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Abstract. In this work we propose a semantically well-founded extension of Answer
Set Programming (ASP) with aggregates, which relies on the integration between state-
of-the-art answer set solvers and constraint logic programming systems. The resulting
system is efficient, flexible, extensible, and supports form of aggregation more general
than those previously proposed in the literature. The system is developed as an instance
of a general framework for the embedding of arbitrary constraint theories within ASP.

1 Introduction

In recent years we witnessed the rapid development of alternative logical systems, called
non-monotonic logics [3], which allow new axioms to retract existing theorems; these logical
systems are particularly adequate for common-sense reasoning and modeling of dynamic and
incomplete knowledge. In particular, in the last few years a novel programming paradigm
based on non-monotonic logics, has arisen, called Answer Sets Programming (ASP) [13],
which builds on the mathematical foundations of logic programming (LP) and non-monotonic
reasoning. ASP offers novel and declarative solutions in well-defined application areas, such
as intelligent agents, planning, and diagnosis.

Many practical systems have been recently proposed to support execution of Answer Set
Programming (ASP) [16, 7, 1]. The logic-based languages provided by these systems offer a
variety of syntactic structures, aimed at supporting the requirements arising from different
application domains. Smodels and DLV have pioneered the introduction of language-level
extensions, such as choice-literals, weight and cardinality constraints, weak constraints [16,
7] to facilitate the declarative development of applications. Nevertheless, there are simple
properties, commonly encountered in real-world applications, that cannot be conveniently
handled within the current framework of ASP—such as properties dealing with arithmetic
and aggregation. In particular, aggregations and other forms of set constructions have been
shown [6, 4, 14, 10] to be essential to reduce the complexity of software development and to
improve the declarative level of the programming framework. In the context of ASP, the lack
of aggregation capabilities may lead to an exponential growth in the number of rules required
for the development of a solution [2].

The objective of this work is to address some of these aspects within the framework of
Answer Set Programming. In particular, the main concrete objective we propose to accom-
plish is to develop an extension of ASP which supports a semantically well-founded, flexible,
and efficient implementation of aggregates. The model of aggregates we provide is more gen-
eral than the form of aggregates currently present in the Smodels system [16] (limited to
cardinality and weight constraints) and those proposed in the A-Prolog system [8]. The DLV
system has recently reported an excellent development to allow aggregates in ASP [4]; the



DLV approach covers similar classes of aggregates as those described here, although our pro-
posal follows a radically different methodology. The model we propose has the advantage of
allowing developers to easily generalize to other classes of aggregates, to modify the strategies
employed during evaluation, and even to accommodate for different semantics. A proposal for
optimization of aggregate constraints have appeared in [15].

We follow a fairly general and flexible approach to address these issues. We start by offering
a generic framework, called ASP-CLP, which provides a simple and elegant treatment of exten-
sions of ASP w.r.t. generic constraint domains. We then instantiate this generic framework to
the case of a constraint theory for aggregates. The resulting language, called ASP-CLP(Agg),
is then implemented following the same strategy—i.e., by relying on the integration between
a state-of-the-art ASP solver, specifically the Smodels system [16], and an external constraint
solver. Instead of relying directly on an external constraint solver for aggregates, we make
use of an external constraint solver for Finite Domain constraints, specifically the ECLiPSe
system [18]. The implementation is simple and elegant, and it supports easy modifications of
execution strategies and the introduction of new aggregates.

2 ASP with CLP: A General Perspective

Let us consider a signature ΣC = 〈FC ,V,ΠC〉, where FC is a set of constants and function
symbols, V is a denumerable set of variables, and ΠC is a collection of predicate symbols. We
will refer to ΣC as the constraint signature and it will be used to build constraint formulae.
A primitive constraint is an atom of the form p(t1, . . . , tn), where p ∈ ΠC and t1, . . . , tn are
terms built from symbols of FC ∪ V. A C-constraint is an arbitrary conjunction of primitive
constraints and their negation.

Let us also assume a separate signature ΣP = 〈FP ,V ′,ΠP 〉, where FP is a collection
of constants, V ′ is a denumerable collection of variables and ΠP is a collection of predicate
symbols. We will refer to ΣP as the ASP signature and we will denote with HP the Herbrand
universe built from the symbol of ΣP and with BP the Herbrand base. We will refer to a
formula p(t1, . . . , tn), where ti ∈ FP ∪ V ′, as an ASP-atom; an ASP-literal is either an ASP-
atom or the negation (not A) of an ASP-atom. An ASP-clause is a formula A :−B1, . . . , Bk

where A is an ASP-atom and B1, . . . , Bk are ASP-literals. An ASP-CLP clause is a formula of
the form A :− C [] B1, . . . , Bk where A is an ASP-atom, C is a C-constraint, and B1, . . . , Bk

are ASP-literals. A program is a finite collection of ASP-CLP clauses.
We assume the presence of a given interpretation structure AC = 〈A, (·)C〉 for the con-

straint signature, where A is the interpretation domain and (·)C is a function mapping el-
ements of FC (ΠC) to functions (relations) over A. Given a primitive constraint c, we will
use the notation AC |= c iff (c)C is true; the notion can be easily generalized to constraints.
Let P be a ground ASP-CLP program and let M ⊆ BP . We define the ASP-CLP-reduct of P
w.r.t. M as the set of ground clauses

PC
M =



A :−B1, . . . , Bn |

A :− C []B1, . . . , Bn, not D1, . . . , not Dm ∈ P,
M 6|= Di(1 ≤ i ≤ m),

AC |= CM





where CM denotes the grounding of the constraint C w.r.t. the interpretation provided by
M . M is an ASP-CLP-stable model of P iff M is the least Herbrand model of PC

M .

3 ASP with CLP: Aggregates in ASP

Our objective is to introduce different types of aggregates in ASP. Database query languages
(e.g., SQL) use aggregate functions—such as sum, count, max, and min—to obtain summary



information from a database. Aggregates have been shown to significantly improve the com-
pactness and clarity of programs in various flavors of logic programming [12, 6, 4]. We expect
to gain similar advantages from the introduction of different forms of aggregations in ASP.

Example 1 ([14]). Let owns(X,Y,N) denote the fact that company X owns a fraction N of
the shares of the company Y . We say that a company X controls a company Y if the sum
of the shares it owns in Y together with the sum of the shares owned in Y by companies
controlled by X is greater than half of the total shares of Y .1

control(X, X, Y, N) :- owns(X,Y,N).
control(X, Z, Y, N) :- control(X,Z), owns(Z,Y,N).
fraction(X,Y,N) :- sum({{M: (control(X,Z,Y,M):company(Z)) }}) = N.
control(X,Y) :- fraction(X,Y,N), N >0.5.

A significant body of research has been developed in the database and in the constraint
programming communities exploring the theoretical foundations and, in a more limited fash-
ion, the algorithmic properties of aggregation constructs in logic programming (e.g. [12, 17,
14, 5]). More limited attention has been devoted to the more practical aspects related to
computing in logic programming in presence of aggregates. In [2], it has been shown that
aggregate functions can be encoded in ASP (e.g., example 1 above). The main disadvantage
of this proposal is that the obtained encoding contains several intermediate variables, thus
making the grounding phase quite expensive in term of space and time. Recently, a number of
proposals to extend logic programming with aggregates have been developed, including work
on the use of aggregates in ASET [8], work on sets and grouping in logic programming [6],
and a recently proposed implementation of aggregates in the DLV system [4].

The specific approach proposed in this work accomplishes the same objectives as [4, 8].
The novelty of our approach lies in the technique adopted to support aggregates. Following
the spirit of our previous efforts [6], we rely on the integration of different constraint solving
technologies to support the management of different flavors of sets and aggregates. In this
paper, we describe a back-end inference engine—obtained by integrating Smodels with a
finite-domain constraint solver—capable of executing Smodels programs with aggregates. The
back-end is meant to be used in conjunction with front-ends capable of generating constraints
and performing high-level constraint handling of sets and aggregates (as in [6]). We will refer
to the resulting system as ASP-CLP(Agg) hereafter.

4 The Language

Now we will give a formal definition of the syntax and semantics of the language accepted
by the ASP-CLP(Agg) system. This language is an extension of the language accepted by
the Smodels system, with the addition of aggregate functions. Observe that by making ASP-
CLP(Agg) an extension of Smodels, we accept all the constructs provided by the Smodels
front-end (e.g., cardinality constraints).
Syntax. The input language accepted by our system is analogous to the language of Smodels
with the exception of a new class of literals—the aggregate literals.

Definition 1. An extensional set (multiset) is a set (multiset) of the form {a1, . . . , ak}
({{a1, . . . , ak}}) where ai are terms. An intentional set is a set of the form {X : Goal[X, Ȳ ]};
an intentional multiset is a multiset of the form {{X : Goal[X, Ȳ ]}}. In both definitions, X is

1 For the sake of simplicity we omitted the domain predicates required by Smodels.



the grouping variable while Ȳ are existentially quantified variables. Following the syntactic
structure of Smodels, Goal[X, Ȳ ] is an expression of the form: p(X) (Ȳ is empty), where
p ∈ ΠP , or p(X, Ȳ ) : q(Ȳ ), where p, q ∈ ΠP and q(Ȳ ) is the domain predicate for Ȳ [16]. An
intensional set (multiset) is ground if vars(Goal[X, Ȳ ]) = {X, Ȳ }. An aggregate term is of
the form aggr(S), where S is either an extensional or intensional set or multiset, and aggr
is a function. We will mostly focus on the handling of the “traditional” aggregate functions,
i.e., count, sum, min, max, avg, times.

With respect to the generic syntax of Section 2, in ASP-CLP(Agg) we assume that FC contains
a collection of function symbols of the type F

{}
Goal[X,Ȳ ]

and F
{{}}
Goal[X,Ȳ ]

. The arity of each such
function symbol corresponds to the number of free variables different from the grouping
variable and the existentially quantified variables present in Goal[X, Ȳ ]—i.e.,

arity
(
F
{}
Goal[X,Ȳ ]

)
= |vars(Goal[X, Ȳ ]) \ {X, Ȳ }| = arity

(
F
{{}}
Goal[X,Ȳ ]

)

Thus, F ({X : Goal[X, Ȳ ]}) and F ({{X : Goal[X, Ȳ ]}}) are syntactic sugars for the terms:
F
{}
Goal[X,Ȳ ]

(Z1, . . . , Zn) and F
{{}}
Goal[X,Ȳ ]

(Z1, . . . , Zn), where {Z1, . . . , Zn} = vars(Goal[X, Ȳ ]) \
{X, Ȳ }. Similar definitions apply to the case of aggregate terms built using extensional sets.

Definition 2. An aggregate literal is of the form aggr(S) opResult, where op is a relational
operator drawn from the set {=, ! =, <, >,<=, >=} and Result is a variable or a number.

The assumption is that the language of Section 2 is instantiated with ΠC = {=, 6=,≤,≥, >,<}.
Observe that the variables X, Ȳ are locally quantified within the aggregate. At this time, the
aggregate literal cannot play the role of a domain predicate—thus other variables appearing
in an aggregate literal (e.g., Result) are treated in the same way as variables appearing in a
negative literal, requiring their presence within a domain atom in the body of the rule.

Definition 3. An ASP-CLP(Agg) rule is in the form: A ← L1, . . . , Ln where A is a positive
literal and L1, . . . , Ln are either standard literals—i.e., atoms or negated atoms—or aggregate
literals.2 An ASP-CLP(Agg) program is a set of ASP-CLP(Agg) rules.

We are assuming, for simplicity, that the body of each ASP-CLP(Agg) rule contains at most
one aggregate literal. In ASP-CLP(Agg), we have opted for relaxing the stratification require-
ments proposed in [8], which prevent the introduction of recursion through aggregates. The
price to pay is the possibility of generating non-minimal models [6, 12]; on the other hand,
the literature has highlighted situations where stratification of aggregates prevents natural
solutions to problems [14, 5].
Semantics. Now we will provide the stable model semantics [9] of the language, based on the
interpretation of the aggregate atoms. The construction is simply an appropriate instantiation
of the general definition provided in Section 2. Let us start with some terminology. Given a
set A, we denote with M(A) the set of all finite multisets composed of elements of A, and let
us denote with P(A) the set of all finite subsets of A.

Given a ground intensional set (multiset) s term {X : Goal[X, Ȳ } ({{X : Goal[X, Ȳ ]}}),
and given an interpretation M ⊆ BP , the grounding of s w.r.t. M (denoted by sM ) is the
ground extensional set (multiset) term: {a1, . . . , ak} ({{a1, . . . , ak}}) where

{(a1, b̄1), . . . , (ak, b̄k)} = {(x, ȳ) | (x, ȳ) ∈ ... ∧M |= Goal[x, ȳ]}
2 For simplicity we do not distinguish between the constraint and non-constraint part of each rule.



As we have seen in Section 2, we assume the existence of a predefined interpretation
structureAC = 〈A, (·)C〉 for the constraint part of the language. In our case, the interpretation
is meant to describe the meaning of the aggregate function and relations of ASP-CLP(Agg).

Let us start by defining the interpretation for the function symbols F a, where F is an
aggregate operation (e.g., sum, count) and a is either {} or {{}}. Intuitively, each aggregate
function is interpreted as a function over sets or multisets of integers. In particular, we assume
that standard aggregate functions are interpreted according to their usual meaning, i.e., (a is
an element of { {}, {{}} })
• (suma)C is the function that maps a set (multiset) of integers to their sum;
• (counta)C is a function that maps a set (multiset) of integers to its cardinality;
• (mina)C ((maxa)C) is a function that maps a set (multiset) of integers to the minimum

(maximum) value present in it;
• (avga)C is a function that maps a set (multiset) of integers to the average of its values.3

If s is the extensional set (multiset) term {a1, . . . , ak} ({{a1, . . . , ak}}), then (F {}s )C ((F {{}}s )C)
is simply defined as the element of Z:

(F {}s )C = (F {})C({aC
1 , . . . , aC

k }) (F {{}}s )C = (F {{}})C({aC
1 , . . . , aC

k })
Given an interpretation M ⊆ BP and given Goal[X, Ȳ ] such that vars(Goal[X, Ȳ ]) = {X, Ȳ },
for each F

{}
Goal[X,Ȳ ]

∈ FC and for each F
{{}}
Goal[X,Ȳ ]

∈ FC we assume that

( F
{}
Goal[X,Ȳ ]

)C = (F {}
Goal[X,Ȳ ]M

)C ( F
{{}}
Goal[X,Ȳ ]

)C = (F {{}}
Goal[X,Ȳ ]M

)C

Similarly, we assume that the constraint structure interprets the various relational operators
employed in the construction of aggregate atoms—i.e., =, 6=,≤,≥, >, <—according to their
intuitive meaning as comparisons between integer numbers. We can summarize the notion of
satisfaction as follows:

Definition 4 (Aggregate Satisfaction). Given M ⊆ BP and a ground aggregate atom
F ({X : Goal[X, Ȳ ]}) op R, then AC |= (F ({X : Goal[X, Ȳ ]}) op R)M iff

(F {})C
({a ∈ Z | ∃b̄ ∈ H∗P . M |= Goal[a, b̄]}) op R

is true w.r.t. AC . Similarly, given a ground aggregate atom F ({{X : Goal[X, Ȳ ]}}) op R, then
AC |= (F ({{X : Goal[X, Ȳ ]}}) op R)M iff (F {{}})C({{a ∈ Z | ∃b̄ ∈ H∗P . M |= Goal[a, b̄]}}) op R
is true w.r.t. AC .

The remaining aspects of the notion of stable models are immediately derived from the defi-
nitions in Section 2, using the notion of entailment of constraints defined in Definition 4.

Observe that in the case of aggregates, this semantics definition essentially coincides with
the semantics proposed by a number of authors, e.g., [12, 8, 7]. Observe also that this seman-
tics characterization has some drawbacks—in particular, there are situations where recursion
through aggregates leads to non-minimal models [12, 5], as shown in the following example.

Example 2. Consider the following program:

p(1). p(2). p(3). p(5) :− q.
q :− sum({X : p(X)}) > 10.

This program contains recursion through aggregates. It has two answer sets: A1 =
{p(1), p(2), p(3)} and A2 ={p(1), p(2), p(3), p(5), q}. The model A2 is not a minimal model.
3 Currently, avg returns an integer; it is straightforward to generalize it to return a real.



5 Practical Integration of Aggregates in ASP

Let us now describe how the language proposed in the previous section can be effectively
and efficiently implemented. The implementation scheme we propose follows naturally from
the discussion presented in the previous sections. The current prototype is available at http:
//www.cs.nmsu.edu/~ielkaban/smodels-ag.html.

5.1 Overall Design

The overall design of the proposed ASP-CLP(Agg) system is illustrated in Figure 1.
The structure resembles the typ-
ical structure of most ASP solvers—
i.e., a preprocessing phase, which
is employed to simplify the input
program and produce an appropri-
ate ground version, is followed by
the execution of an actual solver
to determine the stable models of
the program. The preprocessor is
enriched with a module used to
determine dependencies between
constraints present in the input
program and regular ASP atoms;
in our case, the preprocessor de-
tects the dependences between ag-
gregates used in the program and
the atoms that directly contribute
to such aggregates. The result of

�������(Agg)
Program

Preprocessor

Grounding

Dependence
Analysis

Solver

ASP Solver

CLP(FD)

Aggregate Solver

aggregate

constraints boolean

values

Stable
Models

Fig. 1: Overall Design

the dependence analysis is passed on to the solver (along with the ground program) to allow
the creation of internal data structures to manage the constraints.
The solver is a combination of a traditional ASP solver—in charge of handling the program
rules and controlling the flow of execution—and a constraint solver; the ASP solver sends
the constraints to be evaluated to the external solver, which in turn returns boolean values,
representing instantiation of the boolean variables representing the components of the con-
straint (see Section 5.2). Intuitively, the constraint solver is employed to determine under
what conditions (in terms of truth values of standard ASP atoms) a certain constraint will
be satisfied. The result of the constraint processing will be used by the ASP to modify the
structure of the stable model currently under construction and to proceed with the execution.
Thus, the constraint solver is a “helper” in the computation of the stable models; at any point
in time, relations between standard atoms exist within the data structures of Smodels while
numerical relations expressed by aggregates exist within the constraint store. As shown in the
Figure, in the specific case of ASP-CLP(Agg), the solver used to handle aggregate constraints
is itself implemented using another constraint solver, a constraint solver over finite domains.

5.2 Representing Aggregates as Finite Domain Constraints

As described in Figure 1, each aggregate constraint in a ASP-CLP(Agg) program is managed
through a finite domain constraint solver. This section discusses how the encoding of aggregate
constraints to finite domain constraints has been performed.

First, each atom appearing in an aggregate is represented as a domain variable with
domain 0..1; the whole aggregate is then expressed as a constraint involving such variables.



The intuition behind this transformation is to take advantage of the powerful propagation
capabilities of finite domain constraint solver to automatically test the satisfiability of an
aggregate and prune alternatives from its solution search space. In this work we rely on the
finite domain constraint solver provided by the ECLiPSe system [18]. Let us provide a brief
summary of the encoding of the most relevant forms of aggregates used in ASP-CLP(Agg):
• Count Aggregate: An aggregate atom in the form count({{X : Goal[X, Ȳ ])}})opResult

is represented as a finite domain constraint in the form:
X[i1] + X[i2] + . . . + X[in] con op Result

where the X[i]’s are finite domain constraint variables representing all the ground atoms
of Goal[X, Ȳ ], the i’s are the indices of the ground atoms in the atom table and con op is
the ECLiPSe operator corresponding to the relational operator op. E.g., given the atoms
p(1), p(2), p(3), the aggregate count({{A : p(A)}}) < 3 will lead to the constraint

X[1]::0..1, X[2]::0..1, X[3]::0..1, X[1]+X[2]+X[3] #< 3
where X[1], X[2], X[3] are constraint variables corresponding to p(1), p(2), p(3) respec-
tively. The handling of the corresponding aggregate in presence of sets instead of multisets
is very similar and it relies on the preprocessor identifying in advance atoms that pro-
vide the same contribution, and combine them with a logical or statement. For example,
assume that the extension of p contains the atoms p(1, a), p(1, b), p(2, c) and we have an
aggregate of the type count({X : p(X, Y ) : domain(Y )})#> 1 it will be encoded as

X[i1] :: 0..1, X[i2] :: 0..1, X[i3] :: 0..1, (X[i1]#= 1#\/X[i2]#= 1)#<=> B1, (B1 + X[i3])#> 1.

• Sum Aggregate: An aggregate atom in the form sum({{X : Goal[X, Ȳ ]}}) op Result is
represented as a finite domain constraint in the form:

X[i1] ∗ vi1 + X[i2] ∗ vi2 + . . . + X[in] ∗ vin con op Result
where the X[i]’s are finite domain constraint variables representing all the ground atoms
of Goal[X, Ȳ ], the i’s are the indices of the ground atoms in the atom table, vi’s are the
values of X satisfying the atom Goal[X, Ȳ ] and con op is the ECLiPSe operator corre-
sponding to the relational operator op. E.g., given the atoms p(1), p(2), p(3), the aggregate
sum({{A : p(A)}}) < 3 will lead to the constraint

X[1]::0..1, X[2]::0..1, X[3]::0..1, X[1]∗1+X[2]∗2+X[3]∗3 #< 3

where X[1], X[2], X[3] are constraint variables corresponding to p(1), p(2), p(3) respec-
tively. The handling of the aggregates based on intensional sets instead of multisets follows
the same strategy highlighted in the case of the count aggregate.

• Max Aggregate: An aggregate atom in the form max({{X : Goal[X, Ȳ ]}}) op Result is
represented as a finite domain constraint in the form:

maxlist([ X[i1] ∗ vi1 , X[i2] ∗ vi2 , . . . , X[in] ∗ vin ]) con op Result
where the X[i]’s are finite domain constraint variables representing all the ground atoms
of Goal[X, Ȳ ], the i’s are the indices of the ground atoms in the atom table, vi’s are the
constants instantiating the atom Goal[X, Ȳ ] and con op is the ECLiPSe operator corre-
sponding to the relational operator op. E.g., given the atoms p(1), p(2), p(3), the aggregate
max({{A : p(A)}})<5 will lead to the constraint

X[1]::0..1, X[2]::0..1, X[3]::0..1, maxlist([X[1] ∗ 1, X[2] ∗ 2, X[3] ∗ 3]) #< 5
where X[1], X[2], X[3] are constraint variables corresponding to p(1), p(2), p(3) respec-
tively. Observe that in this case there is no difference in the encoding if the aggregate is
defined on intensional sets instead of multisets. Observe also that the contributions of the
various atoms will have to be shifted to ensure that no negative contributions are present.



• Min Aggregate: It might seem that the representation of the min({{X :
Goal[X, Ȳ ]}}) opResult aggregate atom as a finite domain constraint is analogous to that
of the max aggregate with the only difference of using minlist/1 instead of maxlist/1.
This is not absolutely true. We have noticed a problem that might evolve when we repre-
sent the min aggregate in the same way as we did with the max aggregate. The problem
is that we might have one or more values of the Xi’s are set to 0, which are the Xi’s that
represent ground atoms having false truth values, this might lead to a wrong answer when
we compute the minimum value in a list, since the result will be 0 all the time, although
the real minimum value could be another value rather than 0 (the minimum value of the
vi’s that correspond to the X[i]’s representing ground atoms having true truth values).
E.g. , given the atoms p(3), p(4), p(5), if we already knew that p(3) and p(4) are true,
while p(5) is false, in this case if we use the same representation as the max aggregate in
representing the aggregate min({{A : p(A)}})<2 that will lead to the constraint

X[1]::0..1, X[2]::0..1, X[3]::0..1, minlist([X[1] ∗ 3, X[2] ∗ 4, X[3] ∗ 5]) #< 2

This representation is wrong, since in this case the result for this constraint will be true,
since the result from applying minlist will be 0 and 0 is less than two, but the correct
answer should be false, since the minimum of the values that correspond to ground atoms
having true truth value is 3 which is not less than 2. In order to overcome this problem, we
have suggested the following representation of the aggregate atom min({X : Goal(X)})
op Result as a finite domain constraint:

Y [i1] #= (X[i1]∗1)+1,

...

Y [in] #= (X[in]∗n)+1,

element(Y [i1], [ M, vi1 , . . . , vin ], Z[i1]),

element(Y [i2], [ M, vi1 , . . . , vin ], Z[i2]),

...

element(Y [in], [ M, vi1 , . . . , vin ], Z[in]),

minlist([ Z[i1], Z[i2], . . . , Z[in] ]) con op Result

where M is a constant such that M > vi, for all possible values of i, the Yi’s are selector
indices that are used to select a value from the list [ M, vi1 , . . . , vin ] to be assigned to
the Z[i]’s by using the fd-library constraint element/3 and the Z[i]’s are the new list of
X[i] ∗ vi with the exception that each X[i] ∗ vi that corresponds to an atom with a false
truth value is changed to M . E.g. , by applying this treatment for the previous example,
we will find that Z[1] is assigned 3, Z[2] is assigned 4 and Z[3] is assigned a large number.
In this case the result of the constraint minlist([Z[1], Z[2], Z[3]]) #< 2 is false, which is a
correct answer (since 3 < 2 is false).

The other aggregates follow similar ideas; we omit the description for lack of space.

5.3 Implementation

The implementation of ASP-CLP(Agg) has been realized by introducing localized modifica-
tions in the Smodels (V. 2.27) system [16] and by using the ECLiPSe system (V. 5.4) as
a solver for finite domain constraints. In particular, the implementation makes use of both
Smodels—i.e., the actual answer set solver—and lparse—the front-end used by Smodels to



intelligently ground the input program. In the rest of this section we provide some details
regarding the structure of the implementation.

Preprocessing. The Preprocessing module is composed of three sequential steps. In the
first step, a program—called Pre-Analyzer—is used to perform a number of simple syntactic
transformations of the input program. The transformations are mostly aimed at rewriting
the aggregate literals in a format acceptable by lparse. The second step executes the lparse
program on the output of the pre-analyzer, producing a ground version of the program encoded
in the format required by Smodels—i.e., with a numerical encoding of rules and with the
creation of an explicit atom table. The third step is performed by the Post-Analyzer program
whose major activities are:
• Identification of the dependencies between aggregate literals and atoms contributing to

such aggregates; these dependencies are explicitly included in the output file. (The lparse
output format is extended with a fourth section, describing these dependencies.)

• Generation of the constraint formulae encoding the aggregate; e.g., an entry like
“57 sum(x,use(8,x),3,multiset,greater)” in the atom table (describing the aggregate
sum({{X : use(8, X)}}) > 3) is converted to
“57 sum(3,[16,32,48],“X16 * 2 + X32 * 1 + X48 * 4 + 0 #> 3”)” (16, 32, 48 are indices of
use(8, )).

• Simplification of the constraints making use of the truth values discovered by lparse.

Data Structures. Now we will describe in more details the modifications done to the Smod-
els system data structures, in order to extend it with aggregate functions and make it capable
of communicating the ECLiPSe constraint solver. As in Smodels, each atom in the program
has a separate internal representation—including aggregate literals. In particular, each aggre-
gate literal representation maintains information regarding what program rules it appears in.
The representation of each aggregate literal is similar to that of a standard atom, with the
exception of some additional fields; these are used to store an ECLiPSe structure representing
the constraint associated to the aggregate. Each standard atom includes also a list of pointers
to all the aggregate literals depending on such atom.

Atom: Most of the new data structures that have been added in the new ASP-CLP(Agg) sys-
tem are extensions of the class Atom—used by Smodels to represent one atom. This is because
we are introducing a new type of atoms (aggregate literals) which has its own properties. To
represent these properties we have augmented the class Atom with the following fields:
• Atom ** dependents: If this atom is an aggregate constraint, dependents is the list of

atoms this aggregate depends on.
• Atom ** constraints stores the list of aggregate literals that depends on this atom.
• int met dependents: If this atom is an aggregate constraint, met dependents is the

number of its dependent atoms that still have unknown truth value.
• EC word PosCon (NegCon) is an ECLiPSe data structure that holds the positive (neg-

ative) constraint to be posted into the constraint store. (e.g., X[12] #= 1).
• EC word conterm: It is an ECLiPSe data structure that holds the aggregate constraint

that will be posted into the ECLiPSe constraint store.
• enum {notaggr,sum,count,min,max} aggr type: a flag describing the type of aggregate.
• EC ref hook: It is one domain variable, representing a reified version of the constraint

associated to the current aggregate atom.
Observe that, for certain aggregates, we envision the possibility of having completely different
constraints for the case the constraint is required to be true and the case the aggregate is
required to be false. The field conterm is employed to support backtracking.



Finite Domain Variables: The communication between the Smodels system and the ECLiPSe
is a two-way communication. The Smodels system is capable of posting constraints into the
ECLiPSe constraint solver. On the other hand, ECLiPSe is communicating with Smodels
by either sending the truth value of a posted completed aggregate constraint or by sending
back values of labeled variables appearing in a constraint corresponding to a non-completed
aggregate. These types of communication require Smodels to be able to directly access values
of finite domain variables present in the constraint store managed by ECLiPSe. This can be
done by using the ECLiPSe data types EC refs and EC ref. We have added the following
data structures as global variables in order to handle this situation:
• EC refs * X: It is an ECLiPSe data structure that holds n references to n ECLiPSe

variables, where n is the number of atoms present in the ground program. Thus, each
atom is represented in the constraint store by a separate domain variable—these variables
are declared as domain variables with domain 0 . . . 1 at the beginning of the execution.
The discovery of the truth value of an atom within Smodels can be communicated to
the constraint store by binding the corresponding domain variable; on the other hand,
constraints in the store can force variables to a selected value, which will be retrieved by
Smodels and transformed in truth value assignment.

Execution Control. In this section we will describe the flow of execution of ASP-CLP(Agg)
in greater details. The main flow of execution is directed by Smodels. In parallel with the con-
struction of the model, our system builds a constraint store within ECLiPSe. The constraint
store maintains one conjunction of constraints, representing the level of aggregate instanti-
ation achieved so far. The implementation of the ASP-CLP(Agg) system required localized
changes to various modules of Smodels. During our description for the control of execution,
we are going to highlight some of the main changes that have been applied to the Smodels
modules.
Main: during the initialization of the data structures, an additional step is performed by
ASP-CLP(Agg) related to the management of the aggregates. A collection of declarations
and constraints are immediately posted to the ECLiPSe constraint store; these include:
• If i is the internal index of one atom in Smodels, then a domain variable X[i] is created

and the declaration X[i] :: 0..1 posted;
• If an aggregate is present in the program and the preprocessor has created the constraint

c for such aggregate, then the constraint Bi :: 0..1, c#<=> Bi is posted in the store. The
variable Bi is stored in the Atom structure for the aggregate.

These two steps are illustrated in the post operations (1) and (2) in Figure 2.
Expand: The goal of the Smodels expand module is to deterministically extend the set of
atoms whose truth values are known (true/false) as much as possible. In our ASP-CLP(Agg)
system we extend the expand module in such a way that, each time an aggregate dependent
atom is made true or false, a new constraint is posted in the constraint store. If i is the index
of such atom within Smodels, and the atom is made true (false), then the constraint X[i]#=1
(X[i]#=0) is posted in the ECLiPSe constraint store. (Fig. 2, post operations (3) and (4)).
If the ECLiPSe returns EC fail this means that a conflict is detected (inconsistency), so
the control returns to Smodels where the conflict is handled. Otherwise, ECLiPSe returns
EC succeed and the control returns to the expand module.

Since aggregate literals are treated by Smodels as standard program atoms, they can be
made true, false, or guessed. The only difference is that, whenever their truth value is decided,
a different type of constraint will be posted to the store—i.e., the constraint representation of
the aggregate. For each aggregate, its constraint representation is reified and posted during



the initialization. If the aggregate is determined to be true (false), then we simply need to post
a constraint of the type Bi#= 1 (Bi#= 0), where Bi is the variable reifying the constraint
for the aggregate (Fig. 2, post operation (5)).

Observe that the constraints posted to the store have an active role during the execution:
• Constraints can provide feedback to Smodels by forcing a truth value for previously un-

covered atoms. This means that ECLiPSe can return an answer, in terms of instantiation
of previously unbound variables, to Smodels. This instantiation is converted into a truth
value for atoms in the Smodels and then the control returns to the expand module again.
E.g., if the constraint (X[12]∗2 + X[13]∗4#<5)# <=> B is posted to the store during
initialization (corresponding to the aggregate sum({{X : p(X)}})<4) and X[12]#= 1 has
been previously posted (i.e., p(2) is true), then requiring the aggregate to be true (by
posting B#= 1) will force X[3]#= 0, i.e., p(3) to be false (Fig. 2, post operation (5)).
If there are more answers for the aggregate constraint, the control must return back to
ECLiPSe for backtracking and generating another answer; this happens after Smodels
computes the stable model containing the previous answer or fails to get a stable model
containing the previous answer and backtracks.

• Inconsistencies in the constraint store have to be propagated to Smodels. E.g., if we have
(X[12] + X[13] + X[14]#> 2)#<=> B1 (corresponding to count({{X : p(X)}}) > 2) and
X[13]#= 0 (corresponding to p(2) being false), and we finally request the aggregate to be
true (posting B1#= 1), then ECLiPSe will return a failure, that will activate backtracking
in Smodels.

Check aggregate completion: An aggregate literal may become true/false not only as the result
of the deductive closure computation of the Smodels expand procedure, but also because
enough evidence has been accumulated to prove its status. In this case, every time an aggregate
dependent atom is made true or false, the aggregate literal it appears in should be checked
for truth/falsity. The test can be simply performed by verifying the value of the variable Bi

attached to the reification of the aggregate constraint. If the value of Bi is 1 (0), then the
aggregate can be immediately evaluated to true (false), regardless of the still unknown truth
values of the rest of its dependent atoms E.g., if the constraint (X[16]∗1 + X[17]∗2 + X[14] ∗
3#>2)#<=> B2 is posted to the store (corresponding to the aggregate sum({{X : q(X)}})>2)
and X[14]#= 1 (i.e., q(3) is true), then in this case ECLiPSe instantiates B2 to 1, which
should be translated to a true value for the atom representing the aggregate in Smodels (while
q(1) and q(2) are still unknown) (Fig. 2, check operation (7)).
Pick: The structure of the computation developed by Smodels is reflected in the structure of
the constraints store (see Fig. 2). In particular, each time Smodels generates a choice point
(e.g., as effect of guessing the truth value of an atom), a corresponding choice point has to be
generated in the constraint store (see Fig. 2, post operation (6)). Similarly, whenever Smodels
detects a conflict and initiates backtracking, a failure has to be triggered in the store as well.
Observe that choice points and failures can be easily generated in the constraint store using
the repeat and fail predicates of ECLiPSe. In our ASP-CLP(Agg) system, we have extended
the Smodels pick module to allow aggregate atoms to be picked and its truth value is guessed
in the same manner as in the case of non-aggregate atoms. Obviously, aggregate atoms that
are picked are non-completed aggregate atoms since, as we mentioned previously, aggregate
atoms are checked for their completion every time a dependent atom is made true or false. In
this case, the picked aggregate atom is set to true (by simply posting the constraint B#= 1,
where B is the variable associated to the reification of the aggregate).

As mentioned, a choice point is generated (using the repeat predicate) into the ECLiPSe
constraint store before posting the picked aggregate. If a conflict is detected, it is propagated
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Fig. 2. Communication between Smodels and ECLiPSe

to the ECLiPSe constraint store (by posting the fail constraint to the constraint store) where
a failure is generated to force backtracking to the choice point. Backtracking to a choice point
will require posting the complementary constraint to the constraint store—e.g., if originally
the constraint generated was X[i]#= 1 (B#= 1) then upon backtracking the constraint
X[i]#= 0 (B#= 0) will be posted (see the post operation (6) in Fig. 2). If no conflicts were
detected, then the Smodels will continue the computation of the model and a backtracking
will take place for constructing a new model. At this point the control will return back to the
ECLiPSe where a new answer is generated.
ASP-CLP(Agg) supports two modalities for picking aggregate atoms. Under the lazy

modality, the truth value of an aggregate atom is guessed by simply instantiating the variable
associated to the corresponding reification. E.g., if we want to guess the truth value of the ag-
gregate count({{X : p(X)}}) < 2, which was initially reified as (X[3]+X[5]+X[6]#< 2)#<=>
B, then the pick operation will simply generate a choice point and post the constraint B#= 1
(and B#= 0 during backtracking). Note that this may not immediately provide enough infor-
mation to the constraint solver to produce values for the variables X[3], X[5], X[6]. Under the
eager modality, we expect the constraint solver to immediately start enumerating the possible
variable instantiations satisfying the constraint; thus when the aggregate is picked, we also
request the constraint store to label the variables in the constraint (Fig. 2, post operation
(8)). In the previous example, when the aggregate is picked we not only request its constraint
to be true (by posting B#= 1) but we also post a labeling([X[3], X[5], X[6]]).



Evaluation. The implementation of the resulting system has been completed, and it is avail-
able at www.cs.nmsu.edu/~ielkaban/smodels-ag.html. The current prototype, built us-
ing Smodels and ECLiPSe is stable and it was used to successfully implement a number of
benchmark programs. The execution speed is good, thanks to the good implementation of
the ECLiPSe interface (which limits the communication overhead between the two systems).
Furthermore, the system has demonstrated excellent ability to reduce the search space for
programs that contain a number of aggregates related to the same predicates—their represen-
tations as constraints and the propagation mechanisms of ECLiPSe allows to automatically
prune a number of irrelevant alternatives.

Work is in progress to optimize the implementation and to perform formal efficiency
comparisons with other relevant systems (e.g., with Smodels for programs that can be encoded
using limited forms of aggregation—e.g., only cardinality constraints—and with DLV ).

6 Example

In this section we discuss a problem presented in [14, 11]. The main idea of the problem is to
send out party invitations considering that some people will not accept the invitation unless
they know that at least k other people from their friends accept it too. Suppose a situation
as the one represented in the program below. In this case, Mary will not accept the invitation
unless Sue does and Sue will not accept it unless Mary does. According to the semantic of our
language (discussed in Section 4) we are expecting two situations. In the first situation we
assume that there is a bad communication between Mary and Sue and in this case a deadlock
situation will occur and neither of them will accept the invitation. The other situation is that
both of them simultaneously accept. We assume here that each person has a unique name.
The relation requires(X, K) is true when an invited person X requires at least K other people
of X’s friends to accept the invitation. The relation friends(X, Y) is true when a person X is
a friend of person Y. The relation person(X) is used as a domain predicate.

requires(ann,0). requires(rose,0). requires(mary,1). requires(sue,1).

person(mary). person(sue). person(ann). person(rose).

friend(mary,sue). friend(sue,mary).

coming(X) :- requires(X,0).

coming(X) :- requires(X,K), count({{ Y: kc(X,Y)}}) >= K.

kc(X,Y) :- friend(X,Y), coming(Y).

The result of running the previous program on the Pre-Analyzer is:

requires(ann,0). requires(rose,0). requires(mary,1). requires(sue,1).

person(mary). person(sue). person(ann). person(rose).

friend(mary,sue). friend(sue,mary).

coming(X) :- requires(X,0).

coming(X) :- requires(X,K), count(y,kc(X,y),K,multiset,greateq).

{count(y,kc(X,y),K,multiset,greateq)} :- requires(X,K).

kc(X,Y) :- friend(X,Y),coming(Y).

The result from the Pre-Analyzer is passed to lparse, and the result obtained from lparse
on the Pre-Analyzer output is passed to the Post-Analyzer. The Model Computation module
on the Post-Analyzer output produces the following models (we highlight the relevant parts):

Stable Model: Stable Model:
coming(mary), coming(sue) coming(ann)
coming(ann), coming(rose) coming(rose)



7 Discussion

Various proposals have been put forward to provide alternative semantics for logic program-
ming with aggregates [5, 14], trying to address some of the limitations of the simple semantics
adopted in the previous section. A natural alternative semantics, which removes the presence
of non-minimal models, can be defined as follows.

Definition 5 (Aggregate Solution Set). Let us consider a ground aggregate literal α of
the form F{{X : Goal[X, Ȳ ]}} op Result. Let us denote with S(α) the following set:

S(α) =



{(a1, b̄1), . . . , (an, b̄n)} |

ai, b̄i are ground terms and
Goal[ai, b̄i] is a legal grounding of Goal[X, Ȳ ] and

AC |= (F{{a1, . . . , an}} op Result)





We will refer to S(α) as the Aggregate Solution Set.

Definition 6 (Aggregate Unfolding). Let α be the ground aggregate F{{X :
Goal[X, Ȳ ]}} op Result. We define the unfolding of α (unfold(α)) as the set of formulae

unfold(α) =





∧

(a,b̄)∈S

Goal[a, b̄] ∧
∧

(a,b̄)6∈S

not Goal[a, b̄] | S ∈ S(α)





We also define the unfold of a non-aggregate literal A as the set containing only A (i.e.,
unfold(A) = {A}). The unfolding of a clause H :−B1, . . . , Bn is defined as the set of clauses:

unfold(H :−B1, . . . , Bn) = {(H :− β1, . . . , βn) | βi ∈ unfold(Bi), 1 ≤ i ≤ n}
The unfolding of a program P (unfold(P )) is obtained by unfolding each clause in P .

Definition 7 (Alternative Stable Model Semantics for Programs with Aggre-
gates). Let M be an Herbrand interpretation and let P be a program with aggregates. M
is a stable model of P iff M is a stable model of unfold(P ).

Example 3. Consider the program

p(1). p(2). p(3).
p(5) :- q. q :- sum({{X:p(X)}}) > 10.

The unfold of this program yields a program which is identical except for the last rule:

q :- p(1), p(2), p(3), p(5).

since {{1, 2, 3, 5}} is the only multiset that satisfies the aggregate. The resulting program has
a single answer set: {p(1), p(2), p(3)}, thus the non-minimal model accepted in the former
semantic characterization (see Example 2) is no longer a stable model of the program.

This alternative semantics characterization can be supported with minimal changes in the
proposed system. In particular, the construction and handling of the constraints encoding
aggregate computations is unchanged. The only changes required are in the management of
the declarative closure computation in presence of aggregates within Smodels. The presence
of non-minimal models derive from true aggregates being treated as facts, loosing the de-
pendencies between the aggregate and the atoms it depends on. These dependencies can be
restored by dynamically introducing a rule upon satisfaction of an aggregate—where the body
of the rules includes the true atoms satisfying the aggregates (readily available from the data
structures provided by the preprocessor).



8 Conclusions and Future Work

A prototype implementing these ideas has been completed and used on a pool of benchmarks.
Performance is acceptable, but we expect significant improvements by refining the interface
with ECLiPSe. Combining a constraint solver with Smodels brings many advantages:
• since we are relying on an external constraints solver to effectively handle the aggregates,

the only step required to add new aggregates (e.g., times, avg) is the generation of the
appropriate constraint formula during preprocessing;

• the constraint solvers are very flexible; e.g., by making use of Constraint Handling Rules
we can implement different strategies to handle constraints and new constraint operators;

• it is a straightforward extension to allow the user to declare aggregate instances as eager ;
in this case, instead of posting only the corresponding constraint to the store, we will also
post a labeling, forcing the immediate resolution of the constraint store (i.e., guess the
possible combinations of truth values of selected atoms involved in the aggregate). In this
way, the aggregate will act as a generator of solutions instead of just a pruning mechanism.
We believe this approach has advantages over previous proposals. The use of a general

constraint solver allows us to easily understand and customize the way aggregates are han-
dled (e.g., allow the user to select eager vs. non-eager treatment); it also allows us to easily
extend the system to include new form of aggregates, by simply adding new type of con-
straints. Furthermore, the current approach relaxes some of the syntactic restriction imposed
in other proposals (e.g., stratification of aggregations). The implementation requires minimal
modifications to Smodels and introduces insignificant overheads for regular programs. The
prototype confirmed the feasibility of this approach.

In our future work, we propose to further relax some of the syntactic restrictions. E.g.,
the use of labeling allows the aggregates to “force” solutions, so that the aggregate can act
as a generator of values; this may remove the need to include domain predicates to cover the
result of the aggregate (e.g., the safety condition used in DLV ).
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