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Abstract. The paper introduces the notion ofoff-line justificationfor Answer
Set Programming (ASP). Justifications provide a graph-based explanation of the
truth value of an atom w.r.t. a given answer set. The notion of justification ac-
counts for the specifics of answer set semantics. The paper extends also this no-
tion to provide justification of atomsduring the computation of an answer set
(on-line justification), and presents an integration of on-line justifications within
the computation model ofSMODELS. Justifications offer a basic data structure to
support methodologies and tools fordebugginganswer set programs. A prelimi-
nary implementation has been developed inASP− PROLOG.

1 Introduction

Answer set programming (ASP)is a programming paradigm [13, 19] based on logic
programming under answer set semantics [9]. ASP ishighly declarative; to solve a
problemP , we specify it as a logic programπ(P ) whose answer sets correspond one-
to-one to solutions ofP , and can be computed using an answer set solver. ASP is also
attractive because of its numerous building block results (see, e.g., [4]).

A source of difficulties in ASP lies in the lack ofmethodologiesfor program un-
derstanding and debugging. The declarative and the hands-off execution style of ASP
leave a programmer with nothing that helps in explaining the behavior of the programs,
especially for unexpected outcomes of the computation (e.g., incorrect answer sets).

Although ASP is syntactically close to Prolog, the execution model and the se-
mantics are sufficiently different to make debugging techniques developed for Prolog
impractical. E.g., traditionaltrace-baseddebuggers [17] (e.g., Prolog four-port debug-
gers), used to trace the entire proof search tree (paired with execution control mecha-
nisms, like spy points and step execution), are cumbersome in ASP, since:
• Trace-based debuggers provide the entire search sequence, including failed paths,

which are irrelevant in understanding specific elements of an answer set.
• The process of computing answer sets is bottom-up, and the determination of the

truth value of one atom is intermixed with the computation of other atoms; a direct
tracing makes it hard to focus on what is relevant to one particular atom.

• Tracing repeats previously performed executions, degrading debugging performance.
In this paper, we address these issues by elaborating the concept ofoff-line justification
for ASP. This notion is an evolution of the concept ofjustification, proposed to justify



truth values in tabled Prolog [17, 14]. Intuitively, an off-line justification of an atom
w.r.t. an answer set is a graph encoding the reasons for the atom’s truth value. This
notion can be used to explain the presence or absence of an atom in an answer set, and
provides the basis for building ajustifier for answer set solvers.

The notion of off-line justification is helpful when investigating the content of one
(or more) answer sets. When the program does not have answer sets, a different type
of justification is needed. We believe it is impractical to rely on a single justification
structure to tackle this issue; we prefer, instead, to provide the programmer with ady-
namicdata structure that will help him/her discover the sources of inconsistencies. The
data structure we propose is calledon-line justification, and it provides justifications
with respect to apartial and/orinconsistentinterpretation. The intuition is to allow the
programmer to interrupt the computation (e.g., at the occurrence of certain events, such
as assignment of a truth value to a given atom) and to use the on-line justification to ex-
plore the motivations behind the content of the partial interpretation (e.g., why a given
atom is receiving conflicting truth values). We describe agenericmodel of on-line jus-
tification and a version specialized to the execution model ofSMODELS [19]. The latter
has been implemented inASP− PROLOG [8].
Related work: Various approaches to logic program debugging have been investigated
(a thorough comparison is beyond the limited space of this paper). As discussed in
[14], 3 main phases can be considered in understanding/debugging a logic program.
(1) Program instrumentation and execution:assertion-based debugging (e.g., [16]) and
algorithmic debugging [18] are examples of approaches focused on this first phase.(2)
Data Collection:focuses onextractingfrom the execution data necessary to understand
it, as in event-based debugging [3] and explanation-based debugging [7, 12].(3) Data
Analysis:focuses on reasoning on data collected during the execution. The proposals
dealing with automated debugging (e.g., [3]) and execution visualization (e.g., [21]) are
approaches focusing on this phase of program understanding.
The notion ofJustificationhas been introduced in [17, 14, 20] to support understanding
and debugging of Prolog programs. Justification is the process of generating evidence,
in terms of high-level proofs based on the answers (or models) produced during the
computation. Justification plays an important role in manual and automatic verifica-
tion, by providing aproof descriptionif a given property holds; otherwise, it gener-
ates acounter-example, showing where the violation/conflict occurs in the system. The
justification-based approach focuses on the last two phases of debugging—collecting
data from the execution and presenting them in a meaningful manner. Justifications are
focused only on parts of the computation relevant to the justified item. Justifications are
fully automated and do not require user interaction (as in declarative debugging).

Our work shares some similarities with the proposals that employ graph structures
to guide computation of answer sets (e.g., [1, 6]), although they use graphs for program
representation, instead of using graphs to justify an execution.

2 Preliminary Definitions

In this paper, we focus on a logic programming language with negation as failure—e.g.,
the language ofSMODELS without weight constraints [19].



The Language:Let ΣP = 〈F ,Π〉 be a signature, whereF is a finite set of constants
andΠ is a finite set of predicate symbols. In particular, we assume that> (stands for
true) and⊥ (stands forfalse) are zero-ary predicates inΠ. A term is a constant of
F . An atom is of the formp(t1, . . . , tn) wherep ∈ Π, andt1, . . . , tn are terms. In this
paper, we deal with normal logic programs, i.e., logic programs that can make use of
both positive and negation-as-failure literals. A literal is either an atom (Positive Literal)
or not a wherea is an atom (NAF Literal). We will identify withA the set of all atoms,
and withL the set of all literals. Our focus is on ground programs, as current ASP
engines operate on ground programs.Nevertheless, programmers can write non-ground
programs, and each rule represents the set of its ground instances.1

A rule is of the formh :− b1, . . . , bn whereh is an atom and{b1, . . . , bn} ⊆ L.
Given a ruler, we denoteh with head(r) and we usebody(r) to denote{b1, . . . , bn}.
We denote withpos(r) = body(r) ∩ A and withneg(r) = {a | (not a) ∈ body(r)}.
NANT (P ) denotes the atoms which appear in NAF literals inP—i.e.,NANT (P ) =
{a ∈ A | ∃r ∈ P. a ∈ neg(r)}.

Answer Set Semantics and Well-Founded Semantics:A possible interpretation(or
p-interpretation) I is a pair〈I+, I−〉, whereI+ ∪ I− ⊆ A. For a p-interpretation
I, we will use the notationI+ andI− to denote its two components. A(three-valued)
interpretationI is a possible interpretation〈I+, I−〉whereI+∩I− = ∅. I is acomplete
interpretationif I+ ∪ I− = A. For two p-interpretationsI andJ , I v J iff I+ ⊆ J+

andI− ⊆ J−. A positive literala is satisfied byI (I |= a) if a ∈ I+. A NAF literal
not a is satisfied byI (I |= not a) if a ∈ I−. A set of literalsS is satisfied byI
(I |= S) if I satisfies each literal inS. The notion of satisfaction is extended to rules
and programs as usual.

For an interpretationI and a programP , thereductof P w.r.t.I (P I ) is the program
obtained fromP by deleting(i) each ruler such thatneg(r)∩ I+ 6= ∅, and(ii) all NAF
literals in the bodies of the remaining clauses. A complete interpretationI is ananswer
set[9] of P if I+ is the least Herbrand model ofP I [2].

We will denote withWFP = 〈WF+
P ,WF−P 〉 the (unique)well-founded model[2]

of programP (we omit its definition for lack of space).

Interpretations and Explanations: Let P be a program andI be an interpretation. An
atoma is true (false, or unknown) in I if a ∈ I+, (a ∈ I−, or a 6∈ I+ ∪ I−). not a
is true (false, unknown) inI if a ∈ I−, (a ∈ I+, a 6∈ I+ ∪ I−). We will denote with
atom(`) the atom on which the literal̀is constructed.

We will now introduce some notations that we will use in the rest of the paper. The
graphs used to explain will refer to the truth value assigned to an atom; furthermore, as
we will see later, we wish to encompass those cases where an atom may appear as being
both true and false (e.g., a conflict during construction of an answer set). For an atom
a, we writea+ to denote the fact that the atom is true, anda− to denote the the fact that
a is false. We will calla+ anda− the annotatedversions ofa; furthermore, we will
defineatom(a+) = a andatom(a−) = a. For a set of atomsS, Sp = {a+ | a ∈ S},

1 The visual representations of justifications (produced by thedraw/1 predicate—Sect. 5.3)
show the original non-ground rules.



Sn = {a− | a ∈ S}, and not S = { not a | a ∈ S}. In building the notion of
justification, we will deal with labeled, directed graphs, called e-graphs.

Definition 1 (Explanation Graph). For a program P , a labeled, directed graph
(N, E) is called anExplanation Graph(or e-graph) if
• N ⊆ Ap ∪ An ∪ {assume,>,⊥} and
• E is a set of tuples of the form(p, q, s), with p, q ∈ N ands ∈ {+,−};
• the only sinks in the graph are:assume,>, and⊥;
• for everyb ∈ N ∩ Ap, (b, assume,−) 6∈ E and(b,⊥,−) 6∈ E;
• for everyb ∈ N ∩ An, (b, assume, +) 6∈ E and(b,>, +) 6∈ E;
• for everyb ∈ N , if (b, l, s) ∈ E for somel ∈ {assume,>,⊥} ands ∈ {+,−}
then(b, l, s) is the only outgoing edge originating fromb.

Edges labeled′+′ are calledpositiveedges, while those labeled′−′ are callednegative
edges. A path in an e-graph ispositiveif it contains only positive edges, while a path is
negative if it contains at least one negative edge. We will denote with(n1, n2) ∈ E∗,+

the fact that there is a positive path fromn1 to n2 in the given e-graph. The above
definition allows us to define the notion of a support set of a node in an e-graph.

Definition 2. Given an e-graphG = (N,E) and a nodeb ∈ N ∩ (Ap ∪ An),
• support(b,G) = {atom(c) | (b, c, +) ∈ E} ∪ { not atom(c) | (b, c,−) ∈ E}, if
for every` ∈ {assume,>,⊥} ands ∈ {+,−}, (b, `, s) 6∈ E;
• support(b,G) = {`} if (b, `, s) ∈ E if ` ∈ {assume,>,⊥} ands ∈ {+,−}.
The local consistent explanation2 describes one step of justification for a literal.

It describes the possible local reasons for the truth/falsity of a literal. Ifa is true, the
explanation contains those bodies of the rules fora that are satisfied byI. If a is false,
the explanation contains sets of literals that are false inI and they falsify all rules fora.

Definition 3 (Local Consistent Explanation).Let b be an atom,J a possible inter-
pretation,A a set of atoms (assumptions), andS ⊆ A ∪ not A ∪ {assume,>,⊥} a
set of literals. We say that

– S is a local consistent explanation (LCE) ofb+ w.r.t. (J,A), if S ∩ A ⊆ J+ and
{c | not c ∈ S} ⊆ J− ∪A, b ∈ J+, and
• S = {assume}, or
• there is a ruler in P such thathead(r) = b andS = body(r); for convenience,

we writeS = {>} to denote the case wherebody(r) = ∅.
– S is a local consistent explanation ofb− w.r.t. (J,A) if S ∩ A ⊆ J− ∪ A and
{c | not c ∈ S} ⊆ J+, b ∈ J− ∪A, and
• S = {assume}; or
• S is a minimal set of literals such that for every ruler ∈ P , if head(r) = b,

thenpos(r) ∩ S 6= ∅ or neg(r) ∩ {c | not c ∈ S} 6= ∅; for convenience, we
write S = {⊥} to denote the caseS = ∅.

2 Note that our notion of local consistent explanation is similar in spirit, but different in practice
from the analogous definition used in [17, 14].



We will denote withLCEp
P (b, J,A) the set of all the LCEs ofb+ w.r.t. (J,A), and with

LCEn
P (b, J,A) the set of all the LCEs ofb− w.r.t. (J,A).

Example 1.Let P be the program:

a :− f, not b. b :− e, not a. e :− .
f :− e. d :− c, e. c :− d, f.

This program has the answer setsM1 = 〈{f, e, b}, {a, c, d}〉 and M2 =
〈{f, e, a}, {c, b, d}〉. We have:LCEn

P (a,M1, ∅) = {{ not b}}, LCEp
P (b,M1, ∅) =

{{e, not a}}, LCEp
P (e,M1, ∅) = {>}, LCEp

P (f, M1, ∅) = {{e}},
LCEn

P (d,M1, ∅) = {{c}}, LCEn
P (c,M1, ∅) = {{d}}. 2

An e-graph is a general structure that can be used to explain the truth value ofa, i.e.,
a positive (negative) e-graph represents a possible explanation fora being true (false).
To select an e-graph as an acceptable explanation, we need two additional components:
the current interpretation (J) and the collection (A) of elements that have been intro-
duced in the interpretation without any “supporting evidence”. An e-graph based on
(J,A) is defined next.

Definition 4 ((J,A)-Based Explanation Graph).Let P be a program,J a possible
interpretation,A a set of atoms, andb an element inAp ∪An. A (J,A)-based explana-
tion graphG = (N,E) of b is an e-graph such that

• every nodec ∈ N is reachable fromb;
• for everyc ∈ N \ {assume,>,⊥}, support(c,G) is an LCE ofc w.r.t. (J,A).

Definition 5. A (J,A)-based e-graph(N, E) is safeif ∀b+ ∈ N , (b+, b+) 6∈ E∗,+.

Example 2.Consider the e-graphs in Figure 1, for the program of Example 1. We have
that none of the e-graphs ofa+ ((i) and (ii)) is a (M1, {c, d})-based e-graph ofa+

but both are(M2, {b, c, d})-based e-graph ofa+. On the other hand, the e-graph ofc+

(iii) is neither a(M1, {c, d})-based nor(M2, {b, c, d})-based e-graph ofc+, while the
e-graph ofc− (iv) is an a(M1, {c, d})-based and a(M2, {b, c, d})-based e-graph ofc−.
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Fig. 1. Sample(J, A)-based Explanation Graphs

3 Off-line Justifications for ASP

Off-line justifications are employed to motivate the truth value of an atom w.r.t. a given
(complete) answer set. IfM is an answer set andWFP the well-founded model ofP ,



then it is known that,WF+
P ⊆ M+ andWF−P ⊆ M− [2]. Furthermore, we observe

that the content ofM is uniquely determined by the truth values assigned to certain
atoms inV = NANT (P )\(WF+

P ∪WF−P ), i.e., atoms that appear in negative literals
and are not determined by the well-founded model. In particular, we are interested in
those subsets ofV with the following property: if all the elements in the subset are
assumed to be false, then the truth value of all other atoms inA is uniquely determined.
We call these subsets theassumptionsof the answer set.

Definition 6 (Pre-Assumptions).Let P be a program andM be an answer set ofP .
Thepre-assumptionsof P w.r.t. M (denoted byPAP (M)) are defined as:

PAP (M) = {a | a ∈ NANT (P ) ∧ a ∈ M− ∧ a 6∈ (WF+
P ∪WF−P )}

The negative reduct of a programP w.r.t. a set of atomsA is a program obtained
from P by forcing all the atoms inA to be false.

Definition 7 (Negative Reduct).Let P be a program,M an answer set ofP , and
A ⊆ PAP (M) a set of atoms. Thenegative reductof P w.r.t.A, denoted byNR(P, A),
is the set of rules:P \ { r | head(r) ∈ A}.

Definition 8 (Assumptions). Let P be a program andM be an answer set ofP .
An assumptionw.r.t. M is a set of atomsA satisfying the following properties:(1)
A ⊆ PAP (M), and (2) the well-founded model ofNR(P, A) is equal toM—i.e.,
WFNR(P,A) = M . We will denote withAss(P,M) the set of all assumptions ofP
w.r.t. M . A minimal assumptionis an assumption that is minimal w.r.t. properties (1)
and (2).

We can observe that the setAss(P, M) is not empty, sincePAP (M) is an assumption.

Proposition 1. Given an answer setM of P , the well-founded model of
NR(P,PAP (M)) is equal toM .

We will now specialize e-graphs to the case of answer sets, where only false ele-
ments can be used as assumptions.

Definition 9 (Off-line Explanation Graph). Let P be a program,J a partial inter-
pretation,A a set of atoms, andb an element inAp ∪ An. An off-line explanation
graphG = (N, E) of b w.r.t. J and A is a (J,A)-based e-graph ofb satisfying the
following conditions: there exists nop+ ∈ N such that(p+, assume, +) ∈ E, and if
(p−, assume,−) ∈ E thenp ∈ A. E(b, J,A) denotes the set of all off-line explanation
graphs ofb w.r.t. J andA.

Definition 10 (Off-line Justification). Let P be a program,M an answer set,A ∈
Ass(P, M), anda ∈ Ap∪An. Anoff-line justificationofa w.r.t.M andA is an element
(N, E) of E(a,M, A) which is safe.JP (a,M, A) contains all off-line justifications of
a w.r.t. M andA.

If M is an answer set anda ∈ M+ (a ∈ M−), thenG is an off-line justification ofa
w.r.t. M,A iff G is an off-line justification ofa+ (a−) w.r.t. M, A.



Justifications are built by assembling items from the LCEs of the various atoms
and avoiding the creation of positive cycles in the justification of true atoms. Also,
the justification is built on a chosen set of assumptions (A), whose elements are all
assumed false. In general, an atom may admit multiple justifications, even w.r.t. the
same assumptions. The following lemma shows that elements inWFP can be justified
without negative cycles and assumptions.

Lemma 1. Let P be a program,M an answer set, andWFP the well-founded model
of P . Each atom has an off-line justification w.r.t.M and∅ without negative cycles.

From the definition of assumption and from the previous lemma we can infer that a
justification free of negative cycles can be built for every atom.

Proposition 2. LetP be a program andM an answer set. For each atoma, there is an
off-line justification w.r.t.M andM− \WF−P which does not contain negative cycles.

Proposition 2 underlines an important property—the fact that all true elements can be
justified in a non-cyclic fashion. This makes the justification more natural, reflecting
the non-cyclic process employed in constructing the minimal answer set (e.g., using the
iterations ofTP ) and the well-founded model (e.g., using the characterization in [5]).
This also gracefully extends a similar nice property satisfied by the justifications under
well-founded semantics used in [17]. Note that the only cycles possibly present in the
justifications are positive cycles associated to (mutually dependent) false elements—
this is an unavoidable situation due the semantic characterization in well-founded and
answer set semantics (e.g., unfounded sets).

Example 3.Let us consider the program in Example 1. We have thatNANT (P ) =
{b, a}. The assumptions for this program are:Ass(P, M1) = {{a}} and
Ass(P, M2) = {{b}}. The off-line justifications for atoms inM1 w.r.t. M1 and{a}
are shown in Fig. 2.
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Fig. 2. Off-line Justifications w.r.t.M1 and{a} for b, f , e, c anda (left to right)

4 On-Line Justifications for ASP

In this section, we introduce the concept of on-line justification, which is generateddur-
ing the computation of an answer set and allows us to justify atoms w.r.t. an incomplete
interpretation (an intermediate step in the construction of the answer set). The concept
of on-line justification is applicable to computation models that construct answer sets in
an incremental fashion (e.g., [19, 11, 1])—where we can view the computation as a se-
quence of steps, each associated to a partial interpretation. We will focus, in particular,
on computation models where the progress towards the answer set is monotonic.



Definition 11 (General Computation).Let P be a program. Ageneral computation
is a sequenceM0,M1, . . . , Mk, such that(i) M0 = 〈∅, ∅〉, (ii) M0, . . . ,Mk−1 are
partial interpretations, and(iii) Mi v Mi+1 for i = 0, . . . , k − 1. A general complete
computationis a computationM0, . . . , Mk such thatMk is an answer set ofP .

We do not requireMk to be a partial interpretation, as we wish to model computations
that can also fail (i.e.,M+

k ∩M−
k 6= ∅).

Our objective is to associate some form of justification to each intermediate stepMi

of a general computation. Ideally, we would like the justifications associated to eachMi

to explain truth values in the “same way” as in the final off-line justification. Since the
computation model might rely on “guessing” some truth values,Mi might not contain
sufficient information to develop a valid justification for each element inMi. We will
identify those atoms for which a justification can be constructed givenMi. These atoms
describe a p-interpretationDi v Mi. The computation ofDi is defined based on the
two operatorsΓ and∆, which will respectively computeD+

i andD−
i .

Let us start with some preliminary definitions. LetP be a program andI be a p-
interpretation. A set of atomsS is called acycle w.r.t. Iif for everya ∈ S andr ∈ P such
thathead(r) = a, we have thatpos(r)∩I− 6= ∅ or neg(r)∩I+ 6= ∅ or pos(r)∩S 6= ∅.
We can prove that, ifI is an interpretation,S is a cycle w.r.t.I andM is an answer set
with I v M thenS ⊆ M−. The set of cycles w.r.t.I is denoted bycycles(I). For every
elemente ∈ Ap ∪ An, let PE(e, I) be the set of LCEs ofe w.r.t. I and∅.

Let P be a program andI v J be two p-interpretations. We define

ΓI(J) = I+ ∪ {head(r) ∈ J+ | I |= body(r)}
∆I(J) = I− ∪ {a ∈ J− | PE(a−, I) 6= ∅} ∪ ⋃{S | S ∈ cycles(I), S ⊆ J−}

Intuitively, for I v J , we have thatΓI(J) (resp.∆I(J)) is a set of atoms that have
to be true (resp. false) in every answer set extendingJ , if J is a partial interpretation.
In particular, ifI is the set of“justifiable” literals (literals for which we can construct
a justification) andJ is the result of the current computation step, then we have that
〈ΓI(J),∆I(J)〉 is a new interpretation,I v 〈ΓI(J),∆I(J)〉 v J , whose elements are
all “justifiable” . Observe that it is not necessarily true thatΓI(J) = J+ and∆I(J) =
J−. This reflects the practice of guessing literals and propagating these guesses in the
computation of answer sets, implemented by several solvers.

We are now ready to specify how the setDi is computed. LetJ be a p-interpretation.

Γ 0(J) = Γ∅(J) ∆0(J) = PAP (J) ∪∆∅(J)
Γ i+1(J) = ΓIi(J) ∆i+1(J) = ∆Ii(J) whereIi = 〈Γ i(J),∆i(J)〉

Let

Γ (J) =
∞⋃

i=0

Γ i(J) and ∆(J) =
∞⋃

i=0

∆i(J)

BecauseΓ i(J) ⊆ Γ i+1(J) ⊆ J+ and∆i(J) ⊆ ∆i+1(J) ⊆ J− (recall thatI v J),
we know that bothΓ (J) and∆(J) are well-defined. We can prove the following:

Proposition 3. For a programP , we have that:



• Γ and ∆ maintain the consistency ofJ , i.e., if J is an interpretation, then
〈Γ (J),∆(J)〉 is also an interpretation;
• Γ and∆ are monotone w.r.t the argumentJ , i.e., if J v J ′ thenΓ (J) ⊆ Γ (J ′)
and∆(J) ⊆ ∆(J ′);
• Γ (WFP ) = WF+

P and∆(WFP ) = WF−P ; and
• if M is an answer set ofP , thenΓ (M) = M+ and∆(M) = M−.

Definition 12 (On-line Explanation Graph). Let P be a program,A a set of atoms,
J a p-interpretation, anda ∈ Ap ∪An. Anon-line explanation graphG = (N,E) of a
w.r.t. J andA is a (J,A)-based e-graph ofa.

Observe that, ifJ is an answer set andA a set of assumption, then any off-line e-graph
of a w.r.t. J andA is also an on-line e-graph ofa w.r.t. J andA.

Observe thatΓ 0(J) contains the facts ofP that belong toJ+ and ∆0(J) con-
tains the atoms without defining rules and atoms belonging to positive cycles ofP .
As such, it is easy to see that for each atoma in 〈Γ 0(J), ∆0(J)〉, we can con-
struct an e-graph fora+ or a− whose nodes belong to(Γ 0(J))p ∪ (∆0(J))n. More-
over, if a ∈ Γ i+1(J) \ Γ i(J), an e-graph with nodes (excepta+) belonging to
(Γ i(J))p ∪ (∆i(J))n can be constructed; and ifa ∈ ∆i+1(J) \ ∆i(J), an e-graph
with nodes belonging to(Γ i+1(J))p ∪ (∆i+1(J))n can be constructed. This leads to
the following lemma.

Lemma 2. LetP be a program,J a p-interpretation, andA = PAP (J). It holds that
◦ for each atoma ∈ Γ (J) (resp.a ∈ ∆(J)), there exists asafeoff-line e-graph of
a+ (resp.a−) w.r.t. J andA;
◦ for each atoma ∈ J+ \ Γ (J) (resp.a ∈ J− \ ∆(J)) there exists an on-line
e-graph ofa+ (resp.a−) w.r.t. J andA.

Let us show how the above proposition can be used in defining a notion calledon-line
justification. To this end, we associate to each partial interpretationJ a snapshotS(J):

Definition 13. Given a p-interpretationJ , a snapshot ofJ is a tuple S(J) =
〈Off(J), On(J), 〈Γ (J),∆(J)〉〉, where

• for eacha in Γ (J) (resp.a in ∆(J)), Off(J) contains exactly one safe positive
(negative) off-line e-graph ofa+ (resp.a−) w.r.t. J andPAP (J);
• for eacha ∈ J+ \Γ (J) (resp.a ∈ J− \∆(J)), On(J) contains exactly one on-line
e-graph ofa+ (resp.a−) w.r.t. J andPAP (J).

Definition 14. (On-line Justification) Given a computationM0, M1, . . . , Mk, anon-
line justificationof the computation is a sequence of snapshotsS(M0), S(M1), . . . ,
S(Mk).

Remark 1.Observe that the monotonicity of the computation allows us to avoid re-
computingΓ and∆ from scratch at every step. In particular, when computing the fix-
point we can start the iterations fromΓ〈Γ (Mi),∆(Mi)〉 and∆〈Γ (Mi),∆(Mi)〉 and looking
only at the elements of〈M+

i+1 \ Γ (Mi),M−
i+1 \ ∆(Mi)〉. Similarly, the computation

of Off(Mi+1) can be made incremental, by simply adding toOff(Mi+1) the off-line
e-graphs for the elements inΓ (Mi+1)\Γ (Mi) and∆(Mi+1)\∆(Mi). Note that these
new off-line graphs can be constructed reusing the off-line graphs already inOff(Mi).



Example 4.Let us consider the programP containing
s :− a, not t. a :− f, not b. b :− e, not a. e :− f :− e.

Two possible general computations ofP are

M1
0 = 〈{e, s}, ∅〉 M1

1 = 〈{e, s, a}, {t}〉 M1
2 = 〈{e, s, a, f}, {t, b}〉

M2
0 = 〈{e, f}, ∅〉 M2

1 = 〈{e, f}, {t}〉 M2
2 = 〈{e, f, b, a}, {t, a, b, s}〉

The first computation is a complete computation leading to an answer set ofP while
the second one is not. An on-line justification for the first computation is given next:

S(M1
0 ) = 〈X0, Y0, 〈{e}, ∅〉〉

S(M1
1 ) = 〈X0 ∪X1, Y0 ∪ Y1, 〈{e}, {t}〉〉

S(M1
2 ) = 〈X0 ∪X1 ∪X3, ∅,M2

1 〉
whereX0={({e+,>}, {(e+,>, +)})}, Y0={({s+, assume}, {(s+, assume, +)})},
X1={({t−,⊥}, {(t−,⊥,−)})}, Y1={{a+, assume}, {(a+, assume, +)})}, andX3

is a set of off-line justifications fors, a, f , andb (omitted due to lack of space). 2

We can relate the on-line justifications and off-line justifications as follows.

Lemma 3. Let P be a program,J an interpretation, andM an answer set such that
J v M . For each atoma, if (N, E) is a safe off-line e-graph ofa+ (a−) w.r.t. J and
J− ∩ PAP (M) then it is an off-line justification ofa+ (a−) w.r.t. M andPAP (M).

Proposition 4. Let M0, . . ., Mk be a general complete computation andS(M0), . . .,
S(Mk) be an on-line justification of the computation. Then, for each atoma ∈ M+

k

(resp.a ∈ M−
k ), the e-graph ofa+ (resp.a−) in S(Mk) is an off-line justification of

a+ (resp.a−) w.r.t. Mk andPAP (M).

5 SMODELS On-line Justifications

The notion of on-line justification presented in the previous section is very general, to fit
the needs of different models of computation. In this section, we specialize the notion of
on-line justification to a specific computation model—the one used inSMODELS [19].
This allows us to define an incremental version of on-line justification—where the steps
performed bySMODELS are used to guide the construction of the justification.

We begin with an overview of the algorithms employed bySMODELS. The choice
of SMODELS was dictated by availability of its source code and its elegant design.
The following description has been adapted from [10, 19]; although more abstract than
the concrete implementation, and without various optimizations (e.g., heuristics, looka-
head), it is sufficiently faithful to capture the spirit of our approach, and to guide the
implementation (see Sect. 5.3).

5.1 An Overview ofSMODELS’ Computation

We propose a description of theSMODELS algorithms based on a composition of state-
transformation operators. In the following, we say that an interpretationI does not
satisfy the body of a ruler (or body(r) is false inI) if (pos(r)∩I−)∪(neg(r)∩I+) 6= ∅.



ATLEAST Operator: TheAtLeast operator is used to expand a partial interpretation
I in such a way that each answer setM of P that “agrees” withI (i.e., the elements in
I have the same truth value inM ) also agrees with the expanded interpretation.

Given a programP and a partial interpretationI, we define the following operators
AL1

P , . . . , AL4
P :

Case 1. if r ∈ P , head(r) /∈ I+, pos(P ) ⊆ I+ andneg(P ) ⊆ I− then
AL1

P (I)+ = I+ ∪ {head(r)} andAL1
P (I)− = I−.

Case 2. if a /∈ I+ ∪ I− and∀r ∈ P.(head(r) = a ⇒ body(r) is false inI), then
AL2

P (I)+ = I+ andAL2
P (I)− = I− ∪ {a}.

Case 3. if a ∈ I+ andr is the only rule inP with head(r) = a and whose body is not
false inI then,AL3

P (I)+ = I+ ∪ pos(r) andAL3
P (I)− = I− ∪ neg(r).

Case 4. if a ∈ I−, head(r) = a, and(pos(r) \ I+) ∪ (neg(r) \ I−) = {b} then,
AL4

P (I)+ = I+ ∪ {b} andAL4
P (I)− = I− if b ∈ neg(r)

AL4
P (I)− = I− ∪ {b} andAL4

P (I)+ = I+ if b ∈ pos(r).
Given a programP and an interpretationI, ALP (I) = ALi

P (I) if ALi
P (I) 6= I and

∀j < i. ALj
P (I) = I (1 ≤ i ≤ 4); otherwise,ALP (I) = I.

ATMOST Operator: The AtMostP operator recognizes atoms that are defined ex-
clusively as mutual positive dependences (i.e., “positive loops”)—and falsifies them.
Given a set of atomsS, the operatorAMP is defined asAMP (S) = S∪{head(r) |r ∈
P ∧ pos(r) ⊆ S}.

Given an interpretationI, theAtMostP (I) operator is defined asAtMostP (I) =
〈I+, I− ∪ {p ∈ A | p 6∈ ⋃

i≥0 Si}〉 whereS0 = I+ andSi+1 = AMP (Si).

CHOOSEOperator: This operator is used to randomly select an atom that is unknown
in a given interpretation. Given a partial interpretationI, chooseP returns an atom ofA
such thatchooseP (I) 6∈ I+ ∪ I− andchooseP (I) ∈ NANT (P ) \ (WF+

P ∪WF−P ).

SMODELS COMPUTATION: Given an interpretationI, we define the transitions:

I 7→ALc I ′
{

If I ′ = ALc
P (I), c ∈ {1, 2, 3, 4}

I 7→atmost I ′
{

If I ′ = AtMostP (I)
I 7→choice I ′

{
If I ′ = 〈I+ ∪ {chooseP (I)}, I−〉 or I ′ = 〈I+, I− ∪ {chooseP (I)}〉

We use the notation I 7→ I ′ to indicate that there ex-
ists α ∈ {AL1, AL2, AL3, AL4, atmost, choice} such thatI 7→α I ′. A SMODELS

computation is a general computationM0,M1, . . . , Mk such thatMi 7→ Mi+1.
TheSMODELS system imposes constraints on the order of application of the transi-

tions. Intuitively, theSMODELS computation is shown in the algorithms of Figs. 3-4.

Example 5.Consider the program of Example 1. A possible computation ofM1 is:3

〈∅, ∅〉 7→AL1 〈{e}, ∅〉 7→AL1 〈{e, f}, ∅〉 7→atmost

〈{e, f}, {c, d}〉 7→choice 〈{e, f, b}, {c, d}〉 7→AL2 〈{e, f, b}, {c, d, a}〉

3 We omit the steps that do not change the interpretation.



function smodels(P ):
S = 〈∅, ∅〉;
loop

S = expand(P , S);
if (S+ ∩ S− 6= ∅) then

fail ;
if (S+ ∪ S− = A) then

success(S);
pick either % non-deterministic choice

S+ = S+ ∪ {choose(S)} or
S− = S− ∪ {choose(S)}

endloop;

Fig. 3. Sketch ofsmodels

function expand(P , S):
loop

S′ = S;
repeat

S = ALP (S);
until (S = ALP (S));
S = AtMost(P , S);
if (S′ = S) then return (S);

endloop;

Fig. 4. Sketch ofexpand

5.2 SMODELS On-line Justifications

We can use knowledge of the specific steps performed bySMODELS to guide the
construction of an on-line justification. Let us consider the stepMi 7→α Mi+1

and let us consider the possible7→α. Let S(Mi) = 〈E1, E2, D〉 and S(Mi+1) =
〈E′

1, E
′
2, D

′〉. Obviously, S(Mi+1) can always be computed by computingD′ =
〈Γ (Mi+1),∆(Mi+1)〉 and updatingE1 and E2. As discussed in Remark 1,D′ can
be done incrementally. RegardingE′

1 andE′
2, observe that the e-graphs for elements

in 〈Γ k(Mi+1),∆k(Mi+1)〉 can be constructed using the e-graphs constructed for el-
ements in〈Γ k−1(Mi+1),∆k−1(Mi+1)〉 and the rules involved in the computation of
〈Γ k(Mi+1),∆k(Mi+1)〉. Thus, we only need to updateE′

1 with e-graphs of elements of
〈Γ k(Mi+1),∆k(Mi+1)〉 which do not belong to〈Γ k−1(Mi+1),∆k−1(Mi+1)〉. Also,
E′

2 is obtained fromE2 by removing the e-graphs of atoms that “move” intoD′ and
adding the e-graph(a+, assume,+) (resp.(a−, assume,−)) for a ∈ M+

i+1 (resp.
a ∈ M−

i+1) not belonging toD′.

◦ α ≡ choice: let p be the atom chosen in this step. Ifp is chosen to be true, then
we can use the graphGp = ({a+, assume}, {(a+, assume, +)}) and the resulting
snapshot isS(Mi+1) = 〈E1, E2 ∪ {Gp}, D〉—D is unchanged, since the structure
of the computation (in particular the fact that anexpandhas been done before the
choice) ensures thatp will not appear in the computation ofD. If p is chosen to be
false, then we will need to addp toD−, computeΓ (Mi+1) and∆(Mi+1) (using the
optimization as discussed in Remark 1), and updateE1 andE2 correspondingly; in
particular,p belongs to∆(Mi+1) andGp = ({a−, assume}, {(a−, assume,−)}) is
added toE1.

◦ α ≡ atmost: in this case,Mi+1 = 〈M+
i ,M−

i ∪ AtMost(P, Mi)〉. The com-
putation ofS(Mi+1) is performed as from definition. In particular, observe that if
∀c ∈ AtMost(P,Mi) we have thatLCEn

P (c−, D, ∅) 6= ∅ then the computation
can be started fromΓ (Mi) and∆(Mi) ∪AtMost(P, Mi).

◦ α ≡ AL1: let p be the atom dealt with in this step and letr be the rule employed.
We have thatMi+1 = 〈M+

i ∪ {p},M−
i 〉. If D |= body(r) thenS(Mi+1) can



be computed from the definition (and starting fromΓ (Mi) ∪ {p} and∆(Mi)); in
particular, an off-line graph forp+, Gp, will be added toE1 and such graph will
be constructed using the ruler and the e-graphs inE1. Otherwise,S(Mi+1) =
〈E1, E2 ∪ {G+(p, r,Σ)}, D〉, whereG+(p, r,Σ) is the e-graph ofp+ constructed
using ruler and using the e-graphs inΣ = E1 ∪ E2 (note that all elements in
body(r) have an e-graph inE1 ∪ E2).

◦ α ≡ AL2: let p be the atom dealt with in this step. In this caseMi+1 =
〈M+

i ,M−
i ∪ {p}〉. If there existsγ ∈ LCEn

P (p, D, ∅) thenS(Mi+1) can be com-
puted from the definition (starting fromΓ (Mi) and∆(Mi)∪ {p}; observe that the
graph ofp− can be constructed starting with{(p−, a−, +) | a ∈ γ}∪{(p−, b+,−) |
not b ∈ γ}). Otherwise, given an arbitraryψ ∈ LCEn

P (p,Mi, ∅), we can build an
e-graphGp for p− such thatψ = support(b,Gp) and the graphsE1 ∪E2 are used
to describe the elements ofγ, andS(Mi+1) = 〈E1, E2 ∪ {Gp}, D〉.

◦ α ≡ AL3: let r be the rule used in this step and letp = head(r). ThenMi+1 =
〈M+

i ∪pos(r),M−
i ∪neg(r)〉 andS(Mi+1) is computed according to the definition.

Observe that the e-graphGp for p+ (added toE1 or E2) for S(Mi+1) will be
constructed usingbody(r) assupport(p,Gp), and using the e-graphs inE1∪E2∪Σ
for someΣ ⊆ {(a+, assume, +) | a ∈ pos(r)}∪{(a−, assume,−) | a ∈ neg(r)}.

◦ α ≡ AL4: let r be the rule processed and letb the atom detected in the body.
If b ∈ pos(r), thenMi+1 = 〈M+

i ,M−
i ∪ {p}〉 andS(Mi+1) is computed using

the definition. Analogously, ifb ∈ neg(r) thenMi+1 = 〈M+
i ∪ {b},M−

i 〉 and
S(Mi+1) is computed using the definition.

Example 6.Let us consider the computation of Example 5. A sequence of snapshots is
(we provide only the edges of the graphs and combine e-graphs of different atoms):

E1 E2 D
S(M0) ∅ ∅ ∅
S(M1) {(e+,>, +)} ∅ 〈{e}, ∅〉
S(M2) {(e+,>, +), (f+, e+, +)} ∅ 〈{e, f}, ∅〉
S(M3)

{
(e+,>,+), {f+, e+,+)
(d−, c−,+), (c−, d−, +)

}
∅ 〈{e, f}, {c, d}〉

S(M4)
{

(e+,>,+), {f+, e+,+)
(d−, c−,+), (c−, d−, +)

}
{(b+, assume,+)} 〈{e, f}, {c, d}〉

S(M5)





(e+,>, +), {f+, e+, +),
(d−, c−, +), (c−, d−,+),

(a−, assume,−),
(b+, e+, +), (b+, a−,−)





∅ 〈{e, f, b}, {c, d, a}〉

5.3 Discussion

The description ofSMODELS on-line justifications we proposed is clearly more abstract
than the concrete implementation—e.g., we did not address the use of lookahead, the
use of heuristics, and other optimizations introduced inSMODELS. We also did not ad-
dress the extensions available inSMODELS (e.g., choice rules). All these elements can



be handled in the same spirit of what described here, and they would require more space
than available in this paper; all these elementshave been addressedin the implementa-
tion of SMODELS on-line justification.

The notions of justification proposed here is meant to represent the basic data struc-
ture on which debugging strategies for ASP can be developed. We have implemented
both the off-line and the on-line justifications within theASP− PROLOG system [8].
ASP− PROLOG allows the construction of Prolog programs (in CIAO Prolog) which
include modules written in ASP (theSMODELS flavor of ASP). TheSMODELS engine
has been modified to extract, during the computation, a compact footprint of the execu-
tion, i.e., a trace of the key events (corresponding to the transitions described in Sect. 5)
with links to the atoms and rules involved. The modifications of the trace are trailed to
support backtracking. Parts of the justification (as described in the previous section) are
built on the fly, while others (e.g., certain cases ofAL3 andAL4) are delayed until the
justification is requested.

To avoid imposing the overhead of justification construction on every computation,
the programmer has to specify what ASP modules require justifications, using an addi-
tional argument (justify ) in the module import declaration:

:- use asp( 〈module name〉, 〈file name〉, 〈parameters 〉 [,justify]).

On-line justifications are integrated in the ASP debugging facilities of
ASP− PROLOG—which provide predicates to set breakpoints on the execution of
an ASP module (e.g., triggered by assignments of a truth value to a certain atom) and
to step through execution. Off-line justifications are always available.
ASP− PROLOG provides the predicatemodel/1 to retrieve answer sets of an

ASP module—it retrieves them in the order they are computed bySMODELS, and it re-
turns the current one if the computation is still in progress. The main predicate to access
the justification isjustify/1 which retrieves a CIAO Prolog object [15] containing
the justification; i.e.,?- my asp:model(Q), Q:justify(J). will assign toJ
the object containing the justification relative to the answer setQ of the ASP module
my asp . Each justification object provides the following predicates:node/1 which
succeeds if the argument is one of the nodes in the justification graph,edge/3 which
succeeds if the arguments correspond to the components of one of the edges in the
graph, anddraw/1 which will generate a graphical drawing of the justification for the
given atom (using theuDrawGraphapplication). For example,
?- my asp:model(Q),Q:justify(J),findall(e(X,Y),J:edge(p,X,Y),L).

will collect in L all the edges supportingp in the justification graph (for answer setQ).

6 Conclusion

In this paper we provided a generalization of the notion ofjustification(originally de-
signed for Prolog with SLG-resolution [17]), to suit the needs of ASP. The notion,
namedoff-line justification, offers a way to understand the motivations for the truth
value of an atom within a specific answer set, thus making it easy to analyze answer
sets for program understanding and debugging. We also introducedon-line justifica-
tions, which are meant to justify atomsduring the computation of an answer set. The
structure of an on-line justification is tied to the specific steps performed by a computa-



tional model for ASP (specifically, the computation model adopted bySMODELS). An
on-line justification allows a programmer to inspect the reasons for the truth value of an
atom at the moment such value is determined while constructing an answer set. These
data structures provide a foundation for the construction of tools to debug ASP.

The process of computing and presenting justifications has been embedded in the
ASP-Prolog system [8], thus making justifications a first-class citizen of the language.
This allows the programmer to use Prolog to manipulate justifications as standard
Prolog terms. A preliminary implementation can be found atwww.cs.nmsu.edu/

˜okhatib/asp_prolog.html .
As future work, we propose to complete the implementation, refine the definition

of on-line justification to better take advantage ofSMODELS, and develop a complete
debugging and visualization environment for ASP based on these data structures.
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