Modules

Module Load

Interface
Modules

Model
Classes

Fig. 2. Overall Structure of ASP− PROLOG Implementation



Preprocessing The input to the preprocessor is composed of (i) the main
Prolog module (Pr); (ii) a collection of CIAO Prolog modules (m1,m2, . . . , mn);
(iii) a collection of ASP modules (e1, e2, . . . , em). The output of the preprocessor
is: a modified version of the main Prolog module (NP ), a modified version of
the other Prolog modules (nm1, nm2, . . . , nmn), and for each ASP module ei

the preprocessor creates a CIAO module (imi) and a class definition (ci).3

The transformation of the Prolog modules consists of a simple rewriting
process, used to adapt the syntax of the interface constraints and make it com-
patible with CIAO Prolog’s syntax. For example, the rules passed as arguments
to assert and retracts have to be quoted to allow the peculiarities of ASP
syntax (e.g., the use of braces for choice rules) to be accepted.

The transformation of each ASP module leads to the creation of two entities
that will be employed during the actual program execution: an interface module
and a model class. These are described in the following subsections.

The preprocessor will also automatically invoke the CIAO Prolog toplevel
and load all the appropriate modules for execution. The interaction with the
user is the same as that of the standard CIAO Prolog toplevel.

Interface Modules The preprocessor generates one interface module for each
ASP module present in the original input program. The interface module is
implemented as a standard CIAO Prolog module and it provides the client Pro-
log modules with the predicates used to access and manage the ASP module.
The interface module is created for each ASP module by instantiating a generic
module skeleton to the content of the specific ASP module considered.

Public Part
Export List

Private
Data

Module
Initialization

* access ASP file & parameters
* computation of initial models
* generation of model objects
* interface initialization 

MODELS
* Internal ASP Program representation
* Model Objects
* Backtracking checkpoints
* Support Tables

* interface predicates
   - assert/1, assert_nb/1
   - retract/1, retract_nb/1
   - models/2, total_stable_models/1
   - compute/2, change_parm/1

Fig. 3. Structure of the Interface Module

The overall structure of the interface module is illustrated in Figure 3. The
module has an export list which includes all the predicates used to manipulate
3 CIAO provides the ability to define classes and create class instances [15].



ASP modules (e.g., assert, retract, model) as well as all the predicates that
are defined within the ASP module.4 The typical module declaration generated
for an interface module will look like:

:− module(’t23.xxx’, [ assert/1, retract/1,
assert nb/1, retract nb/1,
model/2, change parm/1, compute/2,
total stable model/1,
p/0, q/0, r/0 ]).

The definition of the various exported predicates (except for the predicates
defined in the ASP module) is derived by instantiating a generic definition of each
predicate. Each module has an initialization part, which is in charge of setting up
the internal data structures (e.g., the internal representation of the ASP module,
tables to store parameters and stable models), and invoke the answer set solvers
for the first time on the ASP module—in the current prototype we are using
Smodels as answer set solver. The result of the computation of the models will
be encoded as a collection of Model Objects (see the description of the Model
Classes in the next subsection). The module will maintain a number of internal
data structures, including a representation of the ASP code, a representation of
the parameters to be used for the computation of the stable models (e.g., values
of constants), a list containing the objects representing the models of the ASP
module, a counter of the number of stable models currently present, etc.

Model Classes The preprocessor generates a CIAO class definition for each
ASP module. The objects obtained from the instantiation of such class will be
used to represent the individual models of the ASP module. Prolog modules can
obtain reference to these objects (e.g., using the model predicate supplied by
the interface module) and use them to directly query the content of one model.
The definition of the class is obtained through a straightforward parsing of the
ASP module, to collect the names of the predicates defined in it; the class will
provide a public method for each of the predicates present in the ASP module.
In addition, the class defines also a public method add/1 which is employed by
the interface module to initialize the content of the model.

Each model is stored in one instance of the class; the actual atoms represent-
ing the model are stored internally in the objects as facts of the form s(〈fact〉).

For instance, if we have a simple ASP module containing the rules:
p :− q. q :− r. r.

then the preprocessor will generate a class definition of the type:

:- class(t23_class).
:- dynamic s/1. %% used to store the facts of the model

%% export declarations for the ASP predicates
:- export(p/0).

4 Due to a limitation in the current implementation of CIAO’s module system, we
cannot dynamically add new predicates to an existing ASP module—as CIAO does
not support, yet, dynamic redefinition of a module.



:- export(q/0).
:- export(r/0).

%% utility method for building the model
:- export(add/1).

%% definition of the methods
p :- s(p).
q :- s(q).
r :- s(r).

%% add a new element to the model
add(X) :- assertz_fact(s(X)).

3.3 Implementation Details

Interface Predicates: The various interface predicates are implemented in CIAO
Prolog in a fairly straightforward way. Some general observations:
• The implementation of assert proceeds by adding the new rules to the

module and recomputing the models; the structure of the main clause im-
plementing it is
assert(L) :- assert1(L),

module_concat(’t23.xxx’, assert2(L), M), und(M).
assert2(L) :- \+ empty_list(L), retract_nbf(L).

The module concat and und are internal predicates of CIAO Prolog that
allows us to specify what action to take upon backtracking through the
clause; in this case, assert2 will be called upon backtracking, which will
undo the modifications and restore the previous set of models. assert nb will
avoid the final step—since changes will not be undone during backtracking.

• The implementation of retract follows a similar structure; rules are removed
(if they are present) from the module and the models are recomputed accord-
ingly. The modifications are cached to ensure undoing upon backtracking.
The main clauses implementing it are:
retract(L) :- \+ empty_list(L), !, retract1(L),

store_list_rr(L1),
module_concat(’t23.xxx’, retract2(L1), M), und(M).

retract2(L) :- \+ empty_list(L), assert_nb(L).

The retract1 performs the modification of the module and the recompu-
tation of the models; store list rr places the modifications in the trail
structure; the final declarations in the retract rule indicate what predicate
should be call upon backtracking—retract2. As we can see, retract2 sim-
ply restores the rules that have been previously removed (using assert nb),
and restores the original set of models.

• the same structure can be found in the implementation of compute; if called
with arguments unbound, then the predicate will access the current compute
configuration (i.e., it will indicate how many models have been requested
and whether there is a core of literals that have to be true in every model);
if called with bound arguments, having a value different then the current



compute configuration, then the models will be recomputed with the new
configuration. As for assert and retract, the compute will set up a hook
to allow for undoing effect of the changes during backtracking.

Internal Data Structures: A number of tables are maintained by each interface
module to support the execution of ASP modules. Some of the relevant internal
structures include:
• fn: used to maintain a (Prolog-based) representation of the rules composing

the ASP module;
• uf: a temporary table aimed at supporting the process of rules unification

during execution of assert and retract;
• stable ref: a table (implemented as Prolog facts) that maintain references

to the current models of the ASP module (as pairs model number/object
reference that maps name of models to objects representing the models);

• retract rule: a trail structure that caches the modifications performed by
assert and retract; this is required to allow undoing of the chances;

• prm: a table (encoded as Prolog facts) that stores the parameters to be used
during the computation of the models of the ASP module.

4 Examples

Let us continue with the example of the planning problem. The planner is aimed
at computing the movements of blocks from initial state to a goal state. We have
three blocks a, b and c. Initially, block a is on block b, block b is on the table
and block c is on the table. The goal state is: block b is on c, block c is on a
and finally block a is on the table. The objective is to determine what block
moves (represented by facts of the type move(source,destination,time)) are
required to achieve the goal state—assuming that we can move only one block
at a time, and we can move only blocks that are not covered by other blocks.
The Prolog module allows the user to
• use the Prolog program to explore the space of possible plans—e.g., if we do

not want to accept plans that move block a to block b, then we can add the
goal

setof(T, (plan:model(Y,Q),Q:move(a,b,T)), [] )

which will determine a model (if any) that does not contain any fact of the
form move(a,b,T).

• we can perform selection of models according to some quantitative criteria.
For example, if we assume that each moveop action has a cost—i.e., the facts
generated during planning have the form

move(source, destination, time, cost)

then we can select the plan with the lowest cost by writing



...
setof([X,Y], plan:model(X,Y), List), %% collect all models
find_smallest_plan(List,P,Cost).

find_smallest_plan([[Index,Model]], Model, Cost) :-
findall(C, Model:move(_,_,_,C), Costs),
sum_list(Costs,Cost).

find_smallest_plan([ [Index,Model] | Rest], MinModel, MinCost) :-
find_smallest_plan(Rest,M1,C1),
findall(C,Model:move(_,_,_,C),Costs),
sum_list(Costs, Cost),
( Cost < C1 -> MinModel = Model, MinCost=Cost;

MinModel = M1, MinCost=C1 ).

5 Conclusion and Future Work

In this paper we presented ASP− PROLOG, a system which provides a tight and
semantically well-founded integration between Prolog (in the form of CIAO Pro-
log) and answer set programming (in the form of Smodels). The system allows to
create programs which are composed of Prolog modules and ASP modules. ASP
modules contain either complete or fragments of ASP programs, expressed using
the lparse input language [18]. Prolog modules are capable of accessing ASP
modules, to read and/or modify their content—through the traditional Prolog
assert and retract predicates. Prolog modules are also capable of accessing
the stable models of each ASP module, and use them during the execution—e.g.,
to solve goal against them. At the syntax level, ASP− PROLOG guarantees the
same style of programming and syntax as traditional Prolog programming, inte-
grating ASP modules and stable models as first-class citizens of the languages.
ASP− PROLOG allows to extend the expressive power of ASP, allowing to write
Prolog programs that can dynamically modify ASP modules, reason about stable
model, and promotes incremental and ’what-if’ approaches to the construction
of ASP programs.

The prototype implementation of ASP− PROLOG, built using CIAO Prolog
and Smodels, is available at www.cs.nmsu.edu/~okhatib/asp_prolog.html. We
will continue the development of ASP− PROLOG by:

– using ASP− PROLOG in the development of various ASP applications where
an interactive environment is more appropriate; and

– investigating the possibility of a reverse communication process, where the
ASP modules are capable of proactively requesting information from the
Prolog modules—an investigation in this direction is in progress to allow
ASP modules to make use of CLP capabilities [16].
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ren, editors, The Logic Programming Paradigm. Springer Verlag, 1999.

12. I. Niemela. Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm. Annals of Mathematics and AI, 25(3/4):241–273, 1999.

13. I. Niemela and P. Simons. Smodels - An Implementation of the Stable Model and
Well-Founded Semantics for Normal LP. In LPNMR-97, pages 421–430, 1997.

14. M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog
Descision Support System for the Space Shuttle. In PADL-01, pages 169–183,
2001.

15. M. Pineda and F. Bueno. The O’Ciao Approach to Object Oriented Logic Pro-
gramming. In Colloquium on Implementation of Constraint Logic Programming
Systems, 2002.

16. T.C. Son and E. Pontelli. Planning with preferences using logic programming. In
LPNMR’04, pages 247–260, 2004.

17. T. Syrjänen. Lparse User’s Manual. http://www.tcs.hut.fi/Software/smodels/.
18. T. Syrjänen. Implementation of Local Grounding for Logic Programs with Stable

Model Semantics. Technical Report B-18, Helsinki University of Technology, 1998.


