Under consideration for publication in Theory and Practice of Logic Programming 1

Reasoning and Planning with Sensing Actions,
Incomplete Information, and Static Causal Laws
using Answer Set Programming

PHAN HUY TU and TRAN CAO SON

Department of Computer Science
New Mexico State University
PO Box 30001, MSC CS
Las Cruces, NM 88003, USA
(e-mail: {tphan,tson }@cs.nmsu.edu)

CHITTA BARAL

Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287, USA
(e-mail: chita@asu.edu)

submitted 4 October 2005; revised 21 March 2006; accepted 14 April 2006

Abstract

We extend the 0-approximation of sensing actions and incomplete information in (Son and Baral
2001) to action theories with static causal laws and prove its soundness with respect to the possible
world semantics. We also show that the conditional planning problem with respect to this approxima-
tion is NP-complete. We then present an answer set programming based conditional planner, called
ASCP, that is capable of generating both conformant plans and conditional plans in the presence of
sensing actions, incomplete information about the initial state, and static causal laws. We prove the
correctness of our implementation and argue that our planner is sound and complete with respect
to the proposed approximation. Finally, we present experimental results compad®jo other
planners.

KEYWORDSReasoning about Actions and Changes, Sensing Actions, Incomplete Information,
Conformant Planning, Conditional Planning, Answer Set Programming

1 Introduction

Classical planning assumes that agents have complete information about the world. For this
reason, it is often labeled as unrealistic because agents operating in real-world environment
often do not have complete information about their environment. Two important questions
arise when one wants to remove this assumptimw to reason about the knowledge of
agentsandwhat is a planin the presence of incomplete information. The first question

led to the development of several approaches to reasoning about effects of sensing (or
knowledge producing) actions (Golden and Weld 1996b; Lobo et al. 1997; Moore 1985;

2 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Scherl and Levesque 2003; Son and Baral 2001; Thielscher 2000b). The second question
led to the notions ofonditional planandconformant plarwhose execution is guaranteed

to achieve the goal regardless of the values of unknown fluents in the initial situation.
The former contains sensing actions and conditionals such as the well-known “if-then-
else” or “cases” construct, while the latter is just a sequence of actions. In this paper,
we refer toconditional planningand conformant planningas planning approaches that
generate conditional plans and conformant plans, respectively. Welarsas a generic

term for both conditional and conformant plan when the distinction between the two is not
important.

Approaches to conditional planning can be characterized by the techniques employed
in their search process or by the action formalism that supports their reasoning process.
Most of the early conditional planners implemented a partial-order planning algorithm
(Golden 1998; Golden et al. 1996a; Pryor and Collins 1996; Peot and Smith 1992) and used
Situation Calculus or STRIPS as their underlying formalism in representing and reasoning
about actions and their effects. Among them, CoPlaS (Lobo 1998), which is implemented
in Sicstus Prolog, is a regression planner that uses a high-level action description language
to represent and reason about effects of actions, including sensing actions; and FLUX
(Thielscher 2000a), a constraint logic programming based planner, is capable of generating
and verifying conditional plans. Another conditional planner based on a QBF theorem
prover was developed in (Rintanen 2000). Some other planners, for example, SGP (Weld
et al. 1998) or POND (Bryce et al. 2004), extended the planning graph algorithm (Blum
and Furst 95) to deal with sensing actions. The main difference between SGP and POND
is that the former searches solutions within the planning graph, whereas the latter uses it as
a means of computing the heuristic function.

Conformant planning (Bonet and Geffner 2000; Brafman and Hoffmann 2004; Cimatti
et al. 2004; Castellini et al. 2003; Eiter et al. 2003; Smith and Weld 1998) is another
approach to deal with incomplete information. In conformant setting, a solution is simply
a sequence of actions that achieves the goal from every possible initial situation. A recent
study (Cimatti et al. 2004) shows that conformant planning based on model checking is
computationally competitive with other approaches to conformant planning such as those
based on heuristic search algorithms (Bonet and Geffner 2000; Brafman and Hoffmann
2004) or those that extend Graphplan (Smith and Weld 1998). A detailed comparison in
(Eiter et al. 2003) demonstrates that a logic programming based conformant planner is able
to compete with other approaches to planning.

The most important difference between conditional planners and conformant planners
lies in the fact that conditional planners can deal with sensing actions whereas confor-
mant planners cannot. Consequently, there are planning problems solvable by conditional
planners but not by conformant planners. The following example demonstrates this issue.

Example 1
Consider a security window with a lock that behaves as follows. The window can be in
one of the three statepened, closedor locked. When the window is closed or opened,

1 The window is closed and unlocked.
2 The window is closed and locked.

ASP with Sensing Actions, Incomplete Information, and Static Causal Law$8

pushing itup or downwill openor closeit respectively. When the window is closed or
locked, flipping the lock will lock or close it respectively.

Now, consider a security robot that needs to make sure that the window is locked after
9 pm. Suppose that the robot has been told that the window is not open (but whether it is
locked or closed is unknown).

Intuitively, the robot can achieve its goal by performing the following steps. First, (1) it
checks the window to determine the window’s status. If the window is closed, (2.a) it locks
the window; otherwise (i.e., the window is already locked), simply (2.b) it does nothing.

Observe that no sequence of actions can achieve the goal from every possible initial
situation. In other wordghere exists no conformant plachieving the goal. O

In this paper, we investigate the applicatioraower set programmingee e.g. (Baral
2003; Lifschitz 2002; Marek and Truszdmski 1999; Niemel 1999)) in conformant and
conditional planning. To achieve our goal, we first define an approximation semantic for
action theories with static causal laws and sensing actions based on the 0-approximation
in (Son and Baral 2001). It is an alternative to the possible world semantics for reasoning
about effects of actions in the presence of incomplete information and sensing actions
(Moore 1985). The basic idea of this approach igpproximatethe set of possible world
states by a set of fluent literals that is true in every possible world state. The main advantage
of the approximation-based approach is its low complexity in reasoning and planning tasks
(NP-complete) comparing to those based on the possible world semaniiz€omplete
(Baral et al. 2000a). The trade-off for this low complexity is incompleteness. As we will
demonstrate in our experiments, this is not really an issue with the benchmarks in the
literature.

We prove that the entailment relationship for action theories based on this approximation
is sound with respect to the possible world semantics for action theories with incomplete
initial situation. We then show that the planning problem with respect to the newly devel-
oped approximation iBIP-complete. This facilitates the developmentasfcr, an answer
set programming based planner that is capable of generating both conditional and con-
formant plans. Given a planning problem instance with incomplete information about the
initial situation and sensing actions, we translate it into a logic program whose answer sets
(Gelfond and Lifschitz 1988) — which can be computed using existing answer set solvers
(e.g.cmodels (Lierler and Maratea 20043models (Simons et al. 2002ylv (Citrigno
et al. 1997), ASSAT (Lin and Zhao 2002), NoMore (Anger, et al. 2002), etc.) — corre-
spond to conformant or conditional plans that satisfy the goal. We compare our planner
against state-of-the-art planners. The results of our experiments show that conditional and
conformant planning based on answer set programming can be competitive with other ap-
proaches. To the best of our knowledge, no answer set based conditional planner has been
developed except a previous version of the planner presented in an earlier version of this
paper (Son et al. 2004).

The paper is organized as follows. Section 2 presents the basics of an action language
with sensing actions and static causal laws, including its syntax and the 0-approximation,
as well as the notions of conditional plans and queries. It also contains the complexity
result of the conditional planning problem with respect to the 0-approximation. Section 3
describes a logic programming encoding of a conditional/conformant planner, gatbed

4 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Section 4 discusses several propertiesa®EpP. Section 5 experimentally comparescp

with some other state-of-the-art conformant/conditional planners. Section 6 discusses some
desirable extensions of the current work. The proofs of theorems and propositions are given
in Appendices A and B. An example of encoding is given in Appendix C.

2 A% — An Action Language with Sensing Actions and Static Causal Laws

The representation languagé$,, for our planner is an extension of the action language
Ax in (Son and Baral 2001). Whilglx extends the high-level action description lan-
guageA from (Gelfond and Lifschitz 1993) by introducing two new types of propositions
calledknowledge producing propositicand theexecutability condition44, extendsAx

by addingstatic causal lawsnd allowing a sensing action to sense more than one fluent.
Loosely speakingA$, is a subset of the languadge, s in (Baral et al. 2000b). Neverthe-
less, like Ay, Lps considers sensing actions that sense only one fluent. The semantics
given for A%, in this paper is an approximation of the semantict gf.

2.1 Action LanguageA$, — Syntax

The alphabet of an action theory iy, consists of a set of actions and a set of fluents
F. A fluent literal (or literal for short) is either a fluenf € F or its negation-f. f and
—f are said to be complementary. For a litdrddy —I, we mean its complement. #uent
formulais a propositional formula constructed from the set of literals using operators
V, and/or—. To describe an action theory, propositions of the following forms are used:

initially (1) Q)
executabléa, 1)) (2)
causesa, l, ¢) 3)
it (1,) (4)
determinega, 6) 5)

wherea € A is an action] is a literal, andyp, ¢, ¢, 6 are sets of literafs

The initial situation is described by a set of propositions (1), callgtopositions (1)
says that holds in the initial situation. A proposition of form (2) is calledecutability con-
dition. It says that is executable in any situation in whighholds (the precise meaning of
hold will be given later). A proposition (3), calleddynamic causal lawepresents a con-
ditional effect of an action. It says that performimdn a situation in whichy holds causes
[to hold in the successor situation. A proposition (4), callstesic causal lawstates that
[holds in any situation in whicky holds. Aknowledge propositiofor k-propositionfor
short) (5) states that the values of literalgjsometimes referred to asnsed-literalswill
be known aftew is executed. Because the executiorm o¥ill determine the truth value of
at least one fluent, without loss of generality, we assumeftieantains at least two liter-
als. Furthermore, we require thawifs not a set of two contrary literalsand—f then the
literals in# are mutually exclusive, i.e.,

3 A set of literals is interpreted as the conjunction of its members. The empiydestotedrue.

ASP with Sensing Actions, Incomplete Information, and Static Causal Law$

1. for every pair of literalg; andg’ in 6, g # ¢’, the theory contains the static causal
law

if(—g’, {9})
and
2. for every literalg in 0, the theory contains the static causal law

if(9,{—g" | 9" € 0\ {g}}).
For convenience, we use the abbreviation
oneof(d)
to denote the above set of static causal laws. Apart from this, we will sometime write
determineqga, f)

to stand for

determinega, {f,~f}).

Actions appearing in (3) and (5) are called non-sensing actions and sensing actions,
respectively. In this paper, we assume that they are disjoint from each other. In addition,
we also assume that each sensing action appears in at most one k-proposition.

An action theoryis given by a pai{D, Z) whereD is a set of propositions (2)—(5) afd
is a set of propositions (12 andZ are called thelomain descriptiomndinitial situation,
respectively. Aplanning problem instance a 3-tuple(D, Z, G), where(D, 7) is an action
theory andg is aconjunctionof fluent literals. It is worth mentioning that with a proper
set of rules for checking the truth value of a fluent formula (see e.g. (Son et al. 2005a)),
the framework and all results presented in this paper can be extended tqjaitote an
arbitrary fluent formula as well.

Example 2
The planning problem instand®, = (D1,Z1,G1) in Example 1 can be represented as
follows.

executabldcheck, {})
executablépush_up, {closed})
executablépush_down, {open})
executablé flip_lock, {—open})

causes$push_down, closed, {})
causes$push_up, open, {})
causesflip_lock,locked, {closed})
causesflip_lock, closed, {locked})

D,

oneof({open, locked, closed})

determineqcheck, {open, closed, locked})
Z; = { initially (—open) }
G1 = {locked}

6 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Remark 1

For an action theoryD, 7), if (I,) € D implies that literal holds in every situation. Since

lis always true, queries about the truth valué (@f —/) have a trivial answer and the theory

can be simplified by removing all instancesiaof other propositions. Furthermore, if the
theory also contains a dynamic law of the focausesa, I, ¢) then the execution af in

a state satisfying will result in an inconsistent state of the world. Thus, the introduction

of [in the action theory is either redundant or erroneous. For this reason, without loss of
generality, we will assume that action theories in this paper do not contain any static causal
law (4) with = (.

Remark 2
Since an empty plan can always be used to achieve an empty goal, we will assume hereafter
that planning problem instances considered in this paper have non-empty goals.

2.2 Conditional Plan

In the presence of incomplete information and sensing actions, we need to extend the notion
of a plan from a sequence of actions so as to allow conditional statements sifeh as
then-else while-do, or case-endcasé€see e.g. (Levesque 1996; Lobo et al. 1997; Son
and Baral 2001)). Notice that an if-then-else statement can be replaced by a case-endcase
statement. Besides, if we are only interested in plans with bounded length then whatever
can be represented by a while-do statement with a non-empty body can also be represented
by a set of case-endcase statements as well. Therefore, in this paper, we limit ourselves to
conditional plans with the case-endcase construct only. Formally, we consider conditional
plans defined as follows. We note that our notion of conditional plans in this paper is fairly
similar to the ones introduced in (Levesque 1996; Lobo et al. 1997; Son and Baral 2001).

Definition 1(Conditional Plan
1. []is a conditional plan, denoting the empty plan, i.e., the plan containing no action.
2. if a is a non-sensing action andis a conditional plan thefu; p] is a conditional
plan.
3. if a is a sensing action with proposition (5), wheé¥e= {g,,...,g,}, andp;’s are
conditional plans thefu; cases({g; — p;}}_,)] is a conditional plan.
4. Nothing else is a conditional plan.

By this definition, clearly a sequence of actions is also a conditional plan. The execution
of a conditional plan of the fornu; p], wherea is a non-sensing action andis another
conditional plan, is done sequentially, i.e.js executed first, followed by. To execute
a conditional plan of the fornfu; cases({g; — p;}}_;)], we first executez and then
evaluate eaclp; with respect to our current knowledge. If one of #iés, sayg;, holds,
we execute the corresponding sub-pfan Observe that because fluent literalsfimre
mutual exclusive, sucly, uniquely exists.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lawg

Example 3
The following are conditional plans of the action theory in Example 2:

p1 = [push_down; flip_lock]

open. — ||
p2 = check; cases | closed — |[flip_lock]
locked —]

open — [push_down; flip_lock]
ps = check; cases | closed — |[flip_lock; flip_lock; flip_lock]
locked —]

open —]
pg = check; cases | closed — po
locked —]
Among thoseps, p; andp, are conditional plans that achieve the gGat. O

In the rest of the paper, the terms “plan” and “conditional plan” will be used alternatively.

2.3 Queries
A query posed to anl§. action theory(D,) is of the form
knows p after p (6)

or
whether p after p @)

wherep is a conditional plan and is a fluent formula. Intuitively, the first (resp. second)
guery asks whetheris true (resp. known) after the executiorpdfom the initial situation.

2.4 0-Approximation Semantics oflS,

We now define an approximation semanticsAjf, called 0-approximation, which extends
the O-approximation in (Son and Baral 2001) to deal with static causal laws. It is defined
by a transition functior® that maps actions and a-states into sets of a-states (the meaning
of a-states will follow). Before providing the formal definition of the transition function,
we introduce some notations and terminology.

For a set of literalgr, o denotes the sdt-l | [€ o}. o is said to beconsistentf it
does not contain two complementary literals. A literélesp. set of literals) holdsin a
set of literalso if | € o (resp.y C o); [(resp.v) possibly holdsn ¢ if - ¢ o (resp.
-vNo =0).

Given a consistent set of literads the truth value of a formula, denoted by (p), is
defined as follows. Ip = [for some literal thenc(p) = Tif I € 0; 0(p) =F if =l € o;
o(p) = unknown otherwise. Ifp = p1 A p2 theno(p) = Tif o(p1) = Tando(ps) = T;

4 Note thatps andp, can achieve the goal because the first case “the window is aaemibthappen

8 Phan Huy Tu, Tran Cao Son, and Chitta Baral

o(p) = Fif o(p1) = Foro(ps) = F; o(p) = unknown otherwise. Ifp = p; V po
theno(p) = Tif o(p1) = Toro(pe) = T; o(p) = Fif o(p1) = Fando(ps) = F;
o(p) = unknown otherwise. Ifp = —p; theno(p) = Tif o(p1) = F;, o(p) = Fif

o(p1) =T; o(p) = unknown otherwise.

We say thaip is known to be true (resp. false) inand writeo = p (resp.o = —p)
if o(p) = T (resp.o(p) = F). Wheno = p oro = —p we say thap is knownin o;
otherwisep is unknownin o. We will say thatp holds in¢ if it is known to be true ins.

A set of literalso satisfies a static causal law (4) if either ¢i)does not hold irv; or
(i) ¢ holds ino (i.e., ¢ holds ino implies that! holds ing). By Cip(c), we denote the
smallest set of literals that includesand satisfies all static causal lawsZin Note that
Clp(o) might be inconsistent but it is uniquegeLemma 1, Appendix A).

An interpretation] of a domain descriptiof® is a complete and consistent set of literals
inD, i.e., foreveryfluenf e F, () f e Tor—f € I;and (i) {f,~f} £ I.

A states is an interpretation satisfying all static causal lawginAn actiona is ex-
ecutablein s if there exists an executability condition (2) such tljaholds ins. For a
non-sensing action executable irx, let

E(a,s) = {l | 3 a dynamic causal la\8) such thaty holds ins} (8)

The setE(q, s) is often referred to as thdirect effectof a. When the agent has complete
information about the world, the set of possible next states after the executiom of,
denoted byRes%, (a, s), is defined as follows.

Definition 2(Possible Next States, (McCain and Turner 1995)
Let D be a domain description. For any statand non-sensing actianexecutable irs,
Resh(a,s) = {s' | s’ is a state such that = Clp(E(a,s) U (sNs'))}.

The intuitive meaning of this definition is that a litedaholds in a possible next staté
of s aftera is executed iff either (i) it is a direct effect af i.e.,l € E(a, s) (ii) it holds
by inertia, i.e.] € (s N s’), or (iii) it is an indirect effect of a, i.e.,! holds because of the
operatorClip.

Note that theRes%,-function can benon-deterministici.e., Res$, (a, s) might contain
more than one element. The following example illustrates this point.

Example 4
Consider the following domain description

executabl€a, {})

causesa, f,{})
if (gv {fa _‘h’})

it (h, {f,~g})

it (k, {=f})

Lets = {—f, g, —h, k}. Clearlys is a state since it satisfies all static lawsg. Execut-
ing a in s results in two possible next states

R65%2 (a’ S) = {{fa —g, h, k}7 {fa97 —h, k}}

D,

5 Indirect effects are those caused by static causal laws.

ASP with Sensing Actions, Incomplete Information, and Static Causal Law$®

In the first possible next statg = {f, —g, h, k}, f holds because it is a direct effect of
a,i.e., f € E(a,s); ~g andk hold because of inertias(0 s; = {—g, k}); andh holds
because it is an indirect effect af(in particular,h holds because of the static causal law

Likewise, we can explain why each literal in the second possible next state holds.

Definition 3(Consistent Domains
A domain descriptiorD is consistentf for every states and actiona executable ins,
Res%(a, s) # 0.

In the presence of incomplete information, an agent, however, does not always know ex-
actly which state it is currently in. One possible way to deal with this problem is to repre-
sent the agent knowledge by a set of possible states (a.k.a. belief state) that are consistent
with the agent’s current knowledge and extend Definition 2 to define a mapping from pairs
of actions and belief states into belief states as in (Baral et al. 2000b). The main problem
with this approach is its high complexity (Baral et al. 2000a), even for the computation of
what is true/false after the execution of one action. We address this problem by defining an
approximation of the set of states in Definition 2 as follows.

First, we relax the notion of a state in Definition 2 to be an approximate state defined as
follows.

Definition 4(Approximate Staje
A consistent set of literalsis called an approximate state @sstate for short) ifo satisfies
all static causal laws .

Intuitively, § represents the (possibly incomplete) current knowledge of the agent, i.e., it
contains all fluent literals that are known to be true to the agent. Wigea subset of some
states, we say that it ivalid. An actiona is executablén § if there exists an executability
condition (2) inD such that) holds ind.

Next, we define what are the possible next a-states after the execution of amdntin
given a-stat@, provided that: is executable id. Consider the case thatis a non-sensing
action. Let

e(a,d) = Clp({l | 3 a dynamic causal la¥B) such that holds ind}) 9
and
pe(a,) = UiZq pe'(a, 9) (10)
where
pc®(a,8) = {I | 3 a dynamic causal layB) s.t.l ¢ § and¢ possibly holds is} (11)
and fori > 0,

pct(a,6) = pct(a,6)U {I| 3 a static causal lay) s.t.l ¢ §, 0 N pci(a,d) # 0,
andy possibly holds ire(a, 6)} (12)

Intuitively, e(a, §) andpc(a,) denote whatlefinitely holdsand whatmay changen the

10 Phan Huy Tu, Tran Cao Son, and Chitta Baral

next situation respectivefy Specifically] € e(a, §) means thatholds in the next situation
and! € pc(a,d) means that is not in§ but possibly holds in the next situation. This
implies thatd \ —pc(a, §) is an approximation of the set of literals that hold by inertia after
the execution of: in §. Taking into account the effects of the static causal laws, we have
that the set of literalg’ = Clp(e(a,§)U(d\—pc(a,d))) must hold in the next situation.
This leads us to the following definition of the possible next a-states after a non-sensing
action gets executed.

Definition 5(0-Result Functiop
For every a-staté and non-sensing actianexecutable i, let

8" = Clip(e(a, §)U(6\~pc(a,d))).
Define

1. Resp(a,d) = {¢'} if ¢’ is consistent.
2. Resp(a,d) = 0 if ¢’ is inconsistent.

The next examples illustrate this definition.

Example 5
Consider the domain descriptid in Example 2. Lety = {—open, closed, —locked}.
We can easily check thatis an a-state dD,. We have

e(fliplock,d) = Clp, ({locked}) = {—open, —closed, locked}

and
pc®(flip_lock,) = {locked}
Becauseéf (—open, {locked}) € Dy, andif (—closed, {locked}) € Dy, by (12), we have
pct(flip_lock, §) = {locked, ~closed}
Note that-open & pct(flip_lock, §) because it is already in
Itis easy to see thaic! (flip_lock,d) = pct(flip_lock, §) for alli > 1. Hence, we have
pe(fliplock,d) = U pc (flip_lock,) = {—closed, locked}
i=0
Accordingly, we have

Resp, (flip-lock,d) = {Clp, (e(flip-lock,d) U (6 \ —pe(flip-lock,d)))} =

{Clp, ({—open, —closed, locked})} = {{—open, —closed, locked}}

6 Note that the operataflp is used in the definition of(a, §) to maximizewhat definitely holds in the next
situation.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavid

Example 6
For the domain descriptioB, in Example 4, we have

e(a,s) = Clp,({f}) = {f}

pc’(a,s) = {f}
Asif(g,{f,—h}) € Dy andif(h,{f, ~g}) € Ds, we have

pct(a,s) = {f,g,h}

Note thatk ¢ pc!(a, s) since—f does not hold ire(a, s). We can check thaici(a, s) =
pct(a, s) foralli > 1. Hence, we have

pc(a,s) ={f,g,h}

As a result, we have

Resp,(a,5) = {Clp,(e(a, s) U (s \ ~pc(a, 5)))} = {Clp, ({f, k})} = {{/, k}}

O

The following proposition shows that when a non-sensing action is execute®cthe
function isdeterministicin the sense that it returns at most one possible next a-state; fur-
thermore, it is “sound” with respect to thiees¢-function.

Proposition 1

Let D be a consistent domain description. For any statestate) C s, and non-sensing
actiona executable i, there exists an a-statésuch that (i)Resp(a,d) = {§’}, and (ii)
¢’ is a subset of every staté € Res$,(a, s).

Proof
see Appendix A []

We have specified what are the possible next a-states after a non-sensing action is per-
formed. Let us move to the case when a sensing action is executed. Consider arn a-state
and a sensing actianwith k-proposition (5) irD. Intuitively, aftera is executed, the agent
will know the values of literals if. Thus, the set of possible next a-states can be defined
as follows.

Definition 6(0-Result Functiohn
For every a-staté and sensing actiomwith proposition (5) such that is executable i ,

Resp(a,d) = {Clp(6U{g}) | g € 0 andCip(é U {g}) is consistent

Roughly speaking, executingwill result in several possible next a-states, in each of which
exactly one sensed-literal thholds. However, some of them might be inconsistent with
what is currently known. For example, if the security robot in Example 1 knows that the
window is not open then afterdheckghe window, it should not consider the case that the
window isopenbecause this is inconsistent with its current knowledge. Thus, in defining
the set of possible next a-states resulting from the execution of a sensing action, we need
to exclude such inconsistent a-states. The following example illustrates this.

12 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Example 7
Consider again the domain descriptiba in Example 2 and an a-staie = {—open}.
We have

Clp, (01 U {open}) = {open, ~open, closed, ~closed, locked, —locked} = §1 1

Clp, (61 U {closed}) = {—open, closed, =locked} = 61 2

Clp, (01 U {locked}) = {—open, ~closed, locked} = 013
Among thosey, ; is inconsistent. Therefore, we have

Resp, (check,61) = {612,013}
O

The next proposition shows that if a sensing action is performed in a valid a-state then
the set of possible next a-states will contain at least one valid a-state. This corresponds to
the fact that if the current knowledge of the world of the agent is consistent with the state
of the world, it will remain consistent with the state of the world after the agent acquires
additional knowledge through the execution of a sensing action.

Proposition 2
Let D be a consistent domain description. For any a-statnd a sensing actiom exe-
cutable ind, if § is valid thenResp(a, §) contains at least one valid a-state.

Proof
see Appendix A [

The transition functionP that maps actions and a-states into sets of a-states is defined as
follows.

Definition 7(Transition Functioi
Given a domain descriptioR, for any actions and a-staté,

1. if a is not executable ik then

®(a,0) =1
2. otherwise,
®(a,d) = Resp(a,0)

The transition function® returns the set of possible next a-states after performing a

single action in a given a-state. We now extend it to define the set of possible next a-states

after the execution of a plan. The extended transition function, cdlleid given in the
following definition.

Definition 8(Extended Transition Functign
Given a domain descriptioR, for any planp and a-state,

1. if p = [then
o(p,d) = {6}

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavis8

2. if p = [a; ¢], wherea is a non-sensing action agds a sub-plan, then

5 1 if ®(a,0) =L
*(p.0) = { Us ca(as) (a,6) otherwise

3. if p = [a; cases({g; — p;}}—,)], wherea is a sensing action ang’s are sub-plans,

then
. i if ®(a,0) =L
lp.0) = b(p;,8') otherwi
Ulgjgn,é/E(b(a,(S),gj holds ins’ (p]7) otherwise
where, by convention,..U L U... = 1.

Items (2) and (3) of the above definition deserve some elaboration.

Remark 3

During the execution of a plgm when a non-sensing actians encountered (Item 2), by
Definitions 5 and 7, there are three possibiliti®$z, 6) = L, ®(a,d) = 0, or &(a,d) =
{¢'} for some a-staté’. If the first case occurs then the result of executiop @f § by
the definition is alsal. In this case, we say thatis not executable id; otherwisep is
executablén 4. If the second case occurs then by the definitib(y, §) = 0. One may
notice that, by Proposition 1, this case takes place only if there exists ne Stath that
d C s (i.e., d is invalid), or the domain is inconsistent. Whéra,d) = {¢'}, then the
result of the execution gf in ¢ is exactly as the result of the execution of the resp of
5.

Remark 4

If p = [a;cases({g; — p;}}_,)], wherea is a sensing action ang’s are sub-plans
(Item 3), and®(a, §) # L then by Definitions 6 and 7, we know théfa, §) may contain
several a-states’s. Eachd; corresponds to an a-state in which litegaholds. Therefore,

we define<f>(p, d) to be the union of the sets of possible a-states that are the results of the
execution ofp; in §;. Note that when we add; to the current staté to generate);, we
assumeahatg; holds. However, if later on, during the execution of the rest,ofhich is

p;, we discover tha® (p;, d;) =), then our assumption abogit is not correct. Therefore,
such aJ; contributes nothing to the set of possible a-stateB(af §). To see how this can
happen, consider the following domain description

executabl€a, {})
executabléb, {})

(2

causesb, h, {})

if(f,{g,h})
if(f, {9, =h})
determinega, f)

and suppose that the set of fluent§ g, h}. Let us see what are the final possible
a-states after the execution of plan= [a; cases({f — b;—f — b})] in a-statey = {g}
as defined by the extended transition function.

Whena is performed, we generate two possible next a-stétes {g, f}, anddy =

14 Phan Huy Tu, Tran Cao Son, and Chitta Baral

{g,~f}. Executingb in §, results in no possible next a-state becalsg, ({g, —f, h}) =
{g,—~f,h, f} is not consistent. This means thafb, 5,), and thus®([b],), become.
Therefore, the set of possible final a-state® (g, §) = ®([b], 61) = {{f, g, h}}.

Note that in this example, we did not notice thais inconsistent at the time the action
a was performed. Rather, its inconsistency was only realized after the executioimof
other words, our assumption thaf holds was not correct.

Similarly to the execution of a non-sensing action, when a sensing acisqrerformed,
by Proposition 2®(a, §) = 0 only if the domain is inconsistent dris invalid.

The above remarks imply that in some cases, for a pland an a-staté, é(p, d) may be
empty. Intuitively, this is because eith&rs invalid or the domain is inconsistent. We will
show that under reasonable assumptions aband the domain, this cannot happen.

Definition 9(Consistent Action Theorigs
An action theory(D, 7) is consistenif D is consistent and its initial a-state, defined by
Clp({l | initially (I) € Z}), is valid.

The next proposition says that the execution of an executable plan from a valid a-state of a
consistent action theory will result in at least one valid a-state.

Proposition 3
Let (D, 7) be a consistent action theory andddde its initial a-state. For every conditional
planp, if ®(p,d) # L then®(p, §) contains at least one valid a-state.

Proof
see Appendix A [

The above proposition implies that if the action the¢fy, 7) is consistent and is its
initial a-state then the execution pfin § will yield at least a valid trajectory provided
thatp is executable id. This is consistent with the fact that if the initial a-state is complete
(i.e., if we have complete information) then the execution of an executable plan in the
initial a-state would return a valid trajectofyrom now on, we only consider consistent
action theories.

We next define the entailment relationship between action theories and queries.

Definition 10(Entailmenj
Let (D,) be an action theory antlbe its initial a-state. For a planand a fluent formula
p, we say that

e (D, 7) entails the queryknows p after p and write
D =z knows p after p

if &(p,d) # L andp is true in every a-state i®(p, §); and
e (D, 7) entails the querywhether p after p and write

D =z whether p after p

if &(p,d) # L andp is known in every a-state i (p, 9).

7 A trajectory is an alternate sequence of a-states and acfigngdi az . . . andn, such thad; € ®(a;,d;—1)
fori =1,...,n; Atrajectory is valid ifé;’s are valid a-states.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavi®

Example 8
For the action theoryD;, Z;) in Example 2, we will show that

D, =z, knows locked after py (13)

wherep, is given in Example 3.
Letpa1 =[], p2.2 = [flip-lock] andpy 5 = []. It is easy to see that the initial a-state of
(Dy,1,) is 61 = {—open}.
It follows from Example 7 that
@(check, 51) = {51727 5173}
On the other hand, we have
®(pa.2,01.2) = {{locked, —open, ~closed}}
and
®(pa3,01.3) = {{locked, ~open, ~closed} }
Therefore, we have
<i>(p2, 01) = (f(pgﬁg, d1,2) U (i)(p2,3,5173) = {{locked, —open, —closed}}

Sincelocked is true in {locked, —open, —closed}, we have (13) holds. On the other
hand, becausdosed is false in{locked, —open, —closed}, we have

D, £z, knows closed after py but D, 7z, knows —closed after ps.
Likewise, we can prove that

D, =7, knows locked after ps and Dy =z, knows locked after py.

Definition 11(Solution$
A planp is called asolutionto a planning problem instan@@ = (D, Z, G) iff

D =z knows G after p

Whenp is a solution tdP, we say thap is a plan thatchieveghe goalg.

According to this definition, it is easy to see that plaasps, andp, in Example 3 are
solutions toP; = (D;,7Z1,G1) in Example 2.

2.5 Properties of the 0-Approximation

We will now discuss some properties of the 0-approximation. For a domain description
D, we define the size db to be the sum of1) the number of fluentq2) the number of
actions; and3) the number of propositions if?. The size of a planning problem instance
P = (D,Z,0) is defined as the size @. The size of a plap, denoted bysize(p), is
defined as follows.

1. size([]) = 0;

2. size([a;p]) = 1 + size(p) if a is @ non-sensing action apds a plan; and

3. size([a;cases({g; — p;}7_1)]) = 1+ X7_, (1 + size(p;)) if a is a sensing action

andp;'s are plans.

Then, we have the following proposition.

16 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Proposition 4
For a domain descriptiof, an actionz, and an a-staté, computing®(a, §) can be done
in polynomial time in the size db.

Proof
see Appendix A. [

From this proposition, we have the following corollary.

Corollary 2.1
Determining whether or not a planis a solution of the planning problem instarfee=
(D,Z,G) from an a-staté can be done in polynomial time in the sizeyondP.

Definition 12
The conditional planning probleris defined as follows.

e Given: A planning problem instanc® = (D,Z,G) of sizen and a polynomial
Qn) > n;

e Determinewhether there exists a conditional plan, whose size is boundé by,
that achieveg; from Z (with respect to Definition 11).

Theorem 1
The conditional planning problem iP-complete.

Proof
see Appendix A [

The above theorem shows that planning using the 0-approximation has lower complexity
than planning with respect to the full semantics. Here, by the full semantics we mean the
possible world semantics extended to domains with sensing actions. Yet, the price one has
to pay is the incompleteness of this approximation, i.e., there are planning instances which
have solutions with respect to the full semantics but do not have solutions with respect to
the approximation. This can be seen in the following example.

Example 9
Consider the planning problem instar®ée-(D, Z, G) with

D = {causesa, f,{g}), causeséa, f,{—g})}, Z =10, andGg = {f}.

We can easily check that= [a] is a plan achieveg from every initial situation (with re-
spect to the possible world semantics developedifprin (Baral et al. 2000b)). However,
p is not a solution with respect to Definition 11, becafisg~; knows f after a.

The above example highlights the main weakness of this approximation in that it does
not allow for reasoning by cases for non-sensing actions or in the presence of disjunctive
initial situation. In our experiments with the benchmarks, we observe that most of the
benchmarks that our planner could not solve fall into the second category, i.e., they require
the capability of reasoning with disjunctive information about the initial state. Given that
we do not consider action theories with disjunctive initial state, this should not come as a
surprise.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavlg¥

3 A Logic Programming Based Conditional Planner

This section describes an answer set programming based conditional plannernsaked
Given a planning problem instan@® = (D,Z,G), we translate it into a logic program
7h.w(P), whereh andw are two input parameters whose meanings will become clear
shortly, and then use an answer set solver (sgqdels or cmodels) to compute its
answer sets. The answer setsgf, (P) represent solutions t8. Our intuition behind this
task rests on the observation that each plgDefinition 1) corresponds to a labeled plan
treeT), defined as below.

o If p =[] thenT, is a tree with a single node.

o If p = [a], wherea is a non-sensing action, théi is a tree with a single node and
this node is labeled with.

o If p = [a;¢], wherea is a non-sensing action agds a non-empty plan, thefi, is a
tree whose root is labeled withand has only one subtree whictilig. Furthermore,
the link betweer and,’s root is labeled with an empty string.

o If p = [a;cases({g; — p;}}7_,)], wherea is a sensing action that determines
g;'s, thenT}, is a tree whose root is labeled withand has: subtrees(T},, | j €
{1,...,n}}. For eachy, the link froma to the root of7}, is labeled withg;.

Observe that each trajectory of the plaigorresponds to a path from the root to a leave

of T,,. As an example, Figure 1 depicts the labeled trees for phang., ps andpy in
Example 3 (black nodes indicate that there exists an action occurring at those nodes, while
white nodes indicate that there is no action occurring at those nodes).

push_down k

¢
e,
45,(7
push_do!
O
flip_lock flip_lock flip_lock o
&7 2
o
9
O

.fl ip_lock

flip_lock flip_lock

cl osed

flip_lock

Tpy Tp2 Tps Tps

Fig. 1. Sample plan trees

For a plarp, leta be the number of leaves @}, ands be the number of nodes along the
longest path from the root to the leavesIgf o and 5 will be called thewidth andheight
of T, respectively. Suppose andh are two integers that such that< w andg < h.

Let us denote the leaves @}, by z1, ..., z,. We map each nodeg of 7, to a pair of
integersn,, = (t,.p,), Wheret, is the number of nodes along the path from the roqj,to
andp, is defined in the following way.

e For each leafe; of T, p,, is an arbitrary integer betweenandw. Furthermore,

18 Phan Huy Tu, Tran Cao Son, and Chitta Baral

there exists a leaf with p-value of1, i.e.,p, = 1, and there exist n6# j such that
e For each interior nodg of T}, with childreny,, ..., y,, py, = min{p,,, ..., py, }.

For instance, Figure 2 shows some possible mappings with 4 andw = 5 for the
trees in Figure 1. It is easy to see thatif< w and < h then such a mapping always

(1) (1) (1‘)
N /0 Q /0 N
o B c, e b (s o B
& 2 e, & 3 "o, KR 2
O O o O O
(2,1) (2,1) (2,4) (2,3) (2,1) (2,2) (2,5) (2,1
&
O
(3,1) (3, 2)] (3,2)
(4,2)
Tpy Tp Tps Tp,y

Fig. 2. Possible mappings for the trees in Figure 1

exists. Furthermore, from the construction@y, independently of how the leaves Df
are numbered, we have the following properties.

1. For every nodg, t, < h andp, < w.

2. For a nodey, all of its children have the santevalue. That is, ify hasr children
y1,---,yr thent,, =t, foreveryl <i,j <r.Furthermore, thg-value ofy is the
smallest one among thevalues of its children.

3. The root off}, is always mapped to the pdit, 1).

Our encoding is based on the above mapping. We observe that a conditionalgaian
be represented on a gridx w where each nodg of T}, is placed at the positioft,, p,)
relative to the leftmost top corner of the grid. This way, it is guaranteed that the r@jt of
is always placed at the leftmost top corner. Figure 3 depictd the grid representation
of conditional plansl,, andT,, in Figure 2. As it can be seen in Figure 3, each path
(trajectory) of the plan can end at an arbitrary time point. For example, the leftmost and
rightmost trajectories df'’», end at 2, whereas the others end at 3. On the other hand, to
check if the plan is indeed a solution, we need to check the satisfaction of the goal at every
leaf node of the plan, that is, at the end of each trajectory. In our encoding, this task is
simplified by extending all the trajectories of the plan so that they have the same height
h + 1 and then checking the goal at the end of each extended trajectory (see Figure 3).
Note that an a-state associated with each node on the extended part of each trajectory in
our encoding will be guaranteed to be the same as the one associated with the end node of
the original trajectory.

We now describe the program, .,(P) in the syntax osmodels (for a concrete ex-
ample, see Appendix C). , ., (P), variables of sortgime andpath correspond to rows
and columns of the grid. Instead of using the predi¢alés(L, T) (see e.g., (Dimopoulos

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavi®

et al. 1997; Lifschitz 1999)) to denote that a litefaholds at the tim&", we use the predi-
cateholds(L, T, P) to represent the fact thdtholds at nodé€T’, P) (the time moment’,
the path numbeP on the grid).

path

time

h+1

h=4 w=5

— patofplan
_ — — - partof extended plan

Fig. 3. Grid representation of conditional plans

The programry, .,(P) contains the following elements.

1. Constants.There are two constants used in the progfaamdw which serve as the
input parameters of the program. In addition, we have constants to denote fluents,
literals and actions in the domain. Due to the fact thrabdels does not allow
symbol—, to represent a literal constanyf, we will useneg(f).

2. Predicates. The program uses the following predicates.

time(T) istrueifl <T < h.

timel(Ty)istrueifl < Ty < h+ 1.

path(P)istrueifl < P < w.

fluent(F) is true if F'is a fluent.

literal(L) is true if L is a literal.

contrary(L, Ly) is true if L and L, are two complementary literals.
sense(L) is true if L is a sensed literal.

action(A) is true if A is an action

holds(L,T, P) is true if literal L holds at(T', P).

poss(A, T, P) is true if actionA is executable &T’, P).

occ(A, T, P) is true if actionA occurs a{ T, P). That means the nod&’, P)
in T}, is labeled with actiom.

e(L, T, P) is true if literal L is an effect of a non-sensing action occurring at
(T, P).

pe(L, T, P) is true if literal L may change atT" + 1, P).

goal(T, P) is true if the goal is satisfied &7, P).

20

Phan Huy Tu, Tran Cao Son, and Chitta Baral

e br(G,T, P, P,) is true if there exists a branch froff’, P) to (T + 1, P;)
labeled withG in T;,. For example, in the grid representationZof, (Figure
3), we havér(open, 1,1, 1), br(closed, 1,1, 2), andbr(locked, 1, 1,5).

e used(T, P) is true if (T, P) belongs to some extended trajectory of the plan.
This allows us to know which paths are used in the construction of the plan and
thus to be able to check if the plan satisfies the goal. As an examplE, far
Figure 3, we havesed(t,1) for 1 < ¢ < 5, andused(t, 2) andused(t,5) for
2 <t < 5. The goal satisfaction, hence, will be checked at naded (5, 1),
used(5, 2), andused(5, 5).

3. Variables. The following variables are used in the program.

e F': afluent variable.

e L andL;: literal variables.

e T andTy: time variables, in ranges..h and1..h + 1 respectively,

o (G, G1 andGy: sensed—literal variables.

e A:anaction variable.

e P, P, andPs: path variables, in rangé..w.

The domains of these variables are declarenindels using the keyworddomain

(see Appendix C for more details). Observe that the type of each variable has to be
declared accordingly if this feature sinodels is not used.

. Rules. The program has the following facts to define variables of &anc and

path:
time(l..h) «—
timel(1.h +1) «
path(l.w) «
For each action, fluent f, or sensed-litera in the domain, ,,(P) contains the
following facts respectively
action(a)
fluent(f) <«

sense(g)

The remaining rules afy, ., (P) are divided into three groups: (i) domain dependent
rules; (ii) goal representation and (iii) domain independent rules, which are given
next. Note that they are shown in a shortened form in which the following shortening
conventions are used.

e Two contrary literal variables are written &sand—L.

e For a predicate symbal, and a sety of literals or actions, we will write
p(7,...) to denote the set of atodg(x,...) | x € v}.

e For a literal constant, -l stands fomeg(f) (resp.f) if [= f (resp.l = —f)
for some fluentf.

For example, the rule (28) stands for the following rule

holds(L,T+1, P) < holds(L,T, P), contrary(L, L1),not pc(L1,T, P)

ASP with Sensing Actions, Incomplete Information, and Static Causal Laviad

3.1 Domain dependent rules

¢ Rules encoding the initial situation.For each v-proposition (1) i@, 7}, .,(P) con-
tains the fact

holds(l,1,1) « (14)

¢ Rules encoding actions’ executability conditiong-or each executability condition
(2) inD, 7,4, (P) contains the rule

poss(a, T, P) «— holds(y, T, P) (15)

e Rules for reasoning about the effect of non-sensing actions-or each dynamic
causal law (3) inD, we add tory, .,(P) the following rules:

e(l,T,P) <« occ(a,T,P),holds(¢p, T, P) (16)
pe(l,T,P) « occ(a,T,P),not holds(l, T, P),not holds(—¢,T, P) (17)

Here,a is a non-sensing action. Its execution changes the world according to the
Res-function. The first rule, when used along with (22), encodes what definitely
holds as the effect af in the next a-state. The second rule, when used along with
(21), describes what would potentially be changed ksee the definitions af(a, J)
andpc(a,d) in Subsection 2.4). Note that in the second rulet, holds(—¢, T, P)
stands fo{not holds(—l) | | € ¢}, meaning that possibly holds atT, P). These
rules will be used in cooperation with (23), (27), and (28) to define the next a-state
after the execution of a non-sensing action.

e Rules for reasoning about the effect of sensing actionsi-or each k-proposition
(5) in D, 73, ., (P) contains the following rules:

— occ(a, T, P),not br(0,T, P, P) (18)

Hor(g, T, P, X)mewbr(P,X)}1 « occ(a,T,P) (19)
(g €0)

— occ(a, T, P),holds(g,T,P) (20)
(g €0)

The first rule assures that if a sensing actiooccurs at(T', P) then there must be

a branch from(T, P) to (T + 1, P). The second rule ensures that a new branch,
corresponding to a new successor a-state, will be created for each literal sensed by
the action. The last rule is a constraint that preventom taking place if one of

the literals sensed by the action is already known. With this rule, the returned plan
is guaranteed to be optimal in the sense that a sensing action should not occur if
one of the literals sensed by the action already holds. Observe that the semantics of
A€k does not prevent a sensing action to execute when some of its sensed-fluents is
known. For this reason, some solutions to a planning problem instance might not be
found using this encoding. However, as we will see later, the program will generate
an “equivalent” plan to those solutions. Subsection 4.2 will elaborate more on this
issue.

22 Phan Huy Tu, Tran Cao Son, and Chitta Baral

¢ Rules for reasoning about static causal lawsFor each static causal law (4) 1,
7h,w(P) contains the rules

pc(l,T,P) <« not holds(l, T, P),pc(l',T, P),

not e(—p, T, P) (21)

("€ ¢)
e(l, ,P) «— e(p,T,P) (22)
holds(l, Ty, P) « holds(p,T1,P) (23)

Rules in this group encode the equations (10)-(12) and the opé&rator

3.2 Goal representation

The following rules encode the goal and make sure that it is always achieved at the end of
every possible branch created by the execution of the plan.

goal(Ty,P) « holds(G, Ty, P) (24)
goal(Ty, P) «— holds(L, Ty, P), holds(—L, Ty, P) (25)
— wused(h+1, P),not goal(h+1, P) (26)

The first rule says that the goal is satisfied at a node if all of its subgoals are satisfied at that
node. The last rule guarantees that if a p&tis used in the construction of a plan then the
goal must be satisfied at the end of this path, that is, at fledel, P).

Rule (25) deserves some explanation. Intuitively, the presenéeldé(L, T, P) and
holds(—L, T, P) indicates that the a-state at the nqde P) is inconsistent. This means
that no action should be generated at this node as inconsistent a-states will be removed
by the extended transition function (Definition 8). To achieve this &ffawe say that the
“goal” has been achieved &7, P). The inclusion of this rule might raise the question:
is it possible for the program to generate a plan whose execution yields inconsistent a-
states only. Fortunately, due to Proposition 3, this will not be the case for consistent action
theories.

3.3 Domain independent rules

¢ Rules encoding the effect of non-sensing actionRules (16) — (17) specify what
definitely holds and what could potentially be changed in the next a-state as the effect
of a non-sensing action. The following rules encode the effect and frame axioms for
non-sensing actions.

holds(L,T+1,P) < e(L,T,P) (27)
holds(L,T+1,P) <« holds(L,T,P),not pc(—L,T, P) (28)
When used in conjunction with (16) — (17), they define s function.
8 The same effect can be achieved by (i) introducing a new predicatezsp$T, P), to represent that the a-

state at(7", P) is inconsistent; (ii) addingot stop(T', P) in the body of rule (35) to prevent action to occur
at (7T, P); and (iii) modifying the rule (26) accordingly.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavi23

¢ Inertial rules for sensing actions. This group of rules encodes the fact that the
execution of a sensing action does not change the world. However, there is one-to-
one correspondence between the set of sensed literals and the set of possible next
a-states after the execution of a sensing action.

— P1<P2,P2<P,b7’(G1,T,P1,P),

br(Gy, T, Py, P) (29)

— P, <P Gy #Gy,br(G1,T, P, P),
br(Gy, T, P1, P) (30)
— P, < Pbr(G,T, Py, P),used(T, P) (31)
used(T+1,P) «— P, <Pbr(G,T,P,,P) (32)
holds(G,T+1,P) «— P, <P,br(G,T,P.,P) (33)
holds(L,T+1,P) « P, < P,br(G,T, P,,P), holds(L,T,P;) (34)

The first three rules make sure that there is no cycle in the plan that we are encoding.
The next rule is to mark a node as used if there exists a branch in the plan that
coming to that node. This allows us to know which paths on the grid are used in the
construction of the plan and thus to be able to check if the plan satisfies the goal (see
rule (26)).
The last two rules, along with rule (23), encode the possible next a-state correspond-
ing to the branch denoted by liter@! after a sensing action is performed in a state
4. They say that such a-state should contdifrule (33)) and literals that hold it
(rule (34)).
Note that because for each lite@lsensed by a sensing actianwe create a cor-
responding branch (rules (18) and (19)), the rules of this group guarantee that all
possible next a-states afters performed are generated.

e Rules for generating action occurrences.

Hoce(X, T, P) : action(X)}1 «— wused(T, P),not goal(T, P) (35)
— occ(A, T, P),not poss(A, T, P) (36)
The first rule enforces exactly one action to take place at a node that was used but the
goal has not been achieved. The second one guarantees that only executable actions

can occur.
e Auxiliary Rules.

literal(F) (37)
literal(—F) «— (38)
contrary(F,—F) « (39)
contrary(—~F, F) « (40)
new.br(P,P;) «— P<P (41)
used(1,1) « (42)
used(T+1,P) +— wused(T,P) (43)

The first four rules define literals and contrary literals. Rule (41) says that a newly

24 Phan Huy Tu, Tran Cao Son, and Chitta Baral

created branch should outgo to a path number greater than the current path. The last
two rules mark nodes that have been used.

4 Properties ofAscp

This section discusses some important propertiessafr. We begin with how to extract
a solution from an answer set returnedAscP. Then, we argue thatscpris sound and
complete with respect to the 0-approximation semantics. We also showshatcan be
used as a conformant planner. Finally, we present how to madifyrto act as a reasoner.

4.1 Solution Extraction

In some previous answer set based planners (Dimopoulos et al. 1997; Eiter et al. 2003;
Lifschitz 1999), reconstructing a plan from an answer set for a logic program encoding the
planning problem instance is quite simple: we only need to collect the action occurrences
in the model and then order them by the time they occur. In other words, if the answer
set containsce(aq, 1), ..., occ(an,, m) then the plan isi, ..., ay. Form, ,(P), the
reconstruction process is not that simple because each answersgtfoP) represents a
conditional plan which may contain conditionals in the fdrrfl, ¢, p, p1). The following
procedure describes how to extract such a plan from an answer set.

LetP = (D,Z,G) be a planning problem instance afidhe an answer set fat, ,, (P).
For any pair of integerd, <i < h+ 1,1 < k < w, we definepf(S) as follows:

] if i =h+1o0rocc(a,i, k) ¢ Sforalla
a;pF (S) if occ(a,i, k) € S and
a IS a non-sensing action
a; cases({g; — pfjrl(S)};-”zl) if occ(a,i,k) € S,
a is a sensing actigmnd
bT(gj,i,k,kj) e Sforl < i<n

Intuitively, p¥(S) is the conditional plan whose corresponding tree is rooted at (io&e
on the gridh x w. pi(9) is, therefore, a solution t®. This is stated in Theorem 2 in the
next subsection.

4.2 Soundness and Completeness

Theorem 2

Let (D,7) be a consistent action theofy, = (D,Z,G) be a planning problem instance
andh > 1 andw > 1 be integers. Ifry, ,,(P) returns an answer sét thenpi(S) is a
solution toP.

Proof
see Appendix B [

Theorem 2 shows the soundnesstgf, (P). We will now turn our attention to the com-
pleteness ofr; ,,(P). Observe that solutions generated ty,,(P) are optimal in the
following sense

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavi2b

1. actions do not occur once the goal is achieved or a possible next a-state does not
exist; and
2. sensing actions do not occur if one of its sensed literals holds.

The first property holds because of rule (35) and the second property holds because of
constraint (20). Since the definition of a conditional plan in general does not ruf@out
optimalplans, obviouslyr;, ., (P) will not generate all possible solutions®

For example, consider the planning problem instaRcén Example 2. We have seen
that plansps, p3, andp, in Example 3 are all solutions tB;. However,p; andp, are not
optimal because they do not satisfy the above two properties.

The above example shows that ., (P) is not complete w.r.t. the 0-approximation in
the sense that no one-to-one correspondence between its answer sets and solftions to
exists. However, we will show next that it is complete in the sense that for each solution
p to P, there exist two integerd andw such thatr, ,,(P) will generate an answer set
S whose corresponding plap} (S), can be obtained from by applying the following
transformation (called theeduct operation).

Definition 13(Reduct of a plan
Let? = (D,Z,G) be a planning problem instangepe a plan and be an a-state such
thaté(p, 0) # L. A reduct ofp with respect taj, denoted byreducts(p), is defined as
follows.

1. ifp=[ord = Gthen

reducts(p) =]

2. if p = [a; ¢], wherea is a non-sensing action ards a plan, then

a;reducts (q) If ®(a,d) = {d'}

ducts(p) = i
reduct;(p) { a otherwise

3. if p = [a; cases({g; — p;}}j_1)], Wherea is a sensing action that sensgs. . . , gn,

then
reducts(p) = { reducts(p) if g, hqlds iné for somek
a;cases({g; — ¢;}j—,) oOtherwise
where
0 = { I if CZD(_é U {g,}) is inconsistent
reductcy, (sufg;}) (pj) Otherwise
Example 10

Consider the planning problem instan®g in Example 2 and plangs, p3, andp, in
Example 3. Let = {—-open}. We will show that

reducts(ps) = p2 (44)

and

reducts(ps) = p2 (45)
Becausepen, closed, andlocked do not hold ind, we have

reducts(ps) = check; cases({open — q1,closed — qo,locked — q3})

26 Phan Huy Tu, Tran Cao Son, and Chitta Baral

whereg;’s are defined as in Definition 13.

Let
01 = Clp,(6U{open}) = {open, —open, closed, —closed, locked, —locked}
02 = Clp, (8 U{closed}) = {—open, closed, —locked}
03 = Clp, (0 U {locked}) = {—open, —~closed, locked}
It is easy to see that = [] (becausé; is inconsistent) angs = [] (because the sub-plan

corresponding to the branch “locked” i is empty).
Let us compute,. We have

g2 = reducty, (flip-lock; flip-lock; flip_lock)
Because), does not satisfg and®(flip_lock,d2) = {621} # 0, where
da2,1 = {—open, —closed, locked},
we have
q2 = fliplock;reducts, ,(flip_lock; flip_lock)

As o, satisfiesj, we havereducts, , (flip-lock; flip_lock) = [|. Hencegy = flip_lock.
Accordingly, we have

reducts(ps) = check; cases({open — [|, closed — [flip_lock],locked — [|}) = p2

That s, (44) holds.
We now show that (45) holds. It is easy to see that

reducts(ps) = check; cases({open — [], closed — reducts, (p2), locked — [|})
Because:losed holds inds, we have
reducty, (p2) = reducts, (flip-lock) = flip_lock
Thus,
reducts(py) = check; cases({open — [], closed — flip_lock,locked — [|}) = p2
As a result, we have (45) holds.

We have the following proposition.

Proposition 5
LetP = (D,Z,G) be a planning problem instance afide its initial a-state. Then, for
every solutiorp to P, reducts(p) is unique and also a solution .

Proof
see Appendix B [

The following theorem shows the completeness of our planner with respect to the 0-
approximation semantics.

ASP with Sensing Actions, Incomplete Information, and Static Causal Laviay

Theorem 3

LetP = (D,Z,G) be aplanning problem instance, gnlde a solution t&. Then, there ex-
ist two integersh andw such thatr, ,,(P) has an answer sétandpl (S) = reducts(p),
whered is the initial a-state of D, 7).

Proof
see Appendix B [

4.3 Special Caseascras a Conformant Planner

Since conformant planning deals only with incomplete information, it is easy to see that
7h,1(P) can be used to generate conformant plangor

Let S be an answer set far, 1 (P). Recall that we assume that each sensing action
senses at least two literals. Henee,= 1 implies S does not contaimcc(a, .. .) where
a is a sensing action because if otherwise rules (19) and (30) cannot be satisfied. Thus,
pi(9) is a sequence of non-sensing actions. By Theorem 2, we knowithit achieves
the goal of P from every possible initial a-state of the domain, which implies thas) is
a conformant plan. In Section 5, we compare the performaneg ofP) against some of
the state-of-the-art conformant planners.

4.4 Special CaseascPas a Reasoner

Itis easy to see that with minor changescpPcan be used to compute the consequences of
aplan. This can be done as follows. Given an action thébr{), for any integers, w, let
7h.w(D,T) be the set of rulesey, ., (P)\{(18)—(20), (24) —(26), (29)—(31), (35), (41)}.
Intuitively, 7, ., (D, Z) is the program obtained from, ., (P) by removing the rules fofi)
generating the branches when sensing actions are exe¢iijtatdiecking the satisfaction

of the goalj(iii) representing the constraints on branches;(andjenerating action occur-
rences. For a plap, let T,, be the corresponding tree fprthat is numbered according to
the principles described in the previous section. We defipgto be the following set of
atoms

{occ(a, t,p) | 3 anoder in T, labeled with actior and numbered witli, p) } U
{br(g,t,p,p’) | Falink labeled withg that connects the node numbered withp)
to the node numbered witlt + 1,p’) in T}, }.

It is easy to see that the program .,(D,Z) U e(p) has a unique answer set which corre-
sponds tab(p, so). This is detailed in the following proposition.

Proposition 6
Let (D,Z) be an action theory, be a planp be a fluent formulal}, be the plan tree fop
with a given numbering, antl andw be the height and width &f,, respectively. Let

IT= Th,w (DaI) U é(p).
We have that

e II has a unique answer s&t

28 Phan Huy Tu, Tran Cao Son, and Chitta Baral

e D =7 knows p after p if and only if

— there exists somg 1 < j < w, §41,;(S) # L; and
— foreveryj,1 < j <wandd,i1,;(S) # L, pisknownto be true i1 ;(.5).

e D =7 whether p after p if and only if

— there exists somg 1 < j < w, §p41,;(S) # L; and
— foreveryj, 1 < j <wanddyy1,;(S) # L, pis known indj 41 ;(.5).

where
{l] holds(l,t,5) € S} if used(t,j) € S and
0¢,;(S) = {l'| holds(l,t,j) € S} is consistent
L otherwise
Proof
The proof of this theorem is very similar to the proof of Theorem 2 so we omit it for brevity.
O
5 Evaluation

In this section, we evaluatescp against other planners using planning benchmarks from
the literature. We first briefly summarize the features of the systems that are used in our ex-
periments. We then describe the benchmarks. Finally, we present the experimental results.

5.1 Planning Systems
The planning systems that we compared with are the following.

e DLVX: DLVX is a declarative, logic-based planning system built on top ofbitie
system (http://www.dbai.tuwien.ac.at/proj/div/). The input language
K is alogic-based planning language described in (Eiter et al. 2003). The version we
used for testing is available atttp://www.dbai.tuwien.ac.at/proj/div/
K/ .DLVK is capable of generating both concurrent and conformant plans. It, however,
does not support sensing actions and cannot generate conditional plans.

¢ CMBP (Conformant Model Based Planner) (Cimatti and Roveri 1999; Cimatti and
Roveri 2000): CMBP is a conformant planner developed by Cimatti and Roveri. A
planning domain in CMBP is represented as a finite state automaton. BDD (Binary
Decision Diagram) technigues are employed to represent and search the automaton.
CMBP allows nondeterministic domains with uncertainty in both the initial state and
action effects. Nevertheless, it does not have the capability of generating concurrent
and conditional plans. The input language to CMBR 18 described in (Giunchiglia
et al. 1997). The version used for testing was downloaded fnep//www.cs.
washington.edu/research/jair/contents/v13.html

o KACMBP (Cimatti et al. 2004): Similarly to CMBP, KACMBP uses techniques from
symbolic model checking to search in the belief space. However, in KACMBP, the
search is guided by a heuristic function which is derived based on knowledge asso-
ciated with a belief state.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavi29

KACMBP is designated for sequential and conformant setting. It, however, does
not support concurrent planning and conditional planning. The input language of
KACMBP is SMV. The system was downloaded frdwttp://sra.itc.it/
tools/mbp/AlJO4/

e Conformant-FF (CFF) (Brafman and Hoffmann 2004): €RBE our best knowledge,

is one of the current fastest conformant planners in most of the benchmark domains
in the literature. It extends the classical FF planner (Hoffmann and Nebel 2001) to
deal with uncertainty in the initial state. The basic idea is to represent a belief state
s just by the initial belief state (which is described as a CNF formula) together with
the action sequence that leadsstdn addition, the reasoning is done by checking
the satisfiability of CNF formulae.
The input language of CFF is a subset of PDDL with a minor change that allows the
users to specify the initial state as a CNF formula. Both sequential and and confor-
mant planning are supported in CFF. However, it does not support concurrent and
conditional planning.

e MBP (Bertoli et al. 2001): MBP is a previous version of CMBP. Unlike CMBP
which only deals with conformant planning, MBP supports conditional planning as
well. The version used for testing was downloaded fidtp:/sra.itc.it/
tools/mbp/

e SGP (Sensory Graph Plan) (Weld et al. 1998; Anderson et al. 1998): SGP is a plan-
ner based on the planning graph algorithm proposed by Blum and Furstin (Blum and
Furst 95). SGP supports conditional effects, universal and existential quantification.
It also handles uncertainty and sensing actions. SGP has the capability of generating
both conformant and conditional plans, as well as concurrent plans. Nevertheless,
static laws are not allowed in SGP. The input syntax is PDDL (Planning Domain Def-
inition Language). The version used for testing is 1.0h (dated January 14th, 2000),
written in Lisp, available ahttp://www.cs.washington.edu/ai/sgp.htm|

e POND (Bryce et al. 2004): POND extends the planning graph algorithm (Blum and
Furst 95) to deal with sensing actions. Conformant planning is also supported as a
feature of POND. The input language is a subset of PDDL. POND was downloaded
from http://rakaposhi.eas.asu.edu/belief-search/

Table 1 summarizes the features of these planning systems.

Ascp DLVE MBP CMBP SGP POND CFF KACMBP
Input Language Ay K AR AR PDDL PDDL PDDL SMV
Sequential planning| yes yes yes yes no yes yes yes
Concurrent planning no yes no no yes no no no
Conformant planning yes yes yes yes yes yes yes yes
Conditional planning yes no yes no yes yes no no

Table 1. Features of Planning Systems

9 We would like to thank @rg Hoffmann for providing us with an executable version of the system for testing.

30 Phan Huy Tu, Tran Cao Son, and Chitta Baral

5.2 Benchmarks

To test the performance of the planners, we prepared two test suites for conformant and
conditional planning, separately. In our preparation, we attempt to encode the planning

problem instances given to the systems in a uniform way (in terms of the number of actions,

fluents, and effects of actions). Due to the differences in the representation languages of
these systems, there are situations in which the encoding of the problems might be different
for each system.

5.2.1 Conformant Planning

We tested the systems on the following dom#ins

e Bomb in the Toilet (BT): This set of problems was introduced in (McDermott
1987): “It has been alarmed that there is a bomb in a lavatory. There: anes-
picious packages, one of which contains the bomb. The bomb can be defused if we
dunk the package that contains the bomb into a toilet.” Experiments were made with
m = 2,4,6,8, and10.

e Bomb in the Toilet with Multiple Toilets (BMT): This set of problems is simi-
lar to theBT problem but we have multiple toilets. There are five problems in this
set, namelyBMT(2,2), BMT(4,2), BMT(6,2), BMT(8,4), andBMT(10,4),
where the first parameter is the number of suspicious packages and the second pa-
rameter is the number of toilets.

e Bomb in the Toilet with Clogging (BTC): This set of problems is similar to BTs
but we assume that dunking a package clogs the toilet and flushing the toilet unclogs
it. We know that in the beginning, the toilet is unclogged. We did experiments with
m = 2,4,6,8, and10, wherem is the number of suspicious packages.

e Bomb in the Toilet with Multiple Toilets and Clogging (BMTC): This set of prob-
lems is similar to BTC but we have multiple toilets. We did experiments with five
problemsBMTC(2,2), BMTC(4,2), BMTC(6,2), BMTC(8,4), and
BMTC(10,4), where the first parameter is the number of suspicious packages and
the second parameter is the number of toilets.

e Bomb in the Toilet with Clogging and Uncertainty in Clogging (BTUC): This
set of problems is similar to BTC except that we do not know whether the toilet is
clogged or not in the beginning.

e Bomb in the Toilet with Multiple Toilets and Uncertainty in Clogging (BM-

TUC): This set of problems is similar to BMTC except that we do not know whether
or not each toilet is clogged in the beginning.

e Ring: This set of problems is from (Cimatti et al. 2004). In this domain, one can
move in a cyclic fashion (either forward or backward) aroung@om building to
lock windows. Each room has a window and the window can be locked only if it is
closed. Initially, the robot is in the first room and it does not know the state (open,
closed or locked) of the windows. The goal is to have all windows locked. A possible

10 The system is available http://www.cs.nmsu.edu/tson/ASPlan/Sensing

ASP with Sensing Actions, Incomplete Information, and Static Causal Laval

conformant plan is to perform a sequence of actioneard, close, lockepeatedly.
In this domain, we tested with =2,4,6,8, and 10.

e Domino (DOM): This domain is very simple. We havedominos standing on a
line in such a way that if one of them falls then the domino on its right also falls.
There is a ball hanging close to the leftmost one. Touching the ball causes the first
domino to fall. Initially, the states of dominos are unknown. The goal is to have the
rightmost one to fall. The solution is obviously to touch the ball. In this domain, we
tested withn =10,20,50,100, 1000, and 10000.

5.2.2 Conditional Planning

The set of problems for testing includes:

e Bombin the Toilet with Sensing Actions (BTS):This set of examples is taken from
(Weld et al. 1998). They are variations of the BTC problem that allow sensing actions
to be used to determine the existence of a bomb in a specific package. There are
packages and only one toilet. We can use one of the following methods to detect a
bomb in a package: (1) use a metal detector (actisact_metal); (2) use a trained
dog to sniff the bomb (actiosni f f); (3) use an x-ray machine (actiamay); and,
finally, (4) listen for the ticking of the bomb (actidisten_for _ticking).

This set of examples contains four subsets of problems, naBEly1(m),

BTS2(m), BT S3(m), andBTS4(m) respectively, where: is the number of sus-
picious packages. These subsets differ from each other in which ones of the above
methods are allowed to use. The first subset allows only one sensing action (1); the
second one allows sensing actions (1)-(2); and so on.

e Medical Problem (MED): This set of problems is from (Weld et al. 1998). A patient
is sick and we want to find the right medication for her. Using a wrong medication
may be fatal. Performing a throat culture will return eithed, blue, orwhite, which
determines the group of illness the patient is infected with. Inspecting the color (that
can be performed only after the throat culture is done) allows us to observe the color
returned by a throat culture, depending on the illness of the patient. Analyzing a
blood sample tells us whether or not the patient has a high white cell count. This
can be done only after a blood sample is taken. In addition, we know that in the
beginning, the patient is not dead but infected. In addition, none of the tests have
been done.

There are five problems in this set, nameélyE D1, ..., M ED5. These problems
are different from each other in how much we know about the illness of the patient
in the beginning.

e Sick Domain (SICK): This set of problems is similar to MED. A patient is sick and
we need to find a proper medication for her. Thereratdnds of illness that she
may be infected with and each requiring a particular medication. Performing throat
culture can return a particular color. Inspecting that color determine what kind of
illness the patient has. Initially, we do not know the exact illness that the patient is
infected with.

The characteristic of this domain is that the length of the plan is fixed (only 3) but

32 Phan Huy Tu, Tran Cao Son, and Chitta Baral

the width of the plan may be large, depending on the number of illnesses. We did
experiments with five problems in the domain, namélyC' K (2), SICK (4), ...,
SICK(10). They differ from each other in the number of illnesses that the patient
may have.

e Ring (RINGS): This domain is a modification of thB/ NG domain. In this mod-
ified version, the agent can close a window only if it is open. It can lock a window
only if it is closed. The agent can determine the status of a window by observing it
(sensing actiombserve_window).

e Domino (DOMS): This is a variant of theDOM domain in which some domi-
nos may be glued to the table. Unlike the original version of Ik@ M/ domain,
in this variant, when a domino falls, the next one falls only if it is not glued. The
agent can do an action to unglue a glued domino. We introduce a new sensing action
observe_domino(X) to determine whether a domin® is glued or not.

5.3 Performance

We ran our experiments on a 2.4 GHz CPU, 768MB RAM, DELL machine, running
Slackware 10.0 operating system. We comparedp with DLVX, CMBP, SGP, CFF and
KACMBP on the conformant benchmarks and with SGP, POND, and MBP on the condi-
tional benchmarks. Time limit was set to 30 minutes. The CMU Common Lisp version 19a
was used to run SGP examples. We saTPexamples on botbmodels andsmodels .

By convention, in what follows, we will usescP andAascP to refer to the plannexscp

when it was run ortmodels andsmodels respectively. Sometimes, if the distinction
between the two is not important, byscPwe mean both.

The experimental results for conformant and conditional planning are shown in Tables 2
and 3 respectively. Times are in seconds. “TO/AB” indicates that the corresponding planner
does not return a solution within the time limit or stopped abnormally due to some reasons,
for example, out of memory or segmentation fault.

In conformant setting (Table 2), it is noticeable thatcP behaves better thasmscr®
in all the conformant benchmark domains, especially in large problems. Furthermore, CFF
and KACMBP are superior to all the other planners on most of the testing problems. Espe-
cially, both of them scale up to larger instances very well, compared with the others. Yet, it
is interesting to observe thascP does not lose out a whole lot against these two planners
in many problems. In the following, we will discuss the performansepPin comparison
with CMBP,DLV¥, and SGP.

It can be seen thatscF is competitive with CMBP and outperfornid.vk and SGP
in most of problems. Specifically, in thBT domain,AscF took only 0.12 seconds to
solve the last problem, whileLVv¥, CMBP, and SGP took 11.37, 0.5 and 2.13 seconds
respectivelyascrP® however is slower than CMBP and SGP in this domain.

In the BM'T domain,ASCP’ is the worstASCP® took more than two minutes to solve
the largest problem in this domain, while CMBP took only 0.53 secorsisF, however,
is competitive with CMBP and outperforms baihv¥ and SGP.

In the BT'C domain, althoughscr® is better thamLv¥* and SGP, its performance is far
from that of CMBP. The time foascP® to solve the largest problem is nearly 8 minutes,

ASP with Sensing Actions, Incomplete Information, and Static Causal Lava3

Problem Min. ASCP DLV*| CMBP SGP| CFF KA-
PL | cmodel§ smodelg CMBP
BT(2) 2 0.06 0.03 0.01 0.03 0.04| 0.02 0.12
BT(4) 4 0.04 0.06 0.03 0.03 0.27| 0.04 0.12
BT(6) 6 0.05 0.12 0.18 0.04 0.42| 0.09 0.1
BT(8) 8 0.10 0.33 1.47 0.10 1.04| 0.10 0.11
BT(10) 10 0.12 2.54 11.37 0.50 2.13| 0.13 0.11
BMT(2,2) 2 0.04 0.04 0.01 0.03 0.07| 0.02 0.07
BMT(4,2) 4 0.05 0.09 0.03 0.04 0.28| 0.03 0.12
BMT(6,2) 6 0.11 0.23 0.19 0.05 0.29| 0.07 0.10
BMT(8,4) 8 0.41 4.70 1.70 0.11 3.14| 0.09 0.11
BMT(10,4) 10 0.51 152.45 12.18 0.53 5.90| 0.12 0.14
BTC(2) 2 0.04 0.04 0.01 0.03 0.44| 0.05 0.12
BTC(4) 7 0.04 0.12 0.33 0.04 21.62| 0.06 0.10
BTC(6) 11 0.06 0.33 TO 0.1 TO| 0.07 0.11
BTC(8) 15 0.11 0.53 TO 0.79 TO| 0.07 0.13
BTC(10) 19 0.12 468.04 TO 9.76 TO| 0.13 0.14
BMTC(2,2) 2 0.06 0.06 0.01 0.03 0.18| 0.05 0.12
BMTC(4,2) 6 0.10 0.19 0.17 0.05 2.03| 0.04 0.09
BMTC(6,2) 10 0.14 0.63 20.02 0.24 TO| 0.07 0.12
BMTC(8,4) 12 0.56 60.56 TO TO TO| 0.10 0.12
BMTC(10,4) 16 1.44 TO TO TO TO| 0.13 0.17
BTUC(2) 4 0.05 0.04 0.02 0.02 0.59| 0.03 0.09
BTUC(4) 8 0.04 0.11 0.94 0.04 TO| 0.04 0.11
BTUC(6) 12 0.06 0.22 524.3 0.11 TO| 0.06 0.11
BTUC(8) 16 0.11 4.7 TO 0.96 TO| 0.08 0.12
BTUC(10) 20 0.12 TO TO 11.58 TO| 0.13 0.16
BMTUC(2,2) 4 0.06 0.07 0.03 0.03 16.11] 0.06 0.11
BMTUC(4,2) 8 0.10 0.23 0.24 0.07 TO| 0.09 0.14
BMTUC(6,2) 12 0.14 19.88| 1368.28 0.43 TO| 0.08 0.14
BMTUC(8,4) 16 0.56 TO TO TO TO| 0.13 0.18
BMTUC(10,4 20 0.63 TO TO TO TO| 0.16 0.16
RING(2) 5 0.12 0.47 0.201 0.04 0.14| 0.05 0.00
RING(4) 11 0.21 6.76 0.638 0.05 2.28| 0.09 0.12
RING(6) 17 31.73 TO TO 0.40 77.10; 0.20 0.13
RING(8) 23 1246.58 TO TO| 832.73 TO| 0.74 0.18
RING(10) 29 TO TO TO TO TO| 2.46 0.18
DOM(10) 1 0.11 0.08 0.03 0.04 2.24| 0.05 0.13
DOM(20) 1 0.14 0.07 0.24 0.05 33.4| 0.29 0.14
DOM(50) 1 0.47 0.40| 1368.28 0.06| 1315.98 4.44 1.34
DOM(100) 1 1.70 1.64 TO 0.11 TO TO 2.56
DOM(500) 1 31.28 32.52 TO 2.16 TO TO 29.10
DOM(1000) 1 121.91] 129.96 TO 9.83 TO TO TO

Table 2. Conformant Planning Performance

while that for CMBP is just 9.76 seconds. Agaiscr is the best. It took only 0.12
seconds to solve the same problem.

The BMTC domain turns out to be hard for.v¥, CMBP, and SGP. None of them were
able to solve theBMTC(8,4) within the time limit. AlthoughAscrP® was able to solve

34 Phan Huy Tu, Tran Cao Son, and Chitta Baral
Problem Min. Plan ASCP SGP| POND MBP
Length & Width| cmodeld smodels

BTS1(2) 2x2 0.166 0.088) 0.11] 0.188 0.047
BTS1(4) 4x4 0.808 1.697| 0.22| 0.189 0.048
BTS1(6) 6x6 5.959 83.245 2.44| 0.233 0.055
BTS1(8) 8x8 25.284 TO| 24.24] 0.346 0.076
BTS1(10) 10x10 85.476 TO TO| 0.918 0.384
BTS2(2) 2x2 0.39 0.102] 0.19] 0.186 0.038
BTS2(4) 4x4 1.143 3.858| 0.32| 0.198 0.067
BTS2(6) 6x6 19.478 1515.289 3.23| 0.253 2.163
BTS2(8) 8x8 245.902 TO 25.5] 0.452| 109.867
BTS2(10) 10x10 345.498 TO TO 1.627| 178.823
BTS3(2) 2x2 0.357 0.13| 0.22| 0.185 0.082
BTS3(4) 4x4 1.099 5.329| 0.44f 0.195 1.93
BTS3(6) 6x6 7.055 TO 3.89] 0.258| 147.76
BTS3(8) 8x8 56.246 TO| 28.41] 0.549 AB

BTS3(10) 10x10 248.171 TO TO 2.675 AB

BTS4(2) 2x2 0.236 0.149] 0.26] 0.194 0.098
BTS4(4) 4x4 1.696 3.556| 0.64| 0.191 AB

BTS4(6) 6x6 13.966| 149.723 4.92| 0.264 AB

BTS4(8) 8x8 115.28 TO| 30.34 0.708 AB

BTS4(10) 10x10 126.439 TO TO 4.051 AB

MED(1) 1x1 1.444 1.434| 0.09| 0.187 0.048
MED(2) 5x5 35.989 9.981] 0.59(0.193 0.047
MED(3) 5x5 42.791 9.752| 1.39 0.2 0.049
MED(4) 5x5 39.501] 10.118 7.18| 0.205 0.049
MED(5) 5x5 35.963 9.909| 44.64 AB 0.05
SICK(2) 3x2 0.234 0.121] 0.21] 0.189 0.045
SICK(4) 3x4 0.901 0.797| 10.29 0.19 0.048
SICK(6) 3x6 5.394 3.9 TO 0.201 0.059
SICK(8) 3x8 17.18 14.025 TO 0.221 0.129
SICK(10) 3x10 82.179 43.709 TO 0.261 0.778
RINGS(1 3x3 0.768 0.14| 0.67 0.198 0.045
RINGS(2 7x9 1386.299 TO TO| 0.206 0.057
RINGS(3 11x27 TO TO TO 0.391 0.207
RINGS(4 15x64 TO TO TO 3.054 3.168
DOMS(1) 3x1 0.117 0.203] 0.11 0.08 0.043
DOMS(2) 5x4 0.306 0.325| 48.82| 0.183 0.048
DOMS(3) 7x8 3.646 53.91 TO 0.19 0.057
DOMS(4) 9x16 87.639 TO TO 0.248 0.101
DOMS(5) 11x32 TO TO TO 0.687 0.486

this instance, it could not solve the last instanegCP on the contrary can solve these

Table 3. Conditional Planning Performance

instances very quickly, less than two seconds for each problem.

In the BTUC and BMTUC domains, although not competitive wittscr’, CMBP
outperforms botbLV* and SGP. For example, CMBP took less than 12 seconds to solve the
largest instance in thBTUC domain, whileascr®, DLVX, and SGP indicated a timeout.
ASCP® is competitive withDLVK and much better than SGP. Its performance is worse than

CMBP in these domains however.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavéb

The RING domain is really hard for the planners except CFF and KACMBP. CFF
and KACMBP took just a few minutes to solve the largest problem; however, KACMBP
seems to scale up better than CFF on this domain. None of the other planners could solve
the last problem. Among the others, CMBP is the best, followed ®yr. CMBP took
around 14 minutes to sohBI N G(8) while ASCP’ took more than 20 minutesscr® is
outperformed by botbLv¥ and SGP.

In the last domainDO M, again, CMBP outperformsscp, DLVX, and SGP. The solving
time of Ascpfor the last problem is around 2 minutes, while that for CMBP is just less
than 10 second®LV¥ and SGP were able to solve the first three instances of this domain
only. It is worth noting here that the not-very-good performance of CFF and KACMBP on
this domain is because that this domain is in nature very rich in static causal laws, a feature
that is not supported by CFF and KACMBP. Therefore, to encode the domain in CFF and
KACMBP, we had to compile away static causal laws.

The performance ofscprin the conditional benchmarks is not as good as in the confor-
mant benchmarks, compared with other testing planners. As can be seen in Table 3, it was
outperformed by both POND and MBP in the benchmarks, except in the last two problems
of the BT'S3 domain or in the last three of th87'S4, whereM BP had a problem with
segmentation fault or memory excess, oMYy D(5) problem where POND stopped ab-
normally. Both POND and MBP did very good at testing domains. POND took just a few
seconds to solve each instance in the testing domasspe is also not competitive with
SGP in small instances of the first five domaibg{S1-M E D). However, when scaling up
to larger problemsascr seems to be better than SGP. In the last three dom&iFG K,
RINGS, andDOM S), SGP is outperformed by bokscF andAscP’.

6 Conclusion and Future Work

In this paper, we define an approximation for action theories with static causal laws and
sensing actions. We prove that the newly developed approximation is sound with respect to
the possible world semantics and is deterministic when non-sensing actions are executed.
We also show that the approximation reduces the complexity of the conditional planning
problem.

We use the approximation to develop an answer set programming based conditional
planner, calledascp. Ascp differs from previously developed model-based planners for
domains with incomplete initial state (e.g. (Bonet and Geffner 2000; Cimatti and Roveri
1999; Eiter et al. 2003; Smith and Weld 1998)) in that it is capable of dealing with sensing
actions and generating both conditional and conformant plans. We prove the correctness
of Ascp by showing that plans generated bgcP are solutions of the encoded planning
problem instances. Furthermore, we prove k&t P will generate a solution t@ if it has
a solution with respect to the given approximation. We also discuss the usgcefin
reasoning about effects of conditional plans.

We comparenscpwith several planners. These results provide evidence for the useful-
ness of answer set planning in dealing with sensing actions and incomplete information.
Our experiments also show that there are situations in wksctPdoes not work as well as
other state-of-the-art planners. In the future, we would like to investigate methods such as
the use of domain knowledge to speed up the planning process (see e.g. (Son et al. 2005a)).

36 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Acknowledgment.We would like to thank Michael Gelfond for his valuable comments on

an earlier draft of this paper. We would also like to thank the anonymous reviewers of this
paper and an extended abstract of this paper, which appeared in (Son et al. 2004), for their
constructive comments and suggestions. The first two authors were partially supported by
NSF grant EIA-0220590.

Appendix A — Proofs related to the 0-Approximation

This appendix contains the proofs for the propositions and theorems given in the paper. As
stated, we assume that the body of each static law (4) is not an empty s@t-aridifor
every planning probleniD, Z, G).
We begin with a lemma about the operatdfp that will be used in these proofs. We
need the following definition. Given a domain descriptidnfor a set of literalsr, let
I'(o) =cU{l | 3if(l,») € Dsuchthaty C o}.

Let (o) = I'(¢) andI'*i (o) = I'(T(o)) for i > 0. Since, by the definition of,
for any set of literalsr’ we haves’ C I'(¢’), the sequencd™(c))$2,, is monotonic with
respect to the set inclusion operation. In additi@i(c))5°, is bounded by the set of fluent
literals. Thus, there exists'*™** such thatr3™* = (J;°'*(0). FurthermoregZ™* is
unigue and satisfies all static causal law$in

Lemma 1

For any set of literals,, we haver 3™ = Clp (o).

Proof

By induction we can easily show thBt(c) C Clp(o) for all i > 0. Hence, we have
op™* C Clp(0)

Furthermore, from the constructionBf(o), it follows thatoi®i® satisfies all static causal
laws inD. Because of the minimality property 6fip (o), we have

Clp(o) € op™"
Accordingly, we have
o™t = Clp(0)
O
The following corollary follows immediately from the above lemma.

Corollary 6.1
For two sets of literals C ¢/, Clp(o) C Clp(d’).

For an actioru and a stats, lete(a, s) = Clp(E(a, s)). We have the following lemma:

Lemma 2
Leta be an action and, s’ be states. Then, we have

Clp(E(a,s)U(sNs’)) = Clp(e(a,s) U (sNs'))

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavay

Proof
Lety = E(a,s)U(sNs’)andy’ = e(a,s)U(sNs’). Asy C +/, it follows from Corollary
6.1 that to prove this lemma, it suffices to prove that

Clp(y') C Clp(y)
Itis easy to see that
v = Clp(E(a,s))U(sns') C Clp(E(a,s) U (sNs')) = Clp(v)
Therefore, by Corollary 6.1, we have
Clp(7') € Clp(Clp(v)) = Clp(y)
Proof done. [

Proof of Proposition 1

Lemma 3
For every state’ € Res%(a, s), we have

S\ (e(as) U (s N ")) C pe(a,0)

Eé?(c)rfdenotee(a, s)U(sns’). By Corollary 6.1, since(a,d) C e(a, s) C o, we have
Clp(e(a,0)) C Clp(o) =5’ (46)
We now show that, for every> 1,
T'(@) \T"" (o) € pc'(a, 6) (47)

by induction on.

. Base case:i = 1. Let!/ be a literal inl"! () \ I'°(c). We need to prove thate pc'(a, §).
By the definition ofT", it follows that

1¢T%0) =0 (48)
leTHo)C s (49)
and, in addition, there exists a static causal law
if(l, o)
in D such that
pCI%0)=0 (50)

By (48), we havé ¢ (sNs’). By (49), we havé € s’. Accordingly, we havé ¢ s. On the
other hand, becaugeC s, we have

1¢6 (51)

It follows from (50) thaty C s’ sinces C s’. Because of the completenesssgfwe have
—p N s’ = (). On the other hand, by (46), we ha@ép(e(a, d)) C s'. As aresult, we have

- N Clp(e(a,d)) =0 (52)

38 Phan Huy Tu, Tran Cao Son, and Chitta Baral

We now show thap Z s. Suppose otherwise, that is,C s. This implies thaf € s. By
(49), it follows thatl € (s N s’) C o and this is a contradiction to (48). ThusZ s.
On the other hand, we know thatC o = e(a, s) U(sNs’) and thus we have N (e(a, s) \
s) # . In addition, it is easy to see thata, s) \ s C e(a,s) \ § C pc®(a,d). Therefore,
we have

o Npc(a,8) #0 (53)

From (51) — (53), and by the definition pf!(a,), we can conclude thdte pc!(a,d).
The base case is thus true.

. Inductive Step: Assume that (47) is true for all< k. We need to prove that it is true for
i =k + 1. Letl be aliteral in0**+1 (o) \ T* (o). We will show thatl € pc**1(a, d).

By the definition ofl", there exists a static causal law

it (1,)
in D such that
p C Fk(a) cés (54)

Becausep C s', we have-p N s’ = (. In addition, by (46)Cip(e(a,d)) is a subset of’.
A aresult, we have

- N Clple(a,d)) =0 (55)

Itis easy to see that Z T'*~1 (o) for if otherwise then, by the definition df, I must be in
I'* (o), which is impossible. In other words, there exiéts such that’ ¢ I'*~1(o) but
I’ € T*(o). By the inductive hypothesis, we hakies pc*(a, §), which implies that

@ Npc*(a,) # 0 (56)

Becausd ¢ I'*(s), we havel ¢ o. As a result] ¢ (s N s’). On the other hand, since
1 € TF+1 (o) C &', it follows thatl ¢ s. Thus, we have

16 (57)

From (55) — (57), and by the definition pt*+1(a, §), it follows that! € pc*+1(a,d). So
the inductive step is proven.

As aresult, it is always the case that (47) holds. Hence, we have
(o) \ o € |J e (a,4)) = pc'(a,)
J=0

and thus,

oo

Jr@\ o) ¢ Upea.o)

Accordingly, by Lemma (1) and by the definition gf(a, 0), we have

(s"\ o) C pc(a,d).

The lemma is thus true. [

ASP with Sensing Actions, Incomplete Information, and Static Causal Lava®

We now prove Proposition 1. Let
v =e(a,d)U(6\ —pc(a,d)) & =Clp(y)

Let s’ be some state iRes$ (a, s). Such ans’ exists becaus® is consistent. By Lemma
2 and by Definition 2, we have

s' = Clp(o) (58)
where
o=ce(a,s)U(sNs’)

To prove Proposition 1, it suffices to prove thatC s’. But first of all, let us prove, by
induction, the following

I(y) C s (59)
for every integei > 0.

1. Base Casei = 0. Assume that € I'°(y) = ~. We need to show thate s’. There
are two possibilities for € ~.

a) l € e(a,d). Itis easy to see thatc s’ because
e(a,d) Ce(a,s) Co CClp(o) =5'.

b) I & e(a,0),1 € §, and—l & pc(a,d). Sinced C s, we havel € s. Because of
the completeness &f it follows that—i & s. Accordingly, we have

-l g (sns') (60)

On the other hand, becausé ¢ pc(a,d), =l ¢ s, and(e(a,s) \ s) C
pc®(a, 8) C pe(a,), we have

-l & e(a, s) (61)

From (60) and (61), it follows that! ¢ o. In addition, since-l ¢ pc(a, d),
by Lemma 3, we havel ¢ s’ \ o. Accordingly, we have-l ¢ s’'. Because’
is complete, we can conclude that s’

2. Inductive Step: Assume that (59) is true for all < k. We need to show that
[k+1l(y) C s'. Letl be a literal in[***1(~). By the definition of"*+1(y), there are
two possibilities for:

a) [€ T¥(). Clearly, in this case, we havec s'.
b) there exists a static causal law

if (1,)

in D such thatp C T'*(y).
By the inductive hypothesis, we hayeC s’. Hence] must hold ins’.

Therefore, in both cases, we have s’. This implies thal*+1(v) C s'.

40 Phan Huy Tu, Tran Cao Son, and Chitta Baral

As a result, (59) always holds. By Lemma 1, we have
o .
i =rmcs
1=0

Sinces’ is a statey’ is consistent. Thus, by the definition of tiRes-function, we have
Resp(a,d) = {§'}

Furthermorey’ C s’ for everys’ € Res$(a, s).
The proposition is proven.

Proof of Proposition 2

Sinces is valid, there exists a statesuch thab C s.

On the other hand, we assume that in every state of the world, exactly one litéral in
holds, there exists a litergl€ 6 such thay holds ins and for allg’ € 6\ {g}, ¢’ does not
hold in s.

Accordingly, we havel U {¢g} C s. By Corollary 6.1, we havé’ = Clp(d U {g}) C
Clp(s) = s. Hence,d’ is consistent. By the definition of thBes—function, we have
8’ € Resp(a,d). Sinced’ C s, §’ is a valid a-state.

The proposition is thus true.

Proof of Proposition 3

Let us prove this proposition by using structural inductiorpon

1. p={]. Trivial.

2. p = [a; q], whereq is a conditional plan and is a non-sensing action
Assume that Proposition 3 is true far\We need to prove that it is also true far
Supposeb(p, §) # L. Clearly we haveb(a,) # L.

Therefore, we hav®(a, §) = Resp(a,d). On the other hand, sinceis a valid a-
state, it follows from Proposition 1 thdtesp(a,d) = {4’} for some valid a-state
8.

As a result, we havé(q, ') contains at least one valid a-state. Heng, §) # L
contains at least one valid a-state.

3. p = [a;cases({g; — p;}7_,)], where a is a sensing action that senges . . , g,
Assume that Proposition 3 is true fpy’s. We need to prove that it is also true far
Becauseb(p, §) # L, we haved(a, §) # L. By the definition of theb-function, we
have®(a,§) = Resp(a,d). Asd is valid, by Proposition 2Resp(a, d) contains at
least one valid a-stat#.

By the definition of theRes—function for sensing actions, we know thét =
Clp (6 U {gx}) for somek. This implies thay, holds iné’.

By the inductive hypothesis, we hadgp;., §’) contains at least one valid a-state.
By the definition of thed-function, we haveb(py,d’) C (p,d). Thus,®(p,d)
contains at least one valid a-state.

ASP with Sensing Actions, Incomplete Information, and Static Causal Law

Proof of Proposition 4

Let n denote the size dD. Because of Lemma 1, we can conclude that for any set of
literals o, computingClp (o) can be done in polynomial time im

Observe that for a non-sensing actioand an a-staté, computinge(a, §) andpc(a, 0)
can be done in polynomial time im Thus, computingb(a, ¢) can be done in polynomial
time inn.

Likewise, computingb(a, §) for a sensing action can also be done in polynomial time
in n.

Hence, Proposition 4 holds.

Proof of Theorem 1

The proof is similar to the proof of Theorem 3 in (Baral et al. 2000a) which states that
the conditional planning problem with respect to the 0-approximation in (Son and Baral
2001) isNP-complete. Membership follows from Corollary 2.1. Hardness follows from
the fact that the approximation proposed in this paper coincides with the 0-approximation
in (Son and Baral 2001), i.e, the conditional planning problem considered in this paper
coincides with the planning problem with limited-sensing in (Baral et al. 2000a) which is
NP-complete. By the restriction principle, we conclude that the problem considered in this
paper is alstNP-complete.

Appendix B — Proofs related tor

This section contain proofs related to the correctness &efore we present the proofs,

let us introduce some notations that will be used throughout the rest of the appendix. Given
a progranil, by lit(IT) we mean the set of atomsih If Z is a splitting set foll andX is

a set of atoms then by (II) andez (IT \ bz (II), ¥), we mean the bottom part of w.r.t.

Z and the evaluation of the top part w.££, X) (see (Lifschitz and Turner 1994) for more
information about these notions).

Lemma 4
1. LetII be a logic program. Suppo$Ecan be divided into two disjoint subprograms
I1; andIl,, i.e.,IT = II; U I, andlit(11;) N lit(I5) = (. ThensS is an answer set
for IT if and only if there exist two setS; and.S; of atoms such tha$ = S; U Sy
andsS; andS, are answer sets faf; andIl; respectively.
2. The result in Item 1 can be generalizedntalisjoint subprograms, where is an
arbitrary integer.

Proof
The first item can easily proved by using the splitting Bet lit(II;). The second item
immediately follows from this result. [

Proof of Theorem 2

Suppose we are given a planning problem instéfce (D,Z,G) andny, ., (P), where
h > 1 andw > 1 are some integers, returns an answeiSséthe proof is primarily based

42 Phan Huy Tu, Tran Cao Son, and Chitta Baral

on the splitting set and splitting sequence theorems described in (Lifschitz and Turner
1994). It is organized as follows. We first prove a lemma related to the closure of a set of
literals (Lemma 5). Together with Lemma 4, this lemma is used to prove some properties of
7h,w(P) (Lemmas 6, 7 & 8). Based on these results, we prove the correctness,oP)
in implementing theb and® functions (Lemma 9 & Lemma 10). Theorem 2 can be derived
directly from Lemma 10.

Recall that we have made certain assumptions for action theories givscto (a) for
every k-propositiordeterminega,), contains at least two elements; afj for every
static causal lavif (f, ¢), ¢ is not an empty set.

The following lemma shows a code fragment that correctly encodes the closure of a set
of literals.

Lemma 5
Let s andk be two integers greater than 0, ande a 3-ary predicate. For any sebof
literals, the following program

x(l,i,k) — (leo)
x(l,i, k) — z(p, i, k) (if(I,) € D)

has the unique answer set(l,4,k) |l € Cip(o)}.

Proof

By the definition of a model of a positive program, it is easy to see that the above program
has the unique answer det(l,i, k) | | € o™} = {z(l,i,k) | | € Clp(o)} (see Lemma

1). O

Before showing some lemmas about the properties,of (P), let us introduce some no-
tions and definitions that will be used throughout the rest of this section. We first define
some sets of atoms which will frequently be used in the proofs of Lemmas 6 — 10 and
Theorem 2. Then we divide the program ., (P) into small parts to simplify the proofs.
In particular, ., (P) is divided into two programs;; ,(P) andy, , (P). The former
consists of normal logic program rules while the latter consists of constrainig,iti?).
Then we use the splitting set theorem to remove frgm, (P) auxiliary atoms such as
fluent(...), literal(...), time(...), path(...), etc. The resulting program, denoted by
o, consists of “main” atoms only. We then use the splitting sequence theorem to further
split m into a set of programs;’s. Intuitively, eachr; corresponds to a “cut” ofr, at
time pointi. Finally, eachr; is divided into disjoint subprograms}’s, each of which,
intuitively, is a “cut” of ; at a specific path.

Forl <i < h+1landl <k < w, letA; be the set of all the atoms of the form
oce(a, i, k), poss(a,i, k), used(i, k), goal(i, k), holds(l,i, k), br(g,i,k, k') (K > k),
e(l,i k), pc(l,i, k), i.e.,

A = {occla,i,k),poss(a,i k) |a € A} U
{holds(l,i,k),e(l,i,k),pc(l,i,k) | Lis a literalt U
{br(g,i,k, k") | gis asensed-literak < k' < w} U
{used(i, k), goal (i, k)} (62)

ASP with Sensing Actions, Incomplete Information, and Static Causal Lawk3

and let
h+1

Ay = O A, A=J A (63)
k=1 i=1

For a set of atom& C A and a set of predicate symbatg, by ¥X we denote the set of
atoms inX whose predicate symbols arexhand byd; ;. (), we mean{l | holds(l,i, k) €
>}

Observe thatr, ,,(P) can be divided into two parts (%j; ,,(P) consisting of normal
logic program rules, and (2);, ,(P) consisting of constraints. Sincgis an answer set
for 7, ., (P)'", S is also an answer set far; , (P) and does not violate any constraint in
T o(P).

Let V' be the set of atoms iny, ,,(P) whose parameter list does not contain either the
time or path variable. Specifically; is the following set of atoms

{fluent(f), literal(f), literal(—f), contrary(f,—f), contrary(—f, f) | f € F} U
{sensed(g) | 3determinega,f) € D.g € 0} U {action(a) | a € A} U
{time(t) | t € {1..h}} U {timel(t) |t € {1..h + 1}} U {path(p) | p € {1..w}} (64)

Itis easy to see thaf is a splitting set forr; , (P). Furthermore, the bottom pdst (7, ,,(P))
is a positive program and has only one answer’§et= V. The partial evaluation of the
top part ofr;; , (P) with respect taXy,

mo = ev (. (P) \ bv (7, 1, (P)), Xo),

is the following set of rules (the condition for each rule follows that rule; and, by default
andp areinrangesd ... h andl...w unless otherwise specified):

holds(l,1,1) « (65)
(initially (1) € 7)
poss(a,t,p) <« holds(y,t,p) (66)
(executabléa,) € D)
e(l,t,p) «— occ(a,t,p), holds(o,t,p) (67)

(causesa,l, ¢) € D)
pe(l,t,p) «— oce(a,t,p),not holds(l,t,p),not holds(¢,t,p) (68)
(causesa,l, ¢) € D)

br(g,t,p,p) | ...
| br(g,t,p,w) <« occ(a,t,p) (69)
(determineqa,) € D, g € §)
pc(l,t,p) <« mnot holds(l,t,p), pc(l',t,p), not e(—p, t, p) (70)
(if(l,p) € D,1" € p)
e(l,t,p) — elpt,p) (71)

11 Recall that at at the beginning of this section, we statettha, (P) returnsS as an answer set.

44 Phan Huy Tu, Tran Cao Son, and Chitta Baral

holds(l,t,p)
goal(t, p)
goal(t, p)
holds(l,t+1,p)
holds(l,t+1,p)
used(t+1,p)
holds(g,t+1,p)
holds(l,t+1,p)
occ(ay, t,p) | ...
occ(am, t,p)

used(1,1)
used(t+1,p)

T

1

T

«—

«—

«—

(it(1,¢9) € D)

holds(p,t,p)

(if(l,o) € D,1 <t < h+1)
holds(G,t,p)
(1<t<h+1)
holds(f,t,p), holds(—f,t,p)
(1<t<h+1)

e(l,t,p)

h(l,t,p),not pc(—l, t,p)
br(g.t,p1,p)

(1 <p)

br(g,t,p1,p)

(p1 <p)

br(g,t,p1,p), holds(l,t,p1)
(p1 <p)

used(t,p), not goal(t,p)

used(t,p)

And 77, ,(P) is the following collection of constraints

— occ(a,t,p),not br(0,t,p,p)
(determineqa,) € D)

— occ(a,t,p),br(g,t,p,p1),br(g, t,p, p2)
(determineqa,0) € D,g € 0,p < p1 < p2)

— occ(a,t,p), holds(g,t,p)

(determineqa,) € D, g € 0)
used(h+1,p), not goal(h+1, p)
br(g1,t,p1,p),br(gz,t, p2,p)
(p1 <p2 <p)
br(g1,t,p1,p),br(gz, t,p1,p)
(91 # 92,71 < p)
br(g,t,p1,p),used(t, p)

(1 <p)

used(t,p), not goal(t, p), occ(ai, t,p), occla;, t, p)
(1<i<j<m)

occ(a, t,p), not poss(a,t,p)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)
(82)

(83)

(84)

(85)

(86)
(87)

(88)

(89)

(90)

(91)

ASP with Sensing Actions, Incomplete Information, and Static Causal Lawtb

Note that choice rules of the form
1{L1,...,L,}1 — Body
have been translated into
Li|...| L, < Body
and
— Body,L;,L; (1<i<j<n)

By the splitting set theorem, there exists an answefgébr my such thatS = Sy U Xj.
Let U; be the set of atoms imy whose time parameter is less than or equa) te.,

j=1

It is easy to see that the sequeri€g) ! is a splitting sequence for,. By the splitting
sequence theorem, sin@g is an answer set for,, there must be a sequence of sets of
literals (X;)"*! such thatX; C U; \ U;_,, and

L] SO = U?jll Xz

e X, is an answer set for

T = bU1 (7‘[‘0) (93)
e foreveryl <i < h+ 1, X; is an answer set for
m = e, (b, (m0) \ bu,_, (m0), | X1) (94)
1<t<i—1

Given a set of atomx, consider rules of the following forms:

holds(l,1,1) (95)
(initially (1) € 7)
poss(a,t,p) «— holds(y,t,p) (96)
(executabléa,) € D)
e(l,t,p) «— occ(a,t,p),holds(p,t,p) (97)

(causesa,l, ¢) € D)
pe(l,t,p) «— oce(a,t,p),not holds(l, t, p),
not holds(—¢,t,p) (98)
(causesa,l,) € D)
br(g,t, k,p) | ...
br(g,t,k,w) <« occ(a,t,p) (99)
(determineqa,) € D, g € §)
pc(l,t,p) <« not holds(l,t,p), pc(l',t,p), not e(—p,t,p) (100)
(if (1,) € D, €)
e(l,t,p) — e(p,t,p) (101)
(if (1,) € D)

46 Phan Huy Tu, Tran Cao Son, and Chitta Baral

holds(l,t,p) «— holds(p,t,p) (102)
(it(1,9) € D)
goal(t,p) <« holds(G,t,p) (103)
goal(t,p) <« holds(f,t,p),holds(—f,t,p) (104)
holds(l,t,p) (105)
(e(l,t—1,p) € X)
holds(l,t,p) (106)
(holds(l,t—1,p) € X, pe(—l,t—1,p) ¢ X)
used(t,p) (107)
(g,)0 <pAbr(g,t—1,p',p) € %)
holds(g,t,p) (108)
(Hg,0")-p' <pAbr(g,t—1,p',p) €X)
holds(l,t,p) <« (109)
Hg,p")p' <pAbr(g,t=1,p',p) € S A
holds(l,t—1,p") € ¥)
occ(ar, t,p) | ...
| occ(am,t,p) «— wsed(t,p),not goal(t,p) (110)
used(1,1) « (1112)
used(t,p)
(used(t—1,p) €) (112)
Then for each € {1,...,h + 1}, 7; can be divided intav disjoint subprograms*,
1 < k < w, wherer? is defined as follows
{(95) — (104), (110) — (111) |t = 1,p = 1} ifi=1k=1
] {(96) = (100),(110) [t = 1,p = k) fi=Lk>1 g
! {(96) — (110),(112) |t =i, p=k, X = X;_1} ifl<i<h
{(102) — (109), (112) |t =h+1,p=k,¥ = X} otherwise

Let X, , denoteX; N A; . From Lemma 4, it follows thak; j is an answer set fo;rf.

Hence, we have

0i,1(S) = 6;6(S0) = i k(X)) = 05 1 (Xi k)

Due to this fact, from now on, we will usg j to refer to eitheb; 1 (.S), 8, x(So), d: 1 (X5),

or 5z,k(sz)

We have the following lemma

Lemma 6

Fori<i<h+1landl <k <w,

1. if used(i, k) ¢ S thenS does not contain any atoms of the fortaslds(l,, k),

e(lv ia k)’ bT(g7 i? kv k)'

ASP with Sensing Actions, Incomplete Information, and Static Causal Law&

2. ifused(h +1,k) € S andd,11 i is consistent then

Oh+1.k = G-

Proof
1. We will use induction o to prove this item.

a. Base casei = 1. Let k be an integer such thatsed(1, k) ¢ S. Clearly we have
k > 1. On the other hand, it is easy to see that (by using the splittind’ set
Aﬂflds’e’b”"’“’g"“l’“Se‘i}) if & > 1 thenS does not contain atoms of the forms
holds(l,1,k), e(l, 1, k), andbr(g, 1, k, k). Thus, the base case is true.

b. Inductive step: Assume that Iltem 1 is true for< j—1, wherej > 1. We will prove
that it is also true foi = j. Letk be an integer such thaked(j, k) & S.

Clearly, to prove Item 1 we only need to prove that atoms of the farthg, k),
holds(l, 4, k), br(g, j, k, k) do not belong taX; ;. Consider the program§ (see
(113)). We know thafX; is an answer set far”.
Because of rule (112), we havged(j—1,k) ¢ X;_1. From (107), it follows that
br(g,j—1,k k) ¢ X,;_4 for every pair(g, k') such thats’ < k. In addition, by the
inductive hypothesis, we have that for ahgndg, e(l, j—1, k), holds(l, j—1, k),
andbr(g,j—1,k, k) are not inX;_,. As a result, rules (105)-(109) do not exist in
7. If we split7¥ by the setZ = A}’}C"lds’e’b’“"’“’“sed’g"“l} thenb (w}) is the set of
rules of the forms

i. (97), (99), (101)—(103), (110) if< h

ii. (102)—(103)ifi =h+1
It is not difficult to show that this program has the empty set as its only answer set
(recall thatG # 0). From this, we can conclude the inductive step.

2. Itis obvious because of the rules (73), (74) and the constraint (86).
O

Lemma 7
Forl <i < handl <k < w, if occ(a, i, k) € S thena is executable id; ;, and there is
nob # a such thabee(b, i, k) € S.

Proof
From constraint (91), it follows thatoss(a, i, k) € S. Notice only rules of the form (66)
may haveposs(a, i, k) as its head. Hence, there must be a proposition (2) such that)
holds ing; ;. This means is executable i ;.
If there existd # a such thabee(b, i, k) € S then constraint (90) could not be satisfied.
O

Lemma 8
fori<i<handl <k<w
1. if occ(a,i, k) € S anda is a non-sensing action then

a. e(lyi k) € Siff l € e(a,d; 1)

48 Phan Huy Tu, Tran Cao Son, and Chitta Baral

b. pe(l,i k) € Siff | € pc(a, d; k)
c. =g, k').br(g,i, k' k)€ S

2. if occ(a, i, k) € S anda is a sensing actiom with occurring in a k-proposition of the
form (5) inD andf = {gu,...,g,} then there exist distinct integers;, ..., k,
greater than or equal tosuch that

a. XU = {or(g;,i.k,ky) | G € {1,...,n}}
b. g; does not hold ird; j,
c. if k; > k thenS does not contain any atoms of the fofids(l, i, k;)

3. if occ(a, i, k) ¢ S for every actior: then

a. Vi.pe(l,i, k) &€ Sne(l,i k) ¢ S
b. V{(g,k").br(g,i,k, k') ¢ S

Proof
Let us split7® by the setZ, = A%”d’g"“l7°cc7h°lds7”°“}. By the splitting set theorem,

Xix = M UN whereM is an answer set fdrz, () and NV is an answer set fdil; =

2

ez, (mF\ bz, (7¥), M), which consists of the following rules
e(l,i k) « (114)
(occ(a, i, k) € M,causesa,l, ¢) € D,
holds(¢,i,k) C M)
pe(lyi k) — (115)
(occ(a, i, k) € M, holds(l,i,k) & M,
causesa, [, ¢) € D, holds(—¢,i, k) N M = ()

br(g,i,k, k) | ...
br(g,i,k,w) (116)
(occ(a, i, k) € M, determinea,0) € D, g € §)
pc(lyi k) — pe(l')i k), not e(—p,i, k) (117)
(if (1, 0) € D, holds(l,i, k) & M,l' € p)
e(l,i,k) «— e(p,ik) (118)
(if(l.) € D)

From the splitting set theorem, it follows thét, (M) = J; «

1. Assume thabcc(a,i, k) € S anda is a non-sensing action. By Lemma 7, we know that
there exists no sensing actidrb such thabee(b, i, k) € S. This means that rules of form
(116) does not exist. Thereford; can be rewritten to

e(l,i,k) <
(cause$a,l,) € D, holds(¢,i,k) C M)

12 Recall that the sets of non-sensing actions and sensing actions are disjoint from each otheu Hesltés
not a sensing action.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lawt®

pe(lyi k) —
(holds(l,i,k) & M, causesa,l,®) € D,
holds(—¢,i,k) N M =)
pe(lyiyk) — pe(l'yi, k), not e(—p,i, k)
(if (1,) € D, holds(l,i, k) & M,l' € p)
e(l,i,k) «— e(p,i,k)
(if(L.¢) € D)
If we continue splitting the above program usifig = A;.{;} then by Lemma 5, the bottom
part has the only answer set

{e(laivk) | le 6((1, 5lk)}
and the evaluation of the top part has the only answer set
{pC(l, ia k) | le pc(a, 52,]6)}

Due to the fact thaf/ does not contain any atoms of the foefi, , k) or pc(l, i, k), we
therefore can conclude Items (a) and (b).
We now show that-3(g, k’).br(g,4, k', k) € S. Suppose otherwise, i.e., there exigts
andk’ such thatr(g,i, k', k) € S. Notice that only rule (80) witlt = ¢ andp = k has
occ(a, 1, k) in its head. Hence, its body must be satisfiedbb¥hat impliesused(i, k) € S.
On the other hand, since only rules of the form (69) with &’ may haver(g, i, k', k) in
its head, there exists a sensing actisuch thabec(b, i, k') € S and in additionk’ < k.
As the sets of non-sensing actions and sensing actions are disjoint from each other, we
haveb # a. From Lemma 7, it follows that’ < k.
Accordingly, we haveused(i, k) € S,br(g,4, k', k) € S andk’ < k. Constraint (89) with
t =1,p =k, andp; = k' is thus violated. Thus, Item (c) holds.

2. Assume thabee(a, i, k) € S anda is a sensing action occurring in a k-proposition of the
form (5) inD withd = {g1,...,gn}-
In this case, since rules of the forms (114) and (115) do not éXisis the following set
of rules

br(gi,i,k, k)| ...
br(gi,i,k,w) «—

br(gn, i, k, k) | ...
br(gn, i, k,w) <«
pe(l i k) — pe(l'yi k), not e(—p, i, k)
(if (1, 0) € D, holds(l,i, k) &€ M,l' € p)
e(l,i,k) «— e(p,ik)
(if(l,) € D)

By further splitting the above program using the Aéf;”’c}, we will see that the bottom
part has the empty set as its only answer set (recall that we are assuming that the body

50 Phan Huy Tu, Tran Cao Son, and Chitta Baral

of each static law of the form (4) is not empty). Therefore, the answer set for the above
program is also the answer set for the following program and vice versa.
br(gr,i, k, k)| ...
br(g1,i,k,w) «—

br(gn, i, k, k) | ...
br(g’fl/?i? k? w) —

Thus, there exist integersky, . . ., k, greater than or equal tosuch that

N = (J{br(gji. k. k))}

Jj=1

Itis easy to see thaXiZ” = N1} In addition, by constraints of the form (8%);’s must
be distinct. Thus, Items (a) is true.
Item (b) can be drawn from constraints of the form (85).
Assumek; > k. Because of constraints of the form (89), we haved(i, k;) ¢ S. From
Lemma 6, it follows thatS does not contain any atoms of the folmids(l, %, k;). Item (c)
is thus true.
. occ(a, i, k) ¢ S for every actioru. In this casell; is the following set of rules
pe(lyik) — pe(l'yi k), not e(—p,i, k)
(if (1, 0) € D, holds(l,i, k) & M,l' € p)
e(l)/L? kj) — e((p7l7 k)

(if(l,) € D)

which has an empty set as its only answer set. Items (a)—(b) follow from this.
O

The following lemma shows that, ,,(P) correctly implements the transition functidn

Lemma 9
Fori<i<handl<k<w

1. if there exists a non-sensing actiesuch thabcee(a, i, k) € S then

0 if 6;11,% is inconsistent
{0;+11} otherwise k

®(a,d;) = {

2. ifthere exists a sensing actiemccurring in a k-proposition of the form (5) i with
0 ={g1,...,9n} suchthabcc(a, i, k) € S then there exist integers{k, ..., k,}
such that

®(a,0;k) = {dix1k, | 1 < j <n, i1k, IS consistent,

and for eacly, g; holds ind; 1 x;;
3. if occ(a, i, k) ¢ S for every actiom,

Oit1,6 = 04 k-

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavi

Proof

. Assume that there exists a non-sensing actisuch thabcc(a, i, k) € X;.

Observe thatZ; = A}ﬁ‘l’lis} is a splitting set fomﬁrl. Hence, by the splitting set theorem,

Xit10 = M UN, whereM C Z; is an answer set foil; = bz, (7r§+1) and N is an
answer set fofl, = ez, (7F,, \ I}, M).

Notice that by Lemma 8, rules (108)—(109) for i + 1, p = k do not exist. ThuslI; is
the following set of rules:

holds(l,i+1,k) <« holds(p,i+1,k)
(if(l,¢) € D)
holds(l,i+1,k) <
(e(l, ia k) € Xl)
holds(l,i+1,k) «
(holds(l,i,k) € X;,pe(—l, i, k) & X;)
Also by Lemma 8, the conditions for the second and third rules can be writtéh @s
e(a, ;1)) and(l € &, %, & pc(a,d;)) respectively. Thus, by Lemma H; has the
unigue answer set
M = {holds(l,i+1,k) |l € Clp(a,d; 1)}
On the other hand, by Lemma & js executable i; ;. From the definition of the?esp
and® functions, it follows that

1) if 8,11,k is inconsistent
{6i4+1,x} otherwise

B(a,61) = {

. Assume that there exists a sensing actiawith a k-proposition of the form (5) an@ =
{g1,---,9n} such thabee(a,i, k) € S.

By Lemma 8, for eachi € {1...n}, there exists; > k such thatr(g,,7, &, k;) € X,.

It is easy to see that, = Afﬁ‘l’lif} is a splitting set fomfjrl. Considering casels; = k

andk; > k in turn and observe théiolds(l,i,k;) ¢ S if k; > k, we will see that in both
cased, (wfjl) is the following set of rules:
holds(l,i+1,k;) <« holds(yp,i+1,k;)
(if(l,) € D)
holds(l,i+1,kj)
(holds(l,i,k) € X;)
holds(g;,i+1,k;)
By Lemma 5, the only answer set for the above program is
M = {hOldS(l, 1+ 1, k]) | l e C’lp((si,]~C U {g]})}

On the other hand, by Lemmad js executable id; ,, and by Lemma 8¢, does not hold
in d; . Thus, according to the definition of the transition function, we have

®(a,0ik) ={Clp(0;ix U{g;}) |1 <j <n,Clp(drU{g,}) is consistenit

52 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Hence, we have
®(a,0i) = {0ir1k, (M) | 1 <5 <n, 841k, (M) is consistenyt =

{0ix1,k; |1 <7 <n, 841, is consistentt
and obviouslyg; holds ind; 1 ;.
. Assume thabcc(a, i, k) & S for every action.
Similar to the first casez; is a splitting set forrf, ;. bz, (7%,) is the following set of
rules:
holds(l,i4+1,k) <« holds(p,i+1,k)
(if(l,) € D)
holds(l,i+1,k) «
(holds(l,i, k) € X;)
Because thaf; ; is an a-state (Lemma 6), by Lemma 5 the only answer set for this program
is
M = {holds(l,i+ 1,k) |l € 6, 1}
Thus, we have
dit1,e = Oit1,6(M) = ;g
O

The following lemma shows thaty, ,,(P) correctly implements the extended transition
function.

Lemma 10
We have

1. 61,1 is the initial a-state foP.
2. Forevery pair of integers < i < h+1,1 < k < w, if used(i, k) € S then

a) p¥(S)is a conditional plan
b) furthermore, if§; ;. is consistent then for evedye ®(pF(S), 0, %), 6 EG.

Proof
. 7, = A"'*} is a splitting set forr]. The bottom party, (x1), consists of the following
rules:

holds(l,1,1) «
{initially (1) € Z}
holds(l,1,1) «— holds(p,1,1)
{if(l,¢) € D}
By Lemma 5, the only answer set for the above program is
M ={holds(l,1,1) |l € 61}

whered; is the initial a-state ofP. Thus,d; ;1 = d1,1(M) is the initial a-state oP.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavis3

2. We now prove Item 2 by induction on parameter

a. Base casei = h+1. Let k be an arbitrary integer between 1 andsuch that
used(i, k) € S. Clearlyp(S) = [] is a conditional plan.
Now suppose thad; ;, is consistent. According to the definition of the extended
transition function, we have

S(pf(S), i) = ([, 8i6) = {01}

On the other hand, by Lemma 6, we have that = G. Thus, Item 2 is true for
i=h+1.

b. Inductive step: Assume that Item 2 is true for a@ll+ 1 > 7 > ¢. We will show that
it is true fori = t. Let k be an integer between 1 amdsuch thatused(t, k) € S.
Consider three possibilities:

i. occ(a,t, k) € S for some non-sensing actien By the definition ofp¥(S), we
havepf (S) = [a;pf1(S)]. In addition, by rule (82) we havesed(t+1,k) €
S. Thus, according to the inductive hypothegi§, , (S) is a conditional plan.
Accordingly,p¥(S) is also a conditional plan.

Now suppose thak; ;. is consistent. Consider two cases

— 04415 IS consistentWe have

S(pF(5), u) = ([as pEy1 (9)], 0uk) = P(Df11(S), Fre1,re)

(by Lemma 9 and by the definition of the extended transition function).
On the other hand, according to the inductive hypothesis, for evéry
(pF,1(9),041,%), 6 = G. Hence, the inductive step is proven.

— 0,411 is inconsistentBy Lemma 9, we havé (pf(S), d,.,) = 0. Thus, the
inductive step is proven.

ii. occ(a,t, k) € S for some sensing actionwith a k-proposition of the form (5)
andd = {q1,...,9,}. By Lemma 8 there exist exactly integersky, ..., k,
greater thark such thatr(g;,t, &k, k;) € S for1 < j < n. This implies that
used(t + 1,k;) € S (see rules (77) and (82)). Thus, by the definitiompfs),
we havep} (S) = [a; cases({g; — pfil(S) %_1)]. On the other hand, we know
by the inductive hypothesis thp;fil(S) is a conditional plan fot < j < n. As
aresultp¥(9) is also a conditional plan.

Suppose; . is consistent. Letl = {j | d;11, iS consisterit. By Lemma 9, we
have

®(a,6) = {01, | J € J}
andg; holds ind;,; , for everyl < j < n. Hence, by the definition ob, we
have
‘i(pf(s)ﬁt,k) = U (i)(pf+1(s)55t+l,kj)
jed

According to the inductive hypothesis, for every @(pr(S), ¢ 41,k;), Where
j € J, we haved |= G. This implies that for every € ®(p¥(S), d, 1), we have
JEG.

54 Phan Huy Tu, Tran Cao Son, and Chitta Baral

iii. There is no actioru such thatocc(a, t, k) € S. According to the definition of
P (9), p¥(S) = []. Hence, it is a conditional plan.
It is easy to see thajoal(t, k) € S, which means that eithey ; is inconsistent
oré, i, = G (see rules (73), (74), and (80)). Now suppose thatis consistent.
This implies thav, ;, = G. We have

S} (S),00k) = B[, 8e1) = {004}
Thus, the inductive step is proven.
O

Theorem 2 immediately follows from Lemma 10.

Proof of Proposition 5
First, we prove the following lemma.

Lemma 11
Let P = (D,Z,G) be a planning problem instancé be an a-state ang be a plan. If
®(p,) = G thend(reducts(p),d) = G.

Proof
Let us prove the lemma by structural inductionon

Lp=].
The proof is trivial sincereducts(p) = p =[]
2. Assume thap = [a; g], wheregq is a conditional plan and: is a non-sensing action and
the lemma is true foy.
Supposeb(p, §) = G. We need to show thak(reduct;(p),d) |= G.
If § = G then
(reduct;(p),d) = &([,8) = {6} = G
Now consider the case that~ G.
Clearly, we haved(a,d) # L. Therefore,®(a,d) = {J’'} for somed’. Hence, by the
definition ofreduct, we have

reducts(p) = a;reducts (q)
Thus,
®(reducts(p),d) = d(reducty (q),d")
On the other hand, we have
b(p,6) = (g, ")
Becauseb(p, §) E G, we have
b(q.8) G
By inductive hypothesis, we have

@(reduct(s/(q), M EG

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavisb

Hence,
d(reducts(p),d) = G
. Assume thap = [a;cases({g; — p;}7_;)], where a is a sensing action that senses
g1, - - -, 9n, and the lemma fop,’s.
Supposeb(p, §) = G. We need to show thait(reducts(p),) = G.
If § =G then

d(reducts(p),d) = &([,0) = {6} = G
Now consider the case that~ G. There are two possibilities.

a) there existg;, such thatg,, € 4. By the definition ofreduct, we have
reducts(p) = reducts(pg)
By the definition of theb-function, it is easy to see that
b(p,6) = b(py,)
Sinced(p,§) = G, we haved(p, §) = G. By the inductive hypothesis, we have
d(reducts(pr),d) =G
Hence, we have
@(reductg(),0) E G
a) foreveryl < j <mn, g; € . By the definition ofreduct, we have
reducts(p) = a;cases({g; — qj}7—1)

where
[if Clp(6 U {g;}) is inconsistent

%= reductcy, (sufg;})(pj) Otherwise
For everyl < j < n,letd; = Cip(6 U{g;}). LetJ = {j | J, is consister. It is
easy to see that

b(p,0) = | @(s,9))
1=

because; holds ind; but for everyk # j, g does not hold ird;.
Becauseb(p, §) = G, we have

O(pj,05) F G

for everyj € J.
On the other hand, we have

%:{n)¢

reducts,(p;) Otherwise
Thus,

i)(reduct(;(p),é) = U ®(g;,605) = U @(reductgj (ps),6;)
jeJ jed

56 Phan Huy Tu, Tran Cao Son, and Chitta Baral

By the inductive hypothesis, for evefyc .J, as®(p;, d;) = G, we haveb(reducts, (p;), ;) =
G. As aresult, we have

®(reducts(p),d0) F G
O

We now prove Proposition 5. Letbe a solution té&. From the construction afeduct,
it is easy to see thateduct;(p) is unique.

By Lemma 11, we have thét(reduct;(p), §) |= G. Thus,reduct;(p) is also a solution
toP.

So, we can conclude the proposition.

Proof of Theorem 3

The idea of the proof is as follows. Letbe reducts(p), whered is the initial a-state of
P, and letT, be the labeled tree far numbered according to the principles described in
Section 3. Let, andw denote the height and width @F, respectively. Fot <i < h + 1,

1 < k < w, we defines; ;. to be the a-state at nodg k)*? of 7, if such a node exists and
1 otherwise. Based offi, andd; ;,, we construct the sét; ;, of atoms that hold at node
(¢, k). Then we prove that the union of these sets, denotef)bjs an answer set far,
(rules (65)-(82)) by showing that eadf;, is an answer set for a part af,, denoted by
w’f. Furthermore, a s&t’ can be constructed froi§}, in such a way that it is an answer set
for m; ., (P). Moreover,S’ does not violate any constraintst , (rules (83)-(91)). As
such, it is an answer set fag, ,,(P). Moreover,g = pi(S’).

Given the numbered trég,, by (a, 7, k) we mean the node labeled wittand numbered
with (i, k) in Ty; by (g,4,k, k") € T, we mean the link, whose label is between the
nodes(s, k) and(: + 1, k") in Tj,.

Forl <i<h+1,1<k <w,we define the a-statg j, as follows.

iifi=1

Clp({l | initially (I) € Z ifk=1
m:{ Clo ({1 mezp k=1 (119)
i ifi>1
CZD(G(G, 52’*1,1@) U (57;,17]@ \pc(a7 51',1_’]6))) if <(L,’L'—1, k> S Tq for
§ik = a non-sensing actiod
" CZD((;ifl,k’) {g}) if <gvi_17 kl» k> € Tq
di—1.k otherwise
(120)

Note that giver(i, k), there exists at most one actiersuch thata, i—1, k) € T,, and fur-
thermore, at most one pdig, k') such thatg,i—1, k¥, k) € T,. In addition, the conditions
in Equation (120) do not overlap each other. Thiug,is uniquely defined fot < i < h+1
and1 < k < w. In what follows, the undefined situatian can sometimes be thought of
as(), depending the context in which it is used.

Let us construct the séf ;, of atoms based o# ; as follows.

13 That is, the node numbered with k) in T,

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavis

. used(1,1) € Y14

. holds(l,i,k) € Yy iif 1 € 6,

. poss(a, i, k) € Y,y iif there exists a proposition of the form (2) sit.C ¢,

. oce(a,t, k) €Y, 1 iif (a,i, k) € T,

Cbr(g, i,k k') €Y, i iif (g,4,k, k") € T, for someg, k'

.e(lyi k) €Y, iif (a,i,k) € T, andl € e(a, §; ;) for some non-sensing actien

. pe(l,i k) €Y, iif {a,i, k) € T, andl € pc(a, 4;) for some non-sensing actien
. Fori > 1, used(i, k) € Y; . iif either

00 ~NO O WNPF

(@) used(i—1,k) € Y;_1 x; or
(b) there existsg, k') s.t.{g,i—1,k", k) € Yi_q s

9. goal(i, k) € Y, 1, iff 0, = G or d, i, is inconsistent
10. Nothing else irY; j,
Clearly,Y; ;s are uniquely defined. Furthermore, they are disjoint from each other. Let

w h+1
Yi=JYirandsy = [Vi
k=1 i=1

Lemma 12
Forl <i< handl <k < w,letM = Yj,?ozds’po“’g"“l’"sed"’“} and letII be the
following program:

e(l,i k) «
(occ(a, i, k) € M, causesga,l, ¢) € D, holds(p,i, k) C M)
pe(lyiyk) —
(occ(a,i, k) € M,causesa,l, p) € D,
holds(l, i, k) & M, holds(~é,i, k) N M = 0)
br(g,i k. k) | ...

br(g,i, k,w)
(occ(a, i, k) € M, determineqa,0) € D, g € 0)
pc(lyik) — pe(l'yi k), not e(—p,i, k)
(if (I,) € D, holds(l,i, k) & M,l" € p)
e(l,i,k) «— e(p,i,k)
(if(I,) € D)

Then,N = Yif,j’p”’l”} is an answer set fd.

Proof
Given (i, k), there are three cases that may happen at (pd¢.

e there exists a non-sensing actiosuch thata, i, k) € Ty;
e there exists a sensing actiarsuch thata, i, k) € Ty;
e (a,i, k) & T, for every actiom

58 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Let us consider each of those in turn.

1. there exists a non-sensing actiesuch that(a, i, k) € Tj,.
From the construction df; 5, we know thatcc(a, i, k) € M and there is nd # a such
thatoce(b, i, k) € M. Furthermore, due to the fact that does not contain any atom of
the formholds(l, i, k), we haveholds(l,i, k) € M iff holds(l,i,k) € Y; . That means
holds(l,i,k) € M iff | € 6; 1.
Hence Il can be rewritten to:
e(l,i, k)
(1€ e(a,b,1))
pe(lyik) —
(1 € pc(a,6i1))
pe(l,yiyk) — pe(l'yi k), not e(—p,i, k)
(If(l7W) € Dal g 5i,kvl/ € SD)
e(lyi,k) «— e(p,i,k)
(if(l,¢) € D)
As have been seen in the proof of Theorem 2 (see the proof of Lemma 8, Iltem 1), the only
answer set for this program{g(l,4,k) | | € e(a,d; 1)} U {pc(l,3,k) || € pc(a,dix)} =
N.
2. there exists a sensing actiarsuch that(a, ¢, k) € Tj,.
We haveoce(a, i, k) € M and there is no non-sensing actiosuch thabec(b, i, k) € M.
As aresult]Il is
br(g,i,k, k) | ...
br(g,i,k,w)
(occ(a, i, k) € M, determineqa,0) € D, g € §)
pe(lyik) — pe(l',i k), not e(—p,i, k)
(if (I,) € D, holds(l,i, k) & M,l" € p)
e(l)/L? k) — e(<)07z7 k)
(if(l,») € D)
It is easy that an answer set fdris also an answer set for

br(g,i,k, k) | ...
br(g,i, k,w) «
(occ(a, i, k) € M, determinea,0) € D, g € §)
and vice versa. On the other hand,
N = Y5 = {br(g,i, k. K) | (g,i,k,K) € T}

is an answer set for the latter program. As a res\lts also an answer set for.
3. {(a,i,k) ¢ T, for every action.
In this case, the first three rules Bfdo not exist becausecc(a, i, k) ¢ M for everya.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lav®

Thus,II consists of the last two rules only. It is easy to see that it has the empty set as its
only answer set. On the other hand, from the constructidr pf we haveleij’br} = 0.

,pe,br}

Accordingly, Yl{,j is an answer set fdi.

The proof is done. [J

Lemma 13
Forl <i<h+1,1<k<uw,Y;,isan answer set fat’", wherer’" is defined in the
same way as” except that we replace every occurrenceéXoih Equation (113) by

Proof
Let us consider in turn two casés- 1 and: > 1.

. i =1.Itis easy to see that the only answer setnftir, wherek > 1, is

Y1.x = {poss(a, 1, k) | executabléa,) € D}

by using the splitting seAﬁjc"ld“’“’br’““d’e’pc} (see (62) for the definition af; ;) and
observe that the bottom part has the empty set as its only answer skt anmgithe only
answer set for the evaluation of the top part.
We now prove that; ; is an answer set for'; which consists of the rules of the forms
(95)-(104), (110)-(111) whette= 1 andp = 1. If we use the sef; = A{"4*ocpossgoatused}
to split7’] thenb, (7'}) is

{(95) — (96), (102) — (104), (110), (111) | ¢ = 1,p = 1}

_ Yl{ilzoldspcc,poss,goal,used} is an

From the definition ot} ;, we can easily show that/
answer set fob, (/7). Furthermore, we have

a(M)=0561(Y11) =01
The evaluation of the top paffil; = ez, (7'} \ bz, (1), M), is the following set of rules

e(l,1,1) «
(occ(a,1,1) € M, causesa,l, ¢) € D,
holds(¢,1,1) C M)
pe(l;1,1)
(occ(a,1,1) € M, causesa,l, ¢) € D,
holds(l,1,1) & M, holds(—¢,1,1) N M = ()
br(g,1,1,k) | ...
br(g,1,1,w) «
(determineqa,0) € D, g € 0, 0cc(a,1,1) € M)
pc(l,1,1) — pe(l';1,1),not e(—p,1,1)
(if(I,) € D,I' € @, holds(l,1,1) & M)
e(l,1,1) «— e(p,1,1)
(if(1,) € D)

60 Phan Huy Tu, Tran Cao Son, and Chitta Baral

By Lemma 12N = Y{Ei’pc’br} is an answer set fdil;. As aresultY; ; = M U N is an
answer set for'].

.1l<i<h+1.

Using the splitting sef, = Ai’}c(’ld‘s"’“’go“l’““"ed’p"ss} to split7’", we have that the bottom

partIl, = by, (7'¥) consists of rules of the forms
e (96), (102)—(110), and (112)if< h
e (102)—(109), and (112) if=h + 1
We now prove thafl/ = Yif,?(’lds"’cc’goal’““d*’(’“} is an answer set fdil,. Let us further

split II, by the setZ; = Af”,z(’lds}. Then, the bottom pattz, (TI,) consists of rules of the
forms (102), (105)—(106), (108)—(109) only.
Consider three cases

a. there exists a non-sensing actiosuch thatoce(a,i—1,k) € Y;_1.
From the construction df; s, it is easy to see that there exists {gok’) such that
br(g,i—1,k', k) € Y;_1. Thus,bz, (II3) contains rules of the forms (102), (105)—
(106) only. On the other hand, we have

e(l,i-1,k) € Y;_1iff l € e(a,d;—1%)

pe(=l,i—1,k) ¢ Vi1 iff =l & pe(a, 6;—1.x)
Hence bz, (I1,) is the following collection of rules:
holds(l,i, k) «— holds(p,i,k)
(if(1,) € D)
holds(l,i,k)
(lee(a,di—1k))
holds(l,i,k)
(1 € 8i—1ksl & 0i1,k)
By Lemma 5, it has the only answer set
{holds(l,i,k) | I € Clp(e(a,8;—1,6) U (8i—1x \ pela, di-10)))} = ¥, o4}
b. (g, k").br(g,i—1,k k) € Y;_1.
From the construction df}, s, such(g, k') is unique and in additiok” < k. Thus,
bz, (Il2) is
holds(l,i, k) <« holds(p,i,k)
(if(1,) € D)
holds(l,i, k)
(l€bimrp) V(K <kANlE§i—1x))
holds(g,i,k) «—
or equivalently,

holds(l,i,k) «— holds(p,i,k)

ASP with Sensing Actions, Incomplete Information, and Static Causal Lav&l

(if(l,) € D)
holds(l,i, k)
(1 €610 U{g})
since ifk’ < k thend;_, = 0. By Lemma 5, this program has the only answer set

{holds(1,i,k) | 1 € Clp(6;—1.0 U{g})} = {holds(l,i, k) | I € 6 1}

Hence,Yif,f"ldS} is the only answer set fdiz, (I12).
c. occ(a,i—1,k) ¢ Y;_; for every non-sensing actienandv(g, ¥').br(g,i—1, k', k) &
Yi 1.
From the construction af; ;;’s, it follows thate(l, i—1, k) ¢ Y;_; andpc(l,i—1,k) ¢
Y;_1 for everyl. Hencepz, (I1,) is the following set of rules
holds(l,i,k) <« holds(p,i,k)
(if(1,) € D)
holds(l,i, k)
(I €di—1,k)
whose only answer set is
{holds(l,i,k) | 1 € 6,1} = {holds(l,i, k) | | € §;3,} = Y; '

So, in all three cases, we ha}/é,f"lds} is an answer set fdrz, (I12).

Hencell; = ez, (12 \ bz, (I12), Yi%“’lds}) is the following set of rules:
poss(a,i k) «—
(executabléa,) € D,y C 0; 1)

used(i, k)
(3, k') .k < k,brg,i—1,K k) € Yi_y)
goal(i k)
(G Céik)
goal(i, k)
(i, is inconsistent
occ(ay, i, k) | ...

| occ(am,i, k) «— wused(i, k), not goal(i, k)
used(i, k)
(used(i—1,k) € Yi_1)
It is easy to see thdi’if,f"“’“sed’g"“l"’“} is an answer set fdis. Accordingly, we have
M = Y;‘{]iwlds,poss,used,goal,occ} is an answer set fdﬁg
Iy = ez, (7% \ Ty, M) is thus the following set of rules:
e(l,i,k) «
(occ(a,i, k) € M,causesa,l, ¢) € D, holds(¢,i, k) C M)

62 Phan Huy Tu, Tran Cao Son, and Chitta Baral

pe(l,i k) —
(occ(a,i, k) € M,causesa,l, ¢) € D,
holds(l,i,k) & M, holds(—¢,i,k) N M =)
br(g,i k. k) | ...
br(g,i,k,w) «
(occ(a,i, k) € M,determinega,d) € D,g €)
pe(lyis k) — pe(l')i, k), not e(—p, i, k)
(if (1,) € D, holds(l,i, k) & M,l" € p)
e(l,i,k) «— e(p,ik)
(if(l,) € D)
By Lemma 12,V = Yif,j’pc’br} is an answer set fdi,.
As aresultY; , = M U N is an answer set fat'?".

O

Lemma 14
We have

1. 9= Ufjll Y; U X, is an answer set fary, ,,(D), whereX, = V is defined in (64).
2. pi(S) =¢q

Proof

1. SinceY; j is an answer set for’f;C andw’f’s are disjoint from each other, we havgis an
answer set forr’;, wherer’; is defined in the same way agexcept that every occurrence
of X in Equations (93) and (94) is replaced with From the splitting sequence theorem, it
follows thatsS), = |J!' v; is an answer set far,. Thus,S’ is an answer set for; ., (P).
On the other hand, it is not difficult to show thst satisfies all constraints inj; , (P)
based on the following observations.

o If occ(a,i, k) € Y, for some sensing actionwhich occurs in a k-proposition of
the form (5) then there existsin 6 such thabr(g, i, k, k) € Y; . Furthermore, for
everyg’ € 6, ¢’ does not inj, ;. The latter property holds because thatoes not
contain an action that senses an already known-to-be-true literal.

o If used(h +1, k) S Yh+1,k thenéhH,k ': g.

e ;1 is either L or an a-state. This means th@f,iwlds} does not contain two atoms
of the formsholds(l, i, k) andholds(l’, i, k), wherel andl’ are contrary literals.

¢ No two branches come to the same n¢dé).

o If used(i, k) € Y; thenbr(g,i, k', k) ¢ Y; for any pair(g, k'), k' # k.

o if (a,i, k) € T, thena must be executable i) .

Accordingly, we haves' is an answer set faty, ,,(P).
2. Immediate from the construction ®f ;.
O

Theorem 3 follows directly from this lemma.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lav&3

Appendix C — A Sample Encoding

This appendix contains the encoding of the planning prolfignm Example 2. The first
subsection describes the input planning problem. The next subsection presents the corre-
sponding logic programy, ,,(P1). The last two subsections are the outputsrobdels
andcmodels when this logic program is run with the parametkrs 2 andw = 3.

Input Domain

% A possible plan is

% check; cases(open-> [];closed->[flip_lock];locked->[])
% fluents

fluent(open).

fluent(closed).

fluent(locked).

% actions
action(check).
action(push_up).
action(push_down).
action(flip_lock).

% executability conditions
executable(check,][]).
executable(push_up,[closed]).
executable(push_down,[open]).
executable(flip_lock,[neg(open)]).

% dynamic laws
causes(push_down,closed,]]).
causes(push_up,open,[]).
causes(flip_lock,locked,[closed]).
causes(flip_lock,closed,[locked]).

% knowledge laws
determines(check,[open,closed,locked])).

% static laws
oneof([open,closed,locked]).

% initial state
initially(neg(open)). % window is not open

% goal
goal(locked). % window is locked

Encoding

%%6%%%%% %% %% %% %% % %% %% %6 %% %% %% %% %% % %% %6 %% %% %% %% %% % %% %6 %% %% %% %% %% % %%
% Usage:

% Iparse -c h=<height> -c w=<width> | smodels

%%%%%%%6%6%6 %% %% %6 %% %% %% %6 %% %% %% %% %% % %% %6 %% %% %% %% %% % %% %6 %% %% %% %% %% % %%

64 Phan Huy Tu, Tran Cao Son, and Chitta Baral

#domain fluent(F).
#domain literal(L;L1).
#domain sense(G;G1;G2).
#domain time(T).
#domain timel(T1).
#domain path(P;P1;P2).
#domain action(A).

% Input parameters
time(1..h).
timel(1..h+1).
path(1..w).

%9%6%%%%% %% %% %% %% %% % %% %6 %% %% %% %% %% % %% %6 %% %% %% %% %% % %% %6 %% %% %% %% %% % %%
% Action declarations

%%9%%%%% %% %6%%%% %% %% %% % %% %% %% % %% %% %% % %% %% %% % %% %% %% %% % %% %% %% %% % %%
action(check).

action(push_up).

action(push_down).

action(flip_lock).

%%9%0%%%% %% %6%%%% %% %% %% % %% %% %% % %% %% %% %6 %% %% %% %% % %% %% %% %6 %% %% %% %% %% %!
% Fluent declarations

%%6%%%%% %% %% %% % %% %% %% %6 %% %% %% %% % %% %% %6 %% %% %% %% %% % %% %6 %% %% %% %% %% % %%
fluent(open).

fluent(closed).

fluent(locked).

sense(open).

sense(closed).

sense(locked).

%%%%%% %% %% %% %% %% % %% %% % %% % %% %% %% % %% %% %% %% %% %% %% % %% %% %% %% %% %% %% %
% DOMAIN DEPENDENT RULES
%%%%%%%% %% %% %% % %% %% %% %% %% %% %% %6 %6 %% %% %% %% %% %% %% %% %% %6 %%% %% %% %% % %%

% Initial situation
holds(neg(open),1,1).

% Executability conditions
poss(check,T,P).

poss(push_up,T,P) :-
holds(closed,T,P).

poss(push_down,T,P) :-
holds(open,T,P).

poss(flip_lock,T,P) :-
holds(neg(open),T,P).

% Effects of non-sensing actions

e(closed, T+1,P) :-
occ(push_down,T,P).

pc(closed, T+1,P) :-
occ(push_down,T,P).

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavéb

e(open,T+1,P) :-

occ(push_up,T,P).
pc(open,T+1,P) :-

occ(push_up,T,P).
e(locked, T+1,P) :-

occ(flip_lock,T,P),

holds(closed,T,P).
pc(locked, T+1,P) :-

occ(flip_lock,T,P),

not holds(neg(closed),T,P).
e(closed, T+1,P) :-

occ(flip_lock,T,P),

holds(locked,T,P).
pc(closed, T+1,P) :-

occ(flip_lock,T,P),

not holds(neg(locked),T,P).

% Effects of sensing actions
- occ(check,T,P),
not br(open,T,P,P),
not br(closed,T,P,P),
not br(locked,T,P,P).
1{br(open,T,P,X):new_br(P,X)}1 :-
occ(check,T,P).
1{br(closed,T,P,X):new_br(P,X)}1 :-
occ(check,T,P).
1{br(locked,T,P,X):new_br(P,X)}1 :-
occ(check,T,P).
- occ(check,T,P),
holds(open,T,P).
- occ(check,T,P),
holds(closed,T,P).
- occ(check,T,P),
holds(locked,T,P).

% Static laws
holds(neg(open),T1,P) :-
holds(closed, T1,P).

e(neg(open), T+1,P) :-
e(closed,T+1,P).

pc(neg(open), T+1,P) :-
pc(closed,T+1,P),
not holds(neg(open),T,P),
not e(neg(closed),T+1,P).

holds(neg(open),T1,P) :-
holds(locked, T1,P).

e(neg(open), T+1,P) :-
e(locked, T+1,P).

66 Phan Huy Tu, Tran Cao Son, and Chitta Baral

pc(neg(open), T+1,P) :-
pc(locked,T+1,P),
not holds(neg(open),T,P),
not e(neg(locked),T+1,P).

holds(open,T1,P) :-
holds(neg(closed),T1,P),
holds(neg(locked),T1,P).

e(open,T+1,P) :-
e(neg(closed), T+1,P),
e(neg(locked),T+1,P).

pc(open,T+1,P) :-
pc(neg(closed), T+1,P),
not holds(open,T,P),
not e(closed, T+1,P),
not e(locked, T+1,P).

pc(open,T+1,P) :-
pc(neg(locked), T+1,P),
not holds(open,T,P),
not e(closed,T+1,P),
not e(locked, T+1,P).

holds(neg(closed), T1,P) :-
holds(open,T1,P).

e(neg(closed), T+1,P) :-
e(open,T+1,P).

pc(neg(closed), T+1,P) :-
pc(open,T+1,P),
not holds(neg(closed),T,P),
not e(neg(open),T+1,P).

holds(neg(closed),T1,P) :-
holds(locked, T1,P).

e(neg(closed), T+1,P) :-
e(locked, T+1,P).

pc(neg(closed), T+1,P) :-
pc(locked,T+1,P),
not holds(neg(closed),T,P),
not e(neg(locked),T+1,P).

holds(closed,T1,P) :-
holds(neg(open),T1,P),
holds(neg(locked),T1,P).

e(closed, T+1,P) :-
e(neg(open),T+1,P),
e(neg(locked), T+1,P).

ASP with Sensing Actions, Incomplete Information, and Static Causal Lav&y

pc(closed, T+1,P) :-
pc(neg(open),T+1,P),
not holds(closed,T,P),
not e(open,T+1,P),
not e(locked,T+1,P).

pc(closed, T+1,P) :-
pc(neg(locked), T+1,P),
not holds(closed,T,P),
not e(open,T+1,P),
not e(locked,T+1,P).

holds(neg(locked), T1,P) :-
holds(open,T1,P).

e(neg(locked), T+1,P) :-
e(open,T+1,P).

pc(neg(locked), T+1,P) :-
pc(open,T+1,P),
not holds(neg(locked),T,P),
not e(neg(open),T+1,P).

holds(neg(locked), T1,P) :-
holds(closed, T1,P).

e(neg(locked), T+1,P) :-
e(closed, T+1,P).

pc(neg(locked), T+1,P) :-
pc(closed,T+1,P),
not holds(neg(locked),T,P),
not e(neg(closed),T+1,P).

holds(locked,T1,P) :-
holds(neg(open),T1,P),
holds(neg(closed),T1,P).

e(locked, T+1,P) :-
e(neg(open),T+1,P),
e(neg(closed), T+1,P).

pc(locked, T+1,P) :-
pc(neg(open), T+1,P),
not holds(locked,T,P),
not e(open,T+1,P),
not e(closed, T+1,P).

pc(locked,T+1,P) :-
pc(neg(closed), T+1,P),
not holds(locked,T,P),
not e(open,T+1,P),
not e(closed, T+1,P).

68 Phan Huy Tu, Tran Cao Son, and Chitta Baral

%%%0%%% %% %% %% %% %%% %% %% %% %% %% %% %% % %% %% %% %% %% %% %% % %% %% %% %% %% %% %% %
% GOAL REPRESENTATION
%%%%%% %% %% %% %% %% % %% %% % %% % %% %% %% % %% %% %% %% %% %% %% % %% %% %% %% %% %% %% %

goal(T1,P) :-
holds(locked, T1,P).

goal(T1,P) :-
contrary(L,L1),
holds(L,T1,P),
holds(L1,T1,P).

- used(h+1,P),
not goal(h+1,P).

%9%9%%%%% %% %6%%%% %% %% %% % %% %% %% % %% %% %% % %% %% %% % %% %% %% %% % %% %% %% % %% %%
% DOMAIN INDEPENDENT RULES
%0%%%%% %% %% % %% %% %% % %% %% %% %% %% %% %% %% %% %% %% %% % %% %% % %% %% %% %% %% % %% %
% Rules encoding the effects of non-sensing actions
holds(L,T+1,P) :-

e(L, T+1,P).

holds(L,T+1,P) :-
holds(L,T,P),
contrary(L,L1),
not pc(L1,T+1,P).

% Inertial rules for sensing actions
% Cannot branch to the same path
- P1 < P2,

P2 < P,

br(G1,T,P1,P),

br(G2,T,P2,P).

- Gl I= G2,
Pl <= P,
br(G1,T,P1,P),
br(G2,T,P1,P).

- Pl < P,
br(G,T,P1,P),
used(T,P).

used(T+1,P) :-
P1 < P,
br(G,T,P1,P).

holds(G,T+1,P) :-
P1 <= P,
br(G,T,P1,P).

holds(L,T+1,P) :-
Pl < P,

ASP with Sensing Actions, Incomplete Information, and Static Causal Lav&9

br(G,T,P1,P),
holds(L,T,P1).

% Rules for generating action occurrences
L{oce(X,T,P):action(X)}1 :-

used(T,P),

not goal(T,P).

- occ(AT,P),
not poss(A,T,P).

% Auxiliary Rules
literal(F).
literal(neg(F)).

contrary(F,neg(F)).
contrary(neg(F),F).

new_br(P,P1) :-

P <= PL
used(1,1).
used(T+1,P) :-

used(T,P).

%0%%%%% % % %% % %% %% %% %
% HIDE/SHOW ATOMS

%%%%%% % % % %% %% %% %% %
hide.

show occ(A,T,P).

show br(G,T,P,P1).

Smodels Output

$ Iparse -c h=2 -c w=3 examples/ex2.smo | smodels

smodels version 2.28. Reading...done
Answer: 1

Stable Model:

br(open,1,1,2) occ(check,1,1) br(closed,1,1,1)
br(locked,1,1,3) occ(flip_lock,2,1)

True

Duration: 0.020

Number of choice points: 2

Number of wrong choices: 0

Number of atoms: 313

Number of rules: 893

Number of picked atoms: 257

Number of forced atoms: 31

Number of truth assignments: 4052
Size of searchspace (removed): 12 (65)

70 Phan Huy Tu, Tran Cao Son, and Chitta Baral

Cmodels Output

$ Iparse -c h=2 -c w=3 examples/ex2.smo | cmodels

cmodels

cmodels version 3.01 Reading...done

Program is not tight.

Calling SAT solver mChaff...

Answer: 1

Answer set: br(open,1,1,3) occ(check,1,1) br(closed,1,1,1)
br(locked,1,1,2) occ(flip_lock,2,1)

Number of Loop Formulas 6

References

ANDERSON C., SMITH, D., AND WELD, D. 1998. Conditional effects in Graphplan. Rroceed-
ings of the 4th International Conference on Atrtificial Intelligence Planning Systems (AIPS’98)
AAAI Press, 44-53.

ANGER, C., KONCZzAK, K., AND LINKE, T.2002. NoMoRe: Non-monotonic reasoning with logic
programs. IrProceedings of the 8th European Workshop on Logics in Artificial Intelligence, 2002
LNAI 2424. Springer Verlag.

Baral, C. 2003Knowledge Representation, reasoning, and declarative problem solving with Answer
sets Cambridge University Press.

BARAL, C., KREINOVICH, V., AND TREJO, R.2000a. Computational complexity of planning and
approximate planning in the presence of incompletengdtficial Intelligence 122241-267.

BARAL, C., MCILRAITH, S, AND SON, T. 2000b. Formulating diagnostic problem solving us-
ing an action language with narratives and sensingPrboteedings of the Seventh International
Conference on Principles of Knowledge and Representation and Reasoning (KR'2006322.

BERTOLI, P, CIMATTI, A., AND ROVERI, M. 2001. Heuristic search + symbolic model checking =
efficient conformant planning. IRroceedings of the Seventeenth International Joint Conference
on Artificial Intelligence Morgan Kaufmann, 467-472.

BLuM, A. AND FURST, M. 95. Fast planning through planning graph analysisPrioceedings of
the 14th International Joint Conference on Artificial Intelligentéorgan Kaufmann Publishers,
San Francisco, CA, 1636-1642.

BONET, B. AND GEFFNER, H. 2000. Planning with incomplete information as heuristic search in
belief space. IProceedings 6th International Conference on Atrtificial Intelligence Planning and
SchedulingS. Chien, S. Kambhampati, and C. Knoblock, Eds. AAAI Press, 52—61.

BRAFMAN, R. AND HOFFMANN, J.2004. Conformant planning via heuristic forward search: A
new approach. IProceedings of the 14th International Conference on Automated Planning
and Scheduling (ICAPS-04%. Koenig, S. Zilberstein, and J. Koehler, Eds. Morgan Kaufmann,
Whistler, Canada, 355-364.

BRYCE, D., KAMBHAMPATI, S, AND SMITH, D. 2004. Planning Graph Heuristics for Belief
Space Search. Tech. rep., Arizona State University, Computer Science and Enginlegping.
/Iwww.public.asu.edu/~danbryce/papers/

CASTELLINI, C., GIUNCHIGLIA, E., AND TACCHELLA, A. 2003. Sat-based planning in complex
domains: concurrency, constraints and nondeterminigutificial Intelligence 147,1-2 (July),
85-117.

CIMATTI, A. AND ROVERI, M. 1999. Conformant planning via model checking. Haropean
Conference on Planningpringer Verlag, LNAI 1809, 21-34.

CIMATTI, A. AND ROVERI, M. 2000. Conformant Planning via Symbolic Model Checkidgurnal
of Artificial Intelligence Research 1305-338.

ASP with Sensing Actions, Incomplete Information, and Static Causal Lavwd

CIMATTI, A., ROVERI, M., AND BERTOLI, P.2004. Conformant Planning via Symbolic Model
Checking and Heuristic Searchtrtificial Intelligence Journal 159127-206.

CITRIGNO, S, EITER, T., FABER, W., GOTTLOB, G., KOCH, C., LEONE, N., MATEIS, C,,
PFEIFER, G. AND SCARCELLO, F. 1997. The dlv system: Model generator and application
frontends. InProceedings of the 12th Workshop on Logic Programmir&g—137.

DimoPoOULOS, Y., NEBEL, B., AND KOEHLER, J. 1997. Encoding planning problems in non-
monotonic logic programs. |Recent Advances in Al Planning, 4th European Conference on
Planning, ECP’97, Toulouse, France, September 24-26, 1997, Procee&ipgsger, 169—-181.

EITER, T., FABER, W., LEONE, N., PFEIFER, G., AND POLLERES, A. 2003. A Logic Programming
Approach to Knowledge State Planning, IIl: The Dt\Bystem. Artificial Intelligence 144]1-2,
157-211.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In
Logic Programming: Proceedings of the Fifth International Conf. and SyRpKowalski and
K. Bowen, Eds. 1070-1080.

GELFOND, M. AND LIFSCHITZ, V. 1993. Representing actions and change by logic programs.
Journal of Logic Programming 12,3,4, 301-323.

GIUNCHIGLIA, E., KARTHA, G., AND LIFSCHITZ, V. 1997. Representing action: indeterminacy
and ramificationsAtrtificial Intelligence 95 409-443.

GOLDEN, K. 1998. Leap Before You Look: Information Gathering in the PUCCINI plannePrtn
ceedings of the 4th International Conference on Artificial Intelligence Planning and Scheduling
Systems70-77.

GOLDEN, K., ETzIONI, O., AND WELD, D. 1996a. Planning with execution and incomplete infor-
mations. Tech. rep., Dept of Computer Science, University of Washington, TR96-01-09. February.

GOLDEN, K. AND WELD, D. 1996b. Representing sensing actions: The middle ground revisited.
In Proceedings of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR'96Morgan Kaufmann Publishers, 174-185.

HANKS, S.AND McDERMOTT, D. 1987. Nonmonotonic Logic and Temporal Projectidmtificial
Intelligence 33379-412.

HOFFMANN, J. AND NEBEL, B. 2001. The FF Planning System: Fast Plan Generation Through
Heuristic SearchJournal of Artificial Intelligence Research 1253-302.

LEVESQUE H. 1996. What is planning in the presence of sensing?Prisceedings of the 14th
Conference on Artificial Intelligenc@AAI Press, 1139-1146.

LIERLER, Y. AND MARATEA, M. 2004. Cmodels-2: SAT-based Answer Set Solver Enhanced to
Non-tight Programs. IfProceedings of the 7th International Conference on Logic Programming
and NonMonotonic Reasoning Conference (LPNMR'®)Lifschitz and I. Niemeh, Eds. Vol.
2923. Springer Verlag, LNCS 2923, 346-350.

LIN, F.AND ZHAO, Y. 2002. ASSAT: Computing answer sets of a logic program by sat solvers. In
Proceedings of the National Conference on Artificial Intelligence (AAAI'BBAI Press. 112—
117.

LIFSCHITZ, V. 1999. Answer set planning. Proceedings of the 1999 international conference on
Logic programmingMassachusetts Institute of Technology, Cambridge, MA, USA, 23-37.

LIFSCHITZ, V. 2002. Answer set programming and plan generatfatificial Intelligence 1381-2,
39-54.

LIFSCHITZ, V. AND TURNER, H. 1994. Splitting a logic program. IRroceedings of the Eleventh
International Conf. on Logic Programmin@. Van Hentenryck, Ed. 23-38.

LoBo, J.1998. COPLAS: a COnditional PLAnner with Sensing actions. Tech. Rep. FS-98-02,
AAAL

LoBo, J, TAYLOR, S, AND MENDEz, G. 1997. Adding knowledge to the action description
languageA. In Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI'97), AAAI Press. 454-459.

72 Phan Huy Tu, Tran Cao Son, and Chitta Baral

MAREK, V. AND TRUSZCZYNSKI, M. 1999. Stable models and an alternative logic programming
paradigm. InThe Logic Programming Paradigm: a 25-year PerspectB#5—398.

McCAIN, N. AND TURNER, H. 1995. A causal theory of ramifications and qualificationsPfo-
ceedings of the 14th International Joint Conference on Atrtificial IntelligeM@gan Kaufmann
Publishers, San Mateo, CA, 1978-1984.

McDEeRMOTT, D. 1987. A critique of pure reasoiComputational Intelligence,351-160.

MOORE, R.1985. A formal theory of knowledge and action.Hormal theories of the commonsense
world, J. Hobbs and R. Moore, Eds. Ablex, Norwood, NJ.

NIEMELA, I. 1999. Logic programming with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligence 254, 241-273.

PEOT, M. AND SMITH, D. 1992. Conditional nonlinear planning. Proceedings of the First
International Conference on Al Planning SysteisHendler, Ed. Morgan Kaufmann, College
Park, Maryland, 189-197.

PRYOR, L. AND COLLINS, G.1996. Planning for contingencies: A decision-based appromir-
nal of Artificial Intelligence Research 287-339.

RINTANEN, J. 2000. Constructing conditional plans by a theorem prov@urnal of Artificial
Intelligence Research 1323-352.

SCHERL, R. AND LEVESQUE H. 2003. Knowledge, action, and the frame problewrtificial
Intelligence 1441-2.

SIMONS, P, NIEMELA, N., AND SOININEN, T. 2002. Extending and Implementing the Stable
Model SemanticsAtrtificial Intelligence 1381-2, 181-234.

SMITH, D. E. AND WELD, D. S.1998. Conformant Graphplan. Froceedings of the fifteenth
national/tenth conference on Artificial intelligence (AAAI'98AAI Press, 889-896.

SoN, T. AND BARAL, C.2001. Formalizing sensing actions - a transition function based approach.
Artificial Intelligence 1251-2 (January), 19-91.

SON, T., BARAL, C., NAM, T., AND MCILRAITH, S.2005a. Domain-Dependent Knowledge in
Answer Set PlanningACM Transactions on Computational Logito Appear.

SoN, T., Tu, P, AND BARAL, C.2004. Planning with Sensing Actions and Incomplete Information
using Logic Programming. IRroceedings of the 7th International Conference on Logic Program-
ming and NonMonotonic Reasoning Conference (LPNMR"@4).ifschitz and I. Nieme#, Eds.
Vol. 2923. Springer Verlag, LNCS 2923, 261-274.

SoN, T. C, Tu, P. H, GELFOND, M., AND MORALES, R. 2005bh. Conformant Planning for Do-
mains with Constraints — A New Approach. Rroceedings of the the Twentieth National Con-
ference on Atrtificial Intelligencel211-1216.

THIEBAUX, S, HOFFMANN, J, AND NEBEL, B. 2003. In Defense of PDDL Axioms. IRroceed-
ings of the 18th International Joint Conference on Atrtificial Intelliger&eGottlob, Ed. Acapulco,
Mexico, 961-966.

THIELSCHER, M. 2000a. The Fluent Calculus: A Specification Language for Robots with Sensors
in Nondeterministic, Concurrent, and Ramifying Environments. Tech. Rep. CL-2000-01, Com-
putational Logic Group, Department of Computer Science, Dresden University of Technology.
Oct.

THIELSCHER, M. 2000b. Representing the knowledge of a robot. Phoceedings of the Sev-
enth International Conference on Principles of Knowledge and Representation and Reasoning
(KR'2000) Morgan Kaufmann Publishers, 109-120.

WELD, D., ANDERSON C., AND SMITH, D. 1998. Extending Graphplan to handle uncertainty and
sensing actions. |Proceedings of the Fifteenth National Conference on Artificial Intelligence
Conference (AAAI'98)AAAI Press, 897—904.

