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Abstract

The paper proposes a framework for capturing how an agent’s
beliefs evolve over time in response to observations and
for answering the question of whether statements made by
a third party can be believed. The basic components of
the framework are a formalism for reasoning about actions,
changes, and observations and a formalism for default rea-
soning. The paper describes a concrete implementation that
leverages answer set programming for determining the evo-
lution of an agent’s “belief state”, based on observations,
knowledge about the effects of actions, and a theory about
how these influence an agent’s beliefs. The beliefs are then
used to assess whether statements made by a third party can
be accepted as truthful. The paper investigates an application
of the proposed framework in the detection of man-in-the-
middle attacks targeting computers and cyber-physical sys-
tems. Finally, we briefly discuss related work and possible
extensions.

1 Introduction
Artificial Intelligence research, in the area of knowledge-
based and intelligent agents, has been progressing at a rapid
pace, making it possible to develop agents that can assist
and/or replace humans in several tasks. Organizations use
web-bots for interacting with clients in various capacities,
e.g., in providing information about the company or making
offers. This trend continues to be fueled by the ubiquitous
use of online resources.

Unfortunately, not every business on the Internet is as
honest as one would hope. Stories about businesses that
cheat people of goods or services, or falsely advertise their
services are not uncommon. Indeed, lying and misrepre-
sentations are more widespread in online negotiations than
offline ones (Rowe 2006). Dishonesty is also present in the
news media, leading to the dissemination of untruthful sto-
ries (e.g., the ‘Phuc Dat Bich’ story1 reported by BBC and
Sky News). Another example is the case of a hotel reviewer
with the alias “AmishBoy” who gave high ratings to differ-
ent hotels in the same day (Minnich et al. 2015)—thus sug-
gesting that his statements may be untrustworthy.

The concern about misinformation, disinformation, or
dishonesty is also reflected in the development of resources
that allow people to rate companies (e.g., expedia.com,

1 http://gizmodo.com/phuc-dat-bich-is-a-massive-phucking-faker-1744588099

yelp.com, Angie’s List) or defend the reputation of a com-
pany or an entity (e.g., reputation.com) or check for the ac-
curacy of some information disseminated by a person or a
new outlet (e.g., factcheck.org). All these aim at providing
users with tools for checking the trustworthiness of a piece
of information.

The above development highlights the problem of under-
standing whether statements made by an agent can be ac-
cepted as truthful with respect to a context composed of
observations,knowledge about default behavior, and corre-
sponding beliefs. This problem is not new to human. It is
indeed as old as the existence of human on the earth. Yet,
the amount of information that a human is receiving every-
day has gone up significantly since the earth becomes flat,
with the introduction of the Internet, and the advances in
mobile technologies. This requires, ideally, tools that au-
tomatically filter out untrustworthy information for an user.
The development of such a tool, on the other hand, requires
the understanding of the reasoning process that helps a hu-
man to conclude that a piece of information receiving from
a third party is true or false.

In this paper, we are interested in reasoning about the
“belief state” of an agent and what that tells us about the
truthfulness of statements made by a third party. We as-
sume that we can observe the world as well as other agents’
actions. The basis for our judgments will be composed of
our observations, performed on a linear time line, along
with commonsense knowledge about the world and about
how observations and knowledge influence an agent’s be-
liefs. We assume that observations are true at the time they
are made, and will stay true until additional pieces of in-
formation prove otherwise. The approach is designed to
reflect the fact that an agent’s beliefs are subjective – they
might not correspond to the ground truth and could change
over time. This is because judgments are often made in
the presence of incomplete information. This makes rea-
soning about beliefs and truthfulness of statements non-
monotonic. Note that, in this paper, judgments about a state-
ment are made independently of whether or not we trust the
agent from whom the statement originated. As such, our
study in this paper differs from the extensive literature about
trust models between agents (see, e.g., (Artz and Gil 2007;
Sabater and Sierra 2005)). We will elaborate further on this
issue in the related work section.
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Consider the following motivating example.

Example 1. When we first met at an event (time t0), John
stated that he comes from a poor family. Later, we learn that
John attends a private college, renowned for its expensive
tuition (time t1). Later yet, we learn that John attends the
college thanks to a scholarship awarded due to his financial
hardship (time t2).

This story spans over three time instants: t0, t1, and
t2. During the story, we learn (through observations) some
facts, which affect our beliefs about the world as follows:

• Time t0: John makes the statement that his family is poor
(property poor is true). No observations are available
to us and thus we do not know if John’s family is indeed
poor or not. We have no reasons to conclude that John’s
statement is not truthful.

• Time t1: We observe that John attends an expensive col-
lege (property in college is true). Normally, we believe
that someone attending an expensive college is from a rich
family (default d1). Hence, our belief at this point is that
John is rich. This prevents us from accepting John’s state-
ment as truthful. We indicate that the default d1 is the
reason to draw such conclusion.

• Time t2: We observe that John has a need-based schol-
arship (property has scholarship is true). It is our belief
that a student’s need-based scholarship is usually derived
from the family’s financial situation (default d2). Because
both defaults are applicable and in conflict with each
other, we believe neither that John’s family is rich, nor
that it is poor. This allows us to withdraw our previous
conclusion that John’s statement could not be accepted
as truthful.

• The situation might be different if we had a preference
between our defaults. For instance, if we were inclined to
favor d2 over d1, then we would believe that John’s family
is poor. This may strengthen our conclusion that John’s
statement can be accepted as truthful.

The main contributions of this paper can be summarized
as follows:

1. The formalization of an abstract model to represent and
reason about the evolution of an agent’s beliefs over time
and to draw conclusions about whether third-party state-
ments can be accepted as truthful;

2. A concrete realization of the model using Answer Set Pro-
gramming; and

3. A demonstration of the proposed framework on an impor-
tant problem in the area of cyber security.

We illustrate the framework using examples and discuss pos-
sible extensions that need to be considered.

2 Beliefs and Truthfulness of Statements
In this section, we propose a general framework for repre-
senting, and reasoning about, the beliefs held by an agent.
The framework also establishes a link between such beliefs
and whether the agent may accept as truthful statements
made by a third party. The framework can be instantiated

using specific paradigms for reasoning about actions and
change and for non-monotonic reasoning. We build upon
the following foundations:
• An action signature 〈F,B,A〉 is given, where F are sym-

bols for fluents (properties of the world whose truth value
may change over time), B are symbols for an agent’s be-
liefs and A are symbols for actions. The components of
the signatures are pairwise disjoint.2 The notions of fluent
literals and of set Σ of states of the domain are introduced
as usual.

• It is possible to observe the properties of the world and
the occurrences of the actions over time (e.g., we observe
that John buys a car, John is a student, etc.). Let Hn be the
set of all observations up to step n and all recorded action
occurrences up to step n−1.

• We have adequate knowledge about actions and their ef-
fects (e.g., the action of buying a car requires that the
agent has money and its execution will result in the agent
owning a car). This knowledge is represented by an ac-
tion theory Act in a suitable logic that allows reason-
ing about actions’ effects and consequent changes to the
world. Let ΦAct : Σ× A→ 2Σ denote a suitable transi-
tion function describing the evolution of the dynamic sys-
tem of interest. Φ̂Act is the usual extension of ΦAct to ac-
tion sequences with Φ̂Act(σ , []) = σ and Φ̂Act(σ , [a;β ]) =⋃

σ ′∈ΦAct (a,σ) Φ̂Act(σ
′,β ) where σ ∈ Σ and β is an action

sequence and a is executable in σ .
• We have commonsense knowledge about how an agent of

interest forms its beliefs (e.g., an agent may believe that
a person attending an expensive school normally comes
from a rich family, a person obtaining need-based schol-
arship usually comes from a poor family). This knowl-
edge is represented by a default theory with preferences
Def, that enables reasoning about the state of the agent’s
beliefs. Let us denote with |=D the entailment relation
defined over the default theory framework defining Def.
The set of observations Ow ⊆ Hn in Example 1 includes

the observations such as
• ‘John attends an expensive college’ at time point t1, and
• ‘John receives a need-based scholarship’ at time point t2.
In this particular example we do not have any action occur-
rences.3 Our default theory De f consists of defaults d1 and
d2 stated earlier, which allow us to draw conclusions regard-
ing our agent’s beliefs.

Let us consider a theory T = (Hn,Act,Def) and the asso-
ciated ΦAct and |=D. First, we are interested in defining the
beliefs held by the agent over time. And, then, we are inter-
ested in using this information for answering the question of
whether a statement b[t], where b ∈ B and t is the time step
at which the statement was made, can be accepted as truth-
ful. For this, we define the entailment relation |= between T
and b[t]. Intuitively, the process entails the steps below:

2This requirement is imposed to simplify some aspects of the
presentation, but is not essential.

3Some frameworks for reasoning about actions and change may
require the introduction of a NOP action for modeling the example.



• Compute Φ̂Act(Hn,Σ0), the set of states that are reach-
able from the initial state given the history Hn, where Σ0
denotes the initial state specified by Act and Hn, which
can be incomplete. For compactness, below we abbrevi-
ate Φ̂Act(Hn,Σ0) with W [n];

• Determine the agent’s beliefs by finding which proposi-
tions are derivable from Def and W [t] (using |=D). We
note that W [t] can be a set of states and the different no-
tions of entailment such as skeptical and credulous entail-
ment could be applied here;

• Determine if the statement b[t] is consistent with respect
to the agent’s beliefs.

The entailment relation between T and b[t] can thus be de-
fined by:

T |= b[t] ⇔ 〈W [t],De f 〉 |=D b (1)

Note that this definition also allows one to identify ele-
ments of Ht that, when obtained, will result in the confirma-
tion or denial of T |= b[t]. As such, a system that obeys (1)
can also be used by users who are interested in what they
need to do in order to believe in a statement about b at the
time step t, given their beliefs about the behavior of the ob-
served agents.

To develop a concrete system for reasoning about truth-
fulness of agents using (1), specific formalizations of Act
and Def need to be developed. There is a large body of
research related to these two areas, and deciding which
one to use depends on the system developer. Well-known
formalisms for reasoning about actions and change, such
as action languages (Gelfond and Lifschitz 1998), situa-
tion calculus (Reiter 2001), etc., can be employed for Act
and ΦAct . Approaches to default reasoning with prefer-
ences, such as those proposed in (Brewka and Eiter 1999;
Brewka and Eiter 2000; Delgrande, Schaub, and Tompits
2003; Gelfond and Son 1998)), can be used for Def (and
|=D). In addition, let us note that, in the literature, |=D can
represent skeptical or credulous reasoners; and the model
does not specify how observations are collected. Deciding
which type of reasoning is suitable or how to collect obser-
vations is an important issue, but it is application-dependent
and beyond the scope of this paper.

3 Reasoning about Beliefs and Truthfulness
Using Answer Set Programming

We will now present a concrete system for reasoning
about truthfulness of agents using Answer Set Programming
(ASP) (Marek and Truszczyński 1999; Gelfond and Lifs-
chitz 1991). We select ASP as the host language since
there exist several approaches to reasoning about actions and
changes as well as default reasoning using ASP. This enables
the seamless integration of the two steps involved in (1) into
a single system. Several efficient ASP solvers are available,
that enable the use of the proposed system in practical ap-
plications. In particular, we will use answer sets (and pro-
jections of answer sets over specific time points) to capture
W [t], and use established encodings of action theories and
defaults in ASP.

3.1 Background: Answer Set Programming
A logic program Π is a set of rules of the form

a0← a1, . . . ,am, not am+1, . . . , not an (2)

or
⊥← a1, . . . ,am, not am+1, . . . , not an (3)

where 0≤m≤ n, each ai is an atom of a first-order language
P , ⊥ is a special symbol denoting the truth value false, and
not is a connective called negation-as-failure. A negation
as failure literal (or naf-literal) is of the form not a where
a is an atom. For a rule of the form (2)-(3), the left and
right hand side of the rule are called the head and the body,
respectively. A rule of the form (3) is also called a constraint.

Given a logic program Π, we will assume that each rule
in Π is replaced by the set of its ground instances so that all
atoms in Π are ground. Consider a set of ground atoms X .
The body of a rule of the form (2) or (3) is satisfied by X if
{am+1, . . . ,an}∩X = /0 and {a1, . . . ,am} ⊆ X . A rule of the
form (2) is satisfied by X if either its body is not satisfied
by X or a0 ∈ X . A rule of the form (3) is satisfied by X if
its body is not satisfied by X . An atom a is supported by X
if a is the head of some rule of the form (2) whose body is
satisfied by X .

For a set of ground atoms S and a program Π, the reduct of
Π with respect to S, denoted by ΠS, is the program obtained
from the set of all ground instances of Π by deleting

1. each rule that has a naf-literal not a in its body with a∈ S,
and

2. all naf-literals in the bodies of the remaining clauses.

S is an answer set (or a stable model) of Π if it satisfies
the following conditions.

1. If Π does not contain any naf-literal (i.e. m = n in every
rule of Π) then S is the smallest set of atoms that satisfies
all the rules in Π.

2. If the program Π does contain some naf-literal (m < n in
some rule of Π), then S is an answer set of Π if S is the
answer set of ΠS. (Note that ΠS does not contain naf-
literals, its answer set is defined in the first item.)

A program Π is said to be consistent if it has an answer
set. Otherwise, it is inconsistent.

Several extensions (e.g., choice atoms, aggregates, etc.)
have been introduced to simplify the use of ASP. We will use
and explain them whenever it is needed. Answer sets can
be computed using answer set solvers. Extended syntactic
notations have been proposed to facilitate the encoding of
commonly used patterns (e.g., aggregates). In this paper, we
use the syntax of ASP used in CLASP4 or DLV5.

3.2 Reasoning with No Observations about
Action Occurrences

Let us start with a simpler case—where we do not worry
about action occurrences. We represents the components of
the theory by means of keywords stm (for statement), obs

4 https://github.com/potassco
5http://www.dlvsystem.com/

https://github.com/potassco
http://www.dlvsystem.com/


(for observed), rule, de f ault, and pre f er. Fluent literals
are defined as usual. Similarly, symbols for beliefs yield the
notion of belief literal. By literals we mean fluent literals or
belief literals. l denotes the complement of literal l. Agents
can make statements about belief literals. Statements are
given in the form stm(b,s) where s is a non-negative integer
(representing a time step) and b is a belief literal. For exam-
ple, the statement ‘John said that he is poor’ can be stated as
stm(poor,0).
Definition 1. A knowledge base (KB) over an action signa-
ture 〈F,B,A〉, is a tuple 〈O,RD〉 where:
• O is a set of observations, each of the form

obs(l,s) (4)

where l is a fluent literal and s is a non-negative integer;
• RD is a collection of expressions of the form

rule(r,b,body) (5)
de f ault(d,b,body) (6)

pre f er(d,d′,body) (7)

where r, d and d′ are constants that do not occur in the
signature, b is a belief literal and body is a set of literals.
Statements (5), (6), and (7) are referred to as a rule, a

default, and a preference between defaults, respectively.
Intuitively, r and d are used to name rules and defaults.

We say that a set of observations O is consistent if, for each
time step s and fluent literal l, {obs(l,s),obs(¬l,s)} 6⊆ O.
Following the conventional approach from the literature, we
make the assumptions that the preference relation in RD is
an acyclic preference and that it is a transitive and irreflexive
relation, i.e., there exists no sequence of preference state-
ments pre f er(di,di+1,bodyi), i = 1, . . . ,k, in RD such that
d1 = dk+1 and

⋃k
i=1 bodyi is consistent.

A set of rules RD is consistent if, for any consistent
set of fluent literals X , the logic program {b ← body |
rule(r,b,body) ∈ RD}∪{l←| l ∈ X} is consistent.
Definition 2. A KB = 〈O,RD〉 is consistent if O and RD are
consistent.

Our goal is to identify the agent’s beliefs and to use them
to determine whether a statement stm(p,s) is true at a time
step t given KB. We will develop a program Π(KB) to an-
swer this question. We assume a finite horizon of steps, de-
noted by s(0), . . . ,s(k). We use h(L,S) to encode that fluent
literal L is true at step S. We use believes(B,S) to state that
the agent believes B at step S. Furthermore, to simplify the
use of Π(KB) with current ASP solvers, we encode a rule of
the form (5) using (a) the ASP atom rule(r,head,body idr)
and (b) the set of ASP atoms {mbr(l,body idr) | l ∈ bodyr},
where body id is an identifier for the body of the rule and
mbr stands for ‘member of ’; similar encodings are used for
(6) and (7). This method of encoding is similar to what is
used in answer set planning and allows for the separation
between the encoding of the problem and the rules for rea-
soning with it. The main challenge to be addressed lies in
the interaction between observations and defaults. We apply
the following principles:

(O)ptimistic: The most recent observation reflects the true
state of the world;
(SK)eptical: When conflicting conclusions can be drawn
then do not believe in any.
The first part of Π(KB) contains the set of facts encoding

O and RD as described above. Their semantics is captured
by the following rules.6

The first set of rules is used to reason about observations
of the form (4):

nr(L,U,S) ← s(U),neg(L,L1),obs(L1,V ),s(S),
U<V,V<S. (8)

h(L,S) ← obs(L,S1),s(S),S1 ≤ S,
not nr(L,S1,S). (9)

These rules encode the principle (O). Rule (8) states that
nr(L,U,S) is true if there exists a more recent observation of
¬L. Rule (9) indicates that an observation stays true if every
conflicting observation is ‘older’.

For reasoning about statements of the form (5), we have7:

h body(M,S) ← s(S),
N = #count{L : mbr(L,M)},
Nh = #count{L : mbr(L,M),

h(L,S)},
Nb = #count{L : mbr(L,M),

believes(L,S)},
Nh +Nb == N. (10)

believes(H,S) ← s(S),rule(R,H,M),

h body(M,S) (11)

(10) defines an auxiliary predicate h body where for each
set M of literals and time step S, h body(M,S) is true when
all literals in M are true or believed at S. The ‘==’ sym-
bol denotes identity at the level of ground terms.8 Checking
whether the body is satisfied is compactly achieved by lever-
aging the #count aggregate of the ASP Core 2 language9,
which calculates the cardinality of a set. For instance, the
expression #count{L : mbr(L,M),h(L,S)} finds the number
of literals that are in the body of the rule (mbr(L,M)) and
hold at time step S (h(L,S)). The combination of aggregates
present in (11) checks that the number of literals that hold
or are believed equals the size of the body of the rule.10 In-
tuitively, (11) states that, if the body of a rule statement is
satisfied, then its head must be true. Recall that, according
to the syntax given earlier, the head is a belief – hence the
expression believes(H,S) in (11).

6In the following, The predicate neg encodes the complement
of a literal, i.e, neg( f ,¬ f ) and neg(¬ f , f ) are facts of the program.

7 We would like to thank the anonymous reviewer for the sug-
gestion on how to encode this rule for better performance.

8The variables involved are replaced by a constant during the
grounding process and the identity is checked during the solving
phase.

9Details can be found in (ASP Standardization Working Group
2013)

10Recall that fluent symbols and belief symbols are disjoint.



For reasoning about defaults of the form (6) we have:

app(D,H,S) ← s(S),de f ault(D,H,M),

h body(M,S) (12)
de f eated(D,H,S) ← s(S),app(D,H,S),

neg(H,H1),

h(H1,S). (13)
de f eated(D,H,S) ← s(S),app(D,H,S),

neg(H,H1),

believes(H1,S). (14)
de f eated(D,H,S) ← s(S),app(D,H,S),

neg(H,H1),

app(D1,H1,S),
pre f er(D1,D,S). (15)

ab(D,H,S) ← s(S),app(D,H,S),
neg(H,H1),app(D1,H1,S),
not de f eated(D1,H1,S). (16)

believes(H,S) ← app(D,H,S),
not ab(D,H,S),
not de f eated(D,H,S). (17)

The rule for app defines when a default is applicable, i.e.,
when its body is satisfied. The interaction between defaults
and rules in the knowledge base are dealt with using rules for
ab and defeated. The first rule for defeated dismisses the ap-
plicability of a default if the complement of its conclusion is
already established. The second rule for defeated expresses
that a default is defeated if there is a preferred default with
a conflicting conclusion that is applicable. The rule for ab
enforces the principle (SK). It states that a default d should
be blocked if there is another default with the conflicting
conclusion (h′ in neg(h,h′)), which is not defeated. Finally,
the last rule enforces the application of any default that is
applicable and not otherwise blocked.

For reasoning about preferences of the form (7), we em-
ploy the rules:

pre f er(D1,D2,S)← s(S), pre f er(D1,D2,M),
h body(M,S). (18)

This rule defines when a preference among two defaults can
be applied.

In summary, for a KB = 〈O,RD〉, Π(KB) consists of
rules (9)–(18) and the set of facts encoding RD and O.
Proposition 1. For each consistent KB, there exists no
answer set of Π(KB) that contains believes(l, t) and
believes(l, t) for some literal l and time step t.
Proof. The proof of this proposition relies on the fact that
believes(l, t) is in an answer set A if the logic program rule
(11) (or (17)) is satisfied by A. If a rule (11) is satisfied by
A then a KB contains a rule rule(r, l,body) and body is sat-
isfied by A. Because of the consistency of KB, we know
that there exists no rule rule(r′, l,body′) such that body′ is
satisfied by A. For, otherwise, KB is inconsistent. This will
imply that for every default de f ault(d, l,body′), if the de-
fault is applicable, then the body of the rule (14) is satisfied

and therefore de f eated(d) belongs to A. Consequently, the
body of (17) is not satisfied for the default d, and hence,
believes(l, t) cannot belong to A.

Similar argument can be used to argue for the case that
two defaults, one supporting l and another supporting l,
given that KB is consistent can never be applied at the same
time to create both believes(l, t) and believes(l, t) in an an-
swer set.

Example 2. The story in Example 1 can be represented by
the KB1 = 〈O1,RD1〉 where

O1 =

{
obs(in college,1).
obs(has scholarship,2).

}
,

RD1 =

{
de f ault(d1,¬poor, [in college]).
de f ault(d2, poor, [has scholarship]).

}
The statement in Example 1 can be represented by

stm(poor,0). Consider Π(KB1) with k = 0,1,2:

• k = 0: since there is no observation, no answer set of
Π(KB1) contains any atom of the form believes(poor,0);

• k = 1: because of obs(in college,1), h(in college,1) is
true, d1 is applicable but d2 is not. So, every answer set of
Π(KB1) contains h(in college,1) and believes(¬poor,1).

• k = 2: h(has scholarship,2), h(in college,1), and
h(in college,2) are true and d1 is applicable at 1
and 2; d2 is not applicable at 1 but is applicable
at 2. Hence, every answer set of Π(KB1) contains
believes(¬poor,1). However, neither believes(poor,2)
nor believes(¬poor,2) belongs to every answer sets of
Π(KB1).

Given a KB = 〈O,RD〉, an integer k, and a stm(b,s), we
are interested in determining the truthfulness of the state-
ment at time steps s≤ t ≤ k.

Definition 3. Let KB = 〈O,RD〉 be a knowledge base. Let
stm(b,s) be a statement about a belief literal b at the time
step s. For each time step t such that t ≥ s, we say that

• KB |= +stm(b,s)@t (or stm(b,s) is believed to be true
w.r.t. KB at t) if believes(b, t) ∈ A for every answer set A
of Π(KB);

• KB |= −stm(b,s)@t (or stm(b,s) is believed to be false
w.r.t. KB at t) if believes(b, t) ∈ A for every answer set A
of Π(KB);

• KB 6|= ±stm(b,s)@t (or stm(b,s) is undecided w.r.t. KB
at t) if KB 6|=+stm(b,s)@t and KB 6|=−stm(b,s)@t.

Intuitively, KB |= +stm(b,s)@t (resp. KB |=
−stm(b,s)@t) says that at the time step t, at the same
time step or later than the time step that the statement about
b is made, the statement is believed to be true (resp. believed
to be false). KB 6|= ±stm(b,s)@t states that there is no
information that supports or denies the statement at the time
step t. Observe that b, t, and s are constants representing
the question whether or not stm(b,s) is believed to be true
at step t. As such, requiring believes(b, t) to be in every
answer set of the program does not mean that believes(b, t)
belongs to every answer set for every t such that s ≤ t ≤ k.



Observe that this entailment can be computed in ASP by the
following rules:

t(H,T ) ← stm(H,S),s(T ),T ≥ S,
believes(H,T ). (19)

f(H,T ) ← stm(H,S),s(T ),T ≥ S,neg(H,H1),

believes(H1,T ). (20)
u(H,T ) ← stm(H,S),s(T ),T ≥ S,neg(H,H1),

not believes(H,T ),
not believes(H1,T ). (21)

Let ΠQ = Π(KB) ∪ {(19)−(21)}. It can be shown
that KB |= +stm(b,s)@t, KB |= −stm(b,s)@t, and KB |=
±stm(b,s)@t correspond to ΠQ |= t(b, t), ΠQ |= f(b, t), and
ΠQ |= u(b, t), respectively. Hence, we can compute skepti-
cal entailment for the truthfulness of a statement using two
calls to an ASP-solver.
Proposition 2. For x ∈ {t,b,u}, if ΠQ∪{← x(b, t).} does
not have an answer set and ΠQ ∪ {← not x(b, t)} has an
answer set then ΠQ |= x(b, t).
Proof. Observe that if ΠQ ∪{← x(b, t).} does not have an
answer set, this implies that either ΠQ has no answer set or
every answer set of ΠQ contains x(b, t). The second condi-
tion implies that ΠQ has at least one answer set. This implies
that ΠQ |= x(b, t).

The above proposition allows us to compute the en-
tailment KB |= +/−/±stm(b,s)@t by making two calls
to the answer set solver. We can show that KB1 6|=
±stm(poor,0)@0; KB1 |= −stm(poor,0)@1; and KB1 6|=
±stm(poor,0)@2.

For the sake of our discussion, let us consider KB2 =
〈O1,R1,D1 ∪{pre f er(d2,d1, [])}〉. It is easy to see that ev-
ery answer set of Π(KB2) contains de f eated(d1,¬poor,2).
As such, we have that KB2 6|= ±stm(poor,0)@0; KB2 |=
−stm(poor,0)@1; and KB2 |=+stm(poor,0)@2.

3.3 Reasoning With Observations about Action
Occurrences

In this section, we shift our focus to the set A of actions from
the action signature 〈F,B,A〉. Following common practice in
action languages (Gelfond and Lifschitz 1998), we assume
that each action is associated with a set of literals, called its
effects, with each effect potentially predicated on a differ-
ent set of literals, called preconditions. A third set of liter-
als, the executability conditions, states when the action can
be executed vs impossible. This information is encoded in
statements of the form: exec(a,body) and causes(a, p,body)
where a ∈ A is an action, p is a fluent literal, and body
is a set of fluent literals. The first statement gives the ex-
ecutability conditions of action a, while the second states
that, when body holds, p is one effect of a. We represent an
action occurrence observation (or action occurrence) by a
statement of the form occ(a,s) where a ∈ A and s is a time
step. Recall that the notion of knowledge base already sup-
ports providing action occurrence observations, as Hn is a
set of observations and action occurrences. The semantics
of the above statements is encoded by suitable rules added

to Π(KB). Note that the body of exec and causes statements
is encoded by means of the mbr predicate, as we did for rules
and defaults in the previous section. We add to Π(KB) the
following rules:

obs(P,S) ← s(S),occ(A,S),exec(A,M),

mbr(P,M). (22)
obs(L,S+1) ← s(S),occ(A,S),causes(A,L,M),

N = #count{X : mbr(X ,M)},
#count{X : mbr(X ,M),

h(X ,S)}== N. (23)

Rule (22) indicates that the observation of an action oc-
currence allows us to infer that its executability conditions
must be satisfied—we capture this by generating new obser-
vations about the time step in which the action has occurred.
In rule (23), we take the approach of encoding the effects of
an action occurrence as observations; the rule allows us to
observe the consequences of an action from knowledge of
its occurrence.

Definition 3 is extended to knowledge bases with action
occurrences in a trivial way.

Example 3. Assume that buying a house near John’s
university, in Example 1, requires an amount of money
that only wealthy people can afford. The effect
and precondition of the action (denoted by Act) can
be represented by cause(buy house,has house, []) and
exec(buy house, [¬poor]). Let us assume that we observe
John buying a house at time step t2. Let KB3 be KB1
extended with Act and the observation occ(buy house,2).
Given this specification, we expect that the system tells us
that the statement of John being poor made at step 0 is false
at step 2. Indeed, this is the result sanctioned by Π(KB3),
since rule (22) indicates that ¬poor is observed at time 2
and, thus, the default d2 is defeated even when it is applica-
ble (Rule (11)), i.e., KB3 |=−stm(¬poor,0)@2 holds.

4 Applications
As a potential application of our framework, consider the
following scenario. Bob is walking in a good area of the
city when a person suddenly appears, brandishing a knife
and displaying a menacing demeanor. At some point during
the confrontation, Bob shoots and kills the person. A court
needs to decide whether Bob acted in self-defense or not.
Simplifying the scenario, we will assume that the only rele-
vant law says that one acted in self-defense if they believed
to be in imminent danger.

To make the example more interesting, suppose the police
found that the knife the person was holding was fake. Thus,
we can identify two possible scenarios:

1. When Bob shot the person, he had not yet noticed that
the knife was fake. We could expect to conclude that at that
time Bob believed to be in imminent danger.

2. If instead Bob shot the person after observing that the
knife was fake, we could expect to conclude that, at the time
of the shooting, Bob did not believe to be in imminent dan-
ger.



Assume that the police are able to tell when Bob shot the
person and when he observed that the knife was fake, for ex-
ample thanks to a reliable witness who saw the events from
Bob’s same perspective11. We will demonstrate the use of
our framework to reason about the evolution of Bob’s be-
liefs and determine if he acted in self-defense.

A possible formalization of the knowledge base from this
example is the following set RDs of statements:

Listing 1: Set RDs of statements for the self-defense example
causes(appears(X),is(X,present),[]).
default(ds

1,inImminentDanger,[has(att,k),
is(att,present),is(att,menc)])

default(ds
2,¬inImminentDanger,[has(att,k),

is(att,present),is(att,menc),is(k,fake)])
prefer(ds

2,ds
1, [ ]).

default(ds
3,¬inImminentDanger,

[at(a1), is(a1,good)])
prefer(ds

1,ds
3, [ ]).

The representation uses fluents has(p,o) (p has/holds object
o), is(o,a) (object o has attribute a), and at(l) (Bob is at
location l). The objects are k (the knife), a1 (the good area of
the city), and att (the attacker). Additionally, we attributes
constants present (for attribute “physically present”), f ake
(attribute of the knife), menc (menacing-looking), and good
(attribute of the area of the city). The actions are appears(p)
(person p appears) and shoots(p) (Bob shoots p). The effect
of the former is described by the causes statement; the latter
action has no effects within the scope of the example. The
intuitive meaning of the defaults is:
• ds

1: If there is someone who is menacing-looking and
holding a knife, one will normally believe to be in im-
minent danger

• ds
2: In the above case, if the knife is fake, one will not

normally believe to be in imminent danger
• ds

3: One does not normally believe to be in imminent dan-
ger in a good area of the city

As can be seen from the pre f er statements, ds
2 is the most

preferred default and ds
3 the least preferred. The initial part

of the story is captured by:

Os
init =

{ obs(at(a1),0). obs(is(a1,good),0).
obs(¬is(att, present),0). occ(appears(att),0).
obs(is(att,menc),1). obs(has(att,k),1).

Let us consider what our framework yields for
KBs

init = 〈Os
init ,RDs〉. One can check that the an-

swer set of Π(KBs
init) contains h(at(a1),0) and

h(is(a1,good),0). The only applicable default is ds
3,

yielding believes(¬inImminentDanger,0), i.e. Bob does not
believe to be in imminent danger at time step 0. The two
possible evolutions of the story are formalized as follows:
• Scenario 1:

Os
1 = { occ(shoots(bob,att),1). }

KBs
1 = 〈OS

init ∪Os
1,RDs〉

11In an actual case, other considerations may play a role, e.g. the
reliability of the witness or whether the perspective was really the
same. These complications are outside the scope of our example.

The time step of interest is 1. Note that h(is(att,menc),1)
and h(has(att,k),1) follow trivially from the observa-
tions. Defaults ds

1 and ds
3 are thus applicable, while ds

2
is not. Because ds

1 is preferred to ds
3, the answer set of

Π(KBs
1) contains believes(inImminentDanger,1), mean-

ing that, at that time Bob pulled the trigger, he believed
to be in imminent danger at the time of the shooting. It
is worth noting how the framework is able to capture the
evolution of Bob’s beliefs over time.

• Scenario 2:

Os
2 =

{
obs(is(k, f ake),1).
occ(shoots(bob,att),1).

}
KBs

2 = 〈OS
init ∪Os

2,RDs〉

At time step 1, Bob has observed that the knife is fake
and, thus, h(is(k, f ake),1) holds. Hence, all defaults are
applicable. Because ds

2 is preferred to ds
1, the answer set of

Π(KBs
2) contains believes(¬inImminentDanger,1). That

is, Bob did not initially believe to be in imminent danger
and did not believe so at the time of the shooting either.

For another demonstration of our framework, consider the
problem of detecting Man-in-the-Middle (MITM) attacks
targeting computer and cyber-physical systems. In a MITM
attack, the attacker secretly places itself as an intermediary
between two communicating parties, relaying the informa-
tion between them. By intercepting the communications, the
attacker may steal valuable information, or even alter the in-
formation exchanged between the parties and fool them into
performing unintended or undesirable actions. For example,
a MITM attack was used in Stuxnet,12 a sophisticated ma-
licious software (malware) that targeted certain models of
industrial Programmable Logic Controllers (PLCs). Stuxnet
is remarkable in that it is reported to have been successful in
impacting industrial systems involved in Iran’s nuclear en-
richment program. Its success has major implications on the
security of industrial systems world-wide.

centrifuge PLC

Stuxnet

Figure 1: MITM attack carried out by Stuxnet: safe commands
sent by the PLC (green) are replaced by dangerous ones (red);
alarm readings from the centrifuge’s sensors (red) are replaced by
safe ones

The behavior of Stuxnet’s MITM component is outlined
in Figure 1. Its component operates by intercepting the com-

12https://en.wikipedia.org/wiki/Stuxnet

https://en.wikipedia.org/wiki/Stuxnet


mands sent by a PLC to a connected centrifuge. The mal-
ware first increased the speed of the centrifuge above nor-
mal levels for a short amount of time, and later slowed it
down below normal levels for a longer period of time. It
is believed that the resulting stress caused components of
the centrifuge to expand and eventually destroy it. Under
normal conditions, sensors installed in the centrifuge would
have alerted the PLC—and its users—about the abnormal
conditions, giving them a chance to shut down the system
before damage occurred. However, as part of the MITM at-
tack, Stuxnet also intercepted the sensor readings from the
centrifuge, and sent to the PLC fake readings based on previ-
ous recordings that indicated that the system was operating
normally (this is known as a replay attack).

A seriously concerning feature of MITM attacks is their
ability to take control of the involved parties’ inputs and out-
puts, making the attack virtually undetectable to the parties.
In this section, we show that detection of a MITM attack is
indeed possible if the detection task is reduced to that of rea-
soning about the truthfulness of a communication partner, as
long as one has access to some external knowledge that can
be used to evaluate the partner’s statements.

To demonstrate this, we consider a simplified MITM at-
tack scenario along the lines of Stuxnet’s MITM component.
For simplicity of presentation, we do not include in the sce-
nario occurrences of actions, but it is not difficult to see that
our approach extends in a natural way when actions occur.

Consider the case of a motor, M, that can be on or off.
A sensor mounted on the motor tells whether the motor is
overheating. A controller, C, is programmed to turn off the
motor if it is found to be overheating.

Suppose now that the system is the target of a MITM at-
tack. An attacker, A, manages to place itself between C and
M, intercepting the communications between them. A inter-
cepts the output of M’s sensor, discarding the sensor reading
and always providing C with a negative reading indepen-
dently of the actual state of M, i.e, the attacker could prevent
C from turning off an overheating motor, eventually causing
it to be damaged. How can such an attack be detected?

The solution leverages a technique for reasoning about
cyber-physical systems and their interaction with the phys-
ical environment discussed in (Nedelcu and Balduccini
2015). Suppose that a thermostat, T is located near the mo-
tor, which generates an audible alert every 20 minutes if the
temperature of the room is above 90◦F, in order to ensure
that the operators take more frequent breaks. Based on world
knowledge, during cold weather an observer will normally
believe the temperature in the room to be below 90◦F.

The thermostat is not related to the functioning of the mo-
tor and, thus, it is conceivable that A will not attempt to alter
its activities. However, given the proximity of the motor, an
alert from the thermostat when the room is not hot can be
taken as an indication that M is indeed overheating (and that
M’s sensor reading may have been tampered with). Let us
see how one can draw this conclusion using our framework.

The relevant information can be formalized as shown be-
low. The signature is defined so that alert and winter are
fluents, while all others are beliefs.

Listing 2: Relevant Information
default(dm

1 , hot_room, [alert]).
default(dm

2 , ¬hot_room, [cold_weather]).
prefer(dm

2 ,dm
1 , [ ]).

rule(rm
1 ,cold_weather,[winter]).

default(dm
3 ,overheat,[alert, ¬hot_room]).

Default dm
1 says that, as a rule, an observer hearing an alert

from T will believe the room to be hot. Default dm
2 states that

the observer will not believe the room to be hot during cold
weather. The third statement expresses a preference for dm

2
when both dm

1 and dm
2 are applicable. This captures the in-

tuition that, during cold weather, one will have a tendency
to assume that the room is not hot even if an alert is heard.
Rule rm

1 states that, during the winter, one will believe the
weather to be cold13. The final statement says that, typi-
cally, if an alert is generated by T when the room is not hot,
then the observer will believe that M is overheating. The
statement is encoded as a default to increase elaboration tol-
erance, making it possible, for example, to take into account
faults in the thermostat or the presence of other heat sources.

Let us now suppose that we would like to evaluate the
truthfulness of M’s sensor reading, and suppose that the sen-
sor reports that there is no overheating. The corresponding
statement is: stm(¬overheat,0). Next, an alert is generated
by T : obs(alert,1). Let KBm be the corresponding knowl-
edge base. Clearly, default dm

2 is not applicable. Default dm
1

leads the reasoner to conclude believes(hot room,1), that
is, that the temperature in the room is above 90◦F. Thus,
the reasoner has no reason to doubt the sensor reading:
KBm |=+stm(¬overheat,0)@1.

Next, the system is informed that it is winter. The up-
dated knowledge base, KB′m, extends KBm by the state-
ment obs(winter,2). It is not difficult to check that the
answer set of Π(KB′m) contains believes(cold weather,2)
because of the application of rule rm

1 . Both defaults dm
1

and dm
2 are now applicable, but because of the preference

over them, only the latter is applied, yielding the conclu-
sion believes(¬hot room,2). Our framework now derives:
KB′m |=−stm(¬overheat,0)@2. That is, the sensor reading
from M is deemed not truthful, which indicates that the sys-
tem may be under a MITM attack.

5 Related Work
Within the scope of the ASP and logic programming com-
munity, this work is, to the best of our knowledge, novel. As
we have mentioned earlier, there is an extensive literature—
within and outside the ASP community—for reasoning
about actions and change, reasoning about defaults, and di-
agnostic reasoning about observations. Besides action lan-
guages used in this paper, event calculus (e.g., (Kowal-
ski and Sergot 1986; Denecker, Missiaen, and Bruynooghe
1992)) or situation calculus (e.g., (McCarthy and Hayes
1969; Reiter 2001)) are formalisms for reasoning about ac-
tions and change and could be used instead of action lan-

13We encode this statement in a non-defeasible way for the pur-
pose of illustrating the rule construct. In a more realistic scenario,
one may want to use a default instead.



guages; and, these formalisms have also been used in di-
agnosis (e.g., (Arias et al. 2019; McIllraith 1997)). All
of these works are somewhat related to the proposed sys-
tem. However, they are separate formalisms/systems that
can be used as components of our system. In this sense,
our work is related to (Balduccini and Gelfond 2003b; Bal-
duccini and Gelfond 2003a) and the ones mentioned earlier,
such as (Brewka and Eiter 1999; Brewka and Eiter 2000;
Delgrande, Schaub, and Tompits 2003; Gelfond and Son
1998) as they are using ASP in the implementation of a cer-
tain formalism. Also of note is that the proposed framework
bears similarity to frameworks developed to support diagno-
sis as both rely on observations to draw conclusions but our
framework does not focus on explaining what goes wrong
and does not assume completeness of the knowledge of the
agent (e.g., in the form of a complete model).

Formalisms like ASP with preferences (e.g., (Brewka
2005; Brewka et al. 2015)) can provide a foundation for the
implementation of the proposed framework—e.g., by facili-
tating the preferences between defaults.

The AI community has explored the issue of computa-
tional trust and reputation in several works. It should be
noted that the term “trust” is associated with many orthog-
onal directions of research. For instance, some researchers
intend trust as a measure of the probability that an agent will
complete a given task (Player and Griffiths 2019). Others
evaluate have studied how trust can be measured in terms of
opinions based on, e.g., user ratings or feedback (Drawel,
Bentahar, and Qu 2020). Others still have developed tech-
niques for reasoning while taking into account information
about trust (of agents, of statements, etc.) (Tang et al. 2012).

Views of trust closer to ours can be found, e.g., in (Sabater
and Sierra 2005) for a survey. The survey focuses predom-
inantly on trust models observed in multi-agent scenarios,
taking explicitly into account the observations concerning
interactions among agents. The survey provides classifica-
tion of the models according to different dimensions: con-
ceptual model (cognitive vs. game theoretical), informa-
tion sources (direct interactions, direct observations, witness
information, sociological information, prejudice), visibility
(subjective vs. global), granularity (context dependent vs.
non-context dependent), model type (trust vs. reputation),
type of information exchanged (boolean vs. continuous),
and agent behavior’s assumptions (honest, biased but not ly-
ing, lying). Within such classification, our model focuses on
trust—but could easily accommodate other interesting forms
of reputation)—based on cognitive aspects, it builds on di-
rect observations, but can accommodate sociological biases
and prejudice through defaults, it captures subjective visi-
bility, it is context dependent and relies on boolean informa-
tion.

The survey in (Artz and Gil 2007) places a greater empha-
sis on surveying models of trust as models to predict attitude
towards future interactions with an agent—with less empha-
sis on assessing the trustworthiness of a current statement.

Finally, this paper substantially expands and improves
upon our prior work (Son et al. 2016a; Son et al. 2016b).
Specifically, in this paper: we develop a clearer characteri-
zation of the reasoning task of interest and of the role played

by the agents involved; we provide a more precise treat-
ment of, and distinction between, fluents and beliefs; we
develop a characterization of the evolution of beliefs as a
stand-alone, central reasoning task; we redefine the task of
reasoning about the truthfulness of statements; we develop a
more rigorous abstract framework, including a clear descrip-
tion of the various forms of entailment involved and of their
roles; we include proofs of the main claims; and we include
new and expanded applications and use cases to highlight
the new findings.

6 Conclusions and Future Work

In this paper, we proposed a general framework for reason-
ing about the truthfulness of statements made by an agent.
We showed how the framework can be implemented using
ASP using well-known methodologies for reasoning about
actions and change and for default reasoning with prefer-
ences. The framework does not assume complete knowledge
about the agent being observed and the reasoning process
builds on observations about the state of the world and oc-
currences of actions. We explored the use of the framework
in simple scenarios derived from man-in-the-middle attacks
and placed the proposed framework in the context of other
related work.

The proposed work can be extended in several directions.
First, the default theory considered in this paper is static in
the sense that its rules and defaults encode knowledge about
the world at a single time point. It is not difficult to imag-
ine that rules and defaults can related knowledge at different
time points (e.g., the knowledge about the behavior of some
machine within a time interval). Second, we note that our
implementation is rather impartial to statements by others
(the (SK) principle). An alternative view of this is to be-
lieve in every statement unless it is proven false. Third, it is
reasonable to assume that there might be several sources of
information that a user can employ to collect observations
which include the agents that are observed. The reliabil-
ity of each source might influence our decision on whether
or not a statement could be believed as true. We believe
that a combination of a model of trust together with atti-
tude of agents as described in (Sabater and Sierra 2005;
Artz and Gil 2007) and our framework might be useful
here. Our system can be easily extended to deal with the
first extension as it currently deals with time stamped liter-
als already. The second extension might require the change
in Def. 3. The third extension might involve a significant
amount of modification. We leave all these extensions for
future work.
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