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tGiven a system and unexpe
ted observationsabout the system, a diagnosis is often viewedas a fault assignment to the various 
ompo-nents of the system that is 
onsistent with (orthat explains) the observations. If the obser-vations o

ur over time, and if we allow theo

urren
e of (deliberate) a
tions and (exoge-nous) events, then the traditional notion of a
andidate diagnosis must be modi�ed to 
on-sider the possible o

urren
e of a
tions andevents that 
ould a

ount for the unexpe
tedsystem behavior.In the presen
e of multiple 
andidate diag-noses, we may need to perform a
tions andobserve their impa
t on the system, to beable to narrow the list of possible diagnoses,and possibly even initiate some repair. Aplan that guarantees su
h narrowing will bereferred to as a diagnosti
 plan, and if thisplan also guarantees that at the end of the ex-e
ution of the plan, the system has no faultsthen we refer to it as a repair plan.Sin
e a
tions and narrative play a 
entralrole in diagnosti
 problem solving, we 
har-a
terize diagnosis, diagnosti
 planning andrepair with respe
t to the existing a
tionlanguage L, extended to in
lude stati
 
on-straints, sensing a
tions, and the notion ofobservable 
uents. This language is used toprovide a uniform a

ount of diagnosti
 prob-lem solving.1 Introdu
tionConsider the following narrative involving diagnosis.

John gets up in the morning. He turns onthe swit
h of his lamp, and reads the morn-ing newspaper. He then turns o� the swit
hand does other things before going to work.After he gets home from work, he enters hisroom and turns on the swit
h of his lampagain. This time, the lamp does not turn on.John thinks that maybe either the bulb isbroken, or the swit
h of the lamp is broken,or the power 
ord is broken, or there is nopower at the outlet. He does nothing aboutit and goes to his bathroom and turns on thelight swit
h, observing that even that lightdoes not turn on. He thinks perhaps thereis no power at home, but then he noti
esthat his ele
tri
 
lo
k is working, so he �g-ures that there is power in at least part ofhis home. Now he is worried and goes to hisgarage to 
he
k his fuse box and �nds thatone of the fuses is blown. He repla
es thatfuse and 
omes ba
k to his room. He turnson his lamp swit
h and voila it works.This narrative illustrates the pro
ess of diagnosti
problem solving. In parti
ular it illustrates that diag-nosti
 problem solving must involve reasoning aboutthe evolution of a dynami
al system. Triggered byan observation of system behavior that is in
onsistentwith expe
ted behavior { in this 
ase, the fa
t thatwhen John turned on the lamp it did not emit light,diagnosti
 problem solving involves:� generating 
andidate diagnoses based on an in
om-plete history of events that have o

urred and obser-vations that have been made.� in the event of multiple 
andidate diagnoses, per-forming a
tions to enable observations that will dis-
riminate 
andidate diagnoses. The sele
tion of a par-ti
ular a
tions is often biased towards 
on�rming the



most likely diagnosis, or the one that is easiest to test.� generating plans (possibly with 
onditionals andsensing a
tions) to perform these dis
riminatory ob-servations.� updating the spa
e of diagnoses in the fa
e of 
hangesin the state of the world, and in the fa
e of new obser-vations.The long-term obje
tive of our work is to developa knowledge representation and reasoning 
apabilitythat emulates diagnosti
 problem solving pro
essessu
h as John's. Following [M
I97b℄, we argue that su
ha 
omprehensive a

ount of diagnosti
 problem solv-ing must involve reasoning about a
tion and 
hange.In this paper we augment and extend the work of[M
I97a, M
I98, M
I97b℄ in several important ways.The main 
ontributions of this paper are:� We de�ne diagnosis with respe
t to a narrative.� We de�ne the notion of diagnosti
 and repair plan-ning, within a language that integrates sensing a
tionsand world-altering a
tions. Thus, we are able to dis-tinguish between 
hanges in the state of the world, and
hanges in an agent's state of knowledge.� In support of this endeavor, we extend the a
tion lan-guage L to support stati
 
ausal laws, sensing a
tionsand the notion of observable 
uents. L was originallydeveloped to support narratives (e.g., [MS94, Pin94℄).None of the above issues have been explored either inthe model-based diagnosis literature or in the reason-ing about a
tion literature. Also notable is that unlikemost other a

ounts of diagnosis, our a

ount allowsnondeterministi
 e�e
ts of a
tions. Finally, our workis distinguished from most previous work in de�ningdiagnosis in terms of a diagnosti
 model, rather than interms of failing 
omponents and/or a
tions sequen
es.The rest of the paper is organized as follows. In Se
-tion 2 we give an overview of the language L and howto add stati
 
ausal laws to it. In Se
tion 3 we use theextended language to de�ne when we may need to doa diagnosis and what a diagnosis is with respe
t to anarrative. In Se
tion 4 we further extend our a
tionlanguage to allow sensing a
tions and to a

ommo-date the distin
tion between an observable 
uent anda unobservable 
uent. We then use this language tode�ne the notion of a 
onditional plan, and the relatednotions of diagnosti
 and repair planning. Finally, inSe
tion 5 we summarize and dis
uss related work.2 Spe
ifying narrative in LThe propositional language L was developed in[BGP97, BGP98℄ to spe
ify narratives and to reasonwith them. In this paper, we will des
ribe the main

aspe
ts of the language L by dividing it into three
omponents: a domain des
ription language LD , alanguage to spe
ify observations LO , and a query lan-guage LQ. In Se
tion 4.1, we extend our languagefurther with sensing a
tions, and observables.2.1 LD: The domain des
ription languageThe alphabet of LD { a language that 
losely fol-lows the language AC from [Tur97℄ { 
omprises twononempty disjoint sets of symbols: the set of 
uentsF, and the set of a
tions, A. A 
uent literal (or lit-eral) is a 
uent or a 
uent pre
eded by :. A 
uentformula is a propositional formula 
onstru
ted fromliterals. Propositions in LD are of the following forms:a 
auses ' if  (1)' if  (2)impossible a if  (3)where a is an a
tion, and ', and  are 
uent formulas.Propositions of the form (1) des
ribe the dire
t ef-fe
ts of a
tions on the world and are 
alled dynami

ausal laws. Propositions of the form (2), 
alled stati

ausal laws, des
ribe 
ausal relation between 
uents ina world. Propositions of the form (3), 
alled exe
utabil-ity 
onditions, state when a
tions are not exe
utable.A domain des
ription D is a set of propositions in LD .The main di�eren
e between LD and the a
tion de-s
ription part of L [BGP97, BGP98℄ is the presen
e ofstati
 
ausal laws in LD, whi
h are 
riti
al for repre-senting the behavior of the devi
e being diagnosed.A domain des
ription given in LD de�nes a transitionfun
tion from a
tions and states to a set of states.(Re
all, a
tions may be nondeterministi
.) Intuitively,given an a
tion, a and a state, s the transition fun
tion�(a; s) de�nes the set of states that may be rea
hedafter exe
uting the a
tion a in state s. If �(a; s) is anempty set it means that a is not exe
utable in s. Wenow formally de�ne this transition fun
tion.Let D be a domain des
ription in the language of LD .An interpretation I of the 
uents in LD is a maxi-mal 
onsistent set of 
uent literals of LD . A 
uent fis said to be true (resp. false) in I i� f 2 I (resp.:f 2 I). The truth value of a 
uent formula in I isde�ned re
ursively over the propositional 
onne
tivein the usual way. For example, f ^ q is true in I i� fis true in I and q is true in I . We say that ' holds inI (or I satis�es '), denoted by I j= ', if ' is true inI .



A set of formulas from LD is logi
ally 
losed if it is
losed under propositional logi
 (wrt LD).Let V be a set of formulas and K be a set of stati

ausal laws of the form ' if  . We say that V is 
losedunder K if for every rule ' if  in K, if  belongs toV then so does '. By Cn(V [K) we denote1 the leastlogi
ally 
losed set of formulas from LD that 
ontainsV and is also 
losed under K.A state of D is an interpretation that is 
losed underthe set of stati
 
ausal laws of D.An a
tion a is prohibited (not exe
utable) in a state sif there exists an exe
utability 
ondition of the formimpossible a if 'in D su
h that ' holds in s.The e�e
t of an a
tion a in a state s is the set of for-mulas ea(s) = f' j D 
ontains a law a 
auses ' if  and  holds in sg.Given the domain des
ription D 
ontaining a set ofstati
 
ausal laws R, we formally de�ne �(a; s), theset of states that may be rea
hed by exe
uting a in sas follows.1. If a is not prohibited (i.e., exe
utable) in s, then�(a; s) = fs0 j Cn(s0) = Cn((s\ s0)[ ea(s)[R)g;2. If a is prohibited (i.e., not exe
utable) in s, then�(a; s) is ;.The intuition behind the above formulation is as fol-lows. The dire
t e�e
ts (due to the dynami
 
ausallaws) of an a
tion a in a state s are given by ea(s), andall formulas in ea(s) must hold in any resulting state.In addition, the stati
 
ausal laws (R) di
tate addi-tional formulas that must hold in the resulting state.While the resulting state should satisfy these formu-las, it must also be otherwise 
losed to s. These threeaspe
ts are 
aptured by the de�nition above. For ad-ditional explanation and motivation behind the abovede�nition please see [Tur97℄.2.2 LO: The observation languageWe assume the existen
e of a set of situation 
onstantsS whi
h 
ontains two spe
ial situation 
onstants s0 and1Note that a 
uent formula ' 
an be equivalently rep-resented as a stati
 
ausal law ' if true.

s
 denoting the initial situation and the 
urrent situ-ation, respe
tively. Note that situations written ass (possibly with subs
ripts) are di�erent from stateswhi
h are written as s (possibly with subs
ripts). Aswith the situation 
al
ulus, the ontology of our lan-guage di�erentiates between a situation, whi
h is ahistory of the a
tions from the initial situation, and astate, whi
h is the truth value of 
uents at a parti
ularsituation.Observations in LO are propositions of the followingforms: ' at s (4)� between s1; s2 (5)� o

urs at s (6)s1 pre
edes s2 (7)where ' is a 
uent formula, � is a (possibly empty)sequen
e of a
tions, and s; s1; s2 are situation 
onstantswhi
h di�er from s
. (Sin
e the world 
an be 
hangedwithout the agent's knowledge, we do not allow theagent to have observations about s
.)Observations of the forms (4) and (7) are 
alled 
uentfa
ts and pre
eden
e fa
ts, respe
tively. Observationsof the forms (5) and (6) are referred to as o

urren
efa
ts. These two types of observations are di�erent inthat (5) states exa
tly what happened between two sit-uations s1 and s2, whereas (6) only says what o

urredin the situation s.2.3 NarrativesA narrative is a pair (D;�) where D is a domain de-s
ription and � is a set of observations of the form(4)-(7).Observations are interpreted with respe
t to a domaindes
ription. While a domain des
ription de�nes atransition fun
tion that 
hara
terize what states maybe rea
hed when an a
tion is exe
uted in a state, a nar-rative 
onsisting of a domain des
ription together witha set of observations de�nes the possible situation his-tories of the system. This 
hara
terization is a
hievedby two fun
tions, � and 	. While � maps situation
onstants to a
tion sequen
es, 	 pi
ks one among thevarious transitions given by �(a; s) and maps a
tionsequen
es to a unique state with the 
ondition that	(� Æ a) 2 �(a;	(�)).More formally, let (D;�) be a narrative. A 
ausalinterpretation of (D;�) is a partial fun
tion from a
-tion sequen
es to interpretations of Lang(F), whose



domain is nonempty and pre�x-
losed2. By Dom(	)we denote the domain of a 
ausal interpretation 	.Noti
e that [℄ 2 Dom(	) for every 
ausal interpreta-tion 	, where [℄ is the empty sequen
e of a
tions.A 
ausal model of D is a 
ausal interpretation 	 su
hthat:(i) 	([℄) is a state of D; and(ii) for every � Æ a 2 Dom(	), 	(� Æ a) 2 �(a;	(�)).A situation assignment of S with respe
t to D is amapping � from S into the set of a
tion sequen
es ofD that satisfy the following properties:(i) �(s0) = [℄;(ii) for every s 2 S, �(s) is a pre�x of �(s
).An interpretation M of (D;�) is a pair (	;�), where	 is a 
ausal model of D, � is a situation assignmentof S, and �(s
) belongs to the domain of 	. For aninterpretation M = (	;�) of (D;�):(i) � o

urs at s is true inM if the sequen
e �(s)Æ� is a pre�x of �(s
);(ii) � between s1; s2 is true inM if �(s1)Æ� = �(s2);(iii) ' at s is true in M if ' holds in 	(�(s));(iv) s1 pre
edes s2 is true in M if �(s1) is a pre�xof �(s2).An interpretationM = (	;�) is a model of a narrative(D;�) if:(i) fa
ts in � are true in M ;(ii) there is no other interpretationM 0 = (	;�0) su
hthat M 0 satis�es 
ondition i) above and �0(s
) isa subsequen
e of �(s
).Observe that these models are minimal in the sensethat they ex
lude extraneous a
tions.A narrative is 
onsistent if it has a model. Otherwise,it is in
onsistent.2A set X of a
tion sequen
es is pre�x-
losed if for everysequen
e � 2 X, every pre�x of � is also in X.

2.4 LQ : The query languageQueries in LQ are of the following form:' after � at s (8)When � in (8) is an empty sequen
e of a
tions, and sis the 
urrent situation s
, we often use the notation
urrently ' as a simpli�
ation of (8).A query of the form ' after � at s is true in amodel M = (	;�) if ' is true in 	(�(s) Æ �).A query q is entailed by a narrative (D;�), denotedby (D;�) j= q, if q is true in every model of (D;�).3 Diagnosis wrt narrativesWe are now ready to formulate the notion of diag-nosis with respe
t to a narrative. The representa-tion of the system to be diagnosed 
omprises stati

ausal laws that des
ribes the behavior of the systemitself, as well as the des
ription of the e�e
ts of a
tionson system state, and observations about a
tion o

ur-ren
es and 
uent values over the evolution of the sys-tem We follow the diagnosis literature (e.g., [DMR92℄)and assume that the system is 
omposed of a distin-guished set of 
omponents that 
an malfun
tion. As-so
iated with ea
h 
omponent 
, is the distinguished
uent ab(
), denoting that the 
omponent 
 is abnor-mal or broken. Also asso
iated with ea
h 
omponentis the distinguished 
uent break(
), a wild
ard a
tionwhi
h may be used to explain unexpe
ted observationsabout ab(
). Note that the representation of the sys-tem is likely to 
ontain other a
tions and stati
 
ausallaws that a�e
t the truth of ab(
). Building on theestablished diagnosis notation:De�nition 1 (System)A system Sys is a tuple (SD;COMPS;OBS) whereCOMPS = f
1; : : : ; 
ng is a �nite set of 
omponents.SD is a domain des
ription 
hara
terizing the behav-ior of the system, and augmented with dynami
laws of the form break(
) 
auses ab(
), for ea
h
omponent 
 in COMPS.Given SD, by SDab, we denote the subsetof SD 
onsisting of stati
 
ausal laws of theform \ if '" and dynami
 laws of the form\a 
auses  if '", where  
ontains ab(
) forsome 
omponent 
.OBS is a 
olle
tion of observations starting fromthe situation s1, and the pre
eden
e fa
t



s0 pre
edes s1. Spe
i�
ation of 
uent fa
ts ats0 are not in
luded in OBS.In our formulation of diagnosis, we make the assump-tion that there is an initial situation in the historywhere all 
omponents are operating normally3. This isa
hieved by adding the set OK0 = f:ab(
) at s0 j 
 2COMPSg to our observations.Example 1 Consider a slight variation of the storyin our introdu
tion. Assume that the only breakable
omponent in the domain is the bulb. Furthermore,assume that John observed that the light is o� imme-diately after he turned on the lamp when 
oming ba
kfrom work. The story 
an then be des
ribed by a sys-tem des
ription Sys0 = (SD0; fbulbg; OBS0), whereSD0 : turn on 
auses light on if :ab(bulb)turn o� 
auses :light on:light on if ab(bulb)break(bulb) 
auses ab(bulb)impossible break(bulb) if ab(bulb)OBS0 : turn on o

urs at s1 s0 pre
edes s1turn o� o

urs at s2 s1 pre
edes s2turn on between s3; s4 s2 pre
edes s3:light on at s1 s3 pre
edes s4light on at s2:light on at s3:light on at s4OK0 : :ab(bulb) at s0. 2Intuitively, we say a system needs a diagnosis, if thefollowing assumptions are in
onsistent with the obser-vations (i) all 
omponents are initially �ne, and (ii)no a
tion that 
an break a 
omponent o

urs. To de-�ne diagnosis, we assume that all 
omponents wereinitially operating normally, and we try to 
onje
tureminimal a
tion o

urren
es to a

ount for the obser-vations. Sin
e the semanti
s of L minimizes a
tiono

urren
es, all we need to do is to 
onsider the vari-ous models of the narrative and extra
t our diagnosisfrom ea
h.3Hen
e, our formulation of diagnosis 
an be alternatelyreferred to as `big-bang diagnosis'. We 
an slightly modifyit to de�ne in
remental diagnosis, when we already knowthat a set X � COMP is abnormal, and we want to �gureout if some additional 
omponents have malfun
tioned byhaving OK0 = fab(
) at s0 j 
 2 Xg[f:ab(
) at s0 j 
 2COMP nXg.

De�nition 2 (Ne
essity of Diagnosis) We say asystem Sys = (SD;COMPS; OBS) needs a diagno-sis if the narrative (SD nSDab; OBS [OK0) does nothave a model.Note that the notion of a system needing a diagnosisis not meant to 
apture the notion that there is somefault in the system. It is a mu
h weaker notion. Wenow establish the notion of a diagnosis in terms of adiagnosti
 model.De�nition 3 (Diagnosti
 Model) LetSys = (SD;COMPS;OBS) be a system that needsa diagnosis. We say M is a diagnosti
 model of Sys ifM is a model of the narrative (SD;OBS [OK0).We 
an now extra
t information about any parti
ularsituation from the diagnosti
 model. In parti
ular,De�nition 4 (Diagnosis) A diagnosis with respe
tto situation s is the set of 
omponents � 2COMPS su
h that there exists a model M =(	;�) of the narrative (SD;OBS [ OK0) and � =f
 j ab(
) at s holds in Mg. We refer to a diagnosiswith respe
t to s
 as a 
urrent 
uent diagnosis. We saya diagnosis � (wrt a situation s) is minimal if thereexists no diagnosis �0 (wrt s) su
h that �0 � �.Example 2 (Continuation of Example 1)Consider the system Sys0 = (SD0; fbulbg; OBS0),from Example 1, with SDab = fbreak(bulb) 
ausesab(bulb)g.Let narrativeN 00 = (SD0nSDab; OBS0[OK0). Due tothe proposition \:light on if ab(bulb)", SD0nSDabhas only three distin
t states: s0 = ;, s1 = flight ong;and s2 = fab(bulb)g.The transition fun
tion of SD0nSDab is given by�(turn on; s0) = fs1g �(turn o�; s0) = fs0g�(turn on; s1) = fs1g �(turn o�; s1) = fs0g�(turn on; s2) = fs2g �(turn o�; s2) = fs2gWe now prove thatN 00 is in
onsistent. Assume the 
on-trary, N 00 has a model (�;	). Be
ause of OBS0[OK0,we 
on
lude that 	([℄) = s0. Let �(s3) = �, where �is an a
tion sequen
e. By the de�nition of a modelof a narrative, we have that �(s4) = � Æ turn on.As there is no a
tion in SD0nSDab whose e�e
t isab(bulb), we 
on
lude that ab(bulb) 62 	(�). This im-plies that light on 2 	(� Æ turn on), i.e., light onmust hold in s4. This 
ontradi
ts the observation\:light on at s4", i.e., N 00 is in
onsistent.



Narrative N 00 is in
onsistent, and hen
e, Sys0 needs adiagnosis. We 
ompute the diagnosis as follows.The narrative N0 = (SD0; OBS0 [ OK0), has onemodel M = (	;�) where 	([℄) = s0 and�(s0) = �1(s1) = [℄, �(s2) = turn on,�(s3) = turn on Æ turn o� Æ break(bulb),�(s4) = �(s
) = turn on Æ turn o� Æ break(bulb) Æturn on.We 
an easily verify that ab(bulb) at s
 is true inM . Hen
e a 
urrent diagnosis for Sys0 is � = fbulbg.Moreover, it is easy to 
he
k that � is also a minimal
urrent diagnosis for Sys0. 23.1 Explanation vs diagnosisOften the observations in a narrative 
an be explainedby the sequen
e of a
tions (possibly exogenous) thathave o

urred. Unfortunately, this is not true in all
ases be
ause in
omplete knowledge of the initial sit-uation, and/or non-deterministi
 a
tions 
an lead toun
ertainty in the out
ome of a sequen
e of a
tions.The de�nition of a diagnosti
 model in the previousse
tion uses a 
onsisten
y 
riterion to a

ount for theobservations. That is, the narrative (SD;�), where� 
omprises the sequen
e of a
tion o

urren
es andinitial situation (in
luding OK0) di
tated by the di-agnosti
 model, do not ne
essarily entail OBS. Theyare merely 
onsistent with OBS. Here we de�ne thenotion of an explanatory diagnosti
 model, whi
h hasthe stronger 
riterion that (SD;�) must entail OBS.De�nition 5 (Explanatory Diagnosti
 Model)Suppose M = (	;�) is a diagnosti
 model of (SD;COMPS; OBS), where� a
tions(M) is the set of o

urren
e fa
ts andpre
eden
e fa
ts of the forms (5), (6), and(7), (i.e., fa
ts of the forms � between s1; s2,� o

urs at s1, s1 pre
edes s2) that are truein M ; and� initial(M) is the set of 
uent fa
ts of the formf at s0 that are true in M , in
luding OK0.Then M is an explanatory diagnosti
 model i�(SD; a
tions(M) [ initial(M)) j= OBSFollowing in this spirit, it is straightforward to de�nethe notion of an explanatory diagnosis, a set of a
tiono

urren
es that entails the observations.

4 Diagnosti
 and repair planningThe diagnosti
 pro
ess dis
ussed in the previous se
-tion will generate a set of 
andidate diagnoses, howeverdiagnosis is only the �rst step in dealing with an er-rant system. In most 
ases we will attempt to dis
rim-inate these diagnoses with the obje
tive of identifyinga unique diagnosis and/or redu
ing our spa
e of 
an-didate diagnoses to a point where a repair plan 
anbe 
on
eived. We are operating under the assumptionthat we 
annot dire
tly observe the state of abnormal-ity of the various 
omponents of the system. Neverthe-less, we 
an make other observations about the system,add them to OBS, and then re�ne our diagnoses.In general, the 
uents in the system are of twokinds: observable and unobservable. A simple generi
observation4 leads the agent to know the value of theobservable 
uents. By knowing the relationship be-tween the observable and unobservable 
uents, andthe values of the observable 
uents, we 
an some-times dedu
e the values of unobservable 
uents. We
an also use dire
t sensing a
tions to sometimes deter-mine their value. Given a set of 
andidate diagnoses,we 
an exe
ute a plan { perhaps in
luding some sens-ing a
tions and 
onditional bran
hes { and make thegeneri
 observations to obtain additional informationthat will help redu
e the spa
e of possible diagnoses.Su
h plans are distinguished in that they 
an haveknowledge goals in addition to goals relating to thestate of the world. We refer to plans that attempt toredu
e our spa
e of diagnoses as diagnosti
 plans. Adiagnosti
 plan that in
ludes some repair is 
alled arepair plan.4.1 Adding sensing and observables to LIn order to de�ne the notion of a diagnosti
 plan, wemust �rst augment LD and LQ to in
orporate sensinga
tions and observable and unobservable 
uents. Inthis se
tion, we brie
y des
ribe these augmentations.The resulting theories are 
alled LDS and LQS , respe
-tively. (LO = LOS .)� We allow knowledge produ
ing laws of the followingform in LDS :a determines f (9)where a is an a
tion and f is a 
uent. A law of thisform tells us that after a is exe
uted, the value of the4Here we distinguish between generi
 observations andsensing a
tions. We assume that the agent is 
onstantlyperforming `generi
 observations' and thus knows the truthvalue of the observable 
uents at all times. In 
ontrast,sensing a
tions require the agent's e�ort.




uent f will be known. An a
tion o

urring in a knowl-edge produ
ing law is 
alled a sensing a
tion.� With the addition of sensing a
tions, we need todistinguish between a state of the world and the stateof the agent's knowledge about the world. The laterwill be referred to as a 
ombined state (or 
-state) andwill be represented by a pair of the form hs;Si, wheres is a state (representing the real state of the world)and S is a set of states (representing the set of statesan agent thinks it may be in).� We extend the transition fun
tion � to also mappairs of a
tions and 
-states into sets of 
-states.1. for any 
-state hs;Si and non-sensing a
tion a,�(a; hs;Si) = fhs0;S 0i j s0 2 �(a; s), and S 0 is theset of states in �(a;S) that agree with s0 on FO,the observable literals g.(Note that if a is not exe
utable in hs;Si then�(a; hs;Si) = ;.)2. for any 
-state hs;Si and sensing a
tion a whoseknowledge produ
ing laws area determines f1 : : : a determines fm(a) if a is exe
utable in hs;Si, �(a; hs;Si)= fhs; fs0 j s0 2 S su
h that sand s0 agree on the literals from FO [ff1; : : : ; fmggig;(b) otherwise, �(a; hs;Si) = ;.� In the presen
e of in
omplete information and knowl-edge produ
ing a
tions, there may not exist simpleplans 
onsisting of sequen
e of a
tions and we mayneed to extend the notion of a plan to allow 
onditionalstatements. We refer to su
h plans as 
onditional plans(e.g., [Lev96, BS97, BS98℄), des
ribed below.� In order to query the system, we spe
ify a querylanguage LQS . A query in LQS has the form' after P at s (10)where ' is a 
uent formula and P is a 
onditional planas formally de�ned below.De�nition 6 (Conditional Plan)1. An empty sequen
e of a
tion, denoted by [ ℄, is a
onditional plan.2. If a is an a
tion then a is a 
onditional plan.3. If P1; : : : ; Pn are 
onditional plans and 'j 's are
onjun
tion of 
uent literals (whi
h are mutually

ex
lusive but not ne
essarily exhaustive) then thefollowing is a 
onditional plan. ( We refer to su
ha plan to as a 
ase plan).Case'1 ! P1. . .'n ! PnEnd
ase4. If P1 and P2 are 
onditional plans then P1;P2 isa 
onditional plan.5. Nothing else is a 
onditional plan.In order to de�ne when a narrative entails a querythat in
ludes a 
onditional plan, we need to de�ne anextended transition fun
tion �̂, that maps a pair of a
onditional plan and a 
-state, into a set of 
-states.Intuitively, if �0 2 �̂(P; �) then the exe
ution of theplan in the 
-state � may take us to the 
-state �0. Be-fore de�ning �̂, we �rst de�ne the possible traje
torieswhen P is exe
uted in �.De�nition 7 Let P be a 
onditional plan and � be a
-state. We say a sequen
e of 
-states �1; : : : ; �n is atraje
tory of P wrt � if:1. P = [℄, and n = 1, and �1 = �.2. P = [a℄, and n = 2, and �1 = � and �2 2 �(a; �).3. P = Case'1 ! P1. . .'n ! PnEnd
ase,and there exists an i su
h that 'i is known tobe true in � and �1; : : : ; �n is a traje
tory of Piwrt �.4. P = P1;P2, and �1 = �, and �1; : : : ; �k is a traje
-tory of P1 wrt �, and �k+1; : : : ; �n is a traje
toryof P2 wrt �k+1.�n is referred to as the resulting 
-state of P wrt �.De�nition 8 Let P be a 
onditional plan and � =hs;Si be a 
-state, �̂(P; �) is now de�ned as follows:1. �̂([℄; �) = f�g;2. For an a
tion a, �̂(a; �) = �(a; �);



3. For P = Case'1 ! P1. . .'n ! PnEnd
ase,�̂(P; �) =8>>>><>>>>: �̂(Pi; �) if 'i is known to betrue in �; if there exists no i s.t.'i is known to be true in �4. For P = P1;P2, where P1 is a 
onditional planand P2 is a 
onditional plan,� if �̂(P1; �) 6= ;, and for every �0 2 �̂(P1; �),�̂(P2; �0) 6= ;, then�̂(P; �) = S�02�̂(P1;�) �̂(P2; �0); and� �̂(P; �) = ; otherwise.It should be noted that �̂(P; �) is not equal to the setof resulting 
-states of P wrt �. This is be
ause somebran
hes of P may lead to unexe
utable a
tions andhen
e �̂(P; �) will be empty while there may be severaltraje
tories 
orresponding to other bran
hes.Our next goal is to de�ne entailment of queries wrtnarratives. Intuitively, sin
e the narrative may not be
omplete, or have suÆ
ient observations to arrive ata unique model, multiple models may tell us that asituation s may 
orrespond to many di�erent states,only one of whi
h 
orresponds to s in reality. Thuswe have a set of 
-states from whi
h we need to verifythe 
orre
tness of a 
onditional plan with respe
t to agoal. More formally,De�nition 9 (Possible State wrt a Situation)Let N = (D;�) be a narrative. We say s is a pos-sible state 
orresponding to situation s, if there existsa model (	;�) of N su
h that 	(�(s)) = s. We say� = hs;Si is a 
-state 
orresponding to situation s, ifs is a possible state 
orresponding to situation s andS is the set of all possible states 
orresponding to s.A query q = ' after P at s of LQS is said tobe entailed by narrative (D;�), i.e. (D;�) j= q, if forevery 
-state hs;Si 
orresponding to s, �̂(P; hs;Si) 6= ;and ' is known to be true in every 
-state belongingto �̂(P; hs;Si).4.2 Diagnosti
 and repair plansWe are now ready to de�ne what a diagnosti
 planis. Intuitively, it is a 
onditional plan, possibly withsensing a
tions whi
h when exe
uted in the 
urrent

situation gives suÆ
ient information to rea
h a uniquediagnosis. In addition, we may have 
ertain restri
-tions, su
h as that:� Certain literals are not allowed to 
hange during theexe
ution of the plan. We refer to su
h literals as pro-te
ted literals. (E.g., to stabilize the leaning tower ofPisa, we may not tear down and rebuilt it.)� Certain literals are allowed to 
hange during the ex-e
ution of the plan, but we require that at the end ofthe exe
ution of the plan, their value be the same asit was before the plan was exe
uted. We refer to su
hliterals as restored literals. (E.g., disassembling an en-gine or a 
ashlight to diagnose it, but putting it ba
ktogether afterwards.)� Certain literals are allowed to 
hange during the ex-e
ution of the plan, but we require that at the end ofthe plan, their value be either the same as it was beforethe plan was exe
uted or be false. Su
h literals willbe referred to as �xable literals. (This a

ommodatesrepair, where ab 
uents 
an be made :ab.)De�nition 10 (Diagnosti
 Plan) Given Sys =(SD; COMPS; OBS) with a set of prote
ted literalsLP , a set of restored literals LR, and a set of �xable lit-erals LF . Let C � COMPS. A 
onditional plan P is
alled a diagnosti
 plan for Sys wrt (C;LP ; LR; LF ),if for every 
-state � = hs;Si 
orresponding to the
urrent situation of Sys, �̂(P; �) 6= ; and for all tra-je
tories of the form �1; : : : ; �n of P wrt �(i) for every 
-state hs0;S 0i in �̂(P; hs;Si) and s00 2 S 0,s �AB(C) s00 where AB(C) = fab(
) j 
 2 Cg;(ii) value of all literals in LP remain un
hanged (wrtthe real states) in the traje
tory;(iii) for all literals l in LR value of l (wrt the real states)in �1 and �n are the same; and(iv) for all atoms f in LF , if f is false in �1 then it isfalse in �n. (wrt the real state).If C = COMPS, and the ab-literals are part of LP ,we say that P is a purely diagnosti
 plan for Sys.If C is a singleton, i.e., C = f
g for some 
 2 COMPS,and ab(
) and :ab(
) are in LP , we say that P is adis
riminating diagnosti
 plan for 
.De�nition 11 (Repair Plan) A diagnosti
 plan Pfor Sys wrt (C;LP ; LR; LF ) is said to be a repair planwrt (C 0; LP ; LR; LF ) if (i) C 0 � C � COMPS, (ii) abliterals about C 0 are not in LP and LR, and (iii) forevery 
-state � = hs;Si 
orresponding to the 
urrentsituation of Sys, �̂(P; �) 6= ; and for all 
 2 C 0, :ab(
)is known to be true in all 
-states in �̂(P; hs;Si).



Example 3 (Ele
tro-magneti
 Door)Consider an ele
tro-magneti
 
ontrol door. The dooris 
onne
ted to a RED LED and a YELLOW LED.To enter, an agent needs to put its ele
tro-magneti

ard, 
ontaining its id-number and password, into theslot 
onne
ted to the door's 
ontroller. The door willopen only if the 
ard is valid, the id-number and thepassword are not 
orrupted, and the door is not mal-fun
tioning. While the 
ard is in the slot, if it is in-valid, the RED LED will be on; and if the id-number orthe password is 
orrupted or the door is defe
tive, theYELLOW LED will be on. The YELLOW LED is ononly if the RED LED is not. In this 
ase, pushing thebutton \message" will print out a message. Readingit, the agent will know whether the door is defe
tiveor its 
ard is unreadable.Our agent, Ja
k 
omes to work, and as usual, puts his
ard into the slot. The door does not open. What iswrong ? The story 
an be represented by the systemSys1 = (SD1; f
ard; door; id pwdg; OBS1) as follows.The a
tions of the domain des
ription SD1 are: in-sert 
ard, push button, take out 
ard, look (look at theLEDs), or read msg (read the message).The 
uents of SD1 are: ab(
ard), ab(door),ab(id pwd), has 
ard, 
ard in slot, door open, has msg,red, and yellow, where red or yellow indi
ate that theRED/YELLOW LED is on, respe
tively.SD1 
omprises the following laws:� dynami
 
ausal laws: des
ribing the e�e
ts of the a
-tions insert 
ard, push button, and take out 
ard. In-serting the 
ard 
auses the door to open if the 
ard, thedoor and the 
ard information are all normal. Further,inserting the 
ard 
auses the 
ard to be in the slot andnot in the possession of the agent. I.e.,insert 
ard 
auses door openif :ab(
ard);:ab(door);:ab(id pwd)insert 
ard 
auses :has 
ard ^ 
ard in slotPushing the button results in a message. I.e.,push button 
auses has msg:If the 
ard is in the slot and the agent takes it out,then the agent has possession of the 
ard and the 
ardis not in the slot. I.e.,take out 
ard 
auses has 
ard ^ :
ard in slotif 
ard in slot

� stati
 
ausal laws: expressing the relationship be-tween the status (on/o�) of the LEDs. I.e.,red if ab(
ard) ^ 
ard in slot:red if yellow ^ 
ard in slotyellow if (ab(id pwd) _ ab(door)) ^ :red^ 
ard in slot� sensing a
tions: 
hara
terizing the knowledge e�e
tsof sensing a
tions. For example, performing the looka
tion 
auses the agent to know whether the RED andYELLOW LEDs are on or o�. They are 
aptured bythe following k-propositions:look determines redlook determines yellowread msg determines ab(id pwd)read msg determines ab(door)� exe
utability 
onditions: 
hara
terizing when an a
-tion is pre
luded. I.e.,impossible insert 
ard if :has 
ardimpossible push button if :yellowimpossible read msg if :has msg� wild
ard a
tions:break(
ard) 
auses ab(
ard)break(door) 
auses ab(door)break(id pwd) 
auses ab(id pwd)and the set of observations, OBS1::red ^ :yellow ^ :door open at s1has 
ard ^ :has msg at s1:
ard in slot at s1insert 
ard between s1; s2:door open at s2s0 pre
edes s1s1 pre
edes s2The �rst three observations des
ribe the �rst observ-able situation, s1. The fourth observation states thatJa
k puts his 
ard into the slot, while the �fth statesthat the door is not open after Ja
k puts his 
ard intothe slot.Intuitively, when Ja
k observes that the door doesnot open as the result of putting his 
ard into theslot, he should realize that at least one of the three
omponents: the 
ard, the door, or the information



on the 
ard is no longer valid. Our diagnosti
 rea-soning systems does likewise. Indeed, the narrativeN 01 = (SD1 n SDab; OBS1 [ OK0) does not have amodel and there are three diagnoses for Sys1: �1 =fab(id pwd)g, �2 = fab(door)g, and �3 = fab(
ard)gwhi
h 
orrespond to the models M1; M2, and M3 ofN1 = (SD1; OBS1 [ OK0) de�ned as follows. M1 =(	1;�1), M2 = (	2;�2), and M3 = (	3;�3), where	1([℄) = 	2([℄) = 	3([℄) = s0, and�1(s0) = [℄,�1(s1) = break(id pwd),�1(s2) = �1(s
) = break(id pwd) Æ insert 
ard,�2(s0) = [℄,�2(s1) = break(door),�2(s2) = �2(s
) = break(door) Æ insert 
ard,�3(s0) = [℄,�3(s1) = break(
ard),�3(s2) = �3(s
) = break(
ard) Æ insert 
ard.where s0 = fhas 
ardg,	1(break(id pwd)) = fhas 
ard; ab(id pwd)g,	1(break(id pwd) Æ insert 
ard)= f
ard in slot; ab(id pwd); yellowg = s1,	2(break(door)) = fhas 
ard; ab(door)g,	2(break(door) Æ insert 
ard)= f
ard in slot; ab(door); yellowg = s2,	3(break(
ard)) = fhas 
ard; ab(
ard)g,	3(break(
ard) Æ insert 
ard)= f
ard in slot; ab(
ard); redg = s3.To narrow the list of the possible diagnoses of the sys-tem, Ja
k 
an �nd out the status of the LEDs. If theRED LED is on, he knows for sure that the 
ard isno longer valid. Otherwise, the YELLOW LED mustbe on. In that 
ase, he 
an get the message and readit to know if the door is broken or the information onthe 
ard is 
orrupted. This pro
ess is 
aptured by thefollowing plan.P = look Æ
asered! [℄:red!
aseyellow! push button Æ read msgend
aseend
aseWe will now show that P is a diagnosti
 plan for Sys1

wrt (C;LP ; ;; ;) where C = fid pwd; dood; 
ardg andLP = fab(id pwd); ab(dood); ab(
ard)g.Let S = fs1; s2; s3g. There are three possible 
urrentsituations of Sys1: �1 = hs1;Si, �2 = hs2;Si, and �3= hs3;Si. Let s0i = si [ fhas msgg, i = 1; 2, then�̂(P; �1) = �̂(push button Æ read msg; hs1; fs1; s2gi)= �̂(read msg; hs01; fs01; s02gi) = fhs01; fs01gig;�̂(P; �2) = �̂(push button Æ read msg; hs2; fs1; s2gi)= �̂(read msg; hs02; fs01; s02gi) = fhs02; fs02gig;�̂(P; �3) = fhs3; fs3gig.The above 
omputations also represent all traje
toriesof P wrt �1, �2, and �3. Obviously, �̂(P; �i) 6= ;for i = 1; 2; 3. Furthermore, it is easy to 
he
k thatthe values of literals in LP remain un
hanged in alltraje
tories and in ea
h 
-state hs0;S 0i belonging to�̂(P; �i) and s00 2 S 0, s0 �AB(C) s00. For example,hs01; fs01gi is the only 
-state in �̂(P; �1), and trivially,s01 �AB(C) s01. Thus, P is a diagnosti
 plan for Sys1wrt (C;LP ; ;; ;). 25 Summary and Related WorkIn this paper we provided an a

ount of diagnosti
problem solving in terms of the a
tion language, L.A prime obje
tive of this work was to 
hara
terize di-agnosti
 problem solving with narrative and sensing.L proved ideal for this task be
ause it already hadmost of the ne
essary expressive power. In parti
u-lar, L in
ludes narrative, sensing a
tions, and addi-tionally nondeterministi
 a
tions, whi
h are 
ommonin diagnosti
 domains. In this paper, we extended Lby adding stati
 
ausal laws that are ne
essary for de-s
ribing the behavior of the systems we diagnose. Wealso distinguished notions of observable 
uents, andprote
ted, restored and �xable 
uents.The main 
ontributions of this paper, in addition tothe supporting language extensions, are the 
hara
-terization of the diagnosis task as a narrative under-standing task, and the de�nition of diagnosis in termsof a diagnosti
 model { a parti
ular model of the nar-rative. We further distinguish between a diagnosti
model and the stri
ter notion of an explanatory di-agnosti
 model. As dis
ussed throughout the paper,diagnosti
 problem solving is more than just deter-mining a set of 
andidate diagnoses. In the se
ondhalf of the paper, we de�ne the notion of a diagnosti
plan, and a repair plan { 
onditional plans that ex-ploit both world-altering a
tions and sensing a
tions



with the goal of a
hieving some diagnosti
 knowledgeor repair obje
tive. These present new 
ontributionsto the resear
h on model-based diagnosis and reason-ing about a
tion.We 
ontrast our 
ontributions to related work. In thearea of diagnosis of dynami
al systems, there has beenresear
h both within the 
ontrol theory 
ommunity(e.g., [SSLST96℄) on the diagnosis of dis
rete eventsystems using �nite state automata, and within the AI
ommunity. Most of this work is fairly re
ent, and 
anbe di�erentiated with respe
t to the expressive powerof the language used to model the domain (e.g., propo-sitional/�rst order, rami�
ations, nondeterministi
 a
-tions, 
on
urrent a
tions, narrative, sensing, probabil-ities); how the notion of diagnosis is de�ned (e.g., mod-els, sequen
es of a
tions, sets of abnormal 
omponents,probabilisti
 
riteria); how observations are expressed;whether diagnosis is a
tive or o�ine; and what as-pe
ts of diagnosti
 problem solving, beyond diagnosis,are addressed (e.g., diagnosti
 planning, repair).Our work was in
uen
ed by previous work of M
Il-raith (e.g., [M
I97a, M
I98, M
I97b℄), but extends andbuilds on aspe
ts of that work in several importantways. [M
I97b℄ argued that a 
omprehensive a

ountof diagnosti
 problem solving must involve reasoningabout a
tion and 
hange, and provided su
h an a
-
ount in a diale
t of the situation 
al
ulus that in-
luded 
ausal rami�
ation 
onstraints, but did not in-
lude nondeterministi
 a
tions, sensing a
tions or nar-rative. Aberrant behavior was assumed to be 
ausedby unobserved exogenous a
tions. Multiple de�nitionsof diagnosis were provided both in terms of sequen
esof a
tions that explained the observations, and des-ignations of normal and abnormal 
omponents withrespe
t to a situation. The notion of a diagnosti
model was not employed. Most importantly, this a
-
ount did not exploit narrative for expressing and a
-
ounting for observations, 
onsequently the assertionof observations and exogenous a
tions was mu
h lesselegant. [M
I97b℄ also introdu
ed the notion of test-ing to dis
riminate hypotheses, and analogues to theideas of diagnosti
 and repair planning; however sin
ethe diale
t of the situation 
al
ulus she employed didnot in
lude knowledge-produ
ing a
tions, the impor-tant integration of sensing and world-altering a
tionsthat was done in this paper, was argued for but wasleft to future work.Also of note is the work of Thiels
her on a theoryof dynami
 diagnosis in the 
uent 
al
ulus [Thi97℄.Thiels
her 
hara
terizes diagnoses in terms of mini-mally failing 
omponents, where his minimization pref-eren
e 
riterion is with respe
t to the abnormalities in

the initial state, but 
an additionally exploit some aprior likelihood. Thiels
her does not exploit exoge-nous a
tions to a

ount for abnormalities as we do,and does not allow for the o

urren
es of a
tions be-yond what are observed. Thiels
her does not take hiswork beyond a 
hara
terization of diagnosis.A third important pie
e of work from the AI 
ommu-nity is the work of Cordier, Thi�ebaux and their 
o-authors, (e.g., [TCJK96, CT94℄). Their work is simi-lar in spirit to ours, viewing the diagnosis task as thedetermination of an event-history of a system betweensu

essive observations. While this work is related,the representation of the domain uses state transitiondiagrams and is mu
h less expressive and elaborationtolerant than ours. That said, their representation sys-tem is suÆ
iently expressive for the power distributiondomain they have been examining, and more re
ently,their work has fo
used on the ne
essary tradeo�s re-quired to address hard 
omputational issues asso
iatedwith their domain. Cordier and Thi�ebaux also dis
ussthe notion of repair planning, but without distinguish-ing between sensing and world-altering a
tions.Other notable work on the diagnosis of dynami
al sys-tems in
ludes the work of Nayak and Williams on on-line mode identi�
ation for the NASA remote agentsystem (e.g., [WN96℄), the work of Baroni et al. on thediagnosis of large a
tive 
on
urrent systems [BLPZ99℄,and work on temporal aspe
ts of diagnosis by Brusoniet al. (e.g., [BCTD98℄).In the area of diagnosti
 and repair planning, Sunand Weld [SW93℄ proposed a de
ision-theoreti
 plan-ner whi
h was invoked by a diagnosti
 reasoner to planrepair a
tions. The asso
iated planning language dis-tinguished between information-gathering and state-altering a
tions, but did not provide for the spe
i�
a-tion of knowledge or diagnosti
 goals. Similarly He
k-erman et al. [HBR94℄ have examined the problem ofintera
tively generating repair plans under un
ertaintyusing Bayes nets, a single fault assumption and a my-opi
 lookahead heuristi
. A
tions are limited to simpleobservations and 
omponent repla
ement. In 
ontrastFriedri
h et al. (e.g., [FN92℄) developed a set of greedyalgorithms to 
hoose between performing simple obser-vations and repair a
tions, assuming a most likely di-agnosis. They do not limit their system to repair alonebut rather generalize their goal to some notion of pur-pose; purpose does not in
lude spe
i�
ation of diagnos-ti
 goals. Finally, and perhaps most notably, Rymon[Rym93℄ developed a goal-dire
ted diagnosti
 reasonerand 
ompanion planner, 
alled TraumAID 2.0. Theprimary task of the diagnosti
 reasoner was to gener-ate goals for the planner and to reason about whether



those goals were satis�ed.While the above work has some of the same goals asour work, none has an expli
it notion of knowledge,and hen
e the integration of sensing and world-alteringa
tions is engineered, rather than treated formallywithin a logi
. In the spirit of su
h integration, wepoint to the work of [SL93℄ and more re
ently [Lev96℄and [DL99℄ as examples of a
tions theories with knowl-edge and sensing; however, to the best of our knowl-edge ours is the �rst a
tion theory that allows bothsensing and narrative.Referen
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