
Formulating diagnosti problem solving using an ation languagewith narratives and sensingChitta Baral Sheila MIlraith Tran Cao SonDepartment of CSE Knowledge Systems Lab CS DepartmentArizona State University Stanford University Univ. of Texas at El PasoTempe, AZ 85287 Stanford, CA 94305 El Paso, Texas 79968hitta�asu.edu sam�ksl.stanford.edu tson�s.utep.eduAbstratGiven a system and unexpeted observationsabout the system, a diagnosis is often viewedas a fault assignment to the various ompo-nents of the system that is onsistent with (orthat explains) the observations. If the obser-vations our over time, and if we allow theourrene of (deliberate) ations and (exoge-nous) events, then the traditional notion of aandidate diagnosis must be modi�ed to on-sider the possible ourrene of ations andevents that ould aount for the unexpetedsystem behavior.In the presene of multiple andidate diag-noses, we may need to perform ations andobserve their impat on the system, to beable to narrow the list of possible diagnoses,and possibly even initiate some repair. Aplan that guarantees suh narrowing will bereferred to as a diagnosti plan, and if thisplan also guarantees that at the end of the ex-eution of the plan, the system has no faultsthen we refer to it as a repair plan.Sine ations and narrative play a entralrole in diagnosti problem solving, we har-aterize diagnosis, diagnosti planning andrepair with respet to the existing ationlanguage L, extended to inlude stati on-straints, sensing ations, and the notion ofobservable uents. This language is used toprovide a uniform aount of diagnosti prob-lem solving.1 IntrodutionConsider the following narrative involving diagnosis.

John gets up in the morning. He turns onthe swith of his lamp, and reads the morn-ing newspaper. He then turns o� the swithand does other things before going to work.After he gets home from work, he enters hisroom and turns on the swith of his lampagain. This time, the lamp does not turn on.John thinks that maybe either the bulb isbroken, or the swith of the lamp is broken,or the power ord is broken, or there is nopower at the outlet. He does nothing aboutit and goes to his bathroom and turns on thelight swith, observing that even that lightdoes not turn on. He thinks perhaps thereis no power at home, but then he notiesthat his eletri lok is working, so he �g-ures that there is power in at least part ofhis home. Now he is worried and goes to hisgarage to hek his fuse box and �nds thatone of the fuses is blown. He replaes thatfuse and omes bak to his room. He turnson his lamp swith and voila it works.This narrative illustrates the proess of diagnostiproblem solving. In partiular it illustrates that diag-nosti problem solving must involve reasoning aboutthe evolution of a dynamial system. Triggered byan observation of system behavior that is inonsistentwith expeted behavior { in this ase, the fat thatwhen John turned on the lamp it did not emit light,diagnosti problem solving involves:� generating andidate diagnoses based on an inom-plete history of events that have ourred and obser-vations that have been made.� in the event of multiple andidate diagnoses, per-forming ations to enable observations that will dis-riminate andidate diagnoses. The seletion of a par-tiular ations is often biased towards on�rming the



most likely diagnosis, or the one that is easiest to test.� generating plans (possibly with onditionals andsensing ations) to perform these disriminatory ob-servations.� updating the spae of diagnoses in the fae of hangesin the state of the world, and in the fae of new obser-vations.The long-term objetive of our work is to developa knowledge representation and reasoning apabilitythat emulates diagnosti problem solving proessessuh as John's. Following [MI97b℄, we argue that suha omprehensive aount of diagnosti problem solv-ing must involve reasoning about ation and hange.In this paper we augment and extend the work of[MI97a, MI98, MI97b℄ in several important ways.The main ontributions of this paper are:� We de�ne diagnosis with respet to a narrative.� We de�ne the notion of diagnosti and repair plan-ning, within a language that integrates sensing ationsand world-altering ations. Thus, we are able to dis-tinguish between hanges in the state of the world, andhanges in an agent's state of knowledge.� In support of this endeavor, we extend the ation lan-guage L to support stati ausal laws, sensing ationsand the notion of observable uents. L was originallydeveloped to support narratives (e.g., [MS94, Pin94℄).None of the above issues have been explored either inthe model-based diagnosis literature or in the reason-ing about ation literature. Also notable is that unlikemost other aounts of diagnosis, our aount allowsnondeterministi e�ets of ations. Finally, our workis distinguished from most previous work in de�ningdiagnosis in terms of a diagnosti model, rather than interms of failing omponents and/or ations sequenes.The rest of the paper is organized as follows. In Se-tion 2 we give an overview of the language L and howto add stati ausal laws to it. In Setion 3 we use theextended language to de�ne when we may need to doa diagnosis and what a diagnosis is with respet to anarrative. In Setion 4 we further extend our ationlanguage to allow sensing ations and to aommo-date the distintion between an observable uent anda unobservable uent. We then use this language tode�ne the notion of a onditional plan, and the relatednotions of diagnosti and repair planning. Finally, inSetion 5 we summarize and disuss related work.2 Speifying narrative in LThe propositional language L was developed in[BGP97, BGP98℄ to speify narratives and to reasonwith them. In this paper, we will desribe the main

aspets of the language L by dividing it into threeomponents: a domain desription language LD , alanguage to speify observations LO , and a query lan-guage LQ. In Setion 4.1, we extend our languagefurther with sensing ations, and observables.2.1 LD: The domain desription languageThe alphabet of LD { a language that losely fol-lows the language AC from [Tur97℄ { omprises twononempty disjoint sets of symbols: the set of uentsF, and the set of ations, A. A uent literal (or lit-eral) is a uent or a uent preeded by :. A uentformula is a propositional formula onstruted fromliterals. Propositions in LD are of the following forms:a auses ' if  (1)' if  (2)impossible a if  (3)where a is an ation, and ', and  are uent formulas.Propositions of the form (1) desribe the diret ef-fets of ations on the world and are alled dynamiausal laws. Propositions of the form (2), alled statiausal laws, desribe ausal relation between uents ina world. Propositions of the form (3), alled exeutabil-ity onditions, state when ations are not exeutable.A domain desription D is a set of propositions in LD .The main di�erene between LD and the ation de-sription part of L [BGP97, BGP98℄ is the presene ofstati ausal laws in LD, whih are ritial for repre-senting the behavior of the devie being diagnosed.A domain desription given in LD de�nes a transitionfuntion from ations and states to a set of states.(Reall, ations may be nondeterministi.) Intuitively,given an ation, a and a state, s the transition funtion�(a; s) de�nes the set of states that may be reahedafter exeuting the ation a in state s. If �(a; s) is anempty set it means that a is not exeutable in s. Wenow formally de�ne this transition funtion.Let D be a domain desription in the language of LD .An interpretation I of the uents in LD is a maxi-mal onsistent set of uent literals of LD . A uent fis said to be true (resp. false) in I i� f 2 I (resp.:f 2 I). The truth value of a uent formula in I isde�ned reursively over the propositional onnetivein the usual way. For example, f ^ q is true in I i� fis true in I and q is true in I . We say that ' holds inI (or I satis�es '), denoted by I j= ', if ' is true inI .



A set of formulas from LD is logially losed if it islosed under propositional logi (wrt LD).Let V be a set of formulas and K be a set of statiausal laws of the form ' if  . We say that V is losedunder K if for every rule ' if  in K, if  belongs toV then so does '. By Cn(V [K) we denote1 the leastlogially losed set of formulas from LD that ontainsV and is also losed under K.A state of D is an interpretation that is losed underthe set of stati ausal laws of D.An ation a is prohibited (not exeutable) in a state sif there exists an exeutability ondition of the formimpossible a if 'in D suh that ' holds in s.The e�et of an ation a in a state s is the set of for-mulas ea(s) = f' j D ontains a law a auses ' if  and  holds in sg.Given the domain desription D ontaining a set ofstati ausal laws R, we formally de�ne �(a; s), theset of states that may be reahed by exeuting a in sas follows.1. If a is not prohibited (i.e., exeutable) in s, then�(a; s) = fs0 j Cn(s0) = Cn((s\ s0)[ ea(s)[R)g;2. If a is prohibited (i.e., not exeutable) in s, then�(a; s) is ;.The intuition behind the above formulation is as fol-lows. The diret e�ets (due to the dynami ausallaws) of an ation a in a state s are given by ea(s), andall formulas in ea(s) must hold in any resulting state.In addition, the stati ausal laws (R) ditate addi-tional formulas that must hold in the resulting state.While the resulting state should satisfy these formu-las, it must also be otherwise losed to s. These threeaspets are aptured by the de�nition above. For ad-ditional explanation and motivation behind the abovede�nition please see [Tur97℄.2.2 LO: The observation languageWe assume the existene of a set of situation onstantsS whih ontains two speial situation onstants s0 and1Note that a uent formula ' an be equivalently rep-resented as a stati ausal law ' if true.

s denoting the initial situation and the urrent situ-ation, respetively. Note that situations written ass (possibly with subsripts) are di�erent from stateswhih are written as s (possibly with subsripts). Aswith the situation alulus, the ontology of our lan-guage di�erentiates between a situation, whih is ahistory of the ations from the initial situation, and astate, whih is the truth value of uents at a partiularsituation.Observations in LO are propositions of the followingforms: ' at s (4)� between s1; s2 (5)� ours at s (6)s1 preedes s2 (7)where ' is a uent formula, � is a (possibly empty)sequene of ations, and s; s1; s2 are situation onstantswhih di�er from s. (Sine the world an be hangedwithout the agent's knowledge, we do not allow theagent to have observations about s.)Observations of the forms (4) and (7) are alled uentfats and preedene fats, respetively. Observationsof the forms (5) and (6) are referred to as ourrenefats. These two types of observations are di�erent inthat (5) states exatly what happened between two sit-uations s1 and s2, whereas (6) only says what ourredin the situation s.2.3 NarrativesA narrative is a pair (D;�) where D is a domain de-sription and � is a set of observations of the form(4)-(7).Observations are interpreted with respet to a domaindesription. While a domain desription de�nes atransition funtion that haraterize what states maybe reahed when an ation is exeuted in a state, a nar-rative onsisting of a domain desription together witha set of observations de�nes the possible situation his-tories of the system. This haraterization is ahievedby two funtions, � and 	. While � maps situationonstants to ation sequenes, 	 piks one among thevarious transitions given by �(a; s) and maps ationsequenes to a unique state with the ondition that	(� Æ a) 2 �(a;	(�)).More formally, let (D;�) be a narrative. A ausalinterpretation of (D;�) is a partial funtion from a-tion sequenes to interpretations of Lang(F), whose



domain is nonempty and pre�x-losed2. By Dom(	)we denote the domain of a ausal interpretation 	.Notie that [℄ 2 Dom(	) for every ausal interpreta-tion 	, where [℄ is the empty sequene of ations.A ausal model of D is a ausal interpretation 	 suhthat:(i) 	([℄) is a state of D; and(ii) for every � Æ a 2 Dom(	), 	(� Æ a) 2 �(a;	(�)).A situation assignment of S with respet to D is amapping � from S into the set of ation sequenes ofD that satisfy the following properties:(i) �(s0) = [℄;(ii) for every s 2 S, �(s) is a pre�x of �(s).An interpretation M of (D;�) is a pair (	;�), where	 is a ausal model of D, � is a situation assignmentof S, and �(s) belongs to the domain of 	. For aninterpretation M = (	;�) of (D;�):(i) � ours at s is true inM if the sequene �(s)Æ� is a pre�x of �(s);(ii) � between s1; s2 is true inM if �(s1)Æ� = �(s2);(iii) ' at s is true in M if ' holds in 	(�(s));(iv) s1 preedes s2 is true in M if �(s1) is a pre�xof �(s2).An interpretationM = (	;�) is a model of a narrative(D;�) if:(i) fats in � are true in M ;(ii) there is no other interpretationM 0 = (	;�0) suhthat M 0 satis�es ondition i) above and �0(s) isa subsequene of �(s).Observe that these models are minimal in the sensethat they exlude extraneous ations.A narrative is onsistent if it has a model. Otherwise,it is inonsistent.2A set X of ation sequenes is pre�x-losed if for everysequene � 2 X, every pre�x of � is also in X.

2.4 LQ : The query languageQueries in LQ are of the following form:' after � at s (8)When � in (8) is an empty sequene of ations, and sis the urrent situation s, we often use the notationurrently ' as a simpli�ation of (8).A query of the form ' after � at s is true in amodel M = (	;�) if ' is true in 	(�(s) Æ �).A query q is entailed by a narrative (D;�), denotedby (D;�) j= q, if q is true in every model of (D;�).3 Diagnosis wrt narrativesWe are now ready to formulate the notion of diag-nosis with respet to a narrative. The representa-tion of the system to be diagnosed omprises statiausal laws that desribes the behavior of the systemitself, as well as the desription of the e�ets of ationson system state, and observations about ation our-renes and uent values over the evolution of the sys-tem We follow the diagnosis literature (e.g., [DMR92℄)and assume that the system is omposed of a distin-guished set of omponents that an malfuntion. As-soiated with eah omponent , is the distinguisheduent ab(), denoting that the omponent  is abnor-mal or broken. Also assoiated with eah omponentis the distinguished uent break(), a wildard ationwhih may be used to explain unexpeted observationsabout ab(). Note that the representation of the sys-tem is likely to ontain other ations and stati ausallaws that a�et the truth of ab(). Building on theestablished diagnosis notation:De�nition 1 (System)A system Sys is a tuple (SD;COMPS;OBS) whereCOMPS = f1; : : : ; ng is a �nite set of omponents.SD is a domain desription haraterizing the behav-ior of the system, and augmented with dynamilaws of the form break() auses ab(), for eahomponent  in COMPS.Given SD, by SDab, we denote the subsetof SD onsisting of stati ausal laws of theform \ if '" and dynami laws of the form\a auses  if '", where  ontains ab() forsome omponent .OBS is a olletion of observations starting fromthe situation s1, and the preedene fat



s0 preedes s1. Spei�ation of uent fats ats0 are not inluded in OBS.In our formulation of diagnosis, we make the assump-tion that there is an initial situation in the historywhere all omponents are operating normally3. This isahieved by adding the set OK0 = f:ab() at s0 j  2COMPSg to our observations.Example 1 Consider a slight variation of the storyin our introdution. Assume that the only breakableomponent in the domain is the bulb. Furthermore,assume that John observed that the light is o� imme-diately after he turned on the lamp when oming bakfrom work. The story an then be desribed by a sys-tem desription Sys0 = (SD0; fbulbg; OBS0), whereSD0 : turn on auses light on if :ab(bulb)turn o� auses :light on:light on if ab(bulb)break(bulb) auses ab(bulb)impossible break(bulb) if ab(bulb)OBS0 : turn on ours at s1 s0 preedes s1turn o� ours at s2 s1 preedes s2turn on between s3; s4 s2 preedes s3:light on at s1 s3 preedes s4light on at s2:light on at s3:light on at s4OK0 : :ab(bulb) at s0. 2Intuitively, we say a system needs a diagnosis, if thefollowing assumptions are inonsistent with the obser-vations (i) all omponents are initially �ne, and (ii)no ation that an break a omponent ours. To de-�ne diagnosis, we assume that all omponents wereinitially operating normally, and we try to onjetureminimal ation ourrenes to aount for the obser-vations. Sine the semantis of L minimizes ationourrenes, all we need to do is to onsider the vari-ous models of the narrative and extrat our diagnosisfrom eah.3Hene, our formulation of diagnosis an be alternatelyreferred to as `big-bang diagnosis'. We an slightly modifyit to de�ne inremental diagnosis, when we already knowthat a set X � COMP is abnormal, and we want to �gureout if some additional omponents have malfuntioned byhaving OK0 = fab() at s0 j  2 Xg[f:ab() at s0 j  2COMP nXg.

De�nition 2 (Neessity of Diagnosis) We say asystem Sys = (SD;COMPS; OBS) needs a diagno-sis if the narrative (SD nSDab; OBS [OK0) does nothave a model.Note that the notion of a system needing a diagnosisis not meant to apture the notion that there is somefault in the system. It is a muh weaker notion. Wenow establish the notion of a diagnosis in terms of adiagnosti model.De�nition 3 (Diagnosti Model) LetSys = (SD;COMPS;OBS) be a system that needsa diagnosis. We say M is a diagnosti model of Sys ifM is a model of the narrative (SD;OBS [OK0).We an now extrat information about any partiularsituation from the diagnosti model. In partiular,De�nition 4 (Diagnosis) A diagnosis with respetto situation s is the set of omponents � 2COMPS suh that there exists a model M =(	;�) of the narrative (SD;OBS [ OK0) and � =f j ab() at s holds in Mg. We refer to a diagnosiswith respet to s as a urrent uent diagnosis. We saya diagnosis � (wrt a situation s) is minimal if thereexists no diagnosis �0 (wrt s) suh that �0 � �.Example 2 (Continuation of Example 1)Consider the system Sys0 = (SD0; fbulbg; OBS0),from Example 1, with SDab = fbreak(bulb) ausesab(bulb)g.Let narrativeN 00 = (SD0nSDab; OBS0[OK0). Due tothe proposition \:light on if ab(bulb)", SD0nSDabhas only three distint states: s0 = ;, s1 = flight ong;and s2 = fab(bulb)g.The transition funtion of SD0nSDab is given by�(turn on; s0) = fs1g �(turn o�; s0) = fs0g�(turn on; s1) = fs1g �(turn o�; s1) = fs0g�(turn on; s2) = fs2g �(turn o�; s2) = fs2gWe now prove thatN 00 is inonsistent. Assume the on-trary, N 00 has a model (�;	). Beause of OBS0[OK0,we onlude that 	([℄) = s0. Let �(s3) = �, where �is an ation sequene. By the de�nition of a modelof a narrative, we have that �(s4) = � Æ turn on.As there is no ation in SD0nSDab whose e�et isab(bulb), we onlude that ab(bulb) 62 	(�). This im-plies that light on 2 	(� Æ turn on), i.e., light onmust hold in s4. This ontradits the observation\:light on at s4", i.e., N 00 is inonsistent.



Narrative N 00 is inonsistent, and hene, Sys0 needs adiagnosis. We ompute the diagnosis as follows.The narrative N0 = (SD0; OBS0 [ OK0), has onemodel M = (	;�) where 	([℄) = s0 and�(s0) = �1(s1) = [℄, �(s2) = turn on,�(s3) = turn on Æ turn o� Æ break(bulb),�(s4) = �(s) = turn on Æ turn o� Æ break(bulb) Æturn on.We an easily verify that ab(bulb) at s is true inM . Hene a urrent diagnosis for Sys0 is � = fbulbg.Moreover, it is easy to hek that � is also a minimalurrent diagnosis for Sys0. 23.1 Explanation vs diagnosisOften the observations in a narrative an be explainedby the sequene of ations (possibly exogenous) thathave ourred. Unfortunately, this is not true in allases beause inomplete knowledge of the initial sit-uation, and/or non-deterministi ations an lead tounertainty in the outome of a sequene of ations.The de�nition of a diagnosti model in the previoussetion uses a onsisteny riterion to aount for theobservations. That is, the narrative (SD;�), where� omprises the sequene of ation ourrenes andinitial situation (inluding OK0) ditated by the di-agnosti model, do not neessarily entail OBS. Theyare merely onsistent with OBS. Here we de�ne thenotion of an explanatory diagnosti model, whih hasthe stronger riterion that (SD;�) must entail OBS.De�nition 5 (Explanatory Diagnosti Model)Suppose M = (	;�) is a diagnosti model of (SD;COMPS; OBS), where� ations(M) is the set of ourrene fats andpreedene fats of the forms (5), (6), and(7), (i.e., fats of the forms � between s1; s2,� ours at s1, s1 preedes s2) that are truein M ; and� initial(M) is the set of uent fats of the formf at s0 that are true in M , inluding OK0.Then M is an explanatory diagnosti model i�(SD; ations(M) [ initial(M)) j= OBSFollowing in this spirit, it is straightforward to de�nethe notion of an explanatory diagnosis, a set of ationourrenes that entails the observations.

4 Diagnosti and repair planningThe diagnosti proess disussed in the previous se-tion will generate a set of andidate diagnoses, howeverdiagnosis is only the �rst step in dealing with an er-rant system. In most ases we will attempt to disrim-inate these diagnoses with the objetive of identifyinga unique diagnosis and/or reduing our spae of an-didate diagnoses to a point where a repair plan anbe oneived. We are operating under the assumptionthat we annot diretly observe the state of abnormal-ity of the various omponents of the system. Neverthe-less, we an make other observations about the system,add them to OBS, and then re�ne our diagnoses.In general, the uents in the system are of twokinds: observable and unobservable. A simple generiobservation4 leads the agent to know the value of theobservable uents. By knowing the relationship be-tween the observable and unobservable uents, andthe values of the observable uents, we an some-times dedue the values of unobservable uents. Wean also use diret sensing ations to sometimes deter-mine their value. Given a set of andidate diagnoses,we an exeute a plan { perhaps inluding some sens-ing ations and onditional branhes { and make thegeneri observations to obtain additional informationthat will help redue the spae of possible diagnoses.Suh plans are distinguished in that they an haveknowledge goals in addition to goals relating to thestate of the world. We refer to plans that attempt toredue our spae of diagnoses as diagnosti plans. Adiagnosti plan that inludes some repair is alled arepair plan.4.1 Adding sensing and observables to LIn order to de�ne the notion of a diagnosti plan, wemust �rst augment LD and LQ to inorporate sensingations and observable and unobservable uents. Inthis setion, we briey desribe these augmentations.The resulting theories are alled LDS and LQS , respe-tively. (LO = LOS .)� We allow knowledge produing laws of the followingform in LDS :a determines f (9)where a is an ation and f is a uent. A law of thisform tells us that after a is exeuted, the value of the4Here we distinguish between generi observations andsensing ations. We assume that the agent is onstantlyperforming `generi observations' and thus knows the truthvalue of the observable uents at all times. In ontrast,sensing ations require the agent's e�ort.



uent f will be known. An ation ourring in a knowl-edge produing law is alled a sensing ation.� With the addition of sensing ations, we need todistinguish between a state of the world and the stateof the agent's knowledge about the world. The laterwill be referred to as a ombined state (or -state) andwill be represented by a pair of the form hs;Si, wheres is a state (representing the real state of the world)and S is a set of states (representing the set of statesan agent thinks it may be in).� We extend the transition funtion � to also mappairs of ations and -states into sets of -states.1. for any -state hs;Si and non-sensing ation a,�(a; hs;Si) = fhs0;S 0i j s0 2 �(a; s), and S 0 is theset of states in �(a;S) that agree with s0 on FO,the observable literals g.(Note that if a is not exeutable in hs;Si then�(a; hs;Si) = ;.)2. for any -state hs;Si and sensing ation a whoseknowledge produing laws area determines f1 : : : a determines fm(a) if a is exeutable in hs;Si, �(a; hs;Si)= fhs; fs0 j s0 2 S suh that sand s0 agree on the literals from FO [ff1; : : : ; fmggig;(b) otherwise, �(a; hs;Si) = ;.� In the presene of inomplete information and knowl-edge produing ations, there may not exist simpleplans onsisting of sequene of ations and we mayneed to extend the notion of a plan to allow onditionalstatements. We refer to suh plans as onditional plans(e.g., [Lev96, BS97, BS98℄), desribed below.� In order to query the system, we speify a querylanguage LQS . A query in LQS has the form' after P at s (10)where ' is a uent formula and P is a onditional planas formally de�ned below.De�nition 6 (Conditional Plan)1. An empty sequene of ation, denoted by [ ℄, is aonditional plan.2. If a is an ation then a is a onditional plan.3. If P1; : : : ; Pn are onditional plans and 'j 's areonjuntion of uent literals (whih are mutually

exlusive but not neessarily exhaustive) then thefollowing is a onditional plan. ( We refer to suha plan to as a ase plan).Case'1 ! P1. . .'n ! PnEndase4. If P1 and P2 are onditional plans then P1;P2 isa onditional plan.5. Nothing else is a onditional plan.In order to de�ne when a narrative entails a querythat inludes a onditional plan, we need to de�ne anextended transition funtion �̂, that maps a pair of aonditional plan and a -state, into a set of -states.Intuitively, if �0 2 �̂(P; �) then the exeution of theplan in the -state � may take us to the -state �0. Be-fore de�ning �̂, we �rst de�ne the possible trajetorieswhen P is exeuted in �.De�nition 7 Let P be a onditional plan and � be a-state. We say a sequene of -states �1; : : : ; �n is atrajetory of P wrt � if:1. P = [℄, and n = 1, and �1 = �.2. P = [a℄, and n = 2, and �1 = � and �2 2 �(a; �).3. P = Case'1 ! P1. . .'n ! PnEndase,and there exists an i suh that 'i is known tobe true in � and �1; : : : ; �n is a trajetory of Piwrt �.4. P = P1;P2, and �1 = �, and �1; : : : ; �k is a traje-tory of P1 wrt �, and �k+1; : : : ; �n is a trajetoryof P2 wrt �k+1.�n is referred to as the resulting -state of P wrt �.De�nition 8 Let P be a onditional plan and � =hs;Si be a -state, �̂(P; �) is now de�ned as follows:1. �̂([℄; �) = f�g;2. For an ation a, �̂(a; �) = �(a; �);



3. For P = Case'1 ! P1. . .'n ! PnEndase,�̂(P; �) =8>>>><>>>>: �̂(Pi; �) if 'i is known to betrue in �; if there exists no i s.t.'i is known to be true in �4. For P = P1;P2, where P1 is a onditional planand P2 is a onditional plan,� if �̂(P1; �) 6= ;, and for every �0 2 �̂(P1; �),�̂(P2; �0) 6= ;, then�̂(P; �) = S�02�̂(P1;�) �̂(P2; �0); and� �̂(P; �) = ; otherwise.It should be noted that �̂(P; �) is not equal to the setof resulting -states of P wrt �. This is beause somebranhes of P may lead to unexeutable ations andhene �̂(P; �) will be empty while there may be severaltrajetories orresponding to other branhes.Our next goal is to de�ne entailment of queries wrtnarratives. Intuitively, sine the narrative may not beomplete, or have suÆient observations to arrive ata unique model, multiple models may tell us that asituation s may orrespond to many di�erent states,only one of whih orresponds to s in reality. Thuswe have a set of -states from whih we need to verifythe orretness of a onditional plan with respet to agoal. More formally,De�nition 9 (Possible State wrt a Situation)Let N = (D;�) be a narrative. We say s is a pos-sible state orresponding to situation s, if there existsa model (	;�) of N suh that 	(�(s)) = s. We say� = hs;Si is a -state orresponding to situation s, ifs is a possible state orresponding to situation s andS is the set of all possible states orresponding to s.A query q = ' after P at s of LQS is said tobe entailed by narrative (D;�), i.e. (D;�) j= q, if forevery -state hs;Si orresponding to s, �̂(P; hs;Si) 6= ;and ' is known to be true in every -state belongingto �̂(P; hs;Si).4.2 Diagnosti and repair plansWe are now ready to de�ne what a diagnosti planis. Intuitively, it is a onditional plan, possibly withsensing ations whih when exeuted in the urrent

situation gives suÆient information to reah a uniquediagnosis. In addition, we may have ertain restri-tions, suh as that:� Certain literals are not allowed to hange during theexeution of the plan. We refer to suh literals as pro-teted literals. (E.g., to stabilize the leaning tower ofPisa, we may not tear down and rebuilt it.)� Certain literals are allowed to hange during the ex-eution of the plan, but we require that at the end ofthe exeution of the plan, their value be the same asit was before the plan was exeuted. We refer to suhliterals as restored literals. (E.g., disassembling an en-gine or a ashlight to diagnose it, but putting it baktogether afterwards.)� Certain literals are allowed to hange during the ex-eution of the plan, but we require that at the end ofthe plan, their value be either the same as it was beforethe plan was exeuted or be false. Suh literals willbe referred to as �xable literals. (This aommodatesrepair, where ab uents an be made :ab.)De�nition 10 (Diagnosti Plan) Given Sys =(SD; COMPS; OBS) with a set of proteted literalsLP , a set of restored literals LR, and a set of �xable lit-erals LF . Let C � COMPS. A onditional plan P isalled a diagnosti plan for Sys wrt (C;LP ; LR; LF ),if for every -state � = hs;Si orresponding to theurrent situation of Sys, �̂(P; �) 6= ; and for all tra-jetories of the form �1; : : : ; �n of P wrt �(i) for every -state hs0;S 0i in �̂(P; hs;Si) and s00 2 S 0,s �AB(C) s00 where AB(C) = fab() j  2 Cg;(ii) value of all literals in LP remain unhanged (wrtthe real states) in the trajetory;(iii) for all literals l in LR value of l (wrt the real states)in �1 and �n are the same; and(iv) for all atoms f in LF , if f is false in �1 then it isfalse in �n. (wrt the real state).If C = COMPS, and the ab-literals are part of LP ,we say that P is a purely diagnosti plan for Sys.If C is a singleton, i.e., C = fg for some  2 COMPS,and ab() and :ab() are in LP , we say that P is adisriminating diagnosti plan for .De�nition 11 (Repair Plan) A diagnosti plan Pfor Sys wrt (C;LP ; LR; LF ) is said to be a repair planwrt (C 0; LP ; LR; LF ) if (i) C 0 � C � COMPS, (ii) abliterals about C 0 are not in LP and LR, and (iii) forevery -state � = hs;Si orresponding to the urrentsituation of Sys, �̂(P; �) 6= ; and for all  2 C 0, :ab()is known to be true in all -states in �̂(P; hs;Si).



Example 3 (Eletro-magneti Door)Consider an eletro-magneti ontrol door. The dooris onneted to a RED LED and a YELLOW LED.To enter, an agent needs to put its eletro-magnetiard, ontaining its id-number and password, into theslot onneted to the door's ontroller. The door willopen only if the ard is valid, the id-number and thepassword are not orrupted, and the door is not mal-funtioning. While the ard is in the slot, if it is in-valid, the RED LED will be on; and if the id-number orthe password is orrupted or the door is defetive, theYELLOW LED will be on. The YELLOW LED is ononly if the RED LED is not. In this ase, pushing thebutton \message" will print out a message. Readingit, the agent will know whether the door is defetiveor its ard is unreadable.Our agent, Jak omes to work, and as usual, puts hisard into the slot. The door does not open. What iswrong ? The story an be represented by the systemSys1 = (SD1; fard; door; id pwdg; OBS1) as follows.The ations of the domain desription SD1 are: in-sert ard, push button, take out ard, look (look at theLEDs), or read msg (read the message).The uents of SD1 are: ab(ard), ab(door),ab(id pwd), has ard, ard in slot, door open, has msg,red, and yellow, where red or yellow indiate that theRED/YELLOW LED is on, respetively.SD1 omprises the following laws:� dynami ausal laws: desribing the e�ets of the a-tions insert ard, push button, and take out ard. In-serting the ard auses the door to open if the ard, thedoor and the ard information are all normal. Further,inserting the ard auses the ard to be in the slot andnot in the possession of the agent. I.e.,insert ard auses door openif :ab(ard);:ab(door);:ab(id pwd)insert ard auses :has ard ^ ard in slotPushing the button results in a message. I.e.,push button auses has msg:If the ard is in the slot and the agent takes it out,then the agent has possession of the ard and the ardis not in the slot. I.e.,take out ard auses has ard ^ :ard in slotif ard in slot

� stati ausal laws: expressing the relationship be-tween the status (on/o�) of the LEDs. I.e.,red if ab(ard) ^ ard in slot:red if yellow ^ ard in slotyellow if (ab(id pwd) _ ab(door)) ^ :red^ ard in slot� sensing ations: haraterizing the knowledge e�etsof sensing ations. For example, performing the lookation auses the agent to know whether the RED andYELLOW LEDs are on or o�. They are aptured bythe following k-propositions:look determines redlook determines yellowread msg determines ab(id pwd)read msg determines ab(door)� exeutability onditions: haraterizing when an a-tion is preluded. I.e.,impossible insert ard if :has ardimpossible push button if :yellowimpossible read msg if :has msg� wildard ations:break(ard) auses ab(ard)break(door) auses ab(door)break(id pwd) auses ab(id pwd)and the set of observations, OBS1::red ^ :yellow ^ :door open at s1has ard ^ :has msg at s1:ard in slot at s1insert ard between s1; s2:door open at s2s0 preedes s1s1 preedes s2The �rst three observations desribe the �rst observ-able situation, s1. The fourth observation states thatJak puts his ard into the slot, while the �fth statesthat the door is not open after Jak puts his ard intothe slot.Intuitively, when Jak observes that the door doesnot open as the result of putting his ard into theslot, he should realize that at least one of the threeomponents: the ard, the door, or the information



on the ard is no longer valid. Our diagnosti rea-soning systems does likewise. Indeed, the narrativeN 01 = (SD1 n SDab; OBS1 [ OK0) does not have amodel and there are three diagnoses for Sys1: �1 =fab(id pwd)g, �2 = fab(door)g, and �3 = fab(ard)gwhih orrespond to the models M1; M2, and M3 ofN1 = (SD1; OBS1 [ OK0) de�ned as follows. M1 =(	1;�1), M2 = (	2;�2), and M3 = (	3;�3), where	1([℄) = 	2([℄) = 	3([℄) = s0, and�1(s0) = [℄,�1(s1) = break(id pwd),�1(s2) = �1(s) = break(id pwd) Æ insert ard,�2(s0) = [℄,�2(s1) = break(door),�2(s2) = �2(s) = break(door) Æ insert ard,�3(s0) = [℄,�3(s1) = break(ard),�3(s2) = �3(s) = break(ard) Æ insert ard.where s0 = fhas ardg,	1(break(id pwd)) = fhas ard; ab(id pwd)g,	1(break(id pwd) Æ insert ard)= fard in slot; ab(id pwd); yellowg = s1,	2(break(door)) = fhas ard; ab(door)g,	2(break(door) Æ insert ard)= fard in slot; ab(door); yellowg = s2,	3(break(ard)) = fhas ard; ab(ard)g,	3(break(ard) Æ insert ard)= fard in slot; ab(ard); redg = s3.To narrow the list of the possible diagnoses of the sys-tem, Jak an �nd out the status of the LEDs. If theRED LED is on, he knows for sure that the ard isno longer valid. Otherwise, the YELLOW LED mustbe on. In that ase, he an get the message and readit to know if the door is broken or the information onthe ard is orrupted. This proess is aptured by thefollowing plan.P = look Æasered! [℄:red!aseyellow! push button Æ read msgendaseendaseWe will now show that P is a diagnosti plan for Sys1

wrt (C;LP ; ;; ;) where C = fid pwd; dood; ardg andLP = fab(id pwd); ab(dood); ab(ard)g.Let S = fs1; s2; s3g. There are three possible urrentsituations of Sys1: �1 = hs1;Si, �2 = hs2;Si, and �3= hs3;Si. Let s0i = si [ fhas msgg, i = 1; 2, then�̂(P; �1) = �̂(push button Æ read msg; hs1; fs1; s2gi)= �̂(read msg; hs01; fs01; s02gi) = fhs01; fs01gig;�̂(P; �2) = �̂(push button Æ read msg; hs2; fs1; s2gi)= �̂(read msg; hs02; fs01; s02gi) = fhs02; fs02gig;�̂(P; �3) = fhs3; fs3gig.The above omputations also represent all trajetoriesof P wrt �1, �2, and �3. Obviously, �̂(P; �i) 6= ;for i = 1; 2; 3. Furthermore, it is easy to hek thatthe values of literals in LP remain unhanged in alltrajetories and in eah -state hs0;S 0i belonging to�̂(P; �i) and s00 2 S 0, s0 �AB(C) s00. For example,hs01; fs01gi is the only -state in �̂(P; �1), and trivially,s01 �AB(C) s01. Thus, P is a diagnosti plan for Sys1wrt (C;LP ; ;; ;). 25 Summary and Related WorkIn this paper we provided an aount of diagnostiproblem solving in terms of the ation language, L.A prime objetive of this work was to haraterize di-agnosti problem solving with narrative and sensing.L proved ideal for this task beause it already hadmost of the neessary expressive power. In partiu-lar, L inludes narrative, sensing ations, and addi-tionally nondeterministi ations, whih are ommonin diagnosti domains. In this paper, we extended Lby adding stati ausal laws that are neessary for de-sribing the behavior of the systems we diagnose. Wealso distinguished notions of observable uents, andproteted, restored and �xable uents.The main ontributions of this paper, in addition tothe supporting language extensions, are the hara-terization of the diagnosis task as a narrative under-standing task, and the de�nition of diagnosis in termsof a diagnosti model { a partiular model of the nar-rative. We further distinguish between a diagnostimodel and the striter notion of an explanatory di-agnosti model. As disussed throughout the paper,diagnosti problem solving is more than just deter-mining a set of andidate diagnoses. In the seondhalf of the paper, we de�ne the notion of a diagnostiplan, and a repair plan { onditional plans that ex-ploit both world-altering ations and sensing ations



with the goal of ahieving some diagnosti knowledgeor repair objetive. These present new ontributionsto the researh on model-based diagnosis and reason-ing about ation.We ontrast our ontributions to related work. In thearea of diagnosis of dynamial systems, there has beenresearh both within the ontrol theory ommunity(e.g., [SSLST96℄) on the diagnosis of disrete eventsystems using �nite state automata, and within the AIommunity. Most of this work is fairly reent, and anbe di�erentiated with respet to the expressive powerof the language used to model the domain (e.g., propo-sitional/�rst order, rami�ations, nondeterministi a-tions, onurrent ations, narrative, sensing, probabil-ities); how the notion of diagnosis is de�ned (e.g., mod-els, sequenes of ations, sets of abnormal omponents,probabilisti riteria); how observations are expressed;whether diagnosis is ative or o�ine; and what as-pets of diagnosti problem solving, beyond diagnosis,are addressed (e.g., diagnosti planning, repair).Our work was inuened by previous work of MIl-raith (e.g., [MI97a, MI98, MI97b℄), but extends andbuilds on aspets of that work in several importantways. [MI97b℄ argued that a omprehensive aountof diagnosti problem solving must involve reasoningabout ation and hange, and provided suh an a-ount in a dialet of the situation alulus that in-luded ausal rami�ation onstraints, but did not in-lude nondeterministi ations, sensing ations or nar-rative. Aberrant behavior was assumed to be ausedby unobserved exogenous ations. Multiple de�nitionsof diagnosis were provided both in terms of sequenesof ations that explained the observations, and des-ignations of normal and abnormal omponents withrespet to a situation. The notion of a diagnostimodel was not employed. Most importantly, this a-ount did not exploit narrative for expressing and a-ounting for observations, onsequently the assertionof observations and exogenous ations was muh lesselegant. [MI97b℄ also introdued the notion of test-ing to disriminate hypotheses, and analogues to theideas of diagnosti and repair planning; however sinethe dialet of the situation alulus she employed didnot inlude knowledge-produing ations, the impor-tant integration of sensing and world-altering ationsthat was done in this paper, was argued for but wasleft to future work.Also of note is the work of Thielsher on a theoryof dynami diagnosis in the uent alulus [Thi97℄.Thielsher haraterizes diagnoses in terms of mini-mally failing omponents, where his minimization pref-erene riterion is with respet to the abnormalities in

the initial state, but an additionally exploit some aprior likelihood. Thielsher does not exploit exoge-nous ations to aount for abnormalities as we do,and does not allow for the ourrenes of ations be-yond what are observed. Thielsher does not take hiswork beyond a haraterization of diagnosis.A third important piee of work from the AI ommu-nity is the work of Cordier, Thi�ebaux and their o-authors, (e.g., [TCJK96, CT94℄). Their work is simi-lar in spirit to ours, viewing the diagnosis task as thedetermination of an event-history of a system betweensuessive observations. While this work is related,the representation of the domain uses state transitiondiagrams and is muh less expressive and elaborationtolerant than ours. That said, their representation sys-tem is suÆiently expressive for the power distributiondomain they have been examining, and more reently,their work has foused on the neessary tradeo�s re-quired to address hard omputational issues assoiatedwith their domain. Cordier and Thi�ebaux also disussthe notion of repair planning, but without distinguish-ing between sensing and world-altering ations.Other notable work on the diagnosis of dynamial sys-tems inludes the work of Nayak and Williams on on-line mode identi�ation for the NASA remote agentsystem (e.g., [WN96℄), the work of Baroni et al. on thediagnosis of large ative onurrent systems [BLPZ99℄,and work on temporal aspets of diagnosis by Brusoniet al. (e.g., [BCTD98℄).In the area of diagnosti and repair planning, Sunand Weld [SW93℄ proposed a deision-theoreti plan-ner whih was invoked by a diagnosti reasoner to planrepair ations. The assoiated planning language dis-tinguished between information-gathering and state-altering ations, but did not provide for the spei�a-tion of knowledge or diagnosti goals. Similarly Hek-erman et al. [HBR94℄ have examined the problem ofinteratively generating repair plans under unertaintyusing Bayes nets, a single fault assumption and a my-opi lookahead heuristi. Ations are limited to simpleobservations and omponent replaement. In ontrastFriedrih et al. (e.g., [FN92℄) developed a set of greedyalgorithms to hoose between performing simple obser-vations and repair ations, assuming a most likely di-agnosis. They do not limit their system to repair alonebut rather generalize their goal to some notion of pur-pose; purpose does not inlude spei�ation of diagnos-ti goals. Finally, and perhaps most notably, Rymon[Rym93℄ developed a goal-direted diagnosti reasonerand ompanion planner, alled TraumAID 2.0. Theprimary task of the diagnosti reasoner was to gener-ate goals for the planner and to reason about whether
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