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Abstract

In this paper we present a transition
function based characterization of ac-
tions in a realistic environment. Our
language allows for the specification of
actions with duration, continuous ef-
fects, delayed effects, dependency on
non-sharable resources, and accounts for
parallel and overlapping execution of ac-
tions. One of the main contribution of
our paper is a new definition of state
in such an environment. Our notion of
state encodes not only the fluent val-
ues but also obligations due to delayed
effect of actions that were executed re-
cently. This allows us to define a Marko-
vian transition function. Although there
have been earlier attempts at developing
action languages with similar features,
none of them present a transition func-
tion based characterization.

1 INTRODUCTION AND
MOTIVATION

In this paper we follow the approach of high
level action description languages with a transi-
tion function based semantics (as first done in [11])
to characterize more realistic actions. In particu-
lar, we consider: (i) actions that have continuous
effects such as the action of driving that changes
the fluent recording the distance traveled, (ii) ac-
tions with fixed and variable durations, (iii) ac-
tions that use non-sharable resources such as ma-
chines, (iv) overlapping execution of actions that
contribute to the change of a resource, and (v) ac-
tions with delayed effects. Although some of these
features have been earlier considered in some ac-

tion description languages, none of them present
a transition function based semantics.

By a transition function based semantics we mean
defining what o state is and transition between
states due to actions. If we consider a state to
be a snapshot of the world at a particular time,
then how do we express this snapshot when ac-
tions have durations? It is not enough to use the
traditional notion of a state that encodes the value
of fluents and resources as it misses out the ac-
tions under execution. For example, if we go to
a factory and try to express the snapshot of the
factory at 12:35 PM, then it is not enough to just
say the fluent values, but also important to ex-
press which actions are under execution and for
how long. Only then we can correctly predict the
value of fluents at a future time by only consid-
ering the current ‘state’. In other words a richer
notion of state is necessary to define a Markovian
transition function.

The traditional transition functions define a func-
tion ®(s,a), which gives the state that would be
reached if action a was executed in state s. Since
we now consider actions with durations, and al-
low overlapping of actions our goal is to define
a function ®(s,{(a1,t1),.-.,(an,tn)},t), where
t1 < ty... < t, < t, which expresses the state
of the world after ¢ units of time (from the time
to corresponding to s) assuming that the actions
ai,...,a, were started at relative (to ¢g) times
t1,...,ty respectively.

Such a transition function is important in plan-
ning and other kinds of reasoning about actions
and is absent in earlier attempts [7, 15, 20, 21] of
characterizing actions with such realistic features.
Such a transition function based characterization
is also important in light of the upcoming plan-
ning contest at ATPS’02 where planners that allow



such actions are expected to compete. In Section 3
we will give a slightly more detailed comparison
of our approach with earlier reasoning about ac-
tion attempts [7, 15, 20, 21], and the semantics
of the languages PDDL2.1 [9] and PDDL++ [10]
that have been recently proposed for use in the
ATIPS’02 planning contests and beyond.

2 THE LANGUAGE ADC

We will call our language ADC as our language is
for Actions with Delayed and Continuous effects.

2.1 SYNTAX OF THE DOMAIN
DESCRIPTION PART

The alphabet of a domain description in ADC con-
sists of a set of action names A, a set of fluent
names F, and a set of process names P. Each flu-
ent f € F has a domain dom(f) associated with
it that prescribes what value f can take. Each
domain dom(f) is also associated with a set of bi-
nary relations over it. For example, if dom(f) is
the set of integers then the set of binary relations
over dom(f) could contain the standard compari-
son relations <, >, <, >, =, #. Each process name
is associated with a fluent definition or a update
expression which will be defined precisely later on.

An evaluable expression is constructed from func-
tions and fluents in the same way an arithmetic
expression is constructed in C, C++ etc. Vari-
ables in an evaluable expression are fluents in F.
Given the values of fluents, the value of an evalu-
able expression will be computed in the standard
way. For example, if f is a real-valued fluent then
3 x (f +2)? is an evaluable expression and if the
value of f is 2 then the value of 3 x (f +2)? is 48.
The domain of the value of an evaluable expres-
sion is called the type of that expression.

An atom is of the form ¢; op ¢2, where ¢ and ¢
are evaluable expressions of the same type and op
is a binary relation associated to the type of ¢; (or
¢2). Atoms of the form ¢ = True and ¢ = False
can be simply written as ¢ and —¢ respectively.

In ADC, actions can have delayed and continu-
ous effects. This means that effects of actions
might not happen immediately or can last over
a period of time and therefore are associated with
time intervals of the form [t1,%5] where 1,15 are
real numbers, 0 < #; < ¢3. Actions can also ini-
tiate (or terminate) a process whose duration is
unknown at the time it starts. For example, the

action of turning on the water tap of the bath tub
will initiate the process of water flowing into the
bath tub. The process will be terminated when
the tap is turned off. On the other hand, flipping
the switch of a lamp changes its position (on to
off and off to on) and takes a constant amount, of
time. To express this, the various propositions in
ADC are of the following form

executable a if c1,..., ¢ (2.1)
aneedsry,...,rn (2.2)
a causes f =valf(f, fi,-.., fa,t)

from ¢ to to (2.3)
a contributes valf(f, fi,..., fu,t) to f

from ¢ to to (2.4)
a initiates p from ¢, (2.5)
a terminates p at i (2.6)

p is_associated_with

f=valf(f,f1,...,fn,t) (27)

p is_associated_with

f(_valf(f:flz---’fnat) (28)

where

— a is an action name, the f’s are fluents, the
c’s are atoms,

— the r’s are atoms of the specific form f = ¢
where f is a numeric-type fluent and ¢ is an
evaluable expression,

— tg,t1,t2 (t1 < t2) are non-negative real num-
bers, representing time units relative to the
time point where a’s execution is started,

— wvalf(f, f1,---, [a,t) is a function that takes
the value of the fluents f, f1,..., f, when a
started its execution and the elapsed time ¢ in
[0,t2 — t1] and returns a value from dom(f) U
{unde fined}, and

— p is a process name and (2.7) states that p
is associated with the fluent definition “f =
val f(f, f1,---, [n,t)” whereas (2.8) says that
it is associated with the update expression
“f <« walf(f, fi,--- fn,t)”, where f and
val f(f, f1,---, fn,t) have the same meaning
as in the above item.

Intuitively, the above propositions describe the ef-
fects of actions and their executability conditions.
Propositions of the form (2.1)-(2.2) state the con-
ditions under which a is executable. Here, (2.1),
called an executability condition, represents the re-
quirements on certain fluents (or resources) that a
does not need exclusively to start its execution and
(2.2), called a resource condition, characterizes the
conditions on fluents that a needs exclusively to
start its execution. For example, a postal worker



needs his car for mail delivery s but he must be in
the car for the action to be executable.

Propositions of the form (2.3) and (2.4) describe
the different ways in which an action can affect
the value of a fluent. In (2.3), a causes the
value of f to change according to the function
valf(f, f1,- -, fn,t) during the interval [t,%2].
On the other hand, a in (2.4) affects the value
of f at t; by contributing an increase speci-
fied by wvalf(f, f1,-.., fn,t) during the interval
[t1,t2]. We require that in (2.3) if ¢; = 0 then
val f(f, f1i,---,fn,0) = f and in (2.4) if t; = 0
then val f(f, f1,---, fn,0) =0.

The purpose of the propositions (2.5) and (2.6) is
to encode continuous effect of actions that do not
have a predefined duration. In that case a propo-
sition of the form (2.5) is used to indicate which
actions can initiate the effect (a process) and a
proposition of the form (2.6) is used to indicate
which actions can terminate the process. Note
that unlike in some earlier proposal [20, 21, 10] we
do not designate these actions as start and end ac-
tions. In our framework the same process can be
initiated and terminated by different actions. For
example, the termination of the filling of a bath-
tub can be caused by turning off the bath faucet
and also by turning off the main water switch.

We now give some examples to illustrate the kind
of domain description that can be expressed in

ADC.

Example 1 Consider the action of driving a car
for 10 units of time with a velocity v. We repre-
sent this action of fized duration by driveg 10(v).
Now, let gas_in_tank denote the amount of gaso-
line available in the tank.

The executability condition saying that the action
driveg,10(v) is executable if gas_in_tank > 20 can
be expressed in ADC as:

executable driveg 19(v) if gas_in_tank > 20.

The effect of the action driveg 19(v) on the fluent
loc (encoding how far from the initial position the
car is) is expressed as:

driveg,10(v) causes locn = locn + v x t
from 0 to 10.

We can record the information that the action
driveg,10(v) is under execution by the following
propositions:

driveg,10(v) causes driving from 0 to 10

and
driveg,10(v) causes ~driving from 10 to 10

where driving is a Boolean-fluent.

We can express that driving at a velocity v con-
sumes c¢(v) unit of gasoline per unit time as

driveg,10(v) contributes —c(v) ¢
to gas_in_tank from 0 to 10.

Intuitively, if gas_in_tank = 20 and ¢(3) = 1.5 at
time 0, then the level of gasoline in the tank at
the time 0,1,...,10 will be as follows, assuming
that driveg,10(3) is executed at the time 0:

20 18.5 17 15.5 14 12.5 11 95 8 6.5 5
o 1 2 3 4 5 6 7 8 9

_ gas_in_tank

10 time

Figure 1: Gasoline in tank and time —
dTZ"UeO,l() (3) at 0

The proposition

fill_gasp,10 contributes 2t to gas_in_tank

from 0 to 10

expresses the contribution of the action
fill_gaso,10 to the value of the gas_in_tank. In-
tuitively, it says that the action of filling gas
for 10 units of time will increase the amount of
gasoline, by the amount specified by the function
2 x t. Let us assume that while driving we can
refill. The following diagram shows the value of
gas_n_tank at different times, assuming that the
action driveg,10(3) starts its execution at the time
moment 0 and the action fill_gasg 1o starts its ex-
ecution at the time moment 1:

20 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 25 _ gas_in_tank
0 1 2 3 4 5 6 7 8 9 10 11 time

Figure 2: Gasoline in tank and time — driveg,10(3)
at 0 and fill_gaso,i0 at 1

Example 2 Let us now consider the action of
driving when the duration is not fixed beforehand.
In that case we have the following propositions:

start_drive(3) initiates p; from 0
start_drive(3) initiates p, from 0
stop_drive(3) terminates p; at 0
stop_drive(3) terminates p, at 0

p1 is_associated_with locn = locn + 3 x ¢

p2 is_associated_with gas_in_tank < —1.5*t

This says that the process of increasing the flu-
ent loc and the process of reducing the amount
of gasoline in the tank will start at the time
start_drive(3) is executed. These processes will



be stopped when the action stop_drive(3) is exe-
cuted. |

A domain description D is a set of propositions
of the form (2.1)-(2.8). For simplicity, we require
that for each action a in D, there is at most one
proposition of the form (2.2) whose action is a.
An action theory is a pair (D,0) where D is a
domain description and O is a set of observations
of the form

initially f =¢ (2.9)
where f is a fluent and c¢ is a value belonging to
dom(f).

2.2 QUERIES

In the presence of delayed and continuous effects,
we are interested not only about the values of flu-
ents at certain time point but also about the inter-
vals of them and whether the value satisfy some
conditions or not. For example, we might be inter-
ested in knowing whether the amount of gasoline
in the tank is more than 5 units or not; or whether
the car is at certain location after driving for some
unit of time; or a combination of both questions
etc. This leads us to consider gqueries of the fol-
lowing form:

C1[617761+]7'--7Ck[5];761j] (2 10)
after Ay :t1,..., A, : t, ’
where ¢y, ...,c, are atoms, the ¢’s are time units

with 0 < §; < 51*, Aq,..., A, are set of actions,
and 0 < t; < ... < t, are time units. The intu-
itive reading of query (2.10) is that whether the
atoms ¢; are satisfied during the interval &; ,d;
for 1 < j < k given that the A; are executed at
the moment ¢; (1 < j < n). All the time variables
t’s are relative to the current situation and the §’s
are relative to t,,.

For the action theory in Example 1, let us assume
that initially gas_in_tank = 25, loc = 0, and driv-
ing with the speed of 3 units of distance per unit
of time will consume 1.5 units of gasoline per unit
of time. The query

(gas_in_tank > 5)[5,6], (loc = 30)[10, 10] after
{dT'Z'Ue()’l() (3)} :0

asks whether the amount of gasoline is greater
than or equal to 5 (units of gasoline) during the
interval [5, 6] after driving with the speed of 3 for
5 units of time and whether the location of the car
is 30 at the time moment 10.

A more complicated query involving the driving
action and the fill_gas action is

(gas—in_tank = 20)[15,15] after
{driveg10(3)} : 0,{fill_gaso10} : 10

which asks whether the amount of gasoline in the
tank is 20 at the time moment 15 after driving
and then refilling it at the time moment 10.

2.3 SEMANTICS

We will now present a transition function based se-
mantics for action theories in ADC that facilitates
the answering of queries of the form (2.10) given
an action theory (D,0). As it is customary in
approaches to reasoning about action and change
using high-level action description languages we
will define the notion of a state of the world and
characterize the transitions between states.

2.3.1 States: Interpretation Of Fluents
And Obligations

Given a domain description D, an interpretation
I of D assigns each fluent f € F a value v €
dom(f) U {undefined}, denoted by f = v. Value
of an evaluable expression x with respect to I,
denoted by I(x), is defined inductively over their
structure in the usual way’.

An interpretation I satisfies an atom z; op x2 if
z1 and zo are defined with respect to I and belong
to the same domain, say dom(f) for some fluent
f, op is a binary relation associated to dom(f)
and I(z;) op I(x2) holds. When [ satisfies an
atom a, we write I |= a. I satisfies a set of atoms
{a1,-..,a,}, written as I |= {ay,...,a,}, if I |=
a; for every i, 1 <i <m.

In transition function based approaches to rea-
soning about action and change (for example, in
[2, 3, 4, 11, 13, 12, 14, 17, 18, 23, 25]), a state of
the world is represented by a set of fluents. The se-
mantics of an action theory is specified by a transi-
tion function that maps pairs of states and actions
into states. In the presence of time and delayed
effects, the effects of an action might not happen
immediately or might last over a time interval.
This stipulates us to represent the current state
of the world by a snapshot of the world recording
the fluent values and the future obligations due to

!Because a function can return undefined as an an-
swer, undefined could be a possible value of I(z). In
this case, we say that z is undefined with respect to
1.



delayed effects of recent actions and actions that
are under execution. We elaborate more on this
point below.

Consider the action driveg 19(3) from Example 1.
Suppose that we start driveg,10(3) at the time mo-
ment 0. We expect that the fluent loc will change
its value from locy = 0 to 30 during the interval
[0,10] (according to the equation 3 x t) and the
fluent gas_in_tank will decrease its value by 1.5
unit every unit of time. That is, at the time mo-
ment 0, when driveg 10(3) starts its execution, we
would express the obligation due to this action on
loc and gas_in_tank by equations of the form

loc = locy + 3 xt and gas_in_tank—=1.5xt

where t € [0,10]. At a later moment, say 4 (i.e,

after 4 units of time), although these equations
do not change the constraint on the time variable
does, and they would become

loc =locy + 3 xt and gas_in_tank—=1.5xt

where ¢ € [4,10]. Equivalently, we can write

loc = locg+3+(t+4) and gas_in_tank—=1.5%(t+4)

where ¢t € [0,6]. These equations differ from the

previous equations in that ¢, the time variable,
refers to the time elapsed from now instead of the
elapsed time from the beginning of the interval.
However, to represent the correct value of the flu-
ent, the time between the beginning of the interval
and now — which is 4 in the last two equations —
must be also recorded. We represent this by the
interval [—4, 6] where the negative part of the in-
terval represents the elapsed time since the begin-
ning of the obligation while the positive part says
how long more the obligation lasts. We note that
[—4,6] can be obtained from [0,10] by shifting it
to the left by 4 units.

The above discussion suggests that we represent
a state by a pair (I, @), hereafter called a snap-
shot, where I is an interpretation and () is a set of
future effects (or obligations, for short). To distin-
guish an obligation caused by actions in (2.3)-(2.4)
from an obligation initiated by actions in (2.5)-
(2.6), we attach to each obligation a name. We
use T for the former and the process name for the
latter. Further, we will use [ts,00) to represent
the interval of an obligation generated by a pro-
cess to indicate that we do not know when such
an obligation will terminate®. Obligations caused

2 Adding the name to the obligation or co to the in-
terval gives us a uniform representation of obligations.

by an action in (2.3)-(2.5) do change the world
but obligations caused by (2.6) do not. Instead,
they terminate obligations caused by (2.5). For
this reason, we only add to @) obligations caused
by actions in (2.3)-(2.5). Whenever an action in
(2.6) is executed we will update () by removing a
matching obligation, if any. An obligation is one
of the following form

(T,f=’Ualf(’Uf,’Ufl,...,’Ufn,t),tl,tQ) (211)
(T, fewalf(vy,vps 505, 1), b1, t2)  (2.12)
(p,f:’Ualf(’l}f,’l}fl,...,’Ufn,t),tl,OO) (213)
(p, f< valf(vg,vp,,...,05,,t),t1,00) (2.14)
where
— f is a fluent,

— t1,ty are two real numbers with ¢; < ¢, and
— wval f(vg,vp,,...,vy5,,t) is a function with
vf,Vf, ... ,V5, are the values of the fluents
[ fi,---,fn at the time the obligation is

added to Q.

In the following, we will refer to obligations of the
form (2.11) or (2.13) as type-1 obligations. The
other obligations are called type-2 obligations.

For convenience, we refer to the elements of an
obligation e by e.name, e.f, e.t1, and e.t> and call
f, t1, and t2 as the fluent, lower, and upper bound
of e, respectively. We sometimes use e.[t1,t2] or
e.[t1,00) to represent the interval specified by the
lower and upper bound of e. A fluent f occurs in
an obligation e if f is the left hand side of e.f.

Intuitively, an obligation e = (e.name, e.f, e.t1,
e.t2) states that during the time interval e.[t1, t2]
(or e.[t1,00)), the value of a fluent f (the left hand
side of e.f) will be determined (or increased by
an amount) as specified by the function on the
right hand side of e.f. As time progresses, e.tq
and e.ty will be updated accordingly. Further-
more, since an action might have delayed effects,
we distinguish obligations whose interval contains
0 (0 € e.[t1,t2]) from others and call them active
obligations. Obviously, to determine what is the
current value of a fluent, we only need to consider
the active obligations.

Example 3 Let us consider the case where the
action driveg10(3) in Example 1 is executed at
the time 0 with the initial value of loc equal to 0.
Then,

— The type-1 obligation (T,loc = 3 % ¢,0,10)
is added to Q. After one unit of time, this



obligation will be changed to (T,loc = 3
t,—1,9).
— The type-2 obligation

(T,gas-intank «+ —1.5¢,0,10) is added to
Q. After one unit of time, it will be changed
to (T, gas_in_tank < —1.5t,—1,9).

On the other hand, if start_drive(3) (Example 2)
is executed at the time 0, then

— The type-1 obligation (p1,loc = 3 xt,0, 00)
is added to Q. After one unit of time, the
obligation will be changed to (p1,loc = 3 *
t,—1,00).

— The type-2 obligation
(p2, gas_in_tank < —1.5t,0,00) is added to
Q. After one unit of time, it will be changed
to (p2,gas_in_tank < —1.5t,—1, 00).

If stop_drive(3) is executed at the moment 1, then
its effect is to remove the obligations named p;
and ps from ). Therefore, @ will no longer con-
tain the obligations (p1,loc = 3 xt,—1,00) and
(p2, gas_in_tank < —1.5t, —1, 00)

Now that we have defined what a state is, we need
to discuss when a snapshot (I,(Q) represents a
valid state of the world. It is easy to see that
the obligations of a snapshot dictate the values of
fluents in the future. Further, to determine the
value of a fluent, say f, at a time moment §, we
need to consider all the obligations that will as-
sign a value for f (or contribute some increase for
f) at 0. We call these obligations active at § and
characterize them in the next definition.

Definition 1 Let (I, Q) be a snapshot and § > 0.
An obligation e = (e.name, e.f, e.t1,e.ts) is active
at § if e.t) <6 < e.ts. O

Because actions in ADC can be executed in par-
allel and different actions might assign different
value to a fluent f at some future moment of time,
there might be situations in which two type-1 obli-
gations assign different value to a fluent f simul-
taneously. The following picture depicts such a
situation:

f=g2

t=4

: f=uwalf(...)

0

=g
Figure 3: g1 # 92 — 1f is assigned two different
value at time 4

We consider this a conflict situation and call a

1 f=walf'(...)

snapshot that causes a conflict situation an in-
consistent snapshot. We formulate precisely this
notion in the next definition.

Definition 2 A snapshot (I, Q) is said to be in-
consistent if one of the following conditions is sat-
isfied:

1. there exists a time moment § > 0 and two
type-1 obligations e and €', both are active at
0, with e.f is “f = valf(vs,vp,...,04,,t)7
and €'.f is “f = wvalf'(vf,vg,...,0g,.,t)"
and there exists a §' such that 0 < §' < ¢
and

— both e and e’ are active at ¢’, and
— wvalf(vg,vg,,...,v5,,0 —etr) #
val f' (v, vg,,--.,0g,,,0 — €' t1).

2. there exists a time moment § > 0, a fluent
f, a type-1 obligation e, and a type-2 obliga-
tion €’ such that (i) f occurs in e and €', and
(ii) both e and €' are active at 4.

We say that (I, Q) is consistent if it is not incon-
sistent. O

In the above definition, in condition 1 we require
the existence of ¢’ that is smaller than § and both e
and e’ are active at §’. The rationality behind this
decision is similar to that of allowing obligations
of actions to override the current values of fluents.
More precisely, consider two type-1 obligations e
and €', both assign value to f. Suppose that e’
happens later than e (e.t; < e’.t1). Thus, at the
time moment €e’.t;, value of f dictated by e should
be considered as the value by inertia whereas the
new value of f dictated by e’ should be considered
the value of f. This said, if e.[t1, t2] and €'.[t1, t2]
share some points then the value of f dictated by e
and e’ should be the same on every point common
to these intervals except the lower bound of e’3.
Condition 2 requires that a fluent is not assigned
a value by an action and updated by another at
the same time.

2.3.2 Transition Function

In this section we present several definitions lead-
ing to the definition of a transition function. Since
we have to go through several definitions, we start
with a road map. As mentioned in the intro-

3 Another possible way of dealing with this problem
is to ignore the type-1 obligation that is currently ac-
tive when a new type-1 obligation on the same fluent
becomes active. This seems not natural because un-
der this view, every possible snapshot is valid which
is unlikely in most real-life domains.



duction, our objective here is to define the func-
tion ®(s, {(a1,t1),...,(an,tn)},t). We do this by
defining a function 7(s,d) (Definition 6) that gives
us the state after the passage of § units of time
when starting from the state s. (Note that this
is not s. Even though no new action has started
some of the obligations in s may become due be-
cause of passage of time.) The definition of 7(s, §)
involves defining the new interpretation denoted
by I¢* (Definitions 3-4) and the new obligations
denoted by Shift(Q,d) (Definition 5).

Our next goal is to define a function ®(s, A, J)
(Definition 10) that defines the state reached af-
ter executing the set of actions A immediately
in the state s and then waiting for § time units.
®(s,{(a1,t1),-..,(an,ty)},t) is then defined using
®(s,A,d) by sorting {(a1,t1),...,(an,tn)} into
{(A},1),..., (A}, 1)} such that each set A C
{ai1,...,a,}, and for any 4, if a € A} then (a,t}) €
{(a1,t1),...,(an,tn)}; and progressing through
them one by one.

To define ®(s, A,0) we (i) use 7, (ii) define exe-
cutability of A in s (Definition 7) (iii) define the
new obligations due to A denoted by E(A, s) (Def-
inition 8), and (iv) define updating of obligations
because of possible removals caused by A denoted
by Update(Q,T) (Definition 9).

We now define 7 that maps a pair of a snapshot
s and a non-negative number § into a snapshot
7(s,0). Let us assume that 7(s,0) = (I',Q’').
We will define I' by showing how to compute the
value of a fluent f at § given a consistent snapshot
(I, Q). We need the following definition.

Definition 3 Let (I, Q) be a consistent snapshot,
f be a fluent, and ¢ be a non-negative number. A
type-1 obligation ey is called the most recent type-
1 obligation of f relative to § if f occurs in ey and
eo.to = max{e'.ty | f occursin e’ € Q, €'ty < d}.
O

The above definition identifies the most recent
type-1 obligation relative to & that affects the
value of f. Let us call this obligation e. In-
tuitively, e dictates the value of f starting from
e.t2 to § if no type-1 obligation that changes f is
present. And, if there are contributions to f from
e.ty to 0, then they should be added to its value
at e.ty. We will use this to define the value of f
at ¢ in the next definition.

Definition 4 Let (I,Q) be a consistent snap-
shot and § be a non-negative number. The value

of a fluent f with respect to {I,Q) at J, de-
noted by I9°(f), is defined as follows. First,
let eg be a most recent type-1 obligation of f
relative to 0. Let ¢, = eg.t2 and I*(f) =
val f'(vp,Vpy,y ..., Uny, €0.t2 — €9.t1) if €g exists and
t; =0 and I*(f) = I(f), otherwise. Let

L(f) = {6v | dv = valf(vs,vyp,. ..
val f(vg, vy, ..., vy,,0) where:
there exists a type-2 obligation e € () with
(i) e is active at some &', t; < §' < §; and
(ii) e.f = is “fewvalf(vy,vp,...,v5,,t)"

— For f, that does not occur in any type-
1 obligation e in @, that is active at ¢, if
L(f) # 0 then I9°(f) = I*(f) + Zyer(s)vs;
otherwise, 190 (f) = I*(f),

— For f, that occurs in an type-1 obliga-
tion e in @, that is active at 4, with e.f
is “f = wval f(vg,vg,,...,04,.,t)" and e.t; =
max{e'.t; | f occursin e’ € Q, €' is active at
8}, IO(f) = walf(vs,vgy,--.,0,,,0 —etr).4

,Vf,, 0 —e.t1)

O

In the above definition, the set I'(f) contains all
the contributions to the fluent f at & which are
specified by type-2 obligations. The value of f is
then defined using the sum of all the contributions
made to f (first case) or the value dictated by a
type-1 obligation (second case).

Example 4 Consider the domain description of
the action driveg 10(3) from Example 1, the inter-
pretation I = {loc = 0, gas_in_tank = 20}, and
the set of obligations Q = {(T,loc = 3 xt,0,10),
(T,gas-intank + —15xt,0,10)}. For 0 <
0 < 10, we have that I'(gas_in_tank) = {—1.55},
which gives

— I%29%(loc) = 3%t = 34 (because of the type-1
obligation in @), and

— I9%gas_in_tank)=I(gas_in_tank)—1.56 =
20 — 1.56 (because of the type-2 obligation in

Q)

“The consistency requirement on (T, Q) suggests
that f does not occur in any type-1 obligations that
are active at 6. Hence, we do not need to worry
about I'(f) in this case. However, f might occur in
more than one type-1 obligations. As we have dis-
cussed after Definition 2, the value of f at § should
be obtained from the type-1 obligation whose up-
per bound is greatest among them. For instance, if
driveo,10(v) (Example 1) starts at the time 0, then
the intuitive value of driving at the moment 10 is
false which is also the value specified by the type-1 ef-
fect (T,driving = false, 10, 10) instead of the type-1
effect (T,driving = true, 0, 10).



Definition 4 tells us how to compute the interpre-
tation of 7(s,d). To complete the definition of
7(s,0), we need to specify how its set of obliga-
tions should be computed. Obviously, we have to
eliminate from @ all the obligations that are ex-
pired, i.e., their upper bound is smaller than §.
Furthermore, we have to update the obligations’s
interval. We call this a shifting of ) and define it
as follows.

Definition 5 For a set of obligations ) and a
time moment § > 0, a shifting of () by §, denoted
by Shift(Q,9), is obtained from @ by :

e Removing from ) every obligation e with
ety <4,

o For every obligation e, that remains after the
first step, replacing e.t; and e.t> with e.t; — 6
and e.ts — 6, respectively. O

We now define the step transition function 7, that
maps pairs of snapshots and time moments into
snapshots.

Definition 6 (Step Transition Function)
Let s = (I, Q) be a snapshot and § > 0. 7(s,d) is
defined as follows.

1. if (I, Q) is inconsistent then 7(s,d) is unde-
fined;

2. otherwise, 7(s,d) = (I', Q') where I'(f) =
IQ9(f) for every f € F and Q' = Shift(Q,?)
O

As ADC allows actions to occur in parallel, we
need to characterize when a set of actions can be
executed in parallel. In [4], concurrent actions
have been discussed and different ways in deal-
ing with concurrency have been proposed. The
approach in [4] assumes that actions are instan-
taneous. Reiter modified the situation calculus
to deal with time and concurrency [21]. His ap-
proach, however, requires that the action the-
ory contains preconditions for concurrent actions
which are represented by a set of simple actions.
In the next definition, we characterize when a set
of actions can be executed at the same time.

Definition 7 Let s = (I,Q) be a snapshot and
A be a set of actions. We say that A is executable
in s if,

1. every action a € A is executable in s, i.e.,
for every a € A there exists a executable con-
dition executable a if ¢1,...,¢; and I = ¢;
for every ¢;; and

2. I = f>3;pesl(®), where S = {(f,¢) |

there exists an action a € A and f = ¢ is
an atom belonging to the resource condition
whose action is a}. O

The intuition behind the above definition is that
two actions can be executed in parallel only when
the exclusive resources needed for both actions
are available. For example, consider a simple
job-shop scheduling problem with two tasks ¢;
and t;. Both t; and ¢y require a machine m.
This requirement can be expressed in ADC by
the two resource conditions “6; needs m = 17
and “t; needs m = 1”7. Clearly, t; and ts can
be executed in parallel only if we have at least 2
machines (m). This is expressed by the second
condition of Definition 7. We note that these two
resource conditions cannot be replaced by the two
executable conditions “executable t; if m = 1”7
and “executable t5 if m = 1”7 because this would
imply that the two tasks can be executed in par-
allel when there is only one machine m. Next, we
define E(a, s), the obligations due to execution of
ain s.

Definition 8 The obligations of an action a in a
snapshot s = (I, Q) denoted by E(a,s) contains

e a type-1 obligation
(T,f = valf(vg,vg, -..,v5,.,t), t1,t2) for
each proposition“a causes f = walf(f, f1,
wes Jm,t) from t; to 5",

e a type-2 obligation

(T, fevalf(vg,vg,...,05,,t),t1,t2)
for each proposition “a contributes
val f(f, f1, .-+, fm,t) to f from t; to ty”,
e a type-1 obligation
(p, f =valf(vg,vp,,...,v5,,t),ts,00) for

each  proposition “a initiates
p from t;” and “p is_associated_with f
= Ualf(f7f17 - '7fm7t)”7

e a type-2 obligation

(p, f valf(vg,vp,...,05,,,t),ts,00)
for each proposition “a initiates p from t,”

and “p is_associated_with valf(f, f1,
ooy fmsyt) to f7,
where val f(vg,vyp,, ..., vy, ,t) is the function over

time obtained from val f(f, f1,-. ., fm,t) by simul-
taneously replacing every occurrence of the fluents
f5 fi,-- -, fm with their values with respect to I,
Vi, Vfrs-- -5 f i, TESPECtively.

For a set of actions A, let E(A,s) = UyscaE(a, s).
O

Since an action a may also terminate some obli-
gations, we define the set T'(a,s) = {(p,ts) |



a terminates p from t;” belongs to D} that
lists the obligations that are terminated by a. Let
T(A,s) = UgecaT(a,s). The next definition shows
how to update a set of obligations given a set of
terminations of the form (p, t).

Definition 9 Let () be a set of obligations and T
be a set of pairs (p,t) where p is a process name
and t is a time variable. The update of ) with
respect to T, denoted by Update(Q,T), is defined
as the set of obligations obtained from @ by

e Removing from @ all effects
(e.name, e.f e.t1,e.tz) for which T contains a
pair (e.name,t) such that ¢t < e.ty,

e For each remaining e in ) with
e = (e.name,e.f,ety,ets) if T contains a
pair (e.name,t) such that ety < t < e.to,
then replacing e.ty with ¢. O

We now define ®(s, A,9) and
@(8, {(A17t1)7 L) (An7tn)}75)

Definition 10 (Transition Function) Let D
be a domain description, A be a set of actions,
s = (I,Q) be a snapshot, and § > 0. We define
®(s, A, ) as follows.

1. if A is not executable in s or s is inconsis-
tent, then ®(s, A,d) is undefined;

2. if A is executable in s, then ®(s, A,§) =
7({I,Update(E(4,s) UQ,T(4,5))),6). O

Definition 11 For a snapshot s, a sequence of
action occurrences [A; : t1],...,[An : tp] such that
0<t; <ty <...<t,and atime moment § > t,,
we define the sequence of snapshots sg, ..., s, as
follows.

® So = @(S,@,tl),
e fori=1,...,n—1, s; = ®(s4-1, 4, tiy1 —
t;), and

® Sp = (I)(Sn—laAna(s - tn)-

We denote s, by ®(s,{(A1,t1),-..,
O

(An,tn)},0).

The following proposition follows directly from the
above definition.

Proposition 1 For A’s, t’s, §, and s that sat-
isfy the conditions given in Definition 11, we

have that ®(s, {(A1,t1),...,(An,tn)},8)=2(D(s,
{(Ala tl)a ey (An—latn—l)}a tn_tn—l)a Ana 6_tn)-
O

The significance of this proposition is that it al-
lows us to compute the state resulting from the ex-

ecution of a sequence of action occurrences step by
step; thus allowing the development of a forward
planner that can exploit domain specific knowl-
edge to improve its efficiency. Similar planners
for action theories with actions of fixed duration
include TLPlan [1], TALplan [8] and SHOP [19].

2.3.3 Query Entailment

We now define when a query is entailed by a do-
main description. We first state when a temporal
atom of the form c[t1,t»] is true in a snapshot s.

Definition 12 A snapshot s entails a temporal
atom of the form c[t1, 2] if (i) s is consistent; and
(ii) for every § € [t1,12], 7(s,0) = c. O

In the next definition, we define what is the initial
state of a domain description.

Definition 13 (Initial State) Let (D, O) be an
action theory. An initial state so of (D,0) is a
snapshot (o, #) of D that satisfies every observa-
tion in O, i.e. Iy | f = v for every observation
“initially f =v” in O. O

Definition 14 (Entailment) Let (D,0) be an
action theory. A query

aldy, 671, ey 07 ]

after Aq:ty, ..., A.t,

is entailed by (D, O), denoted by

(D,O) IZ 01[5;56+] . 7ck[61;56+]

after [A; : t1],...,[An : ts)],

if for every initial state so of (D O) s is defined
and s = ¢;[6;,67] for every i, 1 < i < k, where
s = ®(so, {(A1,t1),...,(An,tn)},0), and ® is the
transition function of D. O

We illustrate the last definition through the fol-
lowing proposition and its proof.

Proposition 2 Consider the action theory
(D, O) where O consists of two observations

initially loc = 0, and
initially gas_in_tank = 20,

and D is the domain description consisting of the
actions driveg,10(3), fill_gasio, start_drive(3),
and stop_drive(3) and the fluents loc and
gas_in_tank from Example 1. Then, (D,0) E
(gas_in_tank > 5)[5, 6] after {driveg 10(3)} : 0.

Proof: (sketch) First, it is easy to see that the
only initial state of (D,O) is the snapshot so =
(Io, B) with Iy(loc) = 0 and Iy(gas—in_tank) = 20.
Furthermore, 7(sp,0) = sq.



Since Iy | gas_in_tank > 0 and D does not con-
tain a proposition of the form (2.2) whose action is
driveg,10(3), we conclude that driveg,10(3) is ex-
ecutable in sq. E(driveg10(3),s0) consists of a
type-1 obligation (T,loc = 3t,0,10) and a type-
2 obligation (T, gas_in_tank < —1.5¢,0,10) (see
Example 3). By definition, we have that

‘I)(So, {(dT‘i’Ue(),lo (3), 0)}, 0)
= 7({Io, E(driveo,10(3) U 0)},0)
= 7({Io, {(T,loc = 3t,0,10),
(T, gas-in_tank «+ —1.5t,0,10)}),0)
= (Io, {(T,loc = 3t,0,10),
(T, gas_in_tank < —1.5¢,0,10)})
= 81.

It follows from the computation in Example 4 that
7(s1,0) |E (gas_in_tank > 5) for § € [5,6]. Thus,
s1 E (gasdin_tank > 5)[5,6]. In other words,
we have proved that (D,0) [ (gas-in_tank >
5)[5, 6] after {drivep10(3)} : 0. O

3 RELATED WORK,
CONCLUSION AND FUTURE
WORK

In this paper we have presented a transition func-
tion based characterization of actions in presence
of unsharable resources, with durations, and de-
layed and continuous effects. To make the presen-
tation in this extended abstract simpler we have
on purpose simplified the language a bit by not
allowing conditional effects, and instead added a
lot of explanations and examples. We would like
to point out that by using delayed effects we can
express actions with fixed durations as we have
shown through many examples. The main con-
tribution of our paper is the notion of state that
not only has fluent interpretations but also obli-
gations, and a transition function.

Although actions with durations and continuous
effects were earlier considered, none of them pre-
sented a transition function based characteriza-
tion. Our characterization allows us to easily map
it to a model generation based planner. We de-
scribe such a planner based on logic program-
ming in [6] and example codes can be found in
http:/ /www.public.asu.edu/~cbaral /resources/.

In terms of related work, the three main works
with similar goals as ours are [20, 21], [7, 15], and
[10]. In [20, 21], Reiter adds an explicit notion
of time to situation calculus and uses start and
stop actions to characterize processes. Among the

main differences between his work and ours is that
(i) his time is “actual time” while all our notions
of time are relative times, (ii) he needs triggers to
characterize actions with fixed durations, (iii) he
does not have delayed effects and resource needs,
and (iv) his characterization is in logic (Situation
calculus) while ours requires a simpler background
of sets and functions. The thesis [15] is perhaps
one of the latest report on the work at Linkoping
that is related to this paper. Among the main
differences between the work there and this paper
are: (i) they do not consider continuous effects
(an early paper by Sandewall [22] does), and (ii)
theirs is a logic based characterization with no no-
tion of states and transition functions. The recent
paper [10] gives a language for planning with ac-
tions similar to the ones in this paper. The lan-
guage is divided into 4 levels and continuous ef-
fects are in level 4. The semantic characterization
in [9] is only up to level 3 with a pointer that
a semantics of level 4 is defined based on hybrid
automata. Besides this, the main difference be-
tween the characterization there and ours is that
their characterization is only for planning while
ours (as we will elaborate in the full paper) is for
planning and other reasoning about action tasks.
Their notion of states is much simpler than ours
and does not record obligations. Hence, it surely
won’t lead to a Markovian transition function.

In terms of future work, we plan to have a more
thorough comparison with related work. In par-
ticular we plan to investigate specific subclasses of
domain descriptions in our language for which our
transition function based semantics matches with
the semantics of the above mentioned works and
those addressing continuous changes [24] or nu-
meric fluents [16]. We plan to allow for more gen-
eral observations, as in [5], and conclusion about
missing action occurrences from those observa-
tions. We also plan to further extend our planner
in [6] based on the characterization in this paper
and use domain dependent knowledge to expedite
planning in such an environment. We would also
like to enhance ADC by adding to it new features
such as those for expressing temporal conditions,
conditional effects, or state constraints. This will
allow the use of ADC in representing and reason-
ing about domains in which the effects of actions
depend on the value of some fluents temporally
and conditionally.
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