
EFP and PG-EFP: Epistemic Forward Search Planners in Multi-Agent Domains

Tiep Le
Computer Science

New Mexico State University
Las Cruces, NM 88003, USA

tile@cs.nmsu.edu

Francesco Fabiano
Computer Science

New Mexico State University
Las Cruces, NM 88003, USA

ffabiano@cs.nmsu.edu

Tran Cao Son
Computer Science
New Mexico State

Las Cruces, NM 88003, USA
tson@cs.nmsu.edu

Enrico Pontelli
Computer Science

New Mexico State University
Las Cruces, NM 88003, USA

epontell@cs.nmsu.edu

Abstract

This paper presents two prototypical epistemic forward plan-
ners, called EFP and PG-EFP, for generating plans in multi-
agent environments. These planners differ from recently de-
veloped epistemic planners in that they can deal with un-
limited nested beliefs, common knowledge, and capable of
generating plans with both knowledge and belief goals. EFP
is simply a breadth first search planner while PG-EFP is a
heuristic search based system. To generate heuristics in PG-
EFP, the paper introduces the notion of an epistemic planning
graph. The paper includes an evaluation of the planners using
benchmarks collected from the literature and discusses the
issues that affect their scalability and efficiency, thus identi-
fies potentially directions for future work. It also includes ex-
perimental evaluation that proves the usefulness of epistemic
planning graphs.

Motivation
Epistemic planning in multi-agent domains has recently
gained momentum in several research communities. Its com-
plexity has been studied in (Aucher and Bolander 2013;
Bolander, Jensen, and Schwarzentruber 2015; Charrier,
Maubert, and Schwarzentruber 2016). Studies of epistemic
planning can be found in (Bolander and Andersen 2011;
Crosby, Jonsson, and Rovatsos 2014; Engesser et al. 2017;
van der Hoek and Wooldridge 2002; Huang et al. 2017;
Löwe, Pacuit, and Witzel 2011; Muise et al. 2015; Kominis
and Geffner 2015; 2017; van Eijck 2004; Wan et al. 2015).
Due to its complexity, the majority of search based epis-
temic planners (e.g., (Crosby, Jonsson, and Rovatsos 2014;
Engesser et al. 2017; Kominis and Geffner 2015; 2017;
Huang et al. 2017; Muise et al. 2015; Wan et al. 2015)) im-
pose certain restrictions, such as the finiteness of the lev-
els of nested beliefs. In some approaches (e.g., (Bolander
and Andersen 2011; van der Hoek and Wooldridge 2002;
Löwe, Pacuit, and Witzel 2011)), the initial epistemic state
is assumed to be known and finite or recursively enumerable.
Issues and research directions related to epistemic planning
have been summarized nicely in the report of the recent
Dagstuhl’s meeting (Baral et al. 2017).

In this paper, we describe an epistemic forward search
planner, EFP, derived from recent research developments in

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reasoning about actions in multi-agent domains (Baral et al.
2012; Son et al. 2014). The primary goal is to be able to
solve planning problems similar to that given in Example 1
below, a slightly modified version of the first example in
(Baral et al. 2012) and given in (Baral et al. 2015).
Example 1 (The Coin in the Box Domain) Three agents
A, B, and C are in a room. In the middle of the room there
is a box containing a coin. It is common knowledge that:
• Nobody knows which face of the coin is showing;
• The box is locked and one needs a key to open it; agent
A is the only one with a key to the box;
• To determine the face of the coin, one can peek into the

box if the box is open;
• An agent, observing another agent peeking into the box,

will be able to conclude that the agent who peeked knows
which face of the coin is showing—but without knowing
which is showing himself;
• Distracting an agent causes s/he to not look at the box;
• Signaling an agent causes the agent to look at the box;
• Announcing that the coin is showing heads or tails will

cause everyone to know this fact.
• A and C are looking, while B is not looking at the box.

We assume that in reality the coin lies tail up. Agent A
wishes to know which face of the coin is up, and s/he would
like agent B to become aware of the fact that A knows the
state of the coin, while keeping C in the dark.

It is easy to see that agent A could achieve such goal by:
(a) distracting C, thus keeping him from looking at the box;
(b) signaling B to look at the box; (c) opening the box; and
(d) peeking into the box.
To the best of our knowledge, there is no system that
can deal with this example. We observe that this prob-
lem cannot be expressed by the formulation given in sev-
eral epistemic planners (e.g., (Kominis and Geffner 2015;
Huang et al. 2017; Muise et al. 2015; Wan et al. 2015)) since
it requires the representation and reasoning about common
knowledge.

The key contributions of this paper are: (i) two epis-
temic planners EFP and PG-EFP that can work with com-
mon knowledge; (ii) the notion of epistemic planning graph,
which generalizes the notion of planning graph in the liter-
ature to the case of epistemic planning; (iii) an experimen-
tal evaluation showing that heuristic derived from epistemic

planning graphs is useful; and (iv) an experimental evalua-
tion showing that EFP and PG-EFP can be potentially useful
as a tool for epistemic planning.

The paper is organized as follows. The next section re-
views the background of epistemic planning and a spec-
ification language for epistemic planning. Next, we pro-
vide a description of the architecture and components of
EFP and PG-EFP. This is followed by the notion of epis-
temic planning graph and the algorithm for computing epis-
temic planning graphs. The paper then presents an ex-
perimental evaluation of EFP and PG-EFP, a comparison
with some other planning systems and a discussion of their
strengths and weaknesses. The source code of EFP and PG-
EFP and input files to reproduce results in our experiments
is downloadable from https://github.com/tiep/
EpistemicPlanning. The Supplementary Document
can be downloaded from https://www.cs.nmsu.
edu/˜tson/ICAPS2018/supplementary.pdf.

Background
Epistemic Planning
An epistemic planning problem (Bolander and Andersen
2011) is defined over a multi-agent epistemic logic language
L(F ,AG), with a set of agents AG and a set of fluents F .
L(F ,AG) allows formulae constructed using the BNF

ϕ
def
= > | ⊥ | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | CXϕ

where p ∈ F , i ∈ AG, and X ⊆ AG. The intended in-
terpretation of Kiϕ is “agent i knows ϕ” and CXϕ is “the
agents in X share the knowledge about ϕ”, i.e., every one
in the group knows that ϕ is true. A fluent literal is either f
or ¬f for some f ∈ F . A consistent set of fluent literals I
is an interpretation of F ; I is a complete interpretation of F
if for each f ∈ F , {f,¬f} ∩ I 6= ∅. FI denotes the set of
complete interpretations of F . The semantics of L(F ,AG)
is defined using Kripke structures (Fagin et al. 1995), also
referred to as epistemic models.

Definition 1 An epistemic model (or e-model) of the lan-
guage L(F ,AG) is a tripleM = (W,R, π), where: (i) W
is a finite set of worlds (the domain); (ii) R : AG → 2W×W

assigns an accessibility relation R(i) = Ri to each agent
i ∈ AG.1 (iii) π : W → FI assigns a complete interpre-
tation of F to each world. A pointed epistemic model (or
pe-model) is a pair (M, w), where M = (W,R, π) is an
epistemic model and w ∈W .

We write wRiv for (w, v) ∈ R(i). The satisfaction of a
formula of the language L(F ,AG) is expressed with respect
to pe-models. Given a pointed epistemic model (M, w) with
M = (M,R, π) and a formula ϕ, the satisfaction relation
between ϕ and (M, w) is defined as follows: (i) (M, w) |=
p iff p is true in w; (ii) (M, w) |= ¬ϕ iff (M, w) 6|= ϕ;
(iii) (M, w) |= ϕ1 ∧ ϕ2 iff (M, w) |= ϕ1 and (M, w) |=
ϕ2; (iv) (M, w) |= Kiϕ if for all v ∈ W , if wRiv then

1(Bolander and Andersen 2011) assumes that all accessibility
relations are equivalence relations; we will relax this, as it is too
restrictive to effectively represent beliefs.

(M, v) |= ϕ; and (v) (M, w) |= CXϕ if for all v ∈ W , if
w(
⋃
j∈X Rj)

∗v then (M, v) |= ϕ where (
⋃
j∈X Rj)

∗ is the
transitive closure of

⋃
j∈X Rj .

M |= ϕ if (M, w) |= ϕ for each w ∈W .
An epistemic state (or e-state) is a pair (M,Wd) where

M = (M,R, π) is an epistemic model and Wd ⊆ W . A
truth value of a formula ϕ with respect to an epistemic state
(M,Wd) is defined by

(M,Wd) |= ϕ iff ∀w ∈Wd.[(M, w) |= ϕ]

Epistemic planning relies on the notion of an event model
(also called update model in the literature) for model-
ing changes to epistemic states. We use the formalization
of update model introduced in (Baltag and Moss 2004;
van Benthem, van Eijck, and Kooi 2006). Let us start with
some preliminary definitions. An L(F ,AG)-substitution is
a set {p1 → ϕ1, . . . , pk → ϕk}, where each pi is a dis-
tinct proposition in F and each ϕi ∈ L(F ,AG). We will
implicitly assume that for each p ∈ F \ {p1, . . . , pk}, the
substitution contains p → p. SUBF,AG denotes the set of
all L(F ,AG)-substitutions.
Definition 2 (Event Model) Given a setAG of n agents, an
event model Σ is a tuple 〈E,Q, pre, sub〉 where (i) E is a
set, whose elements are called events; (ii) Q : AG → 2E×E

assigns an accessibility relation to each agent i ∈ AG; (iii)
pre : E → L(F ,AG) is a function mapping each event e ∈
E to a formula inL(F ,AG); and (iv) sub : E → SUBF,AG
is a function mapping each event e ∈ E to a substitution in
SUBF,AG .

A pair (E , Ed), consisting of an event model
E = (E,Q, pre, sub) and a non-empty set of designated
events Ed ⊆ E, is called an epistemic action.
Given an epistemic action (E , Ed) and an epistemic state
(M,Wd), we say that (E , Ed) is executable in (M,Wd)
if, for each w ∈ Wd, there exists at least one e ∈ Ed
such that (M, w) |= pre(e). The execution of (E , Ed) in
(M,Wd) results in an epistemic state (M,Wd)⊗(E , Ed) =
((W ′, R′, π′),W ′d) where
• W ′ = {(w, e) ∈W × E | (M, w) |= pre(e)}
• R′i = {((w, e), (v, f)) ∈W ′ ×W ′ | wRiv ∧ eQif}
• For each (w, e) ∈W ′ and p ∈ F , π′((w, e))(p) is true iff
p→ ϕ ∈ sub(e) and (M, w) |= ϕ

• W ′d = {(w, e) ∈W ′ | w ∈Wd and e ∈ Ed}
An epistemic planning domain is then defined as a state-

transition system Σ = (S,A, γ), where S is a set of epis-
temic states of L(F ,AG), A is a finite set of epistemic ac-
tions ofL(F ,AG), and γ(s, a) = s⊗a if s⊗a is defined and
⊗ is the above operation. An epistemic planning problem is a
triple (Σ, s0, φg) where Σ = (S,A, γ) is an epistemic plan-
ning domain on (F ,AG), s0 ∈ S is the initial state, and φg
is a formula in L(F ,AG). An action sequence a1, . . . , an
where s0⊗a1⊗ . . .⊗an |= φg is a solution of the problem.

Epistemic Planning Problem Specification
The above formalization of epistemic planning problem
leaves an open question of how to compactly2 specify an

2By a “compact specification” we mean a specification that
does not explicitly list all possible e-states of the problem.

epistemic planning problem?, i.e., how to compactly specify
an epistemic planning domain Σ = (S,A, γ) on (F ,AG)
and how to specify s0. In this paper, we will use finitary
S5-theory (Son et al. 2014) and the language mA (Baral et
al. 2012) to specify the initial state and a planning domain,
respectively. As our focus in this paper is about the develop-
ment of the planner, we defer to the Supplementary Docu-
ment of the paper the precise definitions of mA and of fini-
tary S5-theories. We will only briefly review their features
needed for the development of EFP below.
Specifying s0: A set of formulae s0 in L(F ,AG) is said to
be a finitary S5-theory if it a S5-theory and contains only
formulae of the following form: (i) ϕ; (ii) C(Kiϕ); (iii)
C(Kiϕ ∨ Ki¬ϕ); (iv) C(¬Kiϕ ∧ ¬Ki¬ϕ) where ϕ is a
fluent formula. Intuitively, formulae of type (i) indicate for-
mulas that are true in the actual world; (ii)-(iii) indicate that
all agents know that i knows the truth value of ϕ; formulae
(iv) say that all agents know that i does not know whether
ϕ is true or false. It is shown in (Baral et al. 2012) that if s0

is a finitary S5-theory then there exists a unique e-model
M = (W,R, π) such that W is finite and (i) for every
w ∈ W , (M, w) |= s0; and (ii) every pe-model (M′, w′)
such that (M′, w′) |= s0 can be reduced by bisimulation to
some (M, w). This means that (M,W) is a unique e-state
satisfying s0. There are two reasons supporting the choice of
finitary S5-theory as the specification of initial state. First, it
is computable. Second, the majority of benchmarks in epis-
temic planning have this property. The initial state of the
problem in Example 1, for instance, is given in the Supple-
mentary Document.
Specifying planning domain: Using mA , a multi-
agent planning domain D can be specified by a tuple
〈AG,F , A,O〉 where AG is the set of agents and F is the
set of fluents; A is the set of actions, where each action is
either an ontic action (or world-changing action), a sensing
action, or an announcement action. It is assumed that each
action a ∈ A is of a unique type.A also contains the descrip-
tion of preconditions and effects of actions (see below); and
O are observability statements, describing the frames of ref-
erence of agents with respect to action occurrences. A and
O consist of statements of form (1)–(4) and (5)-(6), respec-
tively.

executable a if ψ (1)
a causes ` if ψ (2)
a determines f (3)
a announces ` (4)

α observes a if ϕ (5)
α aware of a if ϕ (6)

where a is an action, f is a fluent, ` is a fluent literal, ψ is a
belief formula, α is a set of agents, and ϕ is a fluent formula.

The preconditions ψ of an action a, denoted by pre(a), is
specified by (1). Without loss of generality, it is assumed that
for each a, there exists exactly one statement of the form (1)
in the domain. The action a in (2), (3), and (4) is an ontic,
sensing, or announcement action, respectively. (2) states that
a is an ontic action and its execution will cause ` to be true
in the actual world state if ψ is true. (3) indicates that a is a
sensing action and executing a will reveal the truth value of
f . (4) says that a is an announcement action and its execu-

tion will inform aware agents that ` is true.
(5) (resp. (6)) indicates that if a occurs and ϕ is true, then

α is the set of agents who are fully (resp. partially) aware of
the action occurrence and its consequences. If an agent does
not occur in a statement of the forms (5) or (6), then she
is oblivious of the action occurrence and its consequences.
In writing the observability statements, we often write x in-
stead of the singleton {x}.

The semantics of a multi-agent domain is defined by a
transition function Φ that maps pairs of actions and e-states
to sets of e-states. Let a be an action in A and (M, w) be
an e-model. a is executable in (M, w) if (M, w) |= pre(a).
Let

F(a,M, w) = {X ∈ AG | [Y observes a if ϕ] ∈ A
such that (M, w) |= ϕ ∧X ∈ Y }

P(a,M, w) = {X ∈ AG | [Y aware of a if ϕ] ∈ A
such that (M, w) |= ϕ ∧X ∈ Y }

O(a,M, w) = AG \ (F(a,M, w) ∪ P(a,M, w))

These sets represent the set of agents who are fully aware,
partially aware, and oblivious of the execution of a in
(M, w), respectively. mA specifies how the corresponding
epistemic action (E(a,M,w), E(a,M,w)) of an occurrence of
a in (M, w) is defined given a and (M, w). The precise def-
inition of (E(a,M,w), E(a,M,w)) is rather long, we refer the
reader to the Supplementary Document or (Baral et al. 2012)
for the detailed definition. Note that if a is executable in
(M, w), the result of executing a in (M, w) is an e-model.

Figure 1 shows the epistemic actions (on the right) corre-
spond to the occurrence of open(A) in two e-models (left);
in the e-model at the top,B is not looking and in the e-model
at the bottom, B is looking. We use the conventional repre-
sentation of e-models in the figure: nodes represent worlds,
labeled links represents the accessibility relation, and π is
given implicit (listing only important fluent literals in the
nodes). In both models, we omit fluent literals encoding the
facts that A and C are looking, A has the key, and the box is
locked. Likewise, rectangles represent events, double lines
rectangles represent designated events, etc.

tail ¬tailA,B,C

A,B,CA,B,C

σ

pre: has_key(A)

A,C
!

pre: true

A,B,C
B

tail

A,B,C

σ

pre: has_key(A)

A,B,C

e-models corresponding e-action

Figure 1: Epistemic action of open(A)

We note that the idea of constructing e-actions from the
action description and action occurrences has recently been
used in (Engesser et al. 2017).

For each e-model (M, w) and an action a,
Φ(a, (M, w)) denotes the result of executing a in (M, w).
Φ(a, (M, w)) = ∅ if a is not executable in (M, w), i.e.,
(M, w) 6|= pre(a).

Φ(a, (M, w)) = (M, w)⊗ (E(a,M,w), E(a,M,w))

If (M,Wd)|=pre(a), Φ(a, (M,Wd))=
⋃

w∈Wd
Φ(a, (M, w));

otherwise, Φ(a, (M,Wd)) = ∅. A domain 〈F ,AG, A,O〉

Algorithm 1: EFP(〈F ,AG, A,O, s0, φg〉)
Input : A planning problem

P = 〈F ,AG, A,O, s0, φg〉
Output: A solution for P if exists; failed otherwise

1 Compute the initial e-state given s0: (Mi,Wi)
2 Initialize a priority queue q = [({(Mi,Wi)}, [])]
3 while q is not empty do
4 (Ω, plan) = dequeue(q)
5 if (M,Wd) |= φg for every (M,Wd) ∈ Ω then
6 return plan
7 end
8 for action a executable in every (M,Wd) in Ω do
9 Compute Ω′ =

⋃
(M,Wd)∈Ω Φ(a, (M,Wd))

10 Compute heuristics and insert (Ω′, plan ◦ a)
into q

11 end
12 end
13 return failed

represents a planning domain Σ = (S,Act, γ) where S
is the set of e-states of L(F ,AG), Act is the set of epis-
temic actions produced by e-models, actions, and observa-
tions in A and O, and γ is defined by Φ. A planning prob-
lem P is a triple (D, s0, φg) where D is a domain, s0 is a
finitary S5-theory, and φg is formula. Often, we also write
〈F ,AG, A,O, s0, φg〉 to denote a planning problem.

It is worth to note that it has been discussed in (Baral et
al. 2015) that, for certain situations, the semantics of mA
as defined in (Baral et al. 2015) is not intuitive (e.g., it does
not allow agents to correct their knowledge). Fortunately, a
recent proposal (van Eijck 2017) provides a way to fix this.
It involves two steps. The first step corrects the false beliefs
of agents by creating (M′, w) from (M, w) and the action
occurrence. The second step is to apply the operation ⊗ on
(M′, w) and (E(a,M,w), E(a,M,w)). EFP and PG-EFP im-
plement this modified semantics.

The EFP and PG-EFP Systems
Overall Architecture
The overall architecture of EFP and PG-EFP is given in Al-
gorithm 1. The key modules of EFP and PG-EFP are: (i)
a pre-processor; (ii) initial e-state computation; and (ii) a
search engine.
• Pre-processor: this module is responsible for parsing the

planning problem description, setting up the planning do-
main, that includes the list of agents, the list of actions,
the rules for computing frames of reference, and the list
of fluents. This module is also responsible for the initial-
ization of necessary data structures (e.g., e-state) and ex-
ecutes some transformations (e.g., the transformation of
general planning problems to d-observable problems3).

• Initial e-state computation: EFP implements the algo-
rithm given in (Son et al. 2014) for computing the initial
e-state. As an example, Figure 2 shows the e-state repre-
senting the initial state of the problem in Example 1. The

3d-observable problems is defined later in Epistemic Planning
Graph: Formal Definition

fluent literals in the gray box of the figure are true in all
worlds in the e-state.

tail ¬tailA,B,C

A,B,CA,B,C

locked, has_key(A), looking(A), looking(C),
¬has_key(B), ¬has_key(C), …

Figure 2: Initial e-state
• Search engine: this module is responsible for computing

a solution. EFP and PG-EFP implement a best-first search
(Algorithm 1). EFP is a breadth-first search planner and
PG-EFP is a heuristic search planner, using a heuristic that
is derived from epistemic planning graph, described in the
next section.
EFP and PG-EFP are modularly organized (e.g., the func-

tion Φ is implemented in a separate module) which will fa-
cilitate future modifications and extensions.

Epistemic Planning Graph
In this section, we develop a means for deriving heuris-
tics in the implementation of EFP. We note that epistemic
planners in the literature do not focus on this issue be-
cause the majority of them translate an epistemic plan-
ning problem into a classical planning problem and uses
classical planners for computing the solutions. The excep-
tions to this trend are presented in (Huang et al. 2017;
Wan et al. 2015) where the planning systems described in
these papers use a heuristic similar to the number of satis-
faction subgoals in single agent planning. In this paper, we
approach this problem from a different angle. Specifically,
we start with the fact that we search for plans using forward-
search. It is easy to see that a generalization of the notion of
a planning graph in single-agent to epistemic planning is a
reasonable choice because it allows us to compactly repre-
sent the search tree using one single data structure and to
extract different ways to extract heuristics. We therefore in-
troduce the notion of an Epistemic Planning Graph (EPG)
for epistemic planning.

As in single-agent domains, we expect that an epistemic
planning graph will also consist of alternating state levels
and action levels. While the content of action levels is ob-
vious (i.e., it should be actions), it is not trivially clear what
should the state levels contain? There are at least two possi-
ble answers: formulae in L(F ,AG) or epistemic states. The
former would require the computation of all effects of an ac-
tion, which could be an infinite set of formulae, and it is not
desirable; this set could be approximated by finding an ap-
proximation of common knowledge but this not trivial (e.g.,
a public announcement of a fluent f makes f a common
knowledge). For this reason, we use e-states in state levels.
Intuitively, each e-state in a state level represents the updated
knowledge/belief of the agents about some fluents after an
action is executed. Before we present the formal definition
of this notion, we illustrate this idea in the following figure.

In Figure 3, level 0 contains the unique e-state of the
planning problem. In this e-state, the actions open(A),
signal(A,B), signal(C,B), etc. are executable. The exe-

l(B)

A,B,C
tail ¬tailA,B,C

A,B,CA,B,C open(A) opened

A,C

¬opened

A,B,C

B

l(B)=looking(B)signal(A,B)

signal(C,B)

level-0 level-1

locked, has_key(A), looking(A), looking(C),
¬has_key(B), ¬has_key(C), …

Figure 3: Epistemic planning graph: an illustration
cution of open(A) in the pe-model of the initial e-state will
result in A and C know that the box is open and B oblivious
about this fact. This creates the top-right e-state of the fig-
ure (top of level-1). The execution of either signal(A,B) or
signal(C,B) will result in B looking at the box and every-
one knows that everyone is looking at the box; this creates
the bottom-right e-state of the figure (bottom of level-1).

As it is shown in the application of planning graph for
single-agent domains, planning graphs with mutexes pro-
vide better heuristics. Therefore, it is natural to expect that
EPG should also include mutexes. By definition, a mutex
represents a pair of actions with conflicting effects. This
means that computing mutexes requires checking whether
two actions produce conflicting effects. As it turns out, this is
computational cheap and straightforward in single-agent do-
mains under PDDL-specification, computing effects of ac-
tions under mA is not straightforward. For these reasons,
we leave the mutex definition for future work.

Epistemic Planning Graph: Formal Definitions
We will next formally define the notion of an epis-
temic planning graph. Given a planning problem P =
〈F ,AG, A,O, s0, φg〉, we say that P is deterministically ob-
servable (or d-observable) if O contains only statements of
the form “α observes a” and “α aware of a.” It is easy
to see that every planning problem P can be translated4 into
an equivalent d-observable problem P ′, i.e., a solution to P
is equivalent to a solution to P ′ and vice versa. Intuitively,
in d-observable problems, F (a,M, w) (or P (.) and O(.))
is independent from (M, w). For this reason, we will use
Fa, Pa, and Oa to denote the sets of agents F (a,M, w),
P (a,M, w), and O(a,M, w), respectively. This simplified
the definition of an epistemic planning graph. For simplicity
of the presentation, we will present the notion of an epis-
temic planning graph only for d-observable planning prob-
lems. Observe that, from now on, we assume that P =
〈F ,AG, A,O, s0, φg〉 is given and is d-observable.

In the following, we will consider incomplete e-model
(W,R, π) where W , R, and π are defined similarly to the
components of an e-model with the exception that π(w) can
be a partial interpretation of F . An incomplete pe-model (or
e-state) is of the form (M, w) (or (M,W)) where M is
an incomplete e-model. From now on, whenever we refer to
an (p)e-model (or e-state), we mean a (possibly incomplete)
(p)e-model (or e-state).

For a set of e-states P = {(M1,W1), . . . , (Mn,Wn)}
4This process is similar to the process of converting an action

with conditional effects to a set of actions without conditional ef-
fects in classical planning.

and a conjunction of fluent literals ψ = `1 ∧ `2 . . . ∧ `k,
we say P |∼ ψ if for every 1 ≤ i ≤ k, there exists some
1 ≤ j ≤ n such that (Mj ,Wj) |= `i. For a fluent formula
ϕ, let

∨k
i=1 ϕk be its DNF, i.e., each ϕi is a conjunction of

literals. We say P |∼ ϕ iff P |∼ ϕi for some 1 ≤ i ≤ k.
Intuitively, if P represents a state level, P |∼ ϕ means that
the level, P , “possibly entails” ϕ. |∼ is used for checking
whether or not some formula could be entailed from a state
level. This is similar to the verification of the presence of a
literal in a state level in a planning graph. |∼ is generalized
to arbitrary formula as follows.

Definition 3 Given a set of e-states P =
{(M1,W1), . . . , (Mn,Wn)} where Mj = (Wj , Rj , πj)
for 1 ≤ j ≤ n, and a belief formula ϕ, we say P |∼ ϕ if
• ϕ is a fluent formula and P |∼ ϕ;
• ϕ = Kiψ and {(M1,W

′
1), . . . , (Mn,W

′
n)} |∼ ψ

where for 1 ≤ j ≤ n, W ′j = {w′j | ∃wj ∈
Wj such that (wj , w

′
j) ∈ Rj(i)};

• ϕ = ¬ψ and ψ is not a fluent formula and P 6|∼ ψ;
• ϕ = ϕ1 ∨ ϕ2 and (P |∼ ϕ1 or P |∼ ϕ2);
• ϕ = ϕ1 ∧ ϕ2 and (P |∼ ϕ1 and P |∼ ϕ2);
• ϕ = Eαψ and P |∼ Kiψ for every i ∈ α; and
• ϕ = Cαϕ and P |∼ Ekαϕ for every k ≥ 1, where
E1
αϕ = Eαϕ and Ek+1

α ϕ = Eα(Ekαϕ).

This allows us to define the notion of an action potentially
applicable from a set of e-states, which allows us to compute
the action level of an epistemic planning graph, as follows.

Definition 4 An action a ∈ A is potentially applicable in a
state level K if there exists a set of e-states PS ⊆ K such
that PS |∼ pre(a).

Let K be a set of e-states and a be an action potentially
applicable in K. To complete the definition of an epistemic
planning graph, we need to define the set of e-states that
could be obtained given that a is executed. We first define a
set of e-states E(K, a) as follows.
• a is an ontic action: For each [a causes ` if ϕ] inA such

that K |∼ ϕ, letM = (W,R, π) where
◦ W = {u, v};
◦ R : AG → 2W×W is defined as:

- R(i) = {(u, u), (v, v)} for all i ∈ Fa; and
- R(i) = {(u, v), (v, v)} for all i ∈ Oa.

◦ π(u) = {`} and π(v) = {¬`}.
E(K, a) = {(M, {u}) | [a causes ` if ϕ] ∈ A such
that K |∼ ϕ }.

• a is a sensing action: E(K, a) = {(M, {u1}) |
[a determines f] ∈ A and K |∼ f} ∪ {(M, {u2}) |
[a determines f] ∈ A and K |∼ ¬f} where M =
(W,R, π) and
◦ W = {u1, u2, v1, v2};
◦ R : AG → 2W×W is defined as:

- For i ∈ Fa: R(i) = {(u1, u1), (u2, u2)} ∪
{(v1, v1), (v2, v2), (v1, v2), (v2, v1)};

- For i ∈ Pa: R(i) = {(u1, u1), (u2, u2),
(u1, u2), (u2, u1)} ∪ {(v1, v1), (v2, v2),
(v1, v2), (v2, v1)};

- For i ∈ Oa: R(i) = {(u1, v1), (u1, v2),
(u2, v1), (u2, v2)} ∪ {(v1, v1), (v2, v2),
(v1, v2), (v2, v1)};

◦ π(u1)=π(v1)={f} and π(u2)=π(v2)={¬f}.
• a is an announcement action: assume that

[a announces ϕ] is in A. Let W 1 and W 2 be two
disjoint sets, each represents the set of all complete
interpretations of the set of fluents occurring in ϕ. We
define E(K, a) = {(M, {w | w ∈ W 1, w |= ϕ})}
whereM = (W 1 ∪W 2) and
◦ For i ∈ Fa: R(i) = {(w,w′) | w,w′ ∈ W 1 ∧ w |=
ϕ∧w′ |= ϕ}∪{(w,w′) | w,w′ ∈W 1∧w 6|= ϕ∧w′ 6|=
ϕ} ∪ {(w,w′) | w,w′ ∈W 2};
• For i ∈ Pa: R(i) = {(w,w′) | w,w′ ∈ W 1} ∪
{(w,w′) | w,w′ ∈W 2};
• For i ∈ Oa: R(i) = {(w,w′) | w,w′ ∈ W 2} ∪
{(w,w′) | w ∈W 1 ∧ w′ ∈W 2}.

¬ℓ

ℓ

Fa

Fa,Oa

Oa

f ¬f

f ¬f

Fa,Pa Fa,Pa

Fa,Pa,OaFa,Pa,Oa

Fa,Pa,Oa

Pa

Oa Oa Oa Oa

(a) ontic action (b) sensing or announcement action

Figure 4: Examples of resulting e-states in E(K, a)
Intuitively, E(K, a) is the set of e-states that partially rep-
resents the updated knowledge/belief of the agents after ac-
tion a is fired. Each e-state in E(K, a) encodes that agents
in Fa know the effects of a, agents in Oa are oblivious,
and agents in Pa do not know the effects of a but are
aware that those in Fa know the effects of a. Figure 4(a)
presents the e-state resulting from the firing of a with the
statement [a causes ` if >] ∈ A, and Figure 4(b) illustrates
an e-state of firing a sensing action (resp. an announce-
ment action) a where [a determines f] ∈ A ∧ K |∼ f
(resp. [a announces f] ∈ A).

Definition 5 Given a planning problem P =
〈F ,AG, A,O, s0, φg〉, the epistemic planning graph of
P is an alternative sequence of state levels and action levels
K0, A0, . . . ,Kk, Ak, . . . where
• K0 is the set consisting of the unique initial e-state of
P ;
• for i ≥ 0,
• Ai is the set of actions potentially applicable in Ki;

and
• Ki+1 = Ki ∪

(⋃
a∈Ai

E(Ki, a)
)
.

Algorithm 2 shows the computation of an epistemic plan-
ning graph of a planning problem given the e-state in the first
state-level. At each iteration, the set of potentially applicable
actions are computed and then the set of potential effects of

Algorithm 2: EpistemicPlanningGraph(P, (M0,W0))
Input : a planning problem P = 〈F ,AG, A,O, s0, φg〉 and

an e-state (M0,W0)
Output : An epistemic planning graph whose first state level

is {(M0,W0)}
14 Let K0 = {(M0,W0)}
15 i = 0
16 while true do
17 Compute

Ai = {a ∈ A | a is potentially applicable given Ki}
18 i = i+ 1

19 Let Ki = Ki−1 ∪
(⋃

a∈Ai
E(Ki−1, a)

)
20 if Ki ≡ Ki−1 and Ai ≡ Ai−1 then
21 return 〈K0, A0, . . . ,Ki, Ai〉
22 end
23 end

these actions is added to the next state level. The following
property guarantees that Algorithm 2 terminates.

Proposition 1 For a planning problem with finite sets of ac-
tions A, Algorithm 2 terminates.

The proof of this proposition relies on the following ob-
servations: (i) Ki−1 ⊆ Ki (Line 19); and thus (ii) if an
action is potentially applicable at level i then it is also
potentially applicable at level i + 1 (Definition 4); (iii)
E(Ki, a) ⊆ E(Ki+1, a) and E(K, a) is finite.

It is also easy to see that since |∼ stands for “possibly
entails,” the following property holds.

Proposition 2 Let 〈K0, A0, . . . ,Ki, Ai〉 be the epistemic
planning graph returned by Algorithm 2 with the planning
problem P = 〈F ,AG, A,O, s0, φg〉 and (M,W) as input.
Furthermore, let ϕ be a formula and j be the smallest index
such that Kj |∼ ϕ. Then, the shortest solution of the plan-
ning problem 〈F ,AG, A,O, {(M,W)}, ϕ〉 has at least j
actions.

In the following, we denote with level(ϕ) the smallest
state level index in the epistemic planning graph such that
Klevel(ϕ) |∼ ϕ.

Heuristics from Epistemic Planning Graphs
It is well-known that there are several possible ways to
extract heuristics from a planning graph in planning in
single-agent domain (Nguyen, Kambhampati, and Nigenda
2002). Studying different heuristics from epistemic planning
graphs is an interesting topic of research of its own right, but
it is not the focus of this paper. For this reason, we will de-
scribe the heuristics that we used in the experiments in the
next section.

We experimented with two heuristics derived from the
epistemic planning graphs. We assume that φg is a conjunc-
tion of formulas φ1 ∧ . . . ∧ φn where φi is either a fluent
formula or a formula of the form Kiϕ or CXϕ. We define

hmax(φg) = max{level(φi) | i = 1, . . . , n} (7)

and

hsum(φg) =

n∑
i=1

level(φi) (8)

Experimental Evaluation and Discussion
Experimental Evaluation.
As we have mentioned earlier, we implement two planners–
one that uses Epistemic Planning Graph as heuristics, which
we call “PG-EFP”, and one that does not use heuristic but
performs breadth first search to search for the plan, which
we call “EFP”. We note that the heuristic used in PG-EFP
is the hsum heuristic defined in 8. We note that we did ex-
periment with hmax, but its performance is generally worse
than EFP with hsum. For the sake of space, we omit such
comparisons form this paper.

In our experiments, we compare EFP and PG-EFP against
the two systems proposed in (Muise et al. 2015; Huang et al.
2017). The first system, which is called RP-MEP, supports
the notion of planning with nested belief, and demonstrates
how to automatically convert such planning problems into
problems that can be solved using classical planning tech-
nology. The limitation of this system is that it limits the num-
ber of nested belief modality. The second system, which is
called MEPK, supports efficient reasoning in the multi-agent
KD45 logic by using alternating cover disjunctive formu-
las (ACDFs). Such ACDFs are subjected to proposed belief-
revision and update algorithms that adapt the PrAO algo-
rithm originally developed for contingent planning. We use
publicly-available implementations of RP-MEP and MEPK
in our experiments.5 We did not compare our system with
the system in (Kominis and Geffner 2017) as it is an online
planner. We also did not compare our system with the sys-
tem in (Kominis and Geffner 2015) as this has been already
compared with the system in (Huang et al. 2017) and its per-
formance is not as good as that of MEPK.

We evaluate EFP and PG-EFP using the Selective-
communication (SC), and Collaboration-and-
communication domains that are adapted from (Kominis
and Geffner 2015),6 as well as Assemble Line introduced
in (Huang et al. 2017), and Logistics (LO) that was used
in the Competition of Distributed and Multiagent Planners
2015 (CoDMAP’15).7

In the Selective-communication (SC(n,m)), there are n
agents, each of them initially is in one of m rooms in a cor-
ridor. An agent, says a, can move from a room to a neigh-
boring room by actions left and right. When the agent tells
some information—which is the truth value of a fluent q—in
a room i (i.e., executing an announcement action “shout i”),
all the other agents in the same room i or in a neighboring
room of i can hear what was told. The goal is that some
agents get to know q while some other agents do not. In this
experiment, we will vary n, m, the depth of the knowledge
d, and the length of the plan by varying the goal.

In the Collaboration-and-communication (CC(n,m,k)),
there is a corridor of k ≥ 2 rooms. m boxes are located

5We retrieved RP-MEP from https://bitbucket.org/
haz/pdkb-planning and MEPK from https://github.
com/sysulic/MEPK.

6SC is called “Corridor” in (Muise et al. 2015)
7LO is retrieved from http://agents.fel.cvut.cz/

codmap with centralized and unfactored-privacy setting.

in some rooms. n agents can move back and forth along this
corridor. When an agent gets into a room, he can see if a box
is in the room. An agent can communicate information to
another agent. Initially, we set all agents are in room 2 and
the boxes are not there. The goals are varied in which some
agents know the position of some boxes.

The Grapevine (GR(n)) problem is a modification of a
similar domain from (Kominis and Geffner 2015)): n agents
are located in two rooms, and they share secrets with agents
in the same room. The domain supports different goals, from
sharing secrets with other agents to having misconceptions
about agents’ beliefs.

Assembly-line: AL(d). There are two agents, each respon-
sible for processing a part of a product. It is possible that an
agent fails in processing his part. An agent can inform the
other agent of the status of his task. Two agents decide to as-
semble the product or restart, depending on their knowledge
of the status of the agents’ tasks. In order to compare with
RP-MEP and MEPK, we vary the depth of the knowledge d
in this experiment.

Logistics: LO. The logistics domain is recommended by
one of the reviewers to evaluate the scalability of EFP and
PG-EFP since it consists of a large number of fluents and
actions. This benchmark is not originally developed for
epistemic planning. As such, we use its slightly-modified
version by modeling the public/privacy separation of flu-
ents (Brafman and Domshlak 2008) using the “observes”
statement of the form (5). In our experiment, the Logis-
tics problem has 3 agents (i.e., airplane, truck1, and truck2),
2 packages, and 4 locations (i.e., “airport1”, “airport2”,
“pos1”, and “pos2”). The packages can be moved from one
location to another location by being loaded/unloaded onto
agents and then moving agents. We vary the length L of the
optimal plan by changing the desired locations of packages
as goals.

All experiments are performed on a 2.8 GHz Intel Core i7
machine with 16GB of memory. We report the runtimes in
second for all experiments. We set the timeout to 25 minutes.
“TO” means one algorithm fails to solve one problem due to
timeout. The results of our experiments are summarized in
Tables 1–5. In the tables, L denotes the length of the shortest
plan (optimal plan) and d the depth of knowledge. We make
the following observations:
• EFP performs reasonably well comparing to other sys-

tems in the SC domain. When depth (d) of the knowledge
increases, EFP’s performance does not decrease but the
performance of other systems (i.e., MEPK and RP-MEP)
gets significantly worse. The reason is that the represen-
tation of the problem in EFP remains unchanged when d
increases. In contrast, the size of the problem representa-
tion for MEPK and RP-MEP increases when d increases.
This results in the worse performance of MEPK and RP-
MEP when d increases. In this domain, PG-EFP cannot
solve some instances which contain goals with negation
(e.g., goal of the form ¬K1ϕ). Our analysis shows that
the heuristic hmax does not work well for this situation.
On the other hand, if PG-EFP can solve an instance; it is
almost always the fastest, due to the heuristic hsum.

• EFP performs well in the Grapevine domain against RP-

Selective Communication: SC(3,4) Selective Communication: SC(5,6) Selective Communication: SC(7,8)
|AG| = 3, |F| = 5, |A| = 7 |AG| = 5, |F| = 7, |A| = 9 |AG| = 7, |F| = 9, |A| = 11

L d MEPK RP-MEP EFP PG-EFP L d MEPK RP-MEP EFP PG-EFP L d MEPK RP-MEP EFP PG-EFP

2
1 .01 .1 .01 .02

2
1 .6 .2 .02 .04

5
1 35 .36 .22 TO

3 .2 .5 .02 .07 3 TO 3.2 .02 .04 3 TO 10.7 .22 TO
5 TO 28 .03 .08 4 TO 51.58 .03 .04 4 TO 292 .24 TO

3
1 .02 .1 .02 .06

4
1 .68 .2 .07 TO

7
1 35 .36 1.9 TO

3 .2 .5 .02 .07 3 TO 3.18 .08 TO 3 TO 10.8 1.92 TO
5 TO 30 .02 .06 4 TO 54.78 .08 TO 4 TO 300 1.9 TO

5
1 .05 .1 .08 TO

6
1 .81 .2 .51 .35

9
1 35.7 .32 23.7 1.86

3 .21 .6 .09 TO 3 TO 3.21 .52 .36 3 TO 12.72 24 1.9
5 TO 28 .1 TO 4 TO 51.81 .51 .34 4 TO 312 23.5 1.93

Table 1: Runtimes for Selective Communication Problems

MEP. It is not as fast as RP-MEP in the first configu-
ration of this problem but is faster than RP-MEP when
d increases in Configuration 2. We believe that this re-
flects the trade-off between the representation and the
computation of the transition function. In general, com-
puting Φ is more expensive than computing the transi-
tion function implemented in RP-MEP. This is the reason
when the domain is small, EFP is not as good as RP-
MEP. However, when the size of the problem increases
(i.e., |AG|, |F|, |A|, and d increase in Configuration 2),
the size of the representation used in RP-MEP increases
and this affects its performance much more than the com-
plexity of computing Φ. We were unable to run PG-EFP
in this domain as our naive translation from general do-
main to deterministically-observable produces a signifi-
cantly larger input. We believe that some optimization of
the translation could help in this regard.

Grapevine - Configuration 1 Grapevine - Configuration 2
|AG| = 3, |F| = 9, |A| = 24 |AG| = 5, |F| = 15, |A| = 60
L d RP-MEP EFP L d RP-MEP EFP

2
1 0.090 0.034

2

1 0.260 0.912
2 0.255 0.036 2 1.970 0.908
3 1.178 0.035 3 26.110 0.974

4
1 0.088 1.130 4 1499 0.954
2 0.256 1.125 5 TO 0.982
3 1.222 1.141

3

1 0.271 10.879

5
1 0.090 22.687 2 1.990 10.320
2 0.267 22.692 3 26.407 10.568
3 1.220 22.694 4 1575 10.836

5 TO 10.967

4

1 0.264 88.662
2 2.035 90.128
3 26.510 89.135
4 1632 87.631
5 TO 88.164

Table 2: RP-MEP vs. EFP in Grapevine
• For the AL domain (Table 3(Left)), we were unable to

create the input for RP-MEP as the instances become too
large to do the translation manually. Other than that, the
performances of EFP and PG-EFP are similar to their per-
formances in the SC domain and are independent of the
number of depth of knowledge. MEPK’s performance de-
creases when the depth of knowledge increases.

• The coin-in-the-box domain (Example 1) is not solvable
using other planners. Table 3(Right) shows the compari-
son between EFP and PG-EFP to investigate the influence
of the heuristic. In the last column of Table 3(Right), (X)
stands for the length X of the plan returned by PG-EFP,

and (N/A) means that the respective problem has no plan.
We change the goals to create different instances. We can
observe that PG-EFP is often faster than EFP.

Assemble Line: AL(d)
|AG| = 2, |F| = 4, |A| = 6

d MEPK EFP PG-EFP

2 .03

1.9 .9
5 .11

10 5.47
15 175
20 TO

Coin in the Box
|AG| = 3, |F| = 8, |A| = 31

L EFP PG-EFP

2 .04 .27(2)
3 .22 1.16(3)
5 3.58 1.44(6)

no plan TO .43(N/A)

Table 3: AL domain (left) and Coin-in-the-box domain (Right)
• Table 4 compares the two systems EFP and PG-EFP in

the CC domain. In this domain, we did not run the ex-
periment with MEPK as it produces solutions that are
not an action sequence and only runs with d = 1. The
experiments are done on four different configurations
and different goals. We note that CC(3,3,3) has smaller
number of |F| and |A| than CC(3,2,3) because we ex-
periment with a different representation of the problem.
It is interesting to observe that PG-EFP is slower than
EFP in less-complicated problems (i.e., problems with
L = 2), but significantly faster than EFP (several mag-
nitudes faster) in more-complicated problems (i.e., prob-
lems with L > 2). The reason for the former observa-
tion is that PG-EFP needs to compute epistemic planning
graphs while EFP does not. However, when the prob-
lems become more complex, the search space of PG-EFP
seems to reduce significantly and much smaller than that
of EFP due to the heuristic derivable from the EPG. These
results show that the heuristic produced by the epistemic
planning graph is indeed quite useful.

Problem L EFP PG-EFP

CC(2,2,3)
|AG| = 2, |F| = 10, |A| = 16

2 .61 .81
5 48.6 2.5
6 278.6 4.3

CC(2,2,4)
|AG| = 2, |F| = 14, |A| = 22

2 22.2 27.5
4 TO 70
7 TO 160

CC(3,2,3)
|AG| = 3, |F| = 13, |A| = 24

2 3.3 2.3
5 257.9 7.9
6 TO 10.3

CC(3,3,3)
|AG| = 3, |F| = 12, |A| = 21

2 .42 .68
5 115.7 2.27
6 TO 3

Table 4: EFP vs. PG-EFP in CC domain
• The logistics domain cannot be modeled using the speci-

fication languagemA in a straightforward manner due to
the fact that the observability of agents is specified at the
fluent levels (e.g, when an action is executed, some agents
observe one effect and others observe another one), and
mA does not consider this situation yet. For this reason,
we used a slightly-modified representation of this domain
in testing EFP and PG-EFP. Table 5 displays the runtime
comparison between the two systems EFP and PG-EFP in
the LO domain. In Table 5, (X) stands for the lengthX of
the plan that is returned by PG-EFP. The results showed
in Table 5 are consistent with those shown earlier, and ex-
hibit that PG-EFP can scale up to solve problems with a
large number of fluents and actions. This is clearly due to
the heuristic produced by the epistemic planning graph.

Logistics
|AG| = 3, |F| = 66, |A| = 84
L EFP PG-EFP

3 10.32 16.63(3)
4 75.1 27.88(4)

30 TO 1355.6(31)
31 TO 1447.2(36)

Table 5: EFP vs. PG-EFP in LO domain

Solution quality: We now discuss about solution quality in
terms of the length of the plans that are returned by EFP
and PG-EFP. In our experiments, we observed that PG-EFP
returns optimal plans in most problems, except for some
in the coin-in-the-box domain (see the row of L = 5 in
Table 3(Right)) and some in the logistics domain (see the
rows of L = 30, 31 in Table 5). Thus, we report only the
plan lengths for PG-EFP in the coin-in-the-box domain and
the logistics domain. Theoretically, EFP returns the optimal
plan whose length is smallest since it is a breadth-first search
planner. In contrast, as PG-EFP is a heuristic search planner
that uses heuristic derived from epistemic planning graph,
its plan is not guaranteed to be optimal.

Discussions
EFP (or PG-EFP) is closely related to RP-MEP (Muise et al.
2015) or the system (called K(P) hereafter) described in (Ko-
minis and Geffner 2015). The two planners differ from the
system MEPK in (Huang et al. 2017) in that they do not use
a special search algorithm why MEPK uses a special search
algorithm, called PrAO, from (To, Son, and Pontelli 2011).
EFP (or PG-EFP) is an alternative to the other systems in
three aspects: (i) the methods of searching for solution in
EFP is different; (ii) EFP and K(P) can deal with common
knowledge while other systems do not.

The proposed systems represent an ideal testbed for re-
search in the area of epistemic planning in multi-agent set-
tings. The advantages offered by the proposed platform are:
• The system is the first of its kind, supporting planning with

complex forms of knowledge and beliefs; EFP does not re-
quire restrictions on the nesting of knowledge/beliefs, thus
allowing us, e.g., to reason about common knowledge.

• The platform, even in its current prototype form, can solve
problems for which RP-MEP or other systems have dif-
ficulty; for some problems, even for a small number of

nested beliefs (e.g., 5), the generation of the planning in-
stance for other planners takes more than an hour.

• The system serves as a research platform; its modular or-
ganization allows researchers to experiment with different
transitions, heuristics, and state representations.

• Finally, it should be noted that EFP and PG-EFP can deal
with both knowledge and belief goals as (Son et al. 2015)
shows that epistemic actions of the form described in this
paper, which are generated from an action a and an e-state
(M,W), can maintain the KD45 properties of an e-state.
As such, a goal with bothK andB-modalities can be dealt
with by (a) using the equivalenceKϕ ≡ Bϕ∧ϕ to remove
the occurrences of K in the goal; and then (b) planning
with the new goal.
Although EFP performs reasonably well, there are a num-

ber of issues that require further study so that it can effi-
ciently deal with larger problems. In our experiments, we
observe the following:

• If the number of unknown fluents in the actual world of
the initial e-state is high, then EFP does not work well.
The reason for this is the size, in terms of the number of
worlds and the number of edges, of the initial e-state. For
example, for the CC(2, 3, 4) problems, there are 17 flu-
ents whose values are unknown in the initial e-state. This
leads to the initial state has 512 pe-models, and 524288
edges. This raises the question of how to represent and
reason with pe-models and e-states with a high-degree of
connectivity.

• An e-state is essentially a graph. Checking for graph iso-
morphism is not a computational easy task. As such, we
did not check for repeated element in the queue q of Al-
gorithm 1. How best to check for repeated element in the
queue and whether or not it improves the performance of
EFP are the two questions left for the future work.

Conclusions and Future Works

We describe two forward search epistemic planners, EFP and
PG-EFP, and experimentally evaluate these planners with
domains collected from the literature. We also introduce the
notion of an epistemic planning graph and provide algorithm
for computing epistemic planning graphs. The experimental
evaluation of the two planners shows that both are working
reasonable well comparing to other epistemic planners; and
that heuristics derived from epistemic planning graphs are
indeed useful. In the near future, we plan to (i) generate more
informative heuristic; (ii) develop methods for comparing e-
states so that we can eliminate repeated e-states from the
queue; (iii) investigate the notion of mutexes for epistemic
planning graph; and (iv) investigate alternative representa-
tion to improve the performance of the planners.

Acknowledgement

The last two authors are partially supported by the NSF grant
HRD-1345232. We would like to thank Christian Muise for
assisting us to install RP-MEP.

References
Aucher, G., and Bolander, T. 2013. Undecidability in epis-
temic planning. In Proc. of IJCAI, 27–33.
Baltag, A., and Moss, L. S. 2004. Logics for epistemic
programs. Synthese 139(2):165–224.
Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2012. An
action language for reasoning about beliefs in multi-agent
domains. In Proc. of NMR.
Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2015.
An action language for multi-agent domains: Foundations.
CoRR abs/1511.01960.
Baral, C.; Bolander, T.; van Ditmarsch, H.; and McIlraith,
S. A. 2017. Epistemic planning. Dagstuhl Reports 7(6):1–
47.
Bolander, T., and Andersen, M. B. 2011. Epistemic planning
for single and multi-agent systems. Journal of Applied Non-
Classical Logics 21(1):9–34.
Bolander, T.; Jensen, M. H.; and Schwarzentruber, F. 2015.
Complexity results in epistemic planning. In Proc. of IJCAI,
2791–2797.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Proc.
of ICAPS, 28–35.
Charrier, T.; Maubert, B.; and Schwarzentruber, F. 2016. On
the impact of modal depth in epistemic planning. In Proc. of
IJCAI, 1030–1036.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In Proc. of ECAI,
237–242.
Engesser, T.; Bolander, T.; Mattmüller, R.; and Nebel, B.
2017. Cooperative epistemic multi-agent planning for im-
plicit coordination. In Proc. of M4M@ICLA, 75–90.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning about Knowledge. MIT press.
Huang, X.; Fang, B.; Wan, H.; and Liu, Y. 2017. A general
multi-agent epistemic planner based on higher-order belief
change. In Proc. of IJCAI, 1093–1101.
Kominis, F., and Geffner, H. 2015. Beliefs in multiagent
planning: From one agent to many. In Proc. ICAPS, 147–
155.
Kominis, F., and Geffner, H. 2017. Multiagent online plan-
ning with nested beliefs and dialogue. In Proc. ICAPS, 186–
194.
Löwe, B.; Pacuit, E.; and Witzel, A. 2011. DEL planning
and some tractable cases. In Proc. of LORI. 179–192.
Muise, C. J.; Belle, V.; Felli, P.; McIlraith, S. A.; Miller, T.;
Pearce, A. R.; and Sonenberg, L. 2015. Planning over multi-
agent epistemic states: A classical planning approach. In
Proc. of AAAI, 3327–3334.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. 2002. Plan-
ning graph as the basis for deriving heuristics for plan syn-
thesis by state space and CSP search. Artificial Intelligence
135(1-2):73–123.
Son, T. C.; Pontelli, E.; Baral, C.; and Gelfond, G. 2014.
Finitary s5-theories. In Proc. of JELIA, 239–252.

Son, T. C.; Pontelli, E.; Baral, C.; and Gelfond, G. 2015.
Exploring the KD45 property of a kripke model after the
execution of an action sequence. In Proc. of AAAI, 1604–
1610.
To, S. T.; Son, T. C.; and Pontelli, E. 2011. Contingent
planning as AND/OR forward search with disjunctive repre-
sentation. In Proc. of ICAPS.
van Benthem, J.; van Eijck, J.; and Kooi, B. P. 2006. Logics
of communication and change. Inf. Comput. 204(11):1620–
1662.
van der Hoek, W., and Wooldridge, M. 2002. Tractable
multiagent planning for epistemic goals. In Proc. of AAMAS,
1167–1174.
van Eijck, J. 2004. Dynamic epistemic modelling. Technical
report.
van Eijck, J. 2017. Public announcements and public lies.
Technical report, Lying Workshop.
Wan, H.; Yang, R.; Fang, L.; Liu, Y.; and Xu, H. 2015.
A complete epistemic planner without the epistemic closed
world assumption. In Proc. of IJCAI, 3257–3263.

