
Explainable Planning Using Answer Set Programming

Van Nguyen1 , Stylianos Loukas Vasileiou2 , Tran Cao Son1 , William Yeoh2

1New Mexico State University
2Washington University in St. Louis

{vnguyen,tson}@cs.nmsu.edu, {v.stylianos,wyeoh}@wustl.edu

Abstract

In human-aware planning problems, the planning agent may
need to explain its plan to a human user, especially when the
plan appears infeasible or suboptimal for the user. A popular
approach to do so is called model reconciliation, where the
planning agent tries to reconcile the differences between its
model and the model of the user such that its plan is also
feasible and optimal to the user. This problem can be viewed
as an optimization problem, where the goal is to find a subset-
minimal explanation that one can use to modify the model
of the user such that the plan of the agent is also feasible
and optimal to the user. This paper presents an algorithm for
solving such problems using answer set programming.

1 Introduction
In human-aware planning problems (Kambhampati 2019),
the planning agent, which we refer to as a robot in this pa-
per, needs to find ways to ensure that its plans are understood
and accepted by human users. A typical assumption is that
the model or knowledge base of the robot differs from that of
the user. As such, a plan that is optimal to the robot may be
suboptimal or, worse, infeasible to the user. A popular ap-
proach to solve this problem is called the model reconcilia-
tion problem (MRP), where the robot needs to provide expla-
nations to the user and reconcile their two models such that
the plan of the robot is also optimal in the reconciled model
of the user (Chakraborti et al. 2017; Sreedharan et al. 2018;
Sreedharan et al. 2019). A common thread across most of
these works is that they, not surprisingly, employ mostly au-
tomated planning approaches.

In this paper, we are interested in tackling MRP from
the perspective of knowledge representation and reason-
ing (KR), specifically through answer set programming
(ASP) (Marek and Truszczyński 1999; Niemelä 1999). Our
approach is motivated by the fact that the planning models
of the robot and the user can be represented as logic pro-
grams via answer set planning (Gebser et al. 2013). Given
that a planning problem can be viewed as a set of facts, we
solve MRP by developing different ASP programs, which
are then glued together via multi-shot ASP, for computing
subset-minimal explanations. We empirically evaluate our
ASP-based approach against the current state of the art by
Chakraborti et al. (2017) on the same benchmark domains.

Our empirical results show that our ASP-based approach is
faster when the explanations are long.

2 Background: ASP and Planning
Logic Programming: Answer set programming (ASP)
(Marek and Truszczyński 1999; Niemelä 1999) is a declar-
ative programming paradigm based on logic programming
under the answer set semantics.

A logic program π is a set of rules of the form a0 ←
a1, . . . ,am, not am+1, . . . , not an, where 0≤m≤ n, each ai is
an atom of a propositional language and not represents (de-
fault) negation. Semantically, a program π induces a collec-
tion of so-called answer sets, which are distinguished mod-
els of π determined by answer sets semantics; see the work
by Gelfond and Lifschitz (1990) for details. ASP is com-
bined with imperative means in clingo (Gebser et al. 2014)
that allows for a more efficient implementation of solvers for
problems that requires more than one call to an ASP solver
(Son et al. 2016; Nguyen et al. 2017).

Planning Problems as Facts in ASP: A planning prob-
lem (Ghallab et al. 1998) is a triple (I,G,D), where I and
G encode the initial states of the world and the goal, re-
spectively; and the domain D specifies the actions and their
preconditions and effects. Each problem P can be repre-
sented as a set of ASP facts. These atoms define object con-
stants, types of objects, actions, the initial state, and the goal
state. In this paper, we make use of the representation output
by the system available at https://github.com/potassco/plasp.
We assume that PDDL problems are typed. The program
π(P) consists of the following atoms:1

(i) type description (type/1);
(ii) constant and fluent declarations (constant/1 and
variable/1);

(iii) action declaration (action/1);
(iv) action precondition and effect (precondition/3)) and
postcondition/4);

(v) initial state (initialState/3); and
(vi) goal state (goal/2).

1The use of double keywords such as type(type(.)) or
variable(variable(...)) in plasp could be simplified. To allow
them to be automatically processed, we leave them as they are.

https://github.com/potassco/plasp

Further details about each atom will be apparent from the
use in the next sections.

Explainable Planning: Explainable planning as dis-
cussed by Chakraborti et al. (2017) assumes that a plan-
ning problem P = (I,G,D) is given, and it is identical to the
model of the robot Pr = (Ir,Gr,Dr). The model of the hu-
man Ph = (Ih,Gh,Dh) may be different from the model of
the robot. The focus of this paper is in the model reconcilia-
tion process, i.e., to bring the model of the human closer to
the model of the robot by means of explanations in the form
of model updates. Given Pr and Ph, a model reconciliation
problem (MRP) is defined by a tuple 〈p∗,Pr,Ph〉, where p∗ is
a cost-minimal solution for Pr. The goal of MRP is to find a
solution (i.e., an explanation) ε that can be used to update Ph
to ∩Ph such that p∗ is also a cost-minimal solution of ∩Ph.

This update process involves inserting into Ph (and/or re-
moving from Ph) some initial conditions, action precondi-
tions, action effects, or goals. It is required that the changes
in the model of the human must be consistent with the
robot’s model. (“Consistent” means that if some informa-
tion (e.g., preconditions or effects) is added to the human’s
model, then this information must be present in the robot’s
model; if some information is removed from the human’s
model, then this information must not be present in the
robot’s model.)

3 Explainable Planning Using ASP
3.1 Planning Engine
Let P = (I,G,D) denote a planning problem and π(P) be its
representation in ASP. We now present a program π(n) that
could be used as an ASP-based planning engine that work
with π(P) (see, e.g., Lifschitz (2002)). π(n), together with
π(P), can be used to generate all solutions of P with lengths
that are no larger than n. It consists of two groups of rules:
• Reasoning About Effects of Actions: (Listing 1) Rules

in this group ensure that an action can only be executed
if all of its conditions are true and all of the effects of
the actions become true. We use h(l, t) to denote that the
fluent l is true at step t for 1 ≤ t ≤ n and occurs(a, t) to
denote that the action a occurs at step t.

Listing 1: Reasoning About Effects of Actions
1 h(X,1) :- initialState(X,value(X,true)).

2 -h(X,1) :- not initialState(X,value(X,true)).

3 h(X,T+1) :- action(action(A)),occurs(A,T),

4 postcondition(action(A),

5 effect(unconditional),X,value(X,true)).

6 -h(X,T+1) :- action(action(A)),occurs(A,T),

7 postcondition(action(A),

8 effect(unconditional),X,value(X,false)).

9 h(X,T+1) :- h(X,T), not -h(X,T+1).

10 -h(X,T+1) :- -h(X,T), not h(X,T+1).

11 non_exec(A,T) :- action(action(A)), not h(X,T),

12 precondition(action(A),X,value(X, true)).

13 non_exec(A,T) :- action(action(A)), not -h(X,T),

14 precondition(action(A),X,value(X, false)).

15 :- action(action(A)),occurs(A,T), non_exec(A,T).

The first two rules on Lines 1 and 2 encode the ini-
tial state. This encoding employs the Closed-World-
Assumption (Reiter 1978). The next two rules on Lines
3-5 and 6-8 define the effect of an action. The rules on
Lines 9 and 10 encode the inertia principle. The rules on
Lines 11-12 and 13-14 define the predicate non exec(a,t),
which states when an action cannot be executed. The con-
straint on Line 15 prevents non-executable actions from
occurring.

• Goal Enforcement and Action Generation: (Listing 2)
The rule on Line 1 generates action occurrences. The
rules on Lines 2 and 3 specify that the goal is not achieved
at time step T if one of the subgoals has not been
achieved. The rules on Lines 4 and 5 enforce that the goal
must be satisfied at the end of the horizon, at time step n.

Listing 2: Goal Enforcement and Action Generation
1 1{occurs(A,T):action(action(A))}1:-nok(T).

2 nok(T):-goal(X,value(X, true)),not h(X,T).

3 nok(T):-goal(X,value(X, false)),not -h(X,T).

4 goal :- not nok(n).

5 :- not goal.

Let S be a set of atoms in π(P)∪π(n) and plan(S) denote
the sequence [at1 , . . . ,atk] such that occurs(ati , ti) ∈ S, where
t1 < .. . < tk, and for every occurs(ai, i) ∈ S, i ∈ {t1, . . . , tk}.
For a plan p = [a1, . . . ,at], occurs∗(p) = {occurs(ai, i) |
i = 1, . . . , t}. It can be shown that for each answer set
A of π(P)∪ π(n), plan(A) is a solution of P = (I,G,D);
and if p = [a1, . . . ,at] with t < n is a solution of (I,G,D),
then π(P) ∪ π(n) ∪ occurs∗(p) has an answer set A such
that p = plan(A). π(P) ∪ π(n) has p as a solution if
π(P)∪π(n)∪occurs∗(p) has an answer set. We use π(P) to
compute minimal length plan of P by computing answer set
of π(P)∪π(k) for k = 1, . . ., and stop when the first answer
set is found.

3.2 Computing Optimal Solution of MRPs
Consider an MRP M = (p∗,Pr,Ph), where Pr = (Ir,G,Dr),
Ph = (Ih,G,Dh), and p∗ = [a1,a2, ...,ak] is an optimal (in
terms of length) solution of Pr but not an optimal solution
of Ph. An explanation for M is a pair (ε+,ε−), where ε+ ⊆
Ir ∪Dr and ε− ⊆ Ih ∪Dh, that can be used to update Ph to
P̂h = (Îh,G, D̂h) such that p∗ is an optimal plan of P̂h. An
explanation (ε+,ε−) is optimal if there exists no explanation
(θ+,θ−) such that θ+∪θ− is a proper subset of ε+∪ ε−.

In the updated P̂h, Îh =(Ih\(ε−∩Ih))∪(ε+∩Ir) and D̂h =
Dh \ (ε− ∩Dh)∪ (ε+ ∩Dr). Let pre(x,Dr) and post(x,Dr)
be the collection of preconditions and postconditions, re-
spectively, of the action x in Dr.

Algorithm 1 gives an overview of the process for comput-
ing a solution for a problem (p∗,Pr,Ph) and makes use of
three ASP programs:
(i) π1: It computes the explanation ε of a plan (p∗) with

respect to a planning domain (Pr);
(ii) π2: It updates a planning domain (Ph) with changes

(from ε) and computes an optimal solution; and

Algorithm 1: Explanation(Pr,Ph, p∗)
Input: A MRP: (p∗, Pr, Ph), k is the length of p∗

Output: An explanation (ε+,ε−)
1 Compute the first set of explanation ε = (ε+,ε−) using π1
2 Update Ph with ε to create P̂h
3 % P̂h will have p∗ as one of its solutions
4 while P̂h has optimal plan of length n do
5 if n == k then
6 break
7 else
8 for each action b in p do
9 if b in Dr then

10 ε+ = ε+∪ pre(b,Dr)∪ post(b,Dr)
11 else
12 ε− = ε−∪ pre(b,Dh)∪ post(b,Dh)

13 Update Ph with ε to create P̂h

14 Compute minimal (ε+,ε−) using π3
15 return (ε+,ε−)

(iii) π3: Given a set of potential changes (ε) to a problem
(Ph) that guarantee that the problem does not have an op-
timal plan shorter than the length of p∗, it computes a set
of minimal changes that still guarantee this property.
π1 is used to compute the initial explanation (Line 1).

Given a plan, its explanation is essentially all the precon-
ditions and effects of the actions in the plan.

π2 is used to update Ph with ε , create P̂h, and check
whether P̂h has a plan of length smaller than the length of
p∗ (Lines 2-4). If it is the case, then it updates ε and repeats
(while-loop, Lines 4-13).

Finally, π3 is used to find a minimal set of changes and
return it (Lines 14-15).

As we will describe next, π1, π2, and π3 share some sub-
programs. Thus, to avoid grounding a sub-program multi-
ple times, Lines 4-13 employs a multi-shot solver feature of
clingo. The computation of the set of explanations (Lines
10, 12 and 14) is purely encoded in the logic program in
Listing 6. We next describe these programs in detail.

π2: Computing An Explanation: The program π1 is di-
vided into four programs: πselect , πupdate, πengine = π(n)
(as described in the previous subsection, with the modifica-
tion that postcondition(.) and precondition(.) are changed
to true(postcondition(.)) and true(precondition(.))), and
πoptimal . Given (p∗,Pr,Ph), π1 computes changes to Ph so
that p∗ is a plan of P̂h.

The program πselect below has as inputs p∗, Dh, and
Dr, which are represented by the set of atoms of the form
occurs(a, t), human(l) for l ∈ π(Dh), and robot(l) for l ∈
π(Dr), respectively. Lines 1-2 set up the time steps from p∗.
Lines 3-4 (5-6) encode a choice rule which states that an ac-
tion in Dr (Dh) can be added to (removed from) Dh if it is not
(is) in Dh (e.g., add(action(a)) is true means that action a
from Dr is added to Dh). Lines 7-15 (16-23) encode a choice
rule that defines add/1 (remove/1) for adding (removing)
preconditions and postconditions from Dr (Dh). Lines 24-34
are similar to Lines 7-23 and are for adding/deleting infor-
mation to/from the initial state Ih.

Listing 3: Program πselect

1 maxTime(N) :- N = #max {T : time(T)}.

2 preTime(T) :- time(T), maxTime(N), T < N.

3 {add(action(A))} :- robot(occurs(A,_)),

4 not human(action(A)).

5 {remove(action(A))} :- human(action(A)),

6 not robot(action(A)).

7 {add(postcondition(action(A),B,X,value(X,BoolV)))} :-

8 robot(postcondition(action(A),B,X,

9 value(X,BoolV))), robot(occurs(A,_)),

10 not human(postcondition(action(A),B,X,

11 value(X, BoolV))).

12 {add(precondition(action(A),X,value(X,BoolV)))} :-

13 robot(precondition(action(A),X,value(X,BoolV))),

14 robot(occurs(A,_)), not human(precondition(action(A),

15 X, value(X, BoolV))).

16 {remove(postcondition(action(A),B,X,value(X,BoolV)))}

17 :- human(postcondition(action(A),B,X,value(X, BoolV))),

18 contradictory(BoolV,NBoolV),

19 robot(postcondition(action(A),B,X,value(X, NBoolV))).

20 {remove(precondition(action(A),X,value(X, BoolV)))} :-

21 human(precondition(action(A),X,

22 value(X,BoolV))), contradictory(BoolV, NBoolV),

23 robot(precondition(action(A), X, value(X, NBoolV))).

24 {add(initialState(X,value(X,true)))} :-

25 robot(initialState(X,value(X,true))),

26 human(initialState(X,value(X,false))).

27 {remove(initialState(X,value(X,true)))} :-

28 robot(initialState(X,value(X,false))),

29 human(initialState(X,value(X,true))).

30 h(X,1) :- robot(initialState(X,value(X,true))),

31 human(initialState(X,value(X,true))).

32 h(X,1) :- human(initialState(X,value(X,true))),

33 not remove(initialState(X,value(X,true))).

34 h(X,1):- add(initialState(X,value(X,true))).

The program πupdate below updates a planning problem
(in this case, Ph) with the changes stipulated by πselect . It
defines, for each action a, a set of atoms of the from true(l),
where l is a precondition or postcondition of a to indicate
the elements of P̂h that should be used to compute plans in
the next iteration.

Listing 4: Program πupdate

1 action(action(A)) :- add(action(A)).

2 true(action(A)) :- action(action(A)),

3 not remove(action(A)).

4 true(postcondition(action(A), B, C, D)) :-

5 add(postcondition(action(A), B, C, D)).

6 true(precondition(action(A), C, D)) :-

7 add(precondition(action(A), C, D)).

8 true(postcondition(action(A),B,X,value(X, BoolV))) :-

9 human(postcondition(action(A), B, X,

10 value(X, BoolV))), contradictory(BoolV, NBoolV),

11 not add(postcondition(action(A), B, X,

12 value(X, NBoolV))),

13 not remove(postcondition(action(A), B, X,

14 value(X, BoolV))).

15 true(precondition(action(A), X, value(X, BoolV))) :-

16 human(precondition(action(A),X,value(X, BoolV))),

17 contradictory(BoolV, NBoolV),

18 not add(precondition(action(A),X,value(X, NBoolV))),

19 not remove(precondition(action(A),X,value(X, BoolV))).

Finally, the program πoptimal below uses the optimization
feature of clingo to find the minimal number of changes to
Dh that are needed to explain the optimality of p∗.

Listing 5: Program πoptimal

1 change(N) :-

2 N1=#count{1,(A,B,C,D):add(postcondition(A,B,C,D))},

3 R1=#count{1,(A,B,C,D):remove(postcondition(A,B,C,D))},

4 N2=#count{1,(A,B,C) :add(precondition(A,B,C))},

5 R2=#count{1,(A,B,C) :remove(precondition(A,B,C))},

6 N3=#count{1,A :add(action(A))},

7 R3=#count{1,A :remove(action(A))},

8 I1=#count{X :add(initialState(X,value(X,true)))},

9 I2=#count{X :remove(initialState(X,value(X,true)))},

10 N = N1 + N2 + N3 + R1 + R2 + R3 + I1 + I2.

11 #minimize {N : change(N)}.

Given the correctness of π(n) and the fact that an action
is executable when its precondition is satisfied and will pro-
duce its postconditions, we can verify that π1 produces an
explanation ε so that P̂h has p∗ as one of its solutions.

π2: Updating and Checking: π2 consists of πupdate,
πengine, and the code in Listing 6. To avoid the grounding
of π2 in the while-loop, we use external atoms of the form
considered(a) to indicate that a should be added and set it
to true in accordance to the output of π2 at the end of the
loop (Line 13, Algorithm 1). Following Chakraborti et al.
(2017), if an action of the form a(~X) is considered, then all
of its instantiations will be considered. We ensure this prop-
erty by creating a set of atoms of the form name(a(~X),a)
and the rules in Lines 1-12 of Listing 6.

Listing 6: A part of program π2

1 add(postcondition(action(A),B,X,value(X, BoolV))) :-

2 considered(A),

3 robot(postcondition(action(A),B,X,value(X,BoolV))).

4 add(precondition(action(A),X,value(X, BoolV))) :-

5 considered(A),

6 robot(precondition(action(A), X, value(X, BoolV))).

7 add(postcondition(action(B),E,X,value(X, BoolV))) :-

8 considered(A), name(A,NA), name(B,NA), B != A,

9 robot(postcondition(action(B),E,X,value(X,BoolV))).

10 add(precondition(action(B),X,value(X,BoolV))) :-

11 considered(A), name(A,NA), name(B,NA), B != A,

12 robot(precondition(action(B), X, value(X, BoolV))).

13 remove(action(A)):-considered(A),not robot(action(A)).

14 considered(A) :- robot(occurs(A, T)).

Observe that P̂h has a solution p shorter than p∗ only if it
contains actions that are different from those in Dr. Hence,
it is clear that if actions in p are modified to match their
counterparts in Dr or removed, p will not be regenerated by
π2 in the next iteration. Therefore, Algorithm 1 will termi-
nate, i.e., the condition for the while-loop to continue will
be false eventually.

π3: Computing the Final Explanation: The program π3
consists of of π2 and πoptimal . It is called when π2 is termi-
nated and finalizes the computation by minimizing the to-
tal number of elements that should be added/removed. Ob-
serve that because we minimize the cardinality of the set of
changes, the output of π3 is a minimal solution.

Problem |p∗| Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod. 6
|ε| CSZK ASP |ε| CSZK ASP |ε| CSZK ASP |ε| CSZK ASP |ε| ASP |ε| ASP

B
L

O
C

K
S
-

W
O

R
L

D

10 17 3 7 86 3 0.4 17 6 36 17 9 462 84 9 46 2 1
15 19 3 44 83 2 0.3 83 5 87 84 9 433 84 10 45 4 0.1
14 21 3 3 270 3 0.5 271 6 17 272 10 656 268 11 47 5 3
13 17 3 13 218 3 0.5 218 6 67 217 10 516 217 9 45 5 105

L
O

G
IS

-
T

IC
S

1 21 5 20 115 3 0.7 120 10 465 148 4 17 139 5 58 5 128
5 18 5 20 100 4 3 101 10 404 107 4 15 110 5 57 4 135

10 15 5 20 1390 4 2 1172 10 401 1178 4 15 1214 5 57 7 134
8 25 5 22 19 3 0.7 18 10 472 17 4 15 18 5 58 6 144

R
O

V
E

R 1 11 3 47 5 5 5 5 5 561 5 6 590 5 6 333 4 5
2 09 1 1 3 5 5 3 4 378 3 7 1521 3 6 373 4 3
3 12 3 48 11 6 11 14 5 564 37 7 1522 15 6 1501 6 17
4 09 1 1 11 4 4 10 4 63 16 4 37 10 6 2556 10 20

Table 1: Varying Modifications and Domains

Explanation Length |ε|
|p∗ | 2 4 6 8 10 12 14

CSZK ASP CSZK ASP CSZK ASP CSZK ASP CSZK ASP CSZK ASP CSZK ASP

17 0.31 106 8 103 38 104 95 99 508 102 1850 104 6163 99
20 0.30 117 8 122 30 122 73 128 508 120 1850 120 6161 122

Table 2: Varying Explanation and Plan Lengths for LOGISTICS

4 Experimental Results
We empirically evaluated our ASP-based implementation
of Algorithm 1, labeled ASP, to find cost-minimal expla-
nations against the current state of the art by Chakraborti
et al. (2017), labeled CSZK. We evaluated them on the
same three planning benchmarks used by Chakraborti et
al. (2017), i.e., BLOCKSWORLD, LOGISTICS, and ROVER,
where we used problem instances from the International
Planning Competition (IPC). In all our experiments, we used
the actual IPC instances as the model of the robot Dr and
considered the following six modifications to the model of
the human Dh:
(1) Removal of one random precondition from every action;
(2) Removal of one random effect from every action;
(3) Removal of one random precondition and one random

effect from every action;
(4) Removal of all but one random precondition and one

random effect from two actions;
(5) Removal of some random actions that are used in the

optimal plan; and
(6) Modification of some initial states.

Table 1 tabulates the optimal plan lengths |p∗|, expla-
nation lengths |ε|, and runtimes in seconds. The problem
IDs in the table correspond to the IDs of instances we used
from the IPC benchmark. We omit the runtimes of CSZK in
Modifications 5 and 6 as it was not designed for those sce-
narios. In general, CSZK is faster in most LOGISTICS and
BLOCKSWORLD instances but ASP is faster in most ROVER
instances. We suspect that the reason is because optimal
plan lengths in ROVER tend to be shorter than optimal plan
lengths in LOGISTICS and BLOCKSWORLD. We thus con-
ducted an experiment where we varied the optimal plan and
the explanation length in the LOGISTICS domain to verify
that correlation. Table 2 shows the results and we make the
following observations:
• These results show a clear trend that the runtimes of CSZK

increases as the explanation lengths increase. The reason
is that CSZK needs to search over a larger search space
as the explanation increases. As such, its runtime also
increases.

• In contrast, the runtimes of ASP remain relatively un-
changed with varying explanation lengths. The reason is
that the runtimes of ASP are dominated by the grounding
of rules in its programs, which are independent of the ex-
planation lengths.

• The results also show that the runtimes of CSZK remain
relatively unchanged with varying optimal plan lengths.
The reason is that CSZK runs an A* search over the expla-
nation search space and as long as the explanation length
remains unchanged, the runtime complexity of the search,
which is exponential in the explanation length, remains
relatively unchanged as well.

• In contrast, the runtimes of ASP increase as the opti-
mal plan lengths increase. The reason is that the size of
the ASP program increases with the optimal plan length.
Thus, there is an increasing number of rules to ground,
which results in an increase in runtime.

• The implementation of CSZK’s system takes as input one
problem file. In other words, the problem file has to be the
same for the robot and the human. Therefore, CSZK does
not work when the signature of the problem of the human
differs from that of the robot and ASP does as in the last
two scenarios.

These observations highlight that ASP is faster than CSZK
when the explanations are long.

5 Conclusions
Research in explainable planning is becoming increasingly
important as human-AI collaborations becomes more perva-
sive. The model reconciliation problem (MRP) in explain-
able planning is a problem where the plan of a planning
agent is infeasible or suboptimal to a human user due to dif-
ferences in their models of the problem. As such, the agent
needs to provide an explanation to the user, which reconciles
some of the differences in the two models such that its plan is
now optimal to the user. Within this space, we demonstrate
that MRP can be effectively solved using ASP technologies
and empirically show that it outperforms the current state of
the art when the explanations are long. The code for our
system is available at https://github.com/tcson62/asp-mrp.

For future work, we plan to investigate two orthogonal di-
rections. The first direction is on asserting how believable is
the explanation provided by the agent to the human. The sec-
ond direction is on integrating with explainable scheduling
systems, where similar to explainable planning, the goal of a
scheduling agent is to explain to a human user why its sched-
ule is feasible or cost minimal. ASP has been used with
some success on real-world scheduling problems (Abels et
al. 2019) and we plan to investigate the applicability of our
approach in those problems.

Acknowledgments
This research is partially supported by NSF grants 1757207,
1812619, 1812628, and 1914635. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the sponsoring organizations,
agencies, or the U.S. government.

References
Dirk Abels, Julian Jordi, Max Ostrowski, Torsten Schaub,
Ambra Toletti, and Philipp Wanko. Train scheduling with
hybrid ASP. In LPNMR, pages 3–17, 2019.
Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang, and
Subbarao Kambhampati. Plan explanations as model recon-
ciliation: Moving beyond explanation as soliloquy. In IJ-
CAI, pages 156–163, 2017.
Martin Gebser, Benjamin Kaufmann, Javier Romero,
Ramón Otero, Torsten Schaub, and Philipp Wanko. Domain-
specific heuristics in answer set programming. In AAAI,
pages 350–356, 2013.
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and
Torsten Schaub. Clingo = ASP + control: Preliminary report.
CoRR, abs/1405.3694, 2014.
M. Gelfond and V. Lifschitz. Logic programs with classical
negation. In LP, pages 579–597, 1990.
Malik Ghallab, Adele Howe, Craig Knoblock, Drew Mc-
Dermott, Ashwin Ram, Manuela Veloso, Daniel Weld, and
David Wilkins. PDDL – the planning domain definition lan-
guage. Number TR-98-003, 1998.
Subbarao Kambhampati. Synthesizing explainable behavior
for human-ai collaboration. In AAMAS, pages 1–2, 2019.
V. Lifschitz. Answer set programming and plan generation.
Artificial Intelligence, 138(1–2):39–54, 2002.
V. Marek and M. Truszczyński. Stable models and an al-
ternative logic programming paradigm. In The Logic Pro-
gramming Paradigm: a 25-year Perspective, pages 375–
398, 1999.
Van Duc Nguyen, Philipp Obermeier, Tran Cao Son, Torsten
Schaub, and William Yeoh. Generalized target assignment
and path finding using answer set programming. In IJCAI,
2017.
I. Niemelä. Logic programming with stable model seman-
tics as a constraint programming paradigm. Annals of Math-
ematics and Artificial Intelligence, 25(3,4):241–273, 1999.
R. Reiter. On closed world data bases. In H. Gallaire and
J. Minker, editors, Logic and Data Bases, pages 119–140.
Plenum Press, New York, 1978.
Tran Cao Son, Orkunt Sabuncu, Christian Schulz-Hanke,
Torsten Schaub, and William Yeoh. Solving Goal Recog-
nition Design using ASP. In AAAI 2016, 2016.
Sarath Sreedharan, Tathagata Chakraborti, and Subbarao
Kambhampati. Handling model uncertainty and multiplicity
in explanations via model reconciliation. In ICAPS, pages
518–526, 2018.
Sarath Sreedharan, Alberto Olmo Hernandez, Aditya Prasad
Mishra, and Subbarao Kambhampati. Model-free model
reconciliation. In IJCAI, pages 587–594, 2019.

https://github.com/tcson62/asp-mrp

	Introduction
	Background: ASP and Planning
	Explainable Planning Using ASP
	Planning Engine
	Computing Optimal Solution of MRPs

	Experimental Results
	Conclusions

