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Abstract

Given a system and unexpected observations
about the system, a diagnosis is often viewed
as a fault assignment to the various compo-
nents of the system that is consistent with (or
that explains) the observations. If the obser-
vations occur over time, and if we allow the
occurrence of (deliberate) actions and (exoge-
nous) events, then the traditional notion of a
candidate diagnosis must be modified to con-
sider the possible occurrence of actions and
events that could account for the unexpected
system behavior.

In the presence of multiple candidate diag-
noses, we may need to perform actions and
observe their impact on the system, to be
able to narrow the list of possible diagnoses,
and possibly even initiate some repair. A
plan that guarantees such narrowing will be
referred to as a diagnostic plan, and if this
plan also guarantees that at the end of the ex-
ecution of the plan, the system has no faults
then we refer to it as a repair plan.

Since actions and narrative play a central
role in diagnostic problem solving, we char-
acterize diagnosis, diagnostic planning and
repair with respect to the existing action
language £, extended to include static con-
straints, sensing actions, and the notion of
observable fluents. This language is used to
provide a uniform account of diagnostic prob-
lem solving.

1 Introduction

Consider the following narrative involving diagnosis.
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John gets up in the morning. He turns on
the switch of his lamp, and reads the morn-
ing newspaper. He then turns off the switch
and does other things before going to work.
After he gets home from work, he enters his
room and turns on the switch of his lamp
again. This time, the lamp does not turn on.
John thinks that maybe either the bulb is
broken, or the switch of the lamp is broken,
or the power cord is broken, or there is no
power at the outlet. He does nothing about
it and goes to his bathroom and turns on the
light switch, observing that even that light
does not turn on. He thinks perhaps there
is no power at home, but then he notices
that his electric clock is working, so he fig-
ures that there is power in at least part of
his home. Now he is worried and goes to his
garage to check his fuse box and finds that
one of the fuses is blown. He replaces that
fuse and comes back to his room. He turns
on his lamp switch and voila it works.

This narrative illustrates the process of diagnostic
problem solving. In particular it illustrates that diag-
nostic problem solving must involve reasoning about
the evolution of a dynamical system. Triggered by
an observation of system behavior that is inconsistent
with expected behavior — in this case, the fact that
when John turned on the lamp it did not emit light,
diagnostic problem solving involves:

e generating candidate diagnoses based on an incom-
plete history of events that have occurred and obser-
vations that have been made.

e in the event of multiple candidate diagnoses, per-
forming actions to enable observations that will dis-
criminate candidate diagnoses. The selection of a par-
ticular actions is often biased towards confirming the



most likely diagnosis, or the one that is easiest to test.
e generating plans (possibly with conditionals and
sensing actions) to perform these discriminatory ob-
servations.

e updating the space of diagnoses in the face of changes
in the state of the world, and in the face of new obser-
vations.

The long-term objective of our work is to develop
a knowledge representation and reasoning capability
that emulates diagnostic problem solving processes
such as John’s. Following [McI97b], we argue that such
a comprehensive account of diagnostic problem solv-
ing must involve reasoning about action and change.
In this paper we augment and extend the work of
[McI97a, McI98, McI97b] in several important ways.
The main contributions of this paper are:

e We define diagnosis with respect to a narrative.

e We define the notion of diagnostic and repair plan-
ning, within a language that integrates sensing actions
and world-altering actions. Thus, we are able to dis-
tinguish between changes in the state of the world, and
changes in an agent’s state of knowledge.

¢ In support of this endeavor, we extend the action lan-
guage L to support static causal laws, sensing actions
and the notion of observable fluents. £ was originally
developed to support narratives (e.g., [MS94, Pin94]).

None of the above issues have been explored either in
the model-based diagnosis literature or in the reason-
ing about action literature. Also notable is that unlike
most other accounts of diagnosis, our account allows
nondeterministic effects of actions. Finally, our work
is distinguished from most previous work in defining
diagnosis in terms of a diagnostic model, rather than in
terms of failing components and/or actions sequences.

The rest of the paper is organized as follows. In Sec-
tion 2 we give an overview of the language £ and how
to add static causal laws to it. In Section 3 we use the
extended language to define when we may need to do
a diagnosis and what a diagnosis is with respect to a
narrative. In Section 4 we further extend our action
language to allow sensing actions and to accommo-
date the distinction between an observable fluent and
a unobservable fluent. We then use this language to
define the notion of a conditional plan, and the related
notions of diagnostic and repair planning. Finally, in
Section 5 we summarize and discuss related work.

2 Specifying narrative in £

The propositional language £ was developed in
[BGP97, BGP98] to specify narratives and to reason
with them. In this paper, we will describe the main

aspects of the language £ by dividing it into three
components: a domain description language Lp, a
language to specify observations Lo, and a query lan-
guage Lg. In Section 4.1, we extend our language
further with sensing actions, and observables.

2.1 Lp: The domain description language

The alphabet of £Lp — a language that closely fol-
lows the language AC from [Tur97] — comprises two
nonempty disjoint sets of symbols: the set of fluents
F, and the set of actions, A. A fluent literal (or lit-
eral) is a fluent or a fluent preceded by —. A fluent
formula is a propositional formula constructed from
literals. Propositions in Lp are of the following forms:

a causes ¢ if ¢ (1)
@ if 4 (2)
impossible a if (3)

where a is an action, and ¢, and ¢ are fluent formulas.

Propositions of the form (1) describe the direct ef-
fects of actions on the world and are called dynamic
causal laws. Propositions of the form (2), called static
causal laws, describe causal relation between fluents in
a world. Propositions of the form (3), called executabil-
ity conditions, state when actions are not executable.

A domain description D is a set of propositions in Lp.

The main difference between £p and the action de-
scription part of £ [BGP97, BGP9S] is the presence of
static causal laws in Lp, which are critical for repre-
senting the behavior of the device being diagnosed.

A domain description given in L£p defines a transition
function from actions and states to a set of states.
(Recall, actions may be nondeterministic.) Intuitively,
given an action, a and a state, s the transition function
®(a,s) defines the set of states that may be reached
after executing the action a in state s. If ®(a, s) is an
empty set it means that a is not executable in s. We
now formally define this transition function.

Let D be a domain description in the language of Lp.
An interpretation I of the fluents in Lp is a maxi-
mal consistent set of fluent literals of Lp. A fluent f
is said to be true (resp. false) in I iff f € T (resp.
—f € I). The truth value of a fluent formula in I is
defined recursively over the propositional connective
in the usual way. For example, f A ¢ is true in I iff f
is true in I and ¢ is true in I. We say that ¢ holds in
I (or I satisfies ¢), denoted by I |= @, if ¢ is true in
1.



A set of formulas from Lp is logically closed if it is
closed under propositional logic (wrt Lp).

Let V be a set of formulas and K be a set of static
causal laws of the form ¢ if ). We say that V is closed
under K if for every rule ¢ if ¢ in K, if ¢ belongs to
V then so does . By Cn(VUK) we denote® the least
logically closed set of formulas from £p that contains
V' and is also closed under K.

A state of D is an interpretation that is closed under
the set of static causal laws of D.

An action a is prohibited (not executable) in a state s
if there exists an executability condition of the form

impossible «aif ¢
in D such that ¢ holds in s.

The effect of an action a in a state s is the set of for-
mulas e, (s) = {¢ | D contains a law a causes ¢ if
and 9 holds in s}.

Given the domain description D containing a set of
static causal laws R, we formally define ®(a,s), the
set of states that may be reached by executing a in s
as follows.

1. If a is not prohibited (i.e., executable) in s, then

®(a,s) ={s' | Cn(s') = Cn((sNs')Ue.(s)UR)};

2. If a is prohibited (i.e., not executable) in s, then
®(a,s) is 0.

The intuition behind the above formulation is as fol-
lows. The direct effects (due to the dynamic causal
laws) of an action a in a state s are given by e, (s), and
all formulas in e, (s) must hold in any resulting state.
In addition, the static causal laws (R) dictate addi-
tional formulas that must hold in the resulting state.
While the resulting state should satisfy these formu-
las, it must also be otherwise closed to s. These three
aspects are captured by the definition above. For ad-
ditional explanation and motivation behind the above
definition please see [Tur97].

2.2 Lo: The observation language

We assume the existence of a set of situation constants
S which contains two special situation constants sy and

!Note that a fluent formula ¢ can be equivalently rep-
resented as a static causal law ¢ if true.

s¢ denoting the initial situation and the current situ-
ation, respectively. Note that situations written as
s (possibly with subscripts) are different from states
which are written as s (possibly with subscripts). As
with the situation calculus, the ontology of our lan-
guage differentiates between a situation, which is a
history of the actions from the initial situation, and a
state, which is the truth value of fluents at a particular
situation.

Observations in Lo are propositions of the following
forms:

4
)
6
7

p at s
a between sy, s,

a occurs_at s

(
(
(
(
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s; precedes ss

where ¢ is a fluent formula, « is a (possibly empty)
sequence of actions, and s, s, S2 are situation constants
which differ from sc. (Since the world can be changed
without the agent’s knowledge, we do not allow the
agent to have observations about s..)

Observations of the forms (4) and (7) are called fluent
facts and precedence facts, respectively. Observations
of the forms (5) and (6) are referred to as occurrence
facts. These two types of observations are different in
that (5) states exactly what happened between two sit-
uations s; and sg, whereas (6) only says what occurred
in the situation s.

2.3 Narratives

A narrative is a pair (D,T) where D is a domain de-
scription and T' is a set of observations of the form

(4)-(7)-

Observations are interpreted with respect to a domain
description. While a domain description defines a
transition function that characterize what states may
be reached when an action is executed in a state, a nar-
rative consisting of a domain description together with
a set of observations defines the possible situation his-
tories of the system. This characterization is achieved
by two functions, ¥ and ¥. While ¥ maps situation
constants to action sequences, ¥ picks one among the
various transitions given by ®(a,s) and maps action
sequences to a unique state with the condition that
U(aoa) € ®(a,¥(a)).

More formally, let (D,T') be a narrative. A causal
interpretation of (D,T") is a partial function from ac-
tion sequences to interpretations of Lang(F), whose



domain is nonempty and prefix-closed?. By Dom/(¥)
we denote the domain of a causal interpretation V.
Notice that [| € Dom(¥) for every causal interpreta-
tion ¥, where [] is the empty sequence of actions.

A causal model of D is a causal interpretation ¥ such
that:

(i) ¥([]) is a state of D; and

(ii) for every aoa € Dom(¥), ¥(aoa) € ®(a, ¥(a)).

A situation assignment of S with respect to D is a
mapping ¥ from S into the set of action sequences of
D that satisfy the following properties:

(i) E(so) = [J;

(ii) for every s € S, X(s) is a prefix of 3(sc).
An interpretation M of (D,T) is a pair (¥,X), where
¥ is a causal model of D, ¥ is a situation assignment

of S, and X(sc) belongs to the domain of ¥. For an
interpretation M = (¥,X) of (D,T):

(i) a occurs_at sistruein M if the sequence X(s)o
a is a prefix of X(sc);

(ii) a between sy, ss is true in M if X(s;)oa = X(s2);
(iii) ¢ at sis true in M if ¢ holds in ¥ (X(s));

(iv) s, precedes s, is true in M if X(s;) is a prefix
of 2(52).

An interpretation M = (¥, X) is a model of a narrative
(D,T) if:
(i) facts in T are true in M;

(ii) there is no other interpretation M’ = (¥, ¥') such
that M' satisfies condition i) above and X'(s) is
a subsequence of X(s¢).

Observe that these models are minimal in the sense
that they exclude extraneous actions.

A narrative is consistent if it has a model. Otherwise,
it is inconsistent.

2A set X of action sequences is prefix-closed if for every
sequence a € X, every prefix of « is also in X.

2.4 Lg : The query language
Queries in L are of the following form:
p after o at s (8)

When « in (8) is an empty sequence of actions, and s
is the current situation s., we often use the notation
currently ¢ as a simplification of (8).

A query of the form ¢ after « at s is true in a
model M = (,%) if ¢ is true in ¥(X(s) o a).

A query ¢ is entailed by a narrative (D,T), denoted
by (D,T') = g, if ¢ is true in every model of (D,T).

3 Diagnosis wrt narratives

We are now ready to formulate the notion of diag-
nosis with respect to a narrative. The representa-
tion of the system to be diagnosed comprises static
causal laws that describes the behavior of the system
itself, as well as the description of the effects of actions
on system state, and observations about action occur-
rences and fluent values over the evolution of the sys-
tem We follow the diagnosis literature (e.g., [DMR92])
and assume that the system is composed of a distin-
guished set of components that can malfunction. As-
sociated with each component ¢, is the distinguished
fluent ab(c), denoting that the component ¢ is abnor-
mal or broken. Also associated with each component
is the distinguished fluent break(c), a wildcard action
which may be used to explain unexpected observations
about ab(c). Note that the representation of the sys-
tem is likely to contain other actions and static causal
laws that affect the truth of ab(c). Building on the
established diagnosis notation:

Definition 1 (System)
A system Sys is a tuple (SD,COMPS,0OBS) where

COMPS = {cy, ..

., Cn } 1s a finite set of components.

SD is a domain description characterizing the behav-
ior of the system, and augmented with dynamic
laws of the form break(c) causes ab(c), for each
component ¢ in COM PS.

Given SD, by SD,,, we denote the subset
of SD consisting of static causal laws of the
form “p if ¢” and dynamic laws of the form
“a causes v if ¢”, where 1 contains ab(c) for
some component c.

OBS is a collection of observations starting from
the situation sy, and the precedence fact



so precedes s;. Specification of fluent facts at
so are not included in OBS.

In our formulation of diagnosis, we make the assump-
tion that there is an initial situation in the history
where all components are operating normally®. This is
achieved by adding the set OKy = {—ab(c) at sp|c€
COMPS} to our observations.

Example 1 Consider a slight variation of the story
in our introduction. Assume that the only breakable
component in the domain is the bulb. Furthermore,
assume that John observed that the light is off imme-
diately after he turned on the lamp when coming back
from work. The story can then be described by a sys-
tem description Sys, = (SDo, {bulb}, OBSy), where

Do : turn_on causes light_on if —ab(bulb)
turn_off causes —light_on
—light_on if ab(bulb)
break(bulb) causes ab(bulb)
impossible break(buld) if ab(bulb)
OBS :
turn_on occurs_at s; sy precedes sp
turn_off occurs_at sy s; precedes s,
turn_on between s3,s; s, precedes s3
—light_on at s; s3 precedes sy
light_on at s
=light_on at s3
=light_on at sy
OKp : —ab(bulb) at so. ad

Intuitively, we say a system needs a diagnosis, if the
following assumptions are inconsistent with the obser-
vations (i) all components are initially fine, and (ii)
no action that can break a component occurs. To de-
fine diagnosis, we assume that all components were
initially operating normally, and we try to conjecture
minimal action occurrences to account for the obser-
vations. Since the semantics of £ minimizes action
occurrences, all we need to do is to consider the vari-
ous models of the narrative and extract our diagnosis
from each.

3Hence, our formulation of diagnosis can be alternately
referred to as ‘big-bang diagnosis’. We can slightly modify
it to define incremental diagnosis, when we already know
that a set X C COMP is abnormal, and we want to figure
out if some additional components have malfunctioned by
having OKo = {ab(c) at so|c € X}U{-ab(c) at so|c€
COMP\ X}.

Definition 2 (Necessity of Diagnosis) We say a
system Sys = (SD,COMPS, OBS) needs a diagno-
sis if the narrative (SD\ SDy;, OBS UOK)) does not
have a model.

Note that the notion of a system needing a diagnosis
is not meant to capture the notion that there is some
fault in the system. It is a much weaker notion. We
now establish the notion of a diagnosis in terms of a
diagnostic model.

Definition 3 (Diagnostic Model) Let

Sys = (SD,COMPS,OBS) be a system that needs
a diagnosis. We say M is a diagnostic model of Sys if
M is a model of the narrative (SD,0BS U OKy).

We can now extract information about any particular
situation from the diagnostic model. In particular,

Definition 4 (Diagnosis) A diagnosis with respect
to situation s is the set of components A €
COMPS such that there exists a model M =
(0,%) of the narrative (SD,0OBS U OKjp) and A =
{c | ab(c) at sholds in M}. We refer to a diagnosis
with respect to sc as a current fluent diagnosis. We say
a diagnosis A (wrt a situation s) is minimal if there
exists no diagnosis A’ (wrt s) such that A’ C A.

Example 2 (Continuation of Example 1)
Consider the system Sys, = (SDy,{bulb}, OBSy),
from Example 1, with SD,, = {break(bulb) causes
ab(bulb)}.

Let narrative N = (SDo\S D, OBSoUOK)). Due to
the proposition “—light_on if ab(bulb)”, SDo\SDg
has only three distinct states: so = (), s; = {light_on},
and sy = {ab(bulb)}.

The transition function of SDo\SD,y is given by

O (turn-on, sg) = {s1} ®(turn_off, so) = {so}
O (turn-on,s1) = {s1} ®(turn_off,s1) = {so}
O (turn-on, sa) = {s2} ®(turn_off, s2) = {s2}

We now prove that Ng is inconsistent. Assume the con-
trary, NV} has a model (£, ¥). Because of OBSyUOK),
we conclude that ¥([]) = so. Let X(s3) = a, where
is an action sequence. By the definition of a model
of a narrative, we have that X(s4) = « o turn_on.
As there is no action in SDy\SD,, whose effect is
ab(bulb), we conclude that ab(bulb) ¢ ¥(a). This im-
plies that light_on € U(«a o turn_on), i.e., light_on
must hold in s4. This contradicts the observation
“slight-on at s,”, i.e., N/ is inconsistent.



Narrative V| is inconsistent, and hence, Sys, needs a
diagnosis. We compute the diagnosis as follows.

The narrative Ng = (SDy,O0BSp U OKj), has one
model M = (¥,%) where ¥([]) = so and

Y(so) = X1(s1) =[], (s2) = turn_on,

Y (s3) = turn-on o turn_off o break(bulb),

Y(s4) = X(sc) = turn-on o turn_off o break(bulb) o
turn_on.

We can easily verify that ab(bulb) at sc is true in
M. Hence a current diagnosis for Sys, is A = {bulb}.
Moreover, it is easy to check that A is also a minimal
current diagnosis for Sys,. o

3.1 Explanation vs diagnosis

Often the observations in a narrative can be explained
by the sequence of actions (possibly exogenous) that
have occurred. Unfortunately, this is not true in all
cases because incomplete knowledge of the initial sit-
uation, and/or non-deterministic actions can lead to
uncertainty in the outcome of a sequence of actions.

The definition of a diagnostic model in the previous
section uses a consistency criterion to account for the
observations. That is, the narrative (SD,T), where
I' comprises the sequence of action occurrences and
initial situation (including OKj) dictated by the di-
agnostic model, do not necessarily entail OBS. They
are merely consistent with OBS. Here we define the
notion of an explanatory diagnostic model, which has
the stronger criterion that (SD,I') must entail OBS.

Definition 5 (Explanatory Diagnostic Model)
Suppose M = (¥,Y) is a diagnostic model of (SD,
COMPS, OBS), where

e actions(M) is the set of occurrence facts and
precedence facts of the forms (5), (6), and
(7), (i-e., facts of the forms o between s;,s,,
a occurs_at si, s; precedes s») that are true
in M; and

e initial(M) is the set of fluent facts of the form
f at sg that are true in M, including OKj.

Then M is an explanatory diagnostic model iff
(SD, actions(M) Uinitial(M)) = OBS
Following in this spirit, it is straightforward to define

the notion of an explanatory diagnosis, a set of action
occurrences that entails the observations.

4 Diagnostic and repair planning

The diagnostic process discussed in the previous sec-
tion will generate a set of candidate diagnoses, however
diagnosis is only the first step in dealing with an er-
rant system. In most cases we will attempt to discrim-
inate these diagnoses with the objective of identifying
a unique diagnosis and/or reducing our space of can-
didate diagnoses to a point where a repair plan can
be conceived. We are operating under the assumption
that we cannot directly observe the state of abnormal-
ity of the various components of the system. Neverthe-
less, we can make other observations about the system,
add them to OBS, and then refine our diagnoses.

In general, the fluents in the system are of two
kinds: observable and unobservable. A simple generic
observation* leads the agent to know the value of the
observable fluents. By knowing the relationship be-
tween the observable and unobservable fluents, and
the values of the observable fluents, we can some-
times deduce the values of unobservable fluents. We
can also use direct sensing actions to sometimes deter-
mine their value. Given a set of candidate diagnoses,
we can execute a plan — perhaps including some sens-
ing actions and conditional branches — and make the
generic observations to obtain additional information
that will help reduce the space of possible diagnoses.
Such plans are distinguished in that they can have
knowledge goals in addition to goals relating to the
state of the world. We refer to plans that attempt to
reduce our space of diagnoses as diagnostic plans. A
diagnostic plan that includes some repair is called a
repair plan.

4.1 Adding sensing and observables to £

In order to define the notion of a diagnostic plan, we
must first augment £p and L to incorporate sensing
actions and observable and unobservable fluents. In
this section, we briefly describe these augmentations.
The resulting theories are called £Lpg and Lgg, respec-
tively. (Lo = Los.)

e We allow knowledge producing laws of the following
form in Lpg:

a determines f (9)

where a is an action and f is a fluent. A law of this
form tells us that after a is executed, the value of the

*Here we distinguish between generic observations and
sensing actions. We assume that the agent is constantly
performing ‘generic observations’ and thus knows the truth
value of the observable fluents at all times. In contrast,
sensing actions require the agent’s effort.



fluent f will be known. An action occurring in a knowl-
edge producing law is called a sensing action.

e With the addition of sensing actions, we need to
distinguish between a state of the world and the state
of the agent’s knowledge about the world. The later
will be referred to as a combined state (or c-state) and
will be represented by a pair of the form (s, S), where
s is a state (representing the real state of the world)
and S is a set of states (representing the set of states
an agent thinks it may be in).

e We extend the transition function ® to also map
pairs of actions and c-states into sets of c-states.

1. for any c-state (s,S) and non-sensing action a,

O(a,(s,S)) ={(s',S") | s’ € ®(a,s), and §’ is the
set of states in ®(a,S) that agree with s’ on Fo,
the observable literals }.

(Note that if a is not executable in (s,S) then

®(a,(s,5)) =0.)

2. for any c-state (s,S) and sensing action a whose
knowledge producing laws are
a determines f; a determines f,,

(a) if a is executable in (s,S), ®(a,(s,S))
= {(s,{s’ | & € S such that s
and s’ agree on the literals from Fgo U
{fla"'afm}}>};

(b) otherwise, ®(a, (s,S)) = 0.

¢ In the presence of incomplete information and knowl-
edge producing actions, there may not exist simple
plans consisting of sequence of actions and we may
need to extend the notion of a plan to allow conditional
statements. We refer to such plans as conditional plans
(e.g., [Lev96, BS97, BS98]), described below.

e In order to query the system, we specify a query
language Lgs. A query in Lgg has the form

v after P at s (10)

where ¢ is a fluent formula and P is a conditional plan
as formally defined below.

Definition 6 (Conditional Plan)

1. An empty sequence of action, denoted by [ ], is a
conditional plan.

2. If a is an action then a is a conditional plan.

3. If P,..., P, are conditional plans and ¢;’s are
conjunction of fluent literals (which are mutually

exclusive but not necessarily exhaustive) then the
following is a conditional plan. ( We refer to such
a plan to as a case plan).

Case
Y1 — P1
on = P,
Endcase

4. If P, and P, are conditional plans then P; Ps is
a conditional plan.

5. Nothing else is a conditional plan.

In order to define when a narrative entails a query
that includes a conditional plan, we need to define an
extended transition function <i>, that maps a pair of a
conditional plan and a c-state, into a set of c-states.
Intuitively, if o’ € @(P, o) then the execution of the
plan in the c-state o may take us to the c-state o’. Be-
fore defining &, we first define the possible trajectories
when P is executed in o.

Definition 7 Let P be a conditional plan and ¢ be a
c-state. We say a sequence of c-states o1,...,0, is a
trajectory of P wrt o if:

1. P=[,andn =1, and o1 = 0.
2. P =[a],and n = 2, and 0y = o and o3 € ®(a,0).

3. P = Case
Y1 — P1

on = P,
Endcase,

and there exists an ¢ such that ¢; is known to
be true in o and o4, ..., 0, is a trajectory of P;

wrt o.
4. P=P,;P,,and 0y = 0,and 0y,...,0 is a trajec-
tory of P, wrt o, and o1, ...,0, is a trajectory

of P2 wrt Ok41-
oy, is referred to as the resulting c-state of P wrt o.

Definition 8 Let P be a conditional plan and o =
(s,8) be a c-state, (P, o) is now defined as follows:

L &(,0) = {o};

2. For an action a, ®(a,0) = ®(a,0);



3. For P = Case

Y1 — P1
Yn — Py
Endcase,
(P, o) if p; is known to be
true in o
®(Po) =
0 if there exists no 7 s.t.

; is known to be true in o

4. For P = P;; P, where P; is a conditional plan
and P, is a conditional plan,

o if &(Py,0) # 0, and for every o' € (P, 0),
®(Py,0') #0, then
(P7 U) = Ua—’E<i>(P1,a') (I)(P27OJ); and

e &(P,0) = 0 otherwise.

=

It should be noted that ®(P, o) is not equal to the set
of resulting c-states of P wrt o. This is because some
branches of P may lead to unexecutable actions and
hence <i>(P, o) will be empty while there may be several
trajectories corresponding to other branches.

Our next goal is to define entailment of queries wrt
narratives. Intuitively, since the narrative may not be
complete, or have sufficient observations to arrive at
a unique model, multiple models may tell us that a
situation s may correspond to many different states,
only one of which corresponds to s in reality. Thus
we have a set of c-states from which we need to verify
the correctness of a conditional plan with respect to a
goal. More formally,

Definition 9 (Possible State wrt a Situation)

Let N = (D,T') be a narrative. We say s is a pos-
sible state corresponding to situation s, if there exists
a model (¥, X) of N such that ¥(X(s)) = s. We say
o = (s,8) is a c-state corresponding to situation s, if
s is a possible state corresponding to situation s and
S is the set of all possible states corresponding to s.

A query ¢ = ¢ after P at s of Lgg is said to
be entailed by narrative (D,T), i.e. (D,T) |= g, if for
every c-state (s, S) corresponding to s, i)(P, (5,8)) #0
and ¢ is known to be true in every c-state belonging
to (P, (s,S)).

4.2 Diagnostic and repair plans

We are now ready to define what a diagnostic plan
is. Intuitively, it is a conditional plan, possibly with
sensing actions which when executed in the current

situation gives sufficient information to reach a unique
diagnosis. In addition, we may have certain restric-
tions, such as that:

e Certain literals are not allowed to change during the
execution of the plan. We refer to such literals as pro-
tected literals. (E.g., to stabilize the leaning tower of
Pisa, we may not tear down and rebuilt it.)

e Certain literals are allowed to change during the ex-
ecution of the plan, but we require that at the end of
the execution of the plan, their value be the same as
it was before the plan was executed. We refer to such
literals as restored literals. (E.g., disassembling an en-
gine or a flashlight to diagnose it, but putting it back
together afterwards.)

o Certain literals are allowed to change during the ex-
ecution of the plan, but we require that at the end of
the plan, their value be either the same as it was before
the plan was executed or be false. Such literals will
be referred to as fizable literals. (This accommodates
repair, where ab fluents can be made —ab.)

Definition 10 (Diagnostic Plan) Given Sys =
(SD, COMPS, OBS) with a set of protected literals
Lp, a set of restored literals Lg, and a set of fixable lit-
erals Lp. Let C C COMPS. A conditional plan P is
called a diagnostic plan for Sys wrt (C,Lp,Lg,LF),
if for every c-state o = (s,S) corresponding to the
current situation of Sys, ®(P,¢) # ) and for all tra-
jectories of the form o4,...,0, of P wrt o

(i) for every c-state (s',8') in (P, (s,S)) and s € &',
s ~ap(c) 8" where AB(C) = {ab(c) | c € C};

(ii) value of all literals in Lp remain unchanged (wrt
the real states) in the trajectory;

(iii) for all literals [ in Lg value of [ (wrt the real states)
in o1 and o, are the same; and

(iv) for all atoms f in Lp, if f is false in oy then it is
false in o,,. (wrt the real state).

If C = COMPS, and the ab-literals are part of Lp,
we say that P is a purely diagnostic plan for Sys.

If C is a singleton, i.e., C' = {c} for some ¢ € COMPS,
and ab(c) and —ab(c) are in Lp, we say that P is a
discriminating diagnostic plan for c.

Definition 11 (Repair Plan) A diagnostic plan P
for Sys wrt (C,Lp,Lg, Lr) is said to be a repair plan
wrt (C',Lp,Lg,Lp)if i) C' CC CCOMPS, (ii) ab
literals about C" are not in Lp and Lg, and (iii) for
every c-state o = (s, S) corresponding to the current
situation of Sys, ®(P, o) # 0 and for all ¢ € C", —ab(c)
is known to be true in all c-states in ®(P, (s, S)).



Example 3 (Electro-magnetic Door)

Consider an electro-magnetic control door. The door
is connected to a RED LED and a YELLOW LED.
To enter, an agent needs to put its electro-magnetic
card, containing its id-number and password, into the
slot connected to the door’s controller. The door will
open only if the card is valid, the id-number and the
password are not corrupted, and the door is not mal-
functioning. While the card is in the slot, if it is in-
valid, the RED LED will be on; and if the id-number or
the password is corrupted or the door is defective, the
YELLOW LED will be on. The YELLOW LED is on
only if the RED LED is not. In this case, pushing the
button “message” will print out a message. Reading
it, the agent will know whether the door is defective
or its card is unreadable.

Our agent, Jack comes to work, and as usual, puts his
card into the slot. The door does not open. What is
wrong 7 The story can be represented by the system
Sys,; = (SDy, {card, door,id_pwd}, OBS;) as follows.

The actions of the domain description SD; are: in-
sert_card, push_button, take_out_card, look (look at the
LEDs), or read-msg (read the message).

The fluents of SD; are:  ab(card), ab(door),
ab(id-pwd), has_card, card-in_slot, door_open, has_-msg,
red, and yellow, where red or yellow indicate that the
RED/YELLOW LED is on, respectively.

SD; comprises the following laws:

e dynamic causal laws: describing the effects of the ac-
tions insert_card, push_button, and take_out_card. In-
serting the card causes the door to open if the card, the
door and the card information are all normal. Further,
inserting the card causes the card to be in the slot and
not in the possession of the agent. ILe.,

insert_card causes door_open
if —ab(card), —ab(door), —ab(id_pwd)

insert_card causes —has_card A card_in_slot

Pushing the button results in a message. Le.,
push_button causes has_msg.

If the card is in the slot and the agent takes it out,
then the agent has possession of the card and the card
is not in the slot. I.e.,

take_out_card causes has_card A\ —card_in_slot
if card_in_slot

e static causal laws: expressing the relationship be-
tween the status (on/off) of the LEDs. Le.,

red if ab(card) A card_in_slot
—red if yellow A card_in_slot
yellow if (ab(id_pwd) V ab(door)) A —red

A card_in_slot

e sensing actions: characterizing the knowledge effects
of sensing actions. For example, performing the look
action causes the agent to know whether the RED and
YELLOW LEDs are on or off. They are captured by
the following k-propositions:

look determines red
look determines yellow
read_msg determines ab(id_pwd)

read_msg determines ab(door)

e executability conditions: characterizing when an ac-
tion is precluded. Le.,

impossible insert_card if —has_card
impossible push_button if —yellow
impossible read_msg if —-has_msg

e wildcard actions:

break(card) causes ab(card)
break(door) causes ab(door)

break(id_pwd) causes ab(id_pwd)
and the set of observations, OBSj:

—red A —yellow A —door_open at s;
has_card A —has-msg at s;
—card_in_slot at s;

insert_card between sg, sy
—door_open at s

so precedes s;

s; precedes s»

The first three observations describe the first observ-
able situation, s;. The fourth observation states that
Jack puts his card into the slot, while the fifth states
that the door is not open after Jack puts his card into
the slot.

Intuitively, when Jack observes that the door does
not open as the result of putting his card into the
slot, he should realize that at least one of the three
components: the card, the door, or the information



on the card is no longer valid. Our diagnostic rea-
soning systems does likewise. Indeed, the narrative

= (SDy \ SDy,0BS; U OKjp) does not have a
model and there are three diagnoses for Sys;: A; =
{ab(id_pwd)}, Ay = {ab(door)}, and Az = {ab(card)}
which correspond to the models M;, M, and Mjs of
N, = (SD,,0BS; UOK),) defined as follows. M; =
(\1’1,21), M2 = (\1’2,22), and M3 = (\1’3,23), where
() = o)) = s([)) = 5o, and

break(id_pwd),
(s2) = E1(sc) = break(id_pwd) o insert_card,

Yo (s1) = break(door),
Yo(s2) = Xa(sc) = break(door) o insert_card,

Y3(so) = [l
Y3(s1) = break(card),
Y3(s2) = X3(sc) = break(card) o insert_card.

where sog = {has_card},
U, (break(id_pwd)) = {has_card, ab(id_pwd)},
U, (break(id_pwd) o insert_card)

= {card_in_slot,ab(id_pwd), yellow} = s1,

Uy (break(door)) = {has_card, ab(door)},
U, (break(door) o insert_card)
= {card_in_slot, ab(door), yellow} = s,,

U5 (break(card)) = {has_card, ab(card)},
U3 (break(card) o insert_card)
= {card_in_slot,ab(card),red} = ss.

To narrow the list of the possible diagnoses of the sys-
tem, Jack can find out the status of the LEDs. If the
RED LED is on, he knows for sure that the card is
no longer valid. Otherwise, the YELLOW LED must
be on. In that case, he can get the message and read
it to know if the door is broken or the information on
the card is corrupted. This process is captured by the
following plan.

P = look o
case
red — [
—red —
case
yellow — push_button o read_-msg
endcase
endcase

We will now show that P is a diagnostic plan for Sys,

wrt (C, Lp,0,0) where C' = {id_pwd, dood, card} and
Lp = {ab(id_pwd), ab(dood), ab(card)}.

Let S = {s1, 52,53}. There are three possible current
situations of Sys;: o1 = (s1,S), 02 = (52,S), and o3
= (s3,S). Let s} = s; U {has_msg}, i = 1,2, then

A

®(P,01) = ®(push_button o read-msg, (s1, {s1,52})

o )
= ®(read-msg, (s1,{s1,s5})) = {{s1, {s1 ) };

(P, 0y) = @(push_button oread_-msg, (s, {s1,52}))
®(read-msg, (s5,{s1,55})) = {(s2, {s2}) };

®(P,03) = {(s3,{s3})}-

The above computations also represent all trajectories
of P wrt oy, 0o, and o3. Obviously, ®(P,0;) # 0
for ¢ = 1,2,3. Furthermore, it is easy to check that
the values of literals in Lp remain unchanged in all
trajectories and in each c-state (s’,S’) belonging to
&(P,0;) and s" € &', s ~aB(c) §". For example,
(s, {s|}) is the only c-state in ®(P, ), and trivially,
81 ~aB(c) 81- Thus, P is a diagnostic plan for Sys,;
wrt (C, Lp,0,0). O

5 Summary and Related Work

In this paper we provided an account of diagnostic
problem solving in terms of the action language, L.
A prime objective of this work was to characterize di-
agnostic problem solving with narrative and sensing.
L proved ideal for this task because it already had
most of the necessary expressive power. In particu-
lar, £ includes narrative, sensing actions, and addi-
tionally nondeterministic actions, which are common
in diagnostic domains. In this paper, we extended £
by adding static causal laws that are necessary for de-
scribing the behavior of the systems we diagnose. We
also distinguished notions of observable fluents, and
protected, restored and fixable fluents.

The main contributions of this paper, in addition to
the supporting language extensions, are the charac-
terization of the diagnosis task as a narrative under-
standing task, and the definition of diagnosis in terms
of a diagnostic model — a particular model of the nar-
rative. We further distinguish between a diagnostic
model and the stricter notion of an explanatory di-
agnostic model. As discussed throughout the paper,
diagnostic problem solving is more than just deter-
mining a set of candidate diagnoses. In the second
half of the paper, we define the notion of a diagnostic
plan, and a repair plan — conditional plans that ex-
ploit both world-altering actions and sensing actions



with the goal of achieving some diagnostic knowledge
or repair objective. These present new contributions
to the research on model-based diagnosis and reason-
ing about action.

We contrast our contributions to related work. In the
area of diagnosis of dynamical systems, there has been
research both within the control theory community
(e.g., [SSLST96]) on the diagnosis of discrete event
systems using finite state automata, and within the AT
community. Most of this work is fairly recent, and can
be differentiated with respect to the expressive power
of the language used to model the domain (e.g., propo-
sitional/first order, ramifications, nondeterministic ac-
tions, concurrent actions, narrative, sensing, probabil-
ities); how the notion of diagnosis is defined (e.g., mod-
els, sequences of actions, sets of abnormal components,
probabilistic criteria); how observations are expressed;
whether diagnosis is active or offline; and what as-
pects of diagnostic problem solving, beyond diagnosis,
are addressed (e.g., diagnostic planning, repair).

Our work was influenced by previous work of MeclIl-
raith (e.g., [McI97a, McI98, McI97b]), but extends and
builds on aspects of that work in several important
ways. [McI97b] argued that a comprehensive account
of diagnostic problem solving must involve reasoning
about action and change, and provided such an ac-
count in a dialect of the situation calculus that in-
cluded causal ramification constraints, but did not in-
clude nondeterministic actions, sensing actions or nar-
rative. Aberrant behavior was assumed to be caused
by unobserved exogenous actions. Multiple definitions
of diagnosis were provided both in terms of sequences
of actions that explained the observations, and des-
ignations of normal and abnormal components with
respect to a situation. The notion of a diagnostic
model was not employed. Most importantly, this ac-
count did not exploit narrative for expressing and ac-
counting for observations, consequently the assertion
of observations and exogenous actions was much less
elegant. [McI97b] also introduced the notion of test-
ing to discriminate hypotheses, and analogues to the
ideas of diagnostic and repair planning; however since
the dialect of the situation calculus she employed did
not include knowledge-producing actions, the impor-
tant integration of sensing and world-altering actions
that was done in this paper, was argued for but was
left to future work.

Also of note is the work of Thielscher on a theory
of dynamic diagnosis in the fluent calculus [Thi97].
Thielscher characterizes diagnoses in terms of mini-
mally failing components, where his minimization pref-
erence criterion is with respect to the abnormalities in

the initial state, but can additionally exploit some a
prior likelihood. Thielscher does not exploit exoge-
nous actions to account for abnormalities as we do,
and does not allow for the occurrences of actions be-
yond what are observed. Thielscher does not take his
work beyond a characterization of diagnosis.

A third important piece of work from the AI commu-
nity is the work of Cordier, Thiébaux and their co-
authors, (e.g., [TCIJK96, CT94]). Their work is simi-
lar in spirit to ours, viewing the diagnosis task as the
determination of an event-history of a system between
successive observations. While this work is related,
the representation of the domain uses state transition
diagrams and is much less expressive and elaboration
tolerant than ours. That said, their representation sys-
tem is sufficiently expressive for the power distribution
domain they have been examining, and more recently,
their work has focused on the necessary tradeoffs re-
quired to address hard computational issues associated
with their domain. Cordier and Thiébaux also discuss
the notion of repair planning, but without distinguish-
ing between sensing and world-altering actions.

Other notable work on the diagnosis of dynamical sys-
tems includes the work of Nayak and Williams on on-
line mode identification for the NASA remote agent
system (e.g., [WNO96]), the work of Baroni et al. on the
diagnosis of large active concurrent systems [BLPZ99],
and work on temporal aspects of diagnosis by Brusoni
et al. (e.g., [BCTDYS]).

In the area of diagnostic and repair planning, Sun
and Weld [SW93] proposed a decision-theoretic plan-
ner which was invoked by a diagnostic reasoner to plan
repair actions. The associated planning language dis-
tinguished between information-gathering and state-
altering actions, but did not provide for the specifica-
tion of knowledge or diagnostic goals. Similarly Heck-
erman et al. [HBR94] have examined the problem of
interactively generating repair plans under uncertainty
using Bayes nets, a single fault assumption and a my-
opic lookahead heuristic. Actions are limited to simple
observations and component replacement. In contrast
Friedrich et al. (e.g., [FN92]) developed a set of greedy
algorithms to choose between performing simple obser-
vations and repair actions, assuming a most likely di-
agnosis. They do not limit their system to repair alone
but rather generalize their goal to some notion of pur-
pose; purpose does not include specification of diagnos-
tic goals. Finally, and perhaps most notably, Rymon
[Rym93] developed a goal-directed diagnostic reasoner
and companion planner, called TraumAID 2.0. The
primary task of the diagnostic reasoner was to gener-
ate goals for the planner and to reason about whether



those goals were satisfied.

While the above work has some of the same goals as
our work, none has an explicit notion of knowledge,
and hence the integration of sensing and world-altering
actions is engineered, rather than treated formally
within a logic. In the spirit of such integration, we
point to the work of [SL93] and more recently [Lev96]
and [DL99] as examples of actions theories with knowl-
edge and sensing; however, to the best of our knowl-
edge ours is the first action theory that allows both
sensing and narrative.
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