Justificationsfor Logic Programs under Answer Set
Semantics

Enrico Pontelli, Tran Cao Son

Dept. Computer Science
New Mexico State University
epontell|tson@cs.nmsu.edu

Abstract. The paper introduces the notion off-line justificationfor Answer

Set Programming (ASP). Justifications provide a graph-based explanation of the
truth value of an atom w.r.t. a given answer set. The notion of justification ac-
counts for the specifics of answer set semantics. The paper extends also this no-
tion to provide justification of atomduring the computation of an answer set
(on-line justification), and presents an integration of on-line justifications within
the computation model @MoODELS. Justifications offer a basic data structure to
support methodologies and tools fdebugginganswer set programs. A prelimi-

nary implementation has been developed P — PROLOG.

1 Introduction

Answer set programming (ASK) a programming paradigm [13, 19] based on logic
programming under answer set semantics [9]. ASRighly declarative to solve a
problemP, we specify it as a logic program( P) whose answer sets correspond one-
to-one to solutions of?, and can be computed using an answer set solver. ASP is also
attractive because of its numerous building block results (see, e.g., [4]).

A source of difficulties in ASP lies in the lack ofiethodologie$or program un-
derstanding and debugging. The declarative and the hands-off execution style of ASP
leave a programmer with nothing that helps in explaining the behavior of the programs,
especially for unexpected outcomes of the computation (e.g., incorrect answer sets).

Although ASP is syntactically close to Prolog, the execution model and the se-
mantics are sufficiently different to make debugging techniques developed for Prolog
impractical. E.g., traditionatace-basedlebuggers [17] (e.g., Prolog four-port debug-
gers), used to trace the entire proof search tree (paired with execution control mecha-
nisms, like spy points and step execution), are cumbersome in ASP, since:

e Trace-based debuggers provide the entire search sequence, including failed paths,
which are irrelevant in understanding specific elements of an answer set.

e The process of computing answer sets is bottom-up, and the determination of the
truth value of one atom is intermixed with the computation of other atoms; a direct
tracing makes it hard to focus on what is relevant to one particular atom.

e Tracing repeats previously performed executions, degrading debugging performance.

In this paper, we address these issues by elaborating the conadplioé justification

for ASP. This notion is an evolution of the concepfjudtification proposed to justify



truth values in tabled Prolog [17, 14]. Intuitively, an off-line justification of an atom
w.r.t. an answer set is a graph encoding the reasons for the atom’s truth value. This
notion can be used to explain the presence or absence of an atom in an answer set, and
provides the basis for buildingjastifier for answer set solvers.

The notion of off-line justification is helpful when investigating the content of one
(or more) answer sets. When the program does not have answer sets, a different type
of justification is needed. We believe it is impractical to rely on a single justification
structure to tackle this issue; we prefer, instead, to provide the programmer dyth a
namicdata structure that will help him/her discover the sources of inconsistencies. The
data structure we propose is called-line justification and it provides justifications
with respect to gartial and/orinconsisteninterpretation. The intuition is to allow the
programmer to interrupt the computation (e.g., at the occurrence of certain events, such
as assignment of a truth value to a given atom) and to use the on-line justification to ex-
plore the motivations behind the content of the partial interpretation (e.g., why a given
atom is receiving conflicting truth values). We descritgeeaericmodel of on-line jus-
tification and a version specialized to the execution mod&vodDELS [19]. The latter
has been implemented &SP — PROLOG [8].
Related work: Various approaches to logic program debugging have been investigated
(a thorough comparison is beyond the limited space of this paper). As discussed in
[14], 3 main phases can be considered in understanding/debugging a logic program.
(1) Program instrumentation and executi@ssertion-based debugging (e.g., [16]) and
algorithmic debugging [18] are examples of approaches focused on this first (fjase.
Data Collection:focuses orextractingfrom the execution data necessary to understand
it, as in event-based debugging [3] and explanation-based debugging [[B)1Pjkta
Analysis:focuses on reasoning on data collected during the execution. The proposals
dealing with automated debugging (e.g., [3]) and execution visualization (e.g., [21]) are
approaches focusing on this phase of program understanding.
The notion ofdustificationhas been introduced in [17, 14, 20] to support understanding
and debugging of Prolog programs. Justification is the process of generating evidence,
in terms of high-level proofs based on the answers (or models) produced during the
computation. Justification plays an important role in manual and automatic verifica-
tion, by providing aproof descriptionif a given property holds; otherwise, it gener-
ates acounter-exampleshowing where the violation/conflict occurs in the system. The
justification-based approach focuses on the last two phases of debugging—collecting
data from the execution and presenting them in a meaningful manner. Justifications are
focused only on parts of the computation relevant to the justified item. Justifications are
fully automated and do not require user interaction (as in declarative debugging).

Our work shares some similarities with the proposals that employ graph structures
to guide computation of answer sets (e.g., [1, 6]), although they use graphs for program
representation, instead of using graphs to justify an execution.

2 Preliminary Definitions

In this paper, we focus on a logic programming language with negation as failure—e.g.,
the language o8MODELS without weight constraints [19].



The Language:Let ¥'p = (F, IT) be a signature, whet# is a finite set of constants
and ] is a finite set of predicate symbols. In particular, we assumeTth@tands for

true) and L (stands forfalse) are zero-ary predicates ifi. A termis a constant of

F. An atom is of the fornp(t1, ..., t,) wherep € II, andty, ..., t, are terms. In this
paper, we deal with normal logic programs, i.e., logic programs that can make use of
both positive and negation-as-failure literals. A literal is either an aRwosifive Litera)

or not a wherea is an atom NAF Literal). We will identify with A the set of all atoms,

and with £ the set of all literals. Our focus is on ground programs, as current ASP
engines operate on ground prograisyverthelesgprogrammers can write non-ground
programs, and each rule represents the set of its ground instances.

Arule is of the formh :— by,...,b, whereh is an atom andby,...,b,} C L
Given a ruler, we denotée: with head(r) and we uséody(r) to denote{bl, b,
We denote withpos(r) = body(r) N A and withneg(r) = {a | (not a) € body(r
NANT(P) denotes the atoms which appear in NAF literal$ir-i.e., NANT(P)
{a € A|3Tr € P.a €neg(r)}.

)
2

Answer Set Semantics and Well-Founded Semanticg possible interpretatiorfor
p-interpretatior) I is a pair(I*™,I~), whereI* U I~ C A. For a p-interpretation
I, we will use the notatiod ™ and/~ to denote its two components. (#hree-valued)
interpretation! is a possible interpretatiofi ™, I~) whereI NI~ = (). I is acomplete
interpretationif 7+ U I~ = A. For two p-interpretationg and.J, I C Jiff IT C J*
and7~ C J~. A positive literala is satisfied byl (I |= a) if a € I'T. A NAF literal
not a is satisfied byl (I | not a) if a € I~. A set of literalsS is satisfied byl
(I E S)if I satisfies each literal is. The notion of satisfaction is extended to rules
and programs as usual.

For an interpretatiod and a progran®, thereductof P w.r.t. I (P’) is the program
obtained fromP by deleting(i) each rule such thatieg(r) N I # 0, and(ii) all NAF
literals in the bodies of the remaining clauses. A complete interpretai®ananswer
set[9] of P if I is the least Herbrand model &' [2].

We will denote withW Fp = (W F/, W F5 ) the (unique)well-founded mod€dP]
of programP (we omit its definition for lack of space).

Interpretations and Explanations: Let P be a program and be an interpretation. An
atoma is true (falsg orunknownin I'if a € I, (a € I-,0ra € ITUI™). not a
is true (false, unknown) id if a € I, (a € I, a ¢ I U I™). We will denote with
atom({) the atom on which the literdlis constructed.

We will now introduce some notations that we will use in the rest of the paper. The
graphs used to explain will refer to the truth value assigned to an atom; furthermore, as
we will see later, we wish to encompass those cases where an atom may appear as being
both true and false (e.g., a conflict during construction of an answer set). For an atom
a, we writea™ to denote the fact that the atom is true, arndto denote the the fact that
a is false. We will calla™ anda™ the annotatedversions ofa; furthermore, we will
defineatom(a™) = a andatom(a™) = a. For a set of atom§, S? = {a™ | a € S},

! The visual representations of justifications (produced bydifaev/1 predicate—Sect. 5.3)
show the original non-ground rules.



S ={a” | a € S}, and not S = { not a | a € S}. In building the notion of
justification, we will deal with labeled, directed graphs, called e-graphs.

Definition 1 (Explanation Graph). For a program P, a labeled, directed graph
(N, E) is called anExplanation Graplfor e-grapl) if
e NC AP U A™ U {assumeT, L} and

E is a set of tuples of the forip, ¢, s), withp,q € N ands € {+, —};

the only sinks in the graph ar@ssume, T, and_L;

for everyb € N N A?, (b,assume,—) ¢ Eand(b, L, —) € E;

for everyb € N N A", (b,assume,+) ¢ Fand(b, T,+) &€ E;

for everyb € N, if (b,1,s) € E for somel € {assume, T, L} ands € {+,—}
then(b, , s) is the only outgoing edge originating frobn

Edges labeled+’ are calledpositiveedges, while those labeléd’ are callechegative
edges. A path in an e-graphpssitiveif it contains only positive edges, while a path is
negative if it contains at least one negative edge. We will denote(withn,) € E*+
the fact that there is a positive path from to ny in the given e-graph. The above
definition allows us to define the notion of a support set of a node in an e-graph.

Definition 2. Given an e-graplz = (N, E') and anodé € N N (AP U A"),
o support(b, G) = {atom(c) | (b,c,+) € E} U{ not atom(c) | (b,c,—) € E}, if
for everyl € {assume, T, L} ands € {+,—}, (b,{,s) € E;
e support(b,G) = {{}if (b,¢,s) € Eif ¢ € {assume, T, L} ands € {+,—}.

The local consistent explanatidrdescribes one step of justification for a literal.
It describes the possible local reasons for the truth/falsity of a literalidftrue, the
explanation contains those bodies of the rules:fthrat are satisfied by. If a is false,
the explanation contains sets of literals that are faldeand they falsify all rules fou.

Definition 3 (Local Consistent Explanation).Let b be an atom,J a possible inter-
pretation, A a set of atomsgssumptions andS C AU not AU {assume, T, L} a
set of literals. We say that

— Sis alocal consistent explanation (LCE) bf w.rt. (J, A),if SN.A C J*+ and
{¢| notce S} CJ UAbe Jt, and
o S = {assume}, or
e thereisarulerin P such thatiead(r) = bandS = body(r); for convenience,
we writeS = {T} to denote the case whebedy(r) = (.
— S'is a local consistent explanation 6f w.rt. (J;4)if SNA C J- U A and
{c| notce S} CJt,be J UA,and
o S = {assume}; or
e S is a minimal set of literals such that for every rulec P, if head(r) = b,
thenpos(r) NS # 0 or neg(r) N {c | not ¢ € S} # 0; for convenience, we
write S = {_L} to denote the cas§ = (.

2 Note that our notion of local consistent explanation is similar in spirit, but different in practice
from the analogous definition used in [17, 14].



We will denote withLC E7, (b, J, A) the set of all the LCEs d@ft w.r.t. (J, A), and with
LCE}R(b, J, A) the set of all the LCEs df~ w.r.t. (J, A).

Example 1.Let P be the program:

a :— f,notb. b :— e,nota. e — .

f—e d — ce. c:— d,f.
This program has the answer seldy = ({f,e,b},{a,c,d}) and My =
({f,e,a},{c,b,d}). We have:LCE}(a, My,0) = {{ not b}}, LCEL(b,M;,0) =
{{e, mnot a}}, LCEY(e,My,0) = {T}, LCEL(f,Mi,0) = {{e}},
LCE}X(d, My, 0) = {{c}}, LCE% (e, My, 0) = {{d}}. O

An e-graph is a general structure that can be used to explain the truth valuesof
a positive (negative) e-graph represents a possible explanatiarbfging true (false).
To select an e-graph as an acceptable explanation, we need two additional components:
the current interpretation/j and the collection4) of elements that have been intro-
duced in the interpretation without any “supporting evidence”. An e-graph based on
(J, A) is defined next.

Definition 4 ((J, A)-Based Explanation Graph).Let P be a program,J a possible
interpretation,A a set of atoms, andlan element ind? U A™. A (J, A)-based explana-
tion graphG = (N, E) of b is an e-graph such that

e every node: € N is reachable frond;

o foreveryc € N\ {assume, T, L}, support(c,G) is an LCE ofc w.rt. (J, A).

Definition 5. A (J, A)-based e-grapliN, E) is safeif Vo™ € N, (bT,b") & E*+.

Example 2.Consider the e-graphs in Figure 1, for the program of Example 1. We have
that none of the e-graphs af" ((i) and (ii)) is a(Mi, {c,d})-based e-graph of*
but both arg M, {b, ¢, d})-based e-graph af*. On the other hand, the e-graphcdf
(iii) is neither a(M;, {c, d})-based nokMx, {b, c,d})-based e-graph af", while the
e-graph ot~ (iv) is an a(M;, {c,d})-based and &\l,, {b, ¢, d})-based e-graph ef.

at at c+
- + - + + +
c-
b- [ b- + d+ f+ n +l
+ - + + +
d
assune assune assune + assune assune

(i) (i) + (iii) (iv)

—— D—

Fig. 1. Sample(J, A)-based Explanation Graphs

3 Off-line Justifications for ASP

Off-linejustifications are employed to motivate the truth value of an atom w.r.t. a given
(complete) answer set. ¥/ is an answer set and” Fr the well-founded model oP,



then it is known thatW Ff € M+ andW F;, C M~ [2]. Furthermore, we observe
that the content of\/ is uniquely determined by the truth values assigned to certain
atomsinV = NANT(P)\ (W F3 UWFy), i.e., atoms that appear in negative literals
and are not determined by the well-founded model. In particular, we are interested in
those subsets df with the following property: if all the elements in the subset are
assumed to be false, then the truth value of all other atordsisnuniquely determined.

We call these subsets thssumptionsf the answer set.

Definition 6 (Pre-Assumptions).Let P be a program and\/ be an answer set d?.
Thepre-assumptionsf P w.r.t. M (denoted byP Ap(M)) are defined as:
PAp(M)={ala € NANT(P) Nae M~ ANag (WFFUWFg)}

The negative reduct of a programw.r.t. a set of atomsl is a program obtained
from P by forcing all the atoms i to be false.

Definition 7 (Negative Reduct).Let P be a program,M an answer set of, and
A C PAp(M) aset of atoms. Theegative reduadf P w.r.t. A, denoted byWR(P, A),
is the set of rulesP \ { r | head(r) € A}.

Definition 8 (Assumptions).Let P be a program andM be an answer set oP.
An assumptionw.r.t. M is a set of atomsA satisfying the following properties)

A C PAp(M), and (2) the well-founded model aVR(P, A) is equal toM—i.e.,

W Fnprp,a)y = M. We will denote withAss(P, M) the set of all assumptions dt
w.r.t. M. A minimal assumptiolis an assumption that is minimal w.r.t. properties (1)
and (2).

We can observe that the séts(P, M) is not empty, sinc®.Ap (M) is an assumption.

Proposition 1. Given an answer setM of P, the well-founded model of
NR(P,PAp(M)) is equal toM.

We will now specialize e-graphs to the case of answer sets, where only false ele-
ments can be used as assumptions.

Definition 9 (Off-line Explanation Graph). Let P be a program,J a partial inter-
pretation, A a set of atoms, and an element in4? U A"™. An off-line explanation
graphG = (N, E) of bw.rt. J and A is a (J, A)-based e-graph ob satisfying the
following conditions: there exists no" € N such that(p™, assume+) € E, and if
(p~,assume—) € E thenp € A. £(b, J, A) denotes the set of all off-line explanation
graphs ofb w.r.t. J and A.

Definition 10 (Off-line Justification). Let P be a program,M an answer setd €
Ass(P, M), anda € APUA™. Anoff-line justificationof o w.r.t. M and A is an element
(N, E) of E(a, M, A) which is safe Jp(a, M, A) contains all off-line justifications of
aw.r.t. M and A.

If M is an answer setande M™ (a € M ™), thenG is an off-line justification ofz
w.r.t. M, A iff G is an off-line justification ofi™ (a™) w.r.t. M, A.



Justifications are built by assembling items from the LCEs of the various atoms
and avoiding the creation of positive cycles in the justification of true atoms. Also,
the justification is built on a chosen set of assumptiads (vhose elements are all
assumed false. In general, an atom may admit multiple justifications, even w.r.t. the
same assumptions. The following lemma shows that elemem&fip can be justified
without negative cycles and assumptions.

Lemma 1. Let P be a program M an answer set, antV Fp the well-founded model
of P. Each atom has an off-line justification w.it/ and () without negative cycles.

From the definition of assumption and from the previous lemma we can infer that a
justification free of negative cycles can be built for every atom.

Proposition 2. Let P be a program and\/ an answer set. For each atamthere is an
off-line justification w.r.tA/ and M~ \ W F5 which does not contain negative cycles.

Proposition 2 underlines an important property—the fact that all true elements can be
justified in a non-cyclic fashion. This makes the justification more natural, reflecting
the non-cyclic process employed in constructing the minimal answer set (e.g., using the
iterations of7’p) and the well-founded model (e.g., using the characterization in [5]).
This also gracefully extends a similar nice property satisfied by the justifications under
well-founded semantics used in [17]. Note that the only cycles possibly present in the
justifications are positive cycles associated to (mutually dependent) false elements—
this is an unavoidable situation due the semantic characterization in well-founded and
answer set semantics (e.g., unfounded sets).

Example 3.Let us consider the program in Example 1. We have fatNT(P) =
{b,a}. The assumptions for this program aretss(P,M;) = {{a}} and
Ass(P, Ms) = {{b}}. The off-line justifications for atoms i/, w.r.t. M; and{a}
are shown in Fig. 2.

b+

assune

Fig. 2. Off-line Justifications w.r.tM; and{a} for b, f, e, c anda (left to right)

4 On-Line Justifications for ASP

In this section, we introduce the concept of on-line justification, which is genedtated

ing the computation of an answer set and allows us to justify atoms w.r.t. an incomplete

interpretation (an intermediate step in the construction of the answer set). The concept
of on-line justification is applicable to computation models that construct answer sets in

an incremental fashion (e.g., [19, 11, 1])—where we can view the computation as a se-
quence of steps, each associated to a partial interpretation. We will focus, in particular,
on computation models where the progress towards the answer set is monotonic.



Definition 11 (General Computation).Let P be a program. Ageneral computation
is a sequencély, My, ..., My, such that(i) My = (0,0), (i) Mo,..., My_, are
partial interpretations, andiii) M; C M;,; fori =0,...,k — 1. Ageneral complete
computatioris a computationV/y, . . ., My, such thatM;, is an answer set aP.

We do not requiré\/;, to be a partial interpretation, as we wish to model computations
that can also fail (i.eM,;” N M, # 0).

Our objective is to associate some form of justification to each intermediatd/step
of a general computation. Ideally, we would like the justifications associated taiéach
to explain truth values in the “same way” as in the final off-line justification. Since the
computation model might rely on “guessing” some truth valuésmight not contain
sufficient information to develop a valid justification for each elementfin We will
identify those atoms for which a justification can be constructed giveriThese atoms
describe a p-interpretatioR; = M;. The computation of); is defined based on the
two operatord” and A, which will respectively comput®;” andD;".

Let us start with some preliminary definitions. LBtbe a program and be a p-
interpretation. A set of atomis called acycle w.r.t. lif for everya € S andr € P such
thathead(r) = a, we have thapos(r)NI~ # D orneg(r)NIT # @ orpos(r)NS # (.

We can prove that, if is an interpretation$ is a cycle w.r.t. andM is an answer set
with I © M thenS C M. The set of cycles w.r.f. is denoted byycles(I). For every
element € A? U A", let PE(e, I) be the set of LCEs of w.r.t. I and@.

Let P be a program and C J be two p-interpretations. We define

Iy(J) =TIt U{head(r)e Jt | I body(r)}
A(Jy=I"U{aeJ | PE(a,I)#0} UU{S|S € cycles(I),S C J}

Intuitively, for I C J, we have thaf 7 (J) (resp.A;(J)) is a set of atoms that have
to be true (resp. false) in every answer set extendinif J is a partial interpretation.
In particular, if I is the set offjustifiable” literals (literals for which we can construct
a justification) and/ is the result of the current computation step, then we have that
(I'r(J), Ar(J)) is a new interpretation), C (I'7(J), A;(J)) C J, whose elements are
all “justifiable” . Observe that it is not necessarily true thafJ) = J* andA;(J) =
J~. This reflects the practice of guessing literals and propagating these guesses in the
computation of answer sets, implemented by several solvers.
We are now ready to specify how the $&tis computed. Le¥/ be a p-interpretation.

W) = Iy(J) AY(J)  =PAp(J)U Ay(J)
() = It (J) AN(T) = Ar, () wherel; = (I"'(J), A'(J))
Let

r(J)= G ri(J) and A(J)= [j A(T)

Becausd(J) C I''t(J) C J+ andA¥(J) C A*Y(J) C J~ (recall thatl C J),
we know that both"(.J) and A(.J) are well-defined. We can prove the following:

Proposition 3. For a programP, we have that:



e [" and A maintain the consistency of, i.e., if J is an interpretation, then
(I'(J), A(J)) is also an interpretation;

e " and A are monotone w.r.t the argumedt i.e., if J C J' then(J) C I'(J')
and A(J) C A(J);

o '(WFp)=WF} andA(WFp)=WFg;and

e if M is an answer set aP, then"(M) = M+ andA(M) = M.

Definition 12 (On-line Explanation Graph). Let P be a program,A a set of atoms,
J a p-interpretation, and: € A? U A™. Anon-line explanation grapf = (N, E) ofa
w.rt. J and A is a(J, A)-based e-graph af.

Observe that, if/ is an answer set and a set of assumption, then any off-line e-graph
of aw.rt. J and A is also an on-line e-graph afw.r.t. J and A.

Observe that°(.J) contains the facts of® that belong toJ* and A°(.J) con-
tains the atoms without defining rules and atoms belonging to positive cycl&s of
As such, it is easy to see that for each atanin (I'°(J), A°(J)), we can con-
struct an e-graph for™ or e~ whose nodes belong td™°(J))? U (A°(J))". More-
over, if a € I'**1(J) \ I'“(J), an e-graph with nodes (except) belonging to
(I''(J))P U (AY(J))" can be constructed; anddf € AiT1(J)\ A(J), an e-graph
with nodes belonging t¢I"*!(J))? U (A*+1(J))" can be constructed. This leads to
the following lemma.

Lemma 2. Let P be a program,J a p-interpretation, andd = PAp(J). It holds that
o for each atomu € I'(J) (resp.a € A(J)), there exists aafeoff-line e-graph of
at (resp.a”) w.rt. J and 4;
o for each atomu € J* \ I'(J) (resp.a € J~ \ A(J)) there exists an on-line
e-graph ofa™ (resp.a™) w.r.t. J and A.

Let us show how the above proposition can be used in defining a notion oallkke
justification To this end, we associate to each partial interpretafiarsnapshof(.J):

Definition 13. Given a p-interpretationJ, a snhapshot ofJ is a tuple S(J) =
(Off(.J), On(J),(I"(J), A(J))), where
e for eacha in I'(J) (resp.a in A(J)), Off(J) contains exactly one safe positive
(negative) off-line e-graph af* (resp.a™) w.r.t. J and PAp(J);
e foreacha € J*\I'(J) (resp.a € J~\ A(J)), On(J) contains exactly one on-line
e-graph ofa™ (resp.a™) w.r.t. J and P Ap(J).

Definition 14. (On-line Justification) Given a computatiod/y, My, ..., M}, anon-
line justificationof the computation is a sequence of snapskit&ly), S(M;), ...,
S(Mg).

Remark 1.0Observe that the monotonicity of the computation allows us to avoid re-
computing/” and A from scratch at every step. In particular, when computing the fix-
point we can start the iterations fromMr(az,), a(ar,)y @Nd A r(ar,), a(a1,)y @and looking
only at the elements ofM/;!, | \ I'(M;), M, \ A(M;)). Similarly, the computation

of Off(M;,1) can be made incremental, by simply addingQti(M; 1) the off-line
e-graphs for the elementsin(M; 1) \ I'(M;) and A(M; 1) \ A(M;). Note that these
new off-line graphs can be constructed reusing the off-line graphs alre&f§( ;).



Example 4.Let us consider the prograi containing
s :— a,nott. a :— f,notb. b :— e,nota. e — f— e
Two possible general computations@fare

M(} = <{678}7@> Mll = ({e,s,a},{t}} ]\421 = <{6757a7 f}7 {t’b}>
]\/[g = <{e7f}7®> M12 = <{€,f}, {t}> ]\422 = <{e7f7 b, a}7 {tvavb’5}>

The first computation is a complete computation leading to an answer setwfile
the second one is not. An on-line justification for the first computation is given next:

S(Mg) = (Xo, Yo, ({e},0))
S(M]) = (Xo U X1, Yo UY1, ({e}, {t}))
S(M3) = (XoU X1 UXs,0, M?)

whereXo={({e*, T}, {(e™, T, )}, Yo={({s™, assume}, {(sT, assume, +)})},
Xi={({t~, L}, {(t~, L, )}, i={{a",assume}, {(a™, assume,+)})}, and X3
is a set of off-line justifications fog, a, f, andb (omitted due to lack of space). O

We can relate the on-line justifications and off-line justifications as follows.

Lemma 3. Let P be a program,J an interpretation, and\/ an answer set such that
J £ M. For each atom, if (IV, E) is a safe off-line e-graph aof ™ (¢™) w.r.t. J and
J~ NPAp(M) then itis an off-line justification af* (a™) w.r.t. M andPAp(M).

Proposition 4. Let My, ..., My be a general complete computation afith/y), ...,
S(Mj,) be an on-line justification of the computation. Then, for each atoe M,
(resp.a € M, ), the e-graph ofi™ (resp.a™) in S(M}) is an off-line justification of
a™ (resp.a”) w.r.t. M andPAp(M).

5 SMODELS On-line Justifications

The notion of on-line justification presented in the previous section is very general, to fit
the needs of different models of computation. In this section, we specialize the notion of
on-line justification to a specific computation model—the one us&MaDELS [19].
This allows us to define an incremental version of on-line justification—where the steps
performed bySMODELS are used to guide the construction of the justification.

We begin with an overview of the algorithms employed$yoDELS. The choice
of SMODELS was dictated by availability of its source code and its elegant design.
The following description has been adapted from [10, 19]; although more abstract than
the concrete implementation, and without various optimizations (e.g., heuristics, looka-
head), it is sufficiently faithful to capture the spirit of our approach, and to guide the
implementation (see Sect. 5.3).

5.1 An Overview of SMODELS Computation

We propose a description of tf80oDELS algorithms based on a composition of state-
transformation operators. In the following, we say that an interpretdtidones not
satisfy the body of a rule (or body(r) is false inl) if (pos(r)NI~)U(neg(r)NI+) # 0.



ATLEAST Operator: The AtLeast operator is used to expand a partial interpretation
I in such a way that each answer 8¢tof P that “agrees” with/ (i.e., the elements in
I have the same truth value M) also agrees with the expanded interpretation.
Given a progranP and a partial interpretatioh, we define the following operators
ALL, ... AL}:
Case 1.if r € P, head(r) ¢ I, pos(P) C I'™ andneg(P) C I~ then
ALL(I)T = IT U{head(r)} andALL(I)~ =1".
Case 2.if a ¢ I U I~ andVr € P.(head(r) = a = body(r) is false inI), then
AL%(I)T =TIt andAL% (1)~ =1~ U{a}.
Case 3.if a € I andr is the only rule inP with head(r) = a and whose body is not
false inI then,AL%,(I)™ = I Upos(r) andAL% (1)~ = I~ Uneg(r).
Case 4.if a € I™, head(r) = a, and(pos(r) \ IT) U (neg(r) \ I~) = {b} then,
ALL(D)T =TT U{b} andALL(I)~ = I~ if b € neg(r)
ALL(I) ™ =1~ U{b} andALL(I)" = It if b € pos(r).
Given a programP and an interpretatiod, ALp(I) = ALL(I) if ALL(I) # I and
Vj <i. AL3(I) = I (1 < i < 4); otherwise ALp(I) = I.

ATMOST Operator: The AtMostp operator recognizes atoms that are defined ex-
clusively as mutual positive dependences (i.e., “positive loops”)—and falsifies them.
Given a set of atom§, the operatod M p is defined asiMp(S) = SU{head(r) |r €
P Apos(r) C S}.

Given an interpretatiot, the At Most p(I) operator is defined adtMostp(I) =
(It I7U{pe A|p&U,;s,S:}) whereSy = I andS; ;1 = AMp(S;).

CHOOSEOperator: This operator is used to randomly select an atom that is unknown
in a given interpretation. Given a partial interpretatiomrhoose p returns an atom ofl
such thathoosep(I) ¢ It U I~ andchoosep(I) € NANT(P)\ (WEFS UWFL).

SMODELS COMPUTATION: Given an interpretatiofi, we define the transitions:

I —ape I’ If I' = AL%(I), ¢ € {1,2,3,4}

I —gtmost I’ If I’ = AtMostp(I)

I —choice I' If I' = (I" U {choosep(I)},I"YorI' = (IT,I~ U {choosep(I)})
We use the notation I — I’ to indicate that there ex-
istsa € {AL', AL? AL3, AL* atmost, choice} such thatl s, I'. A SMODELS
computation is a general computatidfy, My, . . ., My such thatM; — M;, .

The SMODELS system imposes constraints on the order of application of the transi-
tions. Intuitively, theSMODELS computation is shown in the algorithms of Figs. 3-4.

Example 5.Consider the program of Example 1. A possible computatiol/pis:3

<®a ®> Vo <{€}, ®> ALt <{€7 f}a ®> —atmost
<{€7 f}7 {C, d}> P choice <{67 fv b}v {Cv d}> AL <{67 fv b}v {C’ d’ a}>

% We omit the steps that do not change the interpretation.



function smodeléP):

Ii(?p@’ v function expandP, S):
S =expandP, S); Ioo;), s
if (5" NS~ # 0) then =S,
fail ; repga_t ALn(S):
if (ST US™ = A) then §=ALp(S);
succesgs); until (S =ALp(S));

S = AtMost(P, S);
if (S' = S) then return (S);
endloop,

pick either % non-deterministic choice
ST =81 U {choose(S)} or
ST =57 U{choose(S)}
endloop,

Fig. 3. Sketch ofsmodels Fig. 4. Sketch ofexpand

5.2 SMODELS On-line Justifications

We can use knowledge of the specific steps performedbpDELS to guide the
construction of an on-line justification. Let us consider the stép —, M;
and let us consider the possible,. Let S(M;) = (E1, E2, D) and S(M; 1) =
(E1, E}, D"y, Obviously, S(M;4+1) can always be computed by computidyy =
(I'(M;41), A(M;+1)) and updatingF; and E». As discussed in Remark 1)’ can

be done incrementally. Regarditgf and E/, observe that the e-graphs for elements
in (I'k(M; 1), A*(M;1)) can be constructed using the e-graphs constructed for el-
ements in(I"*~1(M,,), A¥=*(M;, 1)) and the rules involved in the computation of
(I'*(M;41), A¥(M;11)). Thus, we only need to updaf& with e-graphs of elements of
(I'* (M), A¥(M;41)) which do not belong td7'* =1 (M, 1), A¥~1(M;44)). Also,

E} is obtained fromFE; by removing the e-graphs of atoms that “move” idd and
adding the e-graplfa™, assume, +) (resp.(a™, assume, —)) for a € MZTH (resp.

a € M) not belonging taD’.

o let p be the atom chosen in this stepplfs chosen to be true, then

we can use the graphi, = ({a*,assumé, {(a™,assume+)}) and the resulting
snapshot i (M, 1) = (E1, B2 U{G,}, D)—D is unchanged, since the structure
of the computation (in particular the fact that expandhas been done before the
choice) ensures thatwill not appear in the computation @. If p is chosen to be
false, then we will need to adeto D—, computel” (M, 1) andA(M; 1) (using the
optimization as discussed in Remark 1), and updatand £ correspondingly; in
particular,p belongs taA(M; 1) andG, = ({a~,assumé, {(a—,assume—)}) is
added taFE;.

o in this case M, = (M;", M;” U AtMost(P, M,)). The com-
putation ofS(M;, 1) is performed as from definition. In particular, observe that if
Ve € AtMost(P, M;) we have thaLCE%(c~, D,0) # ( then the computation
can be started fromh'(M;) and A(M;) U AtMost(P, M;).

o let p be the atom dealt with in this step andtdte the rule employed.
We have thatV; 1, = (M;" U {p}, M; ). If D = body(r) thenS(M;,;) can



be computed from the definition (and starting frdm\/;) U {p} and A(M;)); in
particular, an off-line graph fop™, G,, will be added toE; and such graph will
be constructed using the ruleand the e-graphs ifv;. Otherwise,S(M;11) =
(E1, B U{G™(p,r, X)}, D), whereG™* (p,r, X) is the e-graph op™* constructed
using ruler and using the e-graphs ii' = E; U E5 (note that all elements in
body(r) have an e-graph ift; U Es).

o let p be the atom dealt with in this step. In this cad&,; =

(M, M;” U {p}). If there existsy € LCE%(p, D, ) thenS(M; 1) can be com-
puted from the definition (starting frofi(M;) and A(M;) U {p}; observe that the
graph ofp~ can be constructed starting wighp—,a~,+) | a € v }U{(p~,b", —) |
not b € v}). Otherwise, given an arbitrary € LCE%(p, M;, ), we can build an
e-graphG,, for p~ such that) = support(b, G,) and the graph&; U E, are used
to describe the elements f andS(M;11) = (E1, E2 U{G,}, D).

) let r be the rule used in this step and tet= head(r). ThenM; ;1 =
(M;"Upos(r), M; Uneg(r)) andS(M, 1) is computed according to the definition.
Observe that the e-grapfi, for p* (added toE; or E») for S(M, 1) will be
constructed usinbpdy(r) assupport(p, G,), and using the e-graphs iy UE,UX
for someX C {(a™,assume+) | a € pos(r)} U{(a™,assume—) | a € neg(r)}.

o let  be the rule processed and tethe atom detected in the body.

If b € pos(r), thenM, ., = (M;", M;” U {p}) andS(M,,) is computed using
the definition. Analogously, it € neg(r) thenM, 1 = (M;" U {b}, M; ) and
S(M;+1) is computed using the definition.

Example 6.Let us consider the computation of Example 5. A sequence of snapshots is
(we provide only the edges of the graphs and combine e-graphs of different atoms):

By FEs D
S(My) 0 0 0
SOL)| (T ) 0 ({e}. )
S(MQ) {(63:7T5+)’( 1’6174')} @ <{€7f}7®>
sa)| § 0 DA 0 (fe. ), erd)
et + ot
sr|{ (0 Tl o assumen)| - (fe. 1) fe.dh)
(%, T 40, et ),
s (et ) 0 |(fe.fb) fe.dia))
(bt et,+),(bT,a™,—)

5.3 Discussion

The description 0BMODELS on-line justifications we proposed is clearly more abstract
than the concrete implementation—e.g., we did not address the use of lookahead, the
use of heuristics, and other optimizations introduce8nroDELS. We also did not ad-

dress the extensions availableSmoDELS (e.g., choice rules). All these elements can



be handled in the same spirit of what described here, and they would require more space
than available in this paper; all these elemérage been addresséathe implementa-
tion of SMODELS on-line justification.

The notions of justification proposed here is meant to represent the basic data struc-
ture on which debugging strategies for ASP can be developed. We have implemented
both the off-line and the on-line justifications within thA8P — PROLOG system [8].

ASP — PROLOG allows the construction of Prolog programs (in CIAO Prolog) which
include modules written in ASP (th8vODELS flavor of ASP). TheSMODELS engine

has been modified to extract, during the computation, a compact footprint of the execu-
tion, i.e., a trace of the key events (corresponding to the transitions described in Sect. 5)
with links to the atoms and rules involved. The modifications of the trace are trailed to
support backtracking. Parts of the justification (as described in the previous section) are
built on the fly, while others (e.g., certain casesAdi® and AL*) are delayed until the
justification is requested.

To avoid imposing the overhead of justification construction on every computation,
the programmer has to specify what ASP modules require justifications, using an addi-
tional argumentjgstify ) in the module import declaration:

- use _asp( (module _name), (file _name), (parameters ) [,justify]).
On-line justifications are integrated in the ASP debugging facilities of
ASP — PROLOG—which provide predicates to set breakpoints on the execution of
an ASP module (e.g., triggered by assignments of a truth value to a certain atom) and
to step through execution. Off-line justifications are always available.

ASP — PROLOG provides the predicatmodel/1 to retrieve answer sets of an
ASP module—it retrieves them in the order they are computeSMiyDELS, and it re-
turns the current one if the computation is still in progress. The main predicate to access
the justification igustify/1 which retrieves a CIAO Prolog object [15] containing
the justification; i.e.?- my _asp:model(Q), Q:justify(J). will assign toJ
the object containing the justification relative to the answeiset the ASP module
my_asp . Each justification object provides the following predicatesde/1 which
succeeds if the argument is one of the nodes in the justification gedpk/3 which
succeeds if the arguments correspond to the components of one of the edges in the
graph, andiraw/1 which will generate a graphical drawing of the justification for the
given atom (using theDrawGraphapplication). For example,

?- my _asp:model(Q),Q:justify(J),findall(e(X,Y),J:edge(p,X,Y),L).
will collect in L all the edges supportingin the justification graph (for answer gt

6 Conclusion

In this paper we provided a generalization of the notiofusfification (originally de-
signed for Prolog with SLG-resolution [17]), to suit the needs of ASP. The notion,
namedoff-line justification offers a way to understand the motivations for the truth
value of an atom within a specific answer set, thus making it easy to analyze answer
sets for program understanding and debugging. We also introdureéide justifica-

tions, which are meant to justify atonturing the computation of an answer set. The
structure of an on-line justification is tied to the specific steps performed by a computa-



tional model for ASP (specifically, the computation model adopte@W@DELS). An

on-line justification allows a programmer to inspect the reasons for the truth value of an
atom at the moment such value is determined while constructing an answer set. These
data structures provide a foundation for the construction of tools to debug ASP.

The process of computing and presenting justifications has been embedded in the
ASP-Prolog system [8], thus making justifications a first-class citizen of the language.
This allows the programmer to use Prolog to manipulate justifications as standard
Prolog terms. A preliminary implementation can be foundvaiwv.cs.nmsu.edu/
“okhatib/asp_prolog.html

As future work, we propose to complete the implementation, refine the definition
of on-line justification to better take advantageSsMoDELS, and develop a complete
debugging and visualization environment for ASP based on these data structures.

Acknowledgments

The research has been partially supported by NSF grants CNS-0454066, HRD-
0420407, and CNS-0220590.

References

C. Anger et al. The nomore++ Approach to Answer Set SOMIRAR Springer, 2005.
K. Apt, R. Bol. Logic Programming and Negation: A SurvdylLog. Program19/20, 1994.
. M. Auguston. Assertion Checker for the C Programming Languag®EBUG 2000.
. C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Soluam-
bridge University Press, 2003.
5. S. Brass et al. Transformation-based bottom-up computation of the well-founded model.
TPLP, 1(5):497-538, 2001.
6. S. Costantini et al. On the Equivalence and Range of Applicability of Graph-based Repre-
sentations of Logic Programmformation Processing Letter84(5):241-249, 2002.
7. M. Ducasé. Opium: an Extendable Trace Analyzer for ProldgLogic Progr, 39, 1999.
8. O. Elkhatib et al. A System for Reasoning about ASP in ProR#pL, Springer, 2004.
9. M. Gelfond, V. Lifschitz. The Stable Model Semantics for Logic PrograiinBS, 1988.
0. E. Giunchiglia and M. Maratea. On the Relation between Answer Set and SAT Procedures.
In ICLP, Springer Verlag, 2005.
11. N. Leone etal. The DLV System. IELIA, Springer Verlag, 2002.
12. S. Mallet, M. Ducasse. Generating Deductive Database Explanal@irid, MIT, 1999.
13. V.W. Marek and M. Truszchski. Stable Models and an Alternative Logic Programming
Paradigm.The Logic Programming Paradign®pringer Verlag, 1999.
14. G. Pemmasani et al. Online Justification for Tabled Logic Progr&ir®PS 2004.
15. A. Pineda. Object-oriented programming library O’Ciao. TR 6/99.0, UPM Madrid, 1999.
16. G. Puebla, F. Bueno, M.V. Hermenegildo. A Framework for Assertion-based Debugging in
Constraint Logic Programming. IntOPSTR Springer Verlag, 1999.
17. A. Roychoudhury et al. Justifying Proofs Using Memo TabRBDP, ACM Press, 2000.
18. E. Shapiro. Algorithmic Program Diagnosis.ROPL, ACM Press, 1982.
19. P. Simons et al. Extending and Implementing the Stable Model Semantids. Intell.,
138(1-2), 2002.
20. G. Specht. Generating Explanation Trees even for Negation in Deductive DatalVasles.
shop on Logic Programming Environmens-13, VVancouver, 1993.
21. R. Vaupel et al. A Tool for Visualizing And-Or Parallel ExecutiolGLP, MIT Press, 1997.

ERENES



