
On Logic Programming with Aggregates

Tran Cao Son, Enrico Pontelli, Islam Elkabani
Computer Science Department
New Mexico State University
Las Cruces, NM 88003, USA

{tson,epontell,ielkaban}@cs.nmsu.edu

Abstract

In this paper, we present a translational semantics for normal logic programs with
aggregates. We propose two different translations of logic programs with aggregates
into normal logic programs, whose answer set semantics is used to defined the seman-
tics of the original programs. Differently from many of the earlier proposals in this area,
our semantics does not impose any syntactic restrictions on the aggregates and the pro-
grams. The semantics naturally extends the traditional answer set semantics for normal
logic programs, and it subsumes many of the previous proposals in this area, yet it over-
comes several drawbacks of those proposals, e.g., by disallowing non-minimal answer
sets. We also discuss how the proposed approach can be extended to logic programs
with aggregates in the head, a class of programs that has rarely been considered.

The new semantics is natural and intuitive, and it can be directly implemented using
available answer set solvers. We describe a system, called ASPA, that is capable of com-
puting answer sets of programs with arbitrary (possibly recursively defined) aggregates.
We also present a preliminary comparison of ASPA with another system for computing
answer sets of programs with aggregates, DLVA.

1 Background and Motivation

The handling of aggregates in Logic Programming (LP) has been the subject of intense
studies in the late 80s and early 90’s [17, 21, 28, 34, 35]. Most of these proposals focused on
the theoretical foundations and computational properties of aggregate functions in LP. The
recent development of the answer set programming paradigm, whose underlying theoretical
foundation is the answer set semantics [11], has renewed the interest in the treatment of
aggregates in LP and led to a number of new proposals [2, 3, 7, 9, 13, 24, 26]. Unlike many
of the earlier proposals, these new efforts provide a sensible semantics for programs with
recursive aggregates. Most of these new efforts build on the spirit of answer set semantics for
LP, and some have found their way in concrete implementations. For example, the current
release (built BEN/2/23/05)1 of DLVA handles aggregate-stratified programs [2], and the
system described in [7] supports recursive aggregates according to the semantics described
in [17]. The ASET-Prolog system supports recursive aggregates, but its implementation [15]
is still prototypical.

1http://www.dbai.tuwien.ac.at/proj/dlv

1

Answer set semantics [11] for LP has been one of the most widely adopted semantics
for general logic programs—i.e., logic programs that allow negation as failure in the body.
Answer set semantics is a natural extension of the minimal model semantics for positive
logic programs to the case of general logic programs. A set of atoms S is an answer set of
the program P if S is the minimal model of the positive program PS (the reduct of P w.r.t.
S), obtained by

(i) removing from P all the rules whose body contains a negation as failure literal not b
which is false in S (i.e., b ∈ S); and

(ii) removing all the negation as failure literals from the remaining rules.

The transformation PS is often referred to as the Gelfond-Lifschitz transformation.
This definition satisfies several key properties. In particular, answer sets are

(Pr1) closed, i.e., if an answer set satisfies the body of a rule r then it also satisfies its head;

(Pr2) supported—i.e., for each member p of an answer set S there exists a rule r ∈ P such
that p is the head of the rule and the body of r is true in S;

(Pr3) minimal—i.e., no proper subset of an answer set satisfies (Pr1) and (Pr2) (w.r.t.
PS).

It should be emphasized that a set of atoms satisfying the three properties (Pr1)-(Pr3)
might not be an answer set of P . For example, the set {p} is not an answer set of the
program {p ← p, q ← not p}, even though it satisfies the three properties. Nevertheless,
these properties constitute the main principles that guided several extensions of the answer
set semantics to different classes of logic programs, such as extended and disjunctive logic
programs [12], programs with weight constraint rules [22], and programs with aggregates
(e.g., [2, 17]).

As evident from the literature, a straightforward extension of the Gelfond-Lifschitz
transformation to programs with aggregates leads to the loss of some of the properties
(Pr1)-(Pr3) (e.g., presence of non-minimal answer sets [17]). Sufficient conditions that
characterize classes of programs with aggregates for which the properties (Pr1)-(Pr3) of
answer sets are guaranteed have been investigated, such as aggregate-stratification and
monotonicity (e.g., [21]). Alternatively, researchers have either accepted the loss of some
of the (Pr1)-(Pr3) properties (e.g., acceptance of non-minimal models [7, 13, 17]) or have
explicitly introduced minimality or analogous properties as requirements in the definition
of answer sets in presence of aggregates (e.g., [9]).

In this paper, we propose a new semantics for logic programming with aggregates, with
the following properties:

• It applies to arbitrary programs with aggregates (e.g., no syntactic restrictions).

• It is as intuitive as the traditional answer set semantics and it extends traditional
answer set semantics (i.e., it has the same behavior on programs without aggregates).

2

• It does not require explicit mention of the properties (Pr1)-(Pr3), but the answer sets
resulting from the new definition naturally satisfy such properties.

• It can naturally handle aggregates as program facts and as head of program rules.

• It can be implemented by integrating the definition directly in state-of-the-art answer
set solvers, such as Smodels [23], dlv [6], Cmodels [18], ASSAT [19], etc. In
particular, it requires only the addition of a module to determine the “solutions” of
an aggregate,2 without any modifications to the mechanisms to compute answer sets.

We achieve these objectives by defining a transformation, called unfolding, from logic pro-
grams with aggregates to normal logic programs. The key idea facilitating this transforma-
tion is the generalization of the principle (Pr2) to the case of aggregates. More precisely,
our transformation ensures that, if an aggregate literal is satisfied by a model M , then M
supports at least one of its solutions. Solutions of aggregates can be precomputed, and an
answer set solver for LP with aggregates can be implemented using standard answer set
solvers.

The notion of unfolding has been widely used in various areas of logic programming
(e.g., [27, 29, 33]). The inspiration for the approach used in handling aggregates in this
paper comes from the methodology proposed in various works on constructive negation (e.g.,
[1, 4, 32])—in particular, from the idea of unfolding intensional sets into sets of solutions,
employed to handle intensional sets in [4].

The rest of this paper is organized as follows. Section 2 presents the syntax of our logic
programming language with aggregates. Section 3 describes our semantics, investigates
some of its properties, and describes an implementation. Section 4 introduces an alternative
characterization of the same semantics, which is useful for extending the use of aggregates
to the head of program rules. Section 5 compares our approach with the relevant literature.
Section 6 discusses some issues related to our approach to semantics of aggregates. Finally,
Section 7 presents the conclusions and the future work.

2 A Logic Programming Language with Aggregates

Let us consider a signature ΣL = 〈FL,V, ΠL ∪ΠAgg〉, where FL is a collection of constants,
V is a denumerable collection of variables, ΠL is a collection of predicate symbols, and ΠAgg

is a collection of unary predicate symbols (aggregate predicates). In the rest of this paper,
we will assume that Z is a subset of FL—i.e., there are distinct constants representing
the integer numbers. We will refer to ΣL as the ASP signature. We will also refer to
ΣP = 〈FP ,V,ΠP ∪ ΠAgg〉 as the program signature, where FP ⊆ FL, ΠP ⊆ ΠL, and FP

is finite. We will denote with HP the ΣP -Herbrand universe, containing the ground terms
built using symbols of FP —and with BP the corresponding ΣP -Herbrand base. We will
refer to an atom of the form p(t1, . . . , tn), where ti ∈ FP ∪V and p ∈ ΠP , as an ASP-atom;
an ASP-literal is either an ASP-atom or the negation as failure (not A) of an ASP-atom.

2This concept is formalized later in the paper.

3

Definition 1 An extensional set has the form {t1, . . . , tk}, where ti are terms of ΣP . An
extensional multiset has the form {{t1, . . . , tk}} where ti are (possibly repeated) terms of ΣP .

Definition 2 An intentional set is of the form

{X | p(X1, . . . , Xk)}

where X is a variable, Xi’s are variables or constants, and p is a predicate in ΠP of arity
k. Similarly, an intensional multiset is of the form

{{X | ∃Z1, . . . , Zr. p(X1, . . . , Xk, Z1, . . . , Zr)}}

where X is a variable, Xi and Zj’s are variables or constants, and X /∈ {Z1, . . . , Zr}.
Intuitively, we are collecting the values of X that satisfy the atom p(X1, . . . , Xk, Z1, . . . , Zr),
under the assumption that the variables Zv are locally and existentially quantified.

We call X and p the grouped variable and the predicate of the set/multiset, respectively.

Definition 2 can be extended to allow more complex types of sets, e.g., sets with a tuple
as the grouped variable, sets with conjunctions of atoms as property of the intensional
construction, and intensional sets with existentially quantified variables.

Definition 3 An aggregate literal has the form P(s) where P ∈ ΠAgg and s is an inten-
sional set or multiset.

This notation for aggregate literals is a bit more general than the one used in some previous
works, and resembles the abstract constraint atom notation presented in [20].

In our examples, we will focus on the “standard” aggregate functions and predicates,
e.g., Count, Sum, Min, Max, Avg applied to sets/multisets and predicates such as =,
6=, ≤, etc. Also, for the sake of readability, we will often use a more traditional notation
when dealing with the standard aggregates; e.g., instead of writing Sum≤7 ({X | p(X)}) we
will use the more common format Sum({X | p(X)}) ≤ 7.

An ASPA rule is an expression of the form

A ← C1, . . . , Cm, A1, . . . , An, not B1, . . . , not Bk (1)

where A,A1, . . . , An, B1, . . . , Bk are ASP-atoms, and C1, . . . , Cm are aggregate literals (m ≥
0, n ≥ 0, k ≥ 0). For simplicity, we will assume that the grouped variables in C1, . . . , Cm

are pairwise distinct and do not occur in A,A1, . . . , An, B1, . . . , Bk. Facts—i.e., rules with
an empty body—will be represented by writing only the head of the rule (and omitting the
“←” part). An ASPA program is a collection of ASPA rules.

3 Aggregate Solutions and Unfolding Semantics

In this section we develop a semantics, based on answer sets, for the logic language with
aggregates, study some of its properties, and investigate an implementation based on the
Smodels system.

4

3.1 Semantics

We will use the notation vars(α) to denote the set of variables present in an arbitrary term or
atom α. We will also write X̄ to denote X1, . . . , Xn. Let t be an aggregate term {X | p(Ȳ)}.
The set of free variables of t, denoted by fvars(t), is defined as fvars(t) = vars(Ȳ)\{X}—
i.e., the set of free variables of t contains all the free variables in p(Ȳ) which are different
from X. Given a multiset t of the form, {{X | ∃Z̄.p(Ȳ , Z̄)}}, the set fvars(t) is defined
as fvars(t) = vars(Ȳ) \ ({X} ∪ vars(Z̄)). The set of free variables in an aggregate literal
P(s) is fvars(s). For an ASP-atom p (ASP-literal not p), the set of free variables of p
(not p) is defined as fvars(p) = vars(p) (fvars(not p) = vars(p)). A literal l is ground if
fvars(l) = ∅.

Given an ASPA rule r of the form (1), the set of free variables in r, denoted by fvars(r),
is the collection of all free variables occurring in any of the literals occurring in r. An ASPA

rule r is ground if fvars(r) = ∅. A ground substitution for r is given by {X/c | X ∈
fvars(r), c ∈ HP }.

For later use, we introduce some notations. For a ground ASPA rule r of the form (1),
with head(r), agg(r), pos(r), and neg(r) we denote A, {C1, . . . , Cm}, {A1, . . . , An}, and
{B1, . . . , Bk} respectively. Furthermore, body(r) denotes the right hand side of the rule r.
For a program P , lit(P) denotes the set of all ASP-atoms present in P .

Given an ASPA rule r and a ground substitution σ = {X1/c1, . . . , Xt/ct} for r, rσ is
the ground rule obtained from r by simultaneously replacing every occurrence of Xi with
ci (i = 1, . . . , t). rσ is called a ground instantiation of r. By ground(r) we denote the set
of all ground instantiations of the rule r. For a program P , the collection of all ground
instantiations of the rules in P , denoted by ground(P), is called the ground instantiation
of P , i.e., ground(P) =

⋃
r∈P ground(r).

Definition 4 An interpretation of an ASPA program P on ΣP is a subset of BP .

If p is a ground ASP-atom and M is an interpretation, then p is true in M (M |= p) if
p ∈ M . Given an ASP-atom p, not p is true in M (M |= not p) if p 6∈ M .

Let s be the ground intensional set term {X | p(X̄)} and let M be an interpretation; the
grounding of s w.r.t. M (denoted by sM) is the ground extensional set term {a1, . . . , an}
where M |= (p(X̄)){X/ai} holds for all and only 1 ≤ i ≤ n.

Analogously, let s be the ground intensional multiset {{X | ∃Z̄.p(X̄, Z̄)}} and let M be
an interpretation, the grounding of s w.r.t. M (denoted by sM) is the ground extensional
multiset {{a1, . . . , ak}} where for each 1 ≤ i ≤ k there is a ground substitution ηi for Z̄ such
that M |= p(X̄, Z̄)ηi{X/ai} and no other element has such property.

Each of the aggregate predicates P in ΠAgg is interpreted as a relation over the set of
sets/multisets of constants from HP . Given P ∈ ΠAgg we denote with Ps and Pm the
interpretations of P:

Ps ⊆ 2HP Pm ⊆M(HP)

(M(S) contains all the finite multisets of elements from S). We will assume that the
traditional aggregate functions and predicates are interpreted in the usual way. E.g., an
aggregate such as Sum=

10 is interpreted as the finite sets of numbers whose sum is 10.

5

Definition 5 (Aggregate Satisfaction) Given an interpretation M and a ground aggre-
gate literal c of the form P(s), where s is an intensional set (resp. multiset), we say that c
is satisfied by M , denoted by M |= c, if sM ∈ Ps (resp. sM ∈ Pm).

This allows us to define when an ASPArule is satisfied by an interpretation.

Definition 6 (Rule Satisfaction) M satisfies the body of a ground rule r, denoted by
M |= body(r), if

(i) pos(r) ⊆ M ;
(ii) neg(r) ∩M = ∅;
(iii) M |= c for every c ∈ agg(r).

M satisfies a ground rule r if head(r) ∈ M or M 6|= body(r).

Having specified when a rule is satisfied by an interpretation, we can define the notion of
model of a program as follows.

Definition 7 Let P be an ASPA program. An interpretation M is a model of P if M
satisfies every rule in ground(P).

M is a minimal model of P if M is a model of P and there is no proper subset of M
which is also a model of P .

We will now present a semantics for ASPA programs. The key idea in this semantics is
a new reduction of programs with aggregates and negation as failure into logic programs
without aggregates. We call this transformation unfolding; this transformation is in the
same spirit as the transformation semantics for intensional sets proposed in [4, 5].

Definition 8 (Aggregate Solution) Let c be a ground aggregate literal and p be the pred-
icate occurring in its aggregate term. An aggregate solution of c with respect to BP is a pair
〈S1, S2〉 of disjoint sets of ground atoms of p3 such that

• S1 ⊆ BP and S2 ⊆ BP ; and

• for every interpretation M , if S1 ⊆ M and S2 ∩M = ∅ then M |= c.

SOLN(c) denotes the set of all the solutions of the aggregate literal c with respect to
BP .

Let S = 〈S1, S2〉 be an aggregate solution of c; we denote with S.p and S.n the two compo-
nents S1 and S2 of the solution.

Example 1 Let c be the aggregate literal Sum({X | p(X)})6=5 in a program with the Her-
brand base {p(1), p(2), p(3)}. This literal has a total of 15 solutions of the form 〈S1, S2〉
such that S1, S2 ⊆ {p(1), p(2), p(3)}, S1 ∩ S2 = ∅, and (i) either p(1) ∈ S1; or (ii)
{p(2), p(3)} ∩ S2 6= ∅. These solutions are listed below.

〈{p(1)}, ∅〉 〈{p(1)}, {p(2)}〉 〈{p(1)}, {p(3)}〉
〈{p(1)}, {p(2), p(3)}〉 〈{p(1), p(2)}, ∅〉 〈{p(1), p(2)}, {p(3)}〉
〈{p(1), p(3)}, ∅〉 〈{p(1), p(3)}, {p(2)}〉 〈{p(2)}, {p(3)}〉
〈{p(2)}, {p(3), p(1)}〉 〈{p(3)}, {p(2)}〉 〈{p(3)}, {p(2), p(1)}〉
〈{p(1), p(2), p(3)}, ∅〉 〈∅, {p(2)}〉 〈∅, {p(3)}〉

3By atoms of p we mean atoms that have p as their predicate symbol.

6

Let c be the aggregate literal P(s) and p be the predicate of s. The following holds:

(i) if M |= c then there exists some solution Sc of c such that Sc.p ⊆ M and Sc.n∩M = ∅;
(ii) if Sc is a solution of c then, for every set S′ of ground atoms of p with S′∩(Sc.p∪Sc.n) =

∅, we have that 〈Sc.p, Sc.n ∪ S′〉 and 〈Sc.p ∪ S′, Sc.n〉 are also solutions of c.

We will now define the unfolding of an aggregate literal, of a ground rule, and of a
program. For simplicity, we use S (resp. not S) to denote the conjunction

∧
a∈S a (resp.∧

b∈S not b) when S 6= ∅; ∅ (not ∅) stands for > (⊥).4

Definition 9 (Unfolding of an Aggregate Literal) Given a ground aggregate literal c
and a solution S ∈ SOLN(c), the unfolding of c w.r.t. S, denoted by c(S), is S.p∧not S.n.

Definition 10 (Unfolding of a Rule) Let r be a ground rule. A ground rule r′ is an
unfolding of r if there exists a sequence of solutions 〈Sc〉c∈agg(r) of the aggregate literals
occurring in r such that

1. head(r′) = head(r),

2. pos(r′) = pos(r) ∪⋃
c∈agg(r) Sc.p,

3. neg(r′) = neg(r) ∪⋃
c∈agg(r) Sc.n, and

4. agg(r′) = ∅.
We say that r′ is an unfolding of r with respect to 〈Sc〉c∈agg(r). The set of all possible
unfoldings of a rule r is denoted by unfolding(r).

For a ASPA program P , unfolding(P) denotes the set of unfolding rules of ground(P). It
is easy to see that unfolding(P) is a normal logic program.

Answer sets of ASPA programs are defined as follows.

Definition 11 A set of atoms M is an ASPA-answer set of P iff M is an answer set of
unfolding(P).

Example 2 Let P1 be the program:5

p(a) ← Count({X | p(X)}) > 0. p(b) ← not q.
q ← not p(b).

The aggregate literal Count({X | p(X)}) > 0 has five aggregate solutions with respect to
BP1 = {p(a), p(b), q}:

〈{p(a)}, ∅〉 〈{p(b)}, ∅〉 〈{p(a), p(b)}, ∅〉 〈{p(a)}, {p(b)}〉 〈{p(b)}, {p(a)}〉
4We follow the convention of denoting true with > and false with ⊥.
5We would like to thank Vladimir Lifschitz for suggesting this example.

7

The unfolding of P1 is the program

p(a) ← p(a). p(a) ← p(b).
p(a) ← p(a), p(b). p(a) ← p(a), not p(b). p(a) ← p(b), not p(a).
p(b) ← not q. q ← not p(b).

M1 = {q} and M2 = {p(b), p(a)} are the two answer sets of unfolding(P1), thus ASPA-
answer sets of P1.

Example 3 Let P2 be the program

p(1). p(2). p(3). p(5) ← q. q ← Sum({X | p(X)}) > 10.

The only aggregate solution of Sum({X | p(X)}) > 10 with respect to BP2 =
{p(1), p(2), p(3), p(5), q}: is 〈{p(1), p(2), p(3), p(5)}, ∅〉 and unfolding(P2) contains:

p(1). p(2). p(3). p(5) ← q. q ← p(1), p(2), p(3), p(5).

which has M1 = {p(1), p(2), p(3)} as its only answer set. Thus, M1 is the only ASPA-answer
set of P2.

The next program with aggregates does not have answer sets, even though it does not
contain any negation as failure literals.

Example 4 Consider the program P3:

p(2). p(1) ← Min({X | p(X)}) ≥ 2.

The unique aggregate solution of the aggregate literal Min({X | p(X)}) ≥ 2 with respect to
BP3 = {p(1), p(2)} is 〈{p(2)}, {p(1)}〉. The unfolding of P3 consists of the two rules:

p(2). p(1) ← p(2), not p(1).

and it does not have any answer sets. As such, P3 does not have any ASPA-answer sets.

Observe that, in creating unfolding(P), we use every solution of c in SOLN(c). Since the
number of solutions of an aggregate literal can be exponential in the size of the Herbrand
base, the size of unfolding(P) can be exponential in the size of P . Fortunately, as we will
show later (Theorem 2), this process can be simplified by considering only minimal solutions
of c (Definition 13). In practice, for most common uses of aggregates, we have observed a
small number of elements in the minimal solution set (typically linear in the extension of
the predicate used in the intensional set).

3.2 Properties of ASPA-Answer Sets

It is easy to see that the notion of ASPA-answer sets extends the notion of answer
sets of normal logic programs. Indeed, if P does not contain aggregate literals, then
unfolding(P) = ground(P). Thus, for a program without aggregates P , M is an ASPA-
answer set of P if and only if M is an answer set of P with respect to the Gelfond-Lifschitz
definition of answer sets.

We will now show that ASPA-answer sets satisfies the same properties of minimality,
closedness, and supportedness as answer sets for normal logic programs.

8

Lemma 1 Every model of unfolding(P) is a model of P .

Proof. Let M be a model of unfolding(P), and let us consider a rule r ∈ ground(P)
such that M satisfies the body of r. This implies that there exists a sequence of solutions
〈Sc〉c∈agg(r) for the aggregates occurring in r, such that Sc ∈ SOLN(c), Sc.p ⊆ M , and Sc.n∩
M = ∅. Let r′ be the unfolding of r with respect to 〈Sc〉c∈agg(r). We have that pos(r′) ⊆ M
and neg(r′) ∩ M = ∅. In other words, M satisfies the body of r′ ∈ unfolding(P). This
implies that head(r′) ∈ M , i.e., head(r) ∈ M . 2

Lemma 2 Every model of P is a model of unfolding(P).

Proof. Let M be a model of P , and let us consider a rule r′ ∈ unfolding(P) such that
M satisfies the body of r′. Since r′ ∈ unfolding(P), there exists r ∈ ground(P) and a
sequence of aggregate solutions 〈Sc〉c∈agg(r) for the aggregates in r such that M satisfies
Sc.p ∧ ¬Sc.n (for c ∈ agg(r)) and r′ is the unfolding of r with respect to 〈Sc〉c∈agg(r). This
means that pos(r) ⊆ M , neg(r) ∩ M = ∅, and M |= c for c ∈ agg(r). In other words,
M satisfies body(r). Since M is a model of ground(P), we have that head(r) ∈ M , which
means that head(r′) ∈ M . 2

Theorem 1 Let P be a program with aggregates and M be an ASPA-answer set of P .
Then, M is closed, supported, and a minimal model of ground(P).

Proof. Since M is an ASPA-answer set of P , Lemma 1 implies that M is a model of
ground(P). Minimality of M follows from Lemma 2 and from the fact that M is a minimal
model of unfolding(P). Closedness is immediate from Lemma 1.

Supportedness can be derived from the fact that each atom p in M is supported by
M (w.r.t. unfolding(P)) since M is an answer set of unfolding(P). Thus, if p were not
supported by M w.r.t. ground(P), then this would mean that no rule in unfolding(P)
supports p, which would contradict the fact that M is an answer set of unfolding(P). 2

Observe that the converse of the above theorem does not hold, as illustrated by the following
example.

Example 5 Let P4 be the program

p(1).
p(2) ← q.
q ← Sum({X | p(X)}) ≥ 2.
q ← Sum({X | p(X)}) < 2.

It is easy to see that M = {p(1), p(2), q} is a minimal model of this ground program—i.e.,
M is a minimal set of atoms, closed under the rules of ground(P4) and each atom of M
is supported by a rule of ground(P4). On the other hand, unfolding(P4) consists of the
following rules

p(1).
p(2) ← q. q ← p(1), p(2).
q ← p(2). q ← p(2), not p(1).
q ← p(1), not p(2). q ← not p(1), not p(2).
q ← not p(2).

9

M is not an answer set of unfolding(P4). We can easily check that this program does not
have an answer set according to Definition 11.

3.3 Implementation

In spite of the number of proposals dealing with aggregates in logic programming, only
few implementations have been described. Dell’Armi et al. [2] describe an implemen-
tation of aggregates in the dlv engine, based on the semantics described in Section 5.8
(the current distribution is limited to aggregate-stratified programs6). Elkabani et al. [7]
describe an integration of a Constraint Logic Programming engine (the ECLiPSe engine)
and the Smodels answer set solver; the integration is employed to implement aggregates,
with respect to the semantics of Section 5.8. Some more restricted forms of aggregation,
characterized according to the semantics of Section 5.8 have also been introduced in the
ASET-Prolog system [13]. Efficient algorithms for bottom-up computation of the perfect
model of aggregate-stratified programs have been described in [16, 35].

In this section, we will describe an implementation of a system for computing ASPA-
answer sets by computing the solutions of aggregate literals, unfolding the program, and
computing the answer sets using an available answer set solver. We begin with a discussion
of computing solutions of aggregates.

3.3.1 Computing the Solutions

As we have mentioned before, the size of the unfolding program unfolding(P) can become
unmanageable in some situations. One way to reduce the size of unfolding(P) is to find
a set of representative solutions for the aggregate literals occurring in P , whose size is—
hopefully—much smaller than the size of the SOLN(c). Interestingly, in several situations,
the number of representative solutions of an aggregate literal is small [30]. We say that a set
of solutions is complete if it can be used to check the satisfiability of the aggregate literal
in every interpretation of the program. First, we define when a solution covers another
solution.

Definition 12 A solution S of an aggregate literal c covers a solution T of c, denoted by
T £c S, if, for all interpretations M ,

(M |= (T.p ∧ not T.n)) ⇒ (M |= (S.p ∧ not S.n))

This can be used to define a complete and minimal sets of solutions of an aggregate literal.

Definition 13 A set S(c) of solutions of c is complete if for every solution Sc of c, there
exists S′c ∈ S(c) such that S.c £c S′c.

A solution set S(c) is reducible if there are two distinct solutions S and T in S(c) such
that T £c S. The set of solutions S(c) \ {T} is then called a reduction of S(c). A solution
set S(c) is minimal if it is complete and not reducible.

6The concept of aggregate stratification is discussed in Subsection 5.3.

10

By definition, we have that SOLN(c) is complete. Because of the transitivity of the
covering relationship, we can conclude that any minimal solution set of c is a reduction of
SOLN(c). Given a ground program P , let c1, . . . , ck be the aggregate literals present in P ,
and let us denote with ζ(P, [c1/S(c1), . . . , ck/S(ck)]) the unfolding of P where ci has been
unfolded using only the solution set S(ci).

Theorem 2 Given a ground program P containing the aggregate literals c1, . . . , ck, and
given a complete solution set S(ci) for each literal ci, we have that M is an ASPA-answer
set of P iff M is an answer set of ζ(P, [c1/S(c1), . . . , ck/S(ck)]).

Proof. For an interpretation M , let Q1 = (ζ(P, [c1/S(c1), . . . , ck/S(ck)]))M and Q2 =
(ζ(P, [c1/SOLN(c1), . . . , ck/SOLN(ck)]))M = (unfolding(P))M . We have that M is an
ASPA-answer set of P iff M is an answer set of Q2. Furthermore, Q1 ⊆ Q2, and for each
rule r ∈ Q2 there is a rule r′ ∈ Q1 with head(r) = head(r′) and body(r′) ⊆ body(r). Using
this information, we can show that M is an answer set of Q1 iff M is an answer set of Q2,
which proves the theorem. 2

The above theorem shows that we can use any complete solution set (e.g., a minimal one)
to unfold an aggregate literal.

We make use of the following observation to compute a complete solution set:

Theorem 3 Let c be an aggregate literal and let 〈S1, S2〉, 〈T1, T2〉 be solutions of c. Then
〈T1, T2〉£c 〈S1, S2〉 iff S1 ⊆ T1 and S2 ⊆ T2.

The abstract algorithm in Figure 1 computes a complete solution set S(c) for a given
aggregate literal—when called with Find Solution(c, 〈∅, ∅〉) and with S(c) = ∅ initially.
This algorithm is generic—i.e., can be used with arbitrary aggregate predicates, as long as
a mechanism to perform the test in line 3 is provided. Observe also that more effective
algorithms can be provided for specific classes of aggregates, by using properties of the
aggregate predicates used in the aggregate literals [30].

1: Procedure Find Solution (c, 〈T, F 〉)
2: { assume T = {t1, . . . , tk} and F = {f1, . . . , fh} }
3: if t1 ∧ · · · ∧ tk ∧ ¬f1 ∧ · · · ∧ ¬fh |= c then
4: Add 〈T, F 〉 to S(c);
5: return
6: endif
7: if T ∪ F = BP then return;
8: endif
9: forall (p ∈ BP \ (T ∪ F))
10: Find Solution(c, 〈T ∪ {p}, F 〉);
11: Find Solution(c, 〈T, F ∪ {p}〉);
12: endfor

Figure 1: Algorithm to compute solution set of an aggregate

Given a program P containing the aggregate literals c1, . . . , ck, we can replace P with
P ′ = ζ(P, [c1/S(c1), . . . ck/S(ck)]). The program P ′ is a normal logic program without
aggregates, whose answer sets can be computed using a standard answer set solver. The

11

algorithm has been implemented in an extended version of lparse—using a combination
of ad-hoc rules and an external constraint solver to compute line 3. Note that the forall in
line 9 is a non-deterministic choice of p.

3.3.2 The ASPA System

We will now describe the prototype we have constructed, called ASPA, for computing answer
sets of programs with aggregates. The computation is performed following the semantics
given in Definition 11, simplified by Theorem 2. In other words, to compute the answer set
of a program P , we

1. Compute a complete (and possibly minimal) solution set for each aggregate literal
occurring in P ;

2. Unfold P using the computed solution sets;

3. Compute the answer sets of the unfolded program unfolding(P) using a standard
answer set solver (in our case we tried both Smodels and Cmodels).

The overall structure of the system is shown in Figure 2.

pipe pipe pipe pipe

Preprocessor Lparse LparseTransformer

ASP Solver
(Smodels,
 Cmodels,
 ...)

ASP
Program

A ground
program
with

aggregates

unfolded
ground

normal logic
program

simplified
ground normal
logic program

Answer
Sets

Figure 2: Overall System Structure

The computation of answer sets is performed in five steps. In the first step, a preproces-
sor performs a number of simple syntactic transformations on the input program, which are
aimed at rewriting the aggregate literals in a format acceptable by lparse. For example, the
aggregate literal Sum({X | p(X)}) ≥ 40 is rewritten to “$agg”(sum, “$x”, p(“$x”), 40, geq)
and an additional rule

0 {‘‘$agg’’(sum,‘‘$x’’, p(‘‘$x’’), 40, geq)} 1
is added to the program. The rewritten program is then grounded and simplified using
lparse, in which aggregate literals are treated like standard (non-aggregate) literals.

The ground program is processed by the transformer module, detailed in Figure 3, in
which the unfolded program is computed. This module performs the following operations:

1. Creation of the atom table, the aggregate table, and the rule table, used to store
the ground atoms, aggregate atoms, and rules of the program, respectively. This is
performed by the Reader component in Figure 3.

12

GROUND ASP
PROGRAM

A

READER

ATOMS TABLE AGGREGATES TABLE RULES TABLE

DEPENDENCIES
ANALYZER

AGGREGATES
DEPENDENCIES

AGGREGATE
SOLVER

RULES
EXPANDER

AGGREGATE
CONSTRAINT

COMPLETE
SOLUTION

SET

GROUND ASP
PROGRAM

Figure 3: Transformer Module

2. Identification of the dependencies between aggregate atoms and the atoms contribut-
ing to such atoms (done by the Dependencies Analyzer);

3. Computation of a complete solution set for each aggregate literal (done by the Aggre-
gate Solver—as described in the previous subsection);

4. Creation of the unfolded program (done by the Rule Expander).

Note that the unfolded program is passed one more time through lparse, to avail of the
simplifications and optimizations that lparse can perform on a normal logic program. The
resulting program is a ground normal logic program, whose answer sets can be computed
by a system like Smodels or Cmodels.

3.3.3 Some Experimental Results

We have performed a number of tests using the ASPA system. In particular, we selected
benchmarks with aggregates presented in the literature. The benchmarks, drawn from
various papers on aggregation, are:

• Company Control: Let owns(X, Y, N) denotes the fact that company X owns a frac-
tion N of the shares of the company Y . We say that a company X controls a company
Y if the sum of the shares it owns in Y together with the sum of the shares owned in

13

Y by companies controlled by X is greater than half of the total shares of Y :

control shares(X,Y, N) ← owns(X, Y, N).
control shares(X,Y, N) ← control(X, Z), owns(Z, Y, N).
control(X,Y) ← Sum({{M | control shares(X, Y, M) }}) > 50.

We explored different instances, with varying numbers of companies.

• Shortest Path: Suppose a weight-graph is given by relation arc, where arc(X,Y, W)
means that there is an arc in the graph from node X to node Y of weight W . We
represent the shortest path (minimal weight) relation spath using the following rules

path(X, Y, C) ← arc(X, Y, C).
path(X, Y, C) ← spath(X,Z, C1), arc(Z, Y,C2), C = C1 + C2.
spath(X, Y, C) ← Min({{D | path(X,Y, D) }}) = C.

The instances explored make use of graphs with varying number of nodes.

• Party Invitations: The main idea of this problem is to send out party invitations
considering that some people will not accept the invitation unless they know that at
least k other people from their friends accept it too.

friend(X,Y) ← friend(Y, X).
coming(X) ← requires(X, 0).
coming(X) ← requires(X,K),Count({ Y | kc(X, Y) }) ≥ K.
kc(X, Y) ← friend(X,Y), coming(Y).

The instances explored in our experiments have different numbers of people invited
to the party.

• Group Seating: In this problem, we want to arrange the sitting of a group of n people
in a restaurant, knowing that the number of tables times the number of seats on
each table equals to n. The number of people that can sit at a table cannot exceed
the number of chairs at this table, and each person can sit exactly at one table. In
addition, people who like each other must sit together at the same table and those
who dislike each other must sit at different tables.

at(P, T) ← person(P), table(T), not not at(P, T).
not at(P, T) ← person(P), table(T), not at(P, T).

← table(T), nchairs(C),Count({ P | at(P, T) }) > C.
← person(P),Count({ T | at(P, T) }) 6= 1.
← like(P1, P2), at(P1, T), not at(P2, T).
← dislike(P1, P2), at(P1, T), at(P2, T).

The benchmark makes use of 16 guests, 4 tables, each having 4 chairs.

• Employee Raise: Assume that a manager decides to select a group of employees of
size at most N to give them a raise. An employee is a good candidate for the raise if

14

he has worked for at least K hours per week. A relation emp(X,D, H) denotes that
an employee X worked H hours during the day D.

raised(X) ← empName(X), not notraised(X).
notraised(X) ← empName(X), not raised(X).
notraised(X) ← empName(X), nHours(K),Sum({{H | emp(X, D,H) }}) < K.

← maxRaised(N),Count({X | raised(X)}) > N.

The different experiments conducted are described by the two parameters M/N , where
M is the number of employees and N the maximum number of individuals getting a
raise.

• NM1 and NM2 : these are two synthetic benchmarks that compute large aggregates
that are recursive and non-monotonic.

The code for the benchmarks can be found at: www.cs.nmsu.edu/~ielkaban/asp-aggr.
html.

Table 1 presents the results obtained. The columns of the table have the following
meaning:

• Program is the name of the benchmark.

• Instance describes the specific instance of the benchmark used in the test.

• Smodels Time is the time (in seconds) employed by Smodels to compute the answer
sets of the unfolded program.

• Cmodels Time is the time (in seconds) employed by Cmodels to compute the answer
sets of the unfolded program.

• Transformer Time is the time (in seconds) to preprocess and ground the program
(i.e., compute the solutions of aggregates and perform the unfolding).

• DLVA is the time employed by the DLVA system to execute the same benchmark (where
applicable, otherwise marked N/A)—observe that the current distribution of this sys-
tem does not support recursion through aggregates.

All computations have been performed on a Pentium 4, 3.06 GHz machine with 512MB
of memory under Linux 2.4.28 using GCC 3.2.1. The system is available for download at
www.cs.nmsu.edu/~ielkaban/asp-aggr.html.

As we can see from the table, even this relatively simple implementation of aggregates
can efficiently solve all benchmarks we tried, offering a coverage significantly larger than
other existing implementations. Observed also that the overhead introduced by the com-
putation of aggregate solutions is significant in relatively few cases.

4 An Alternative Semantics

The main advantage of the previously introduced definition of ASPA-answer sets is its
simplicity, which allows an easy computation of answer sets of programs with aggregates

15

Program Instance Smodels Cmodels Transformer DLVA

Time Time Time Time

Company Control 20 0.010 0.00 0.080 N/A
Company Control 40 0.020 0.00 0.340 N/A
Company Control 80 0.030 0.00 2.850 N/A
Company Control 120 0.040 0.030 12.100 N/A
Shortest Path 20 0.220 0.05 0.740 N/A
Shortest Path 30 0.790 0.13 2.640 N/A
Shortest Path 50 3.510 0.51 13.400 N/A
Shortest Path (All Pairs) 20 6.020 1.15 35.400 N/A
Party Invitations 40 0.010 0.00 0.010 N/A
Party Invitations 80 0.020 0.01 0.030 N/A
Party Invitations 160 0.050 0.02 0.050 N/A
Seating 16/4/4 11.40 3.72 0.330 4.337
Employee Raise 15/5 0.57 0.87 0.140 2.750
Employee Raise 21/15 2.88 1.75 1.770 6.235
Employee Raise 25/20 3.42 8.38 5.20 3.95
NM1 125 1.10 0.07 1.00 N/A
NM1 150 1.60 0.18 1.30 N/A
NM2 125 1.44 0.23 0.80 N/A
NM2 150 2.08 0.34 1.28 N/A

Table 1: Computing Answer Sets of Benchmarks with Aggregates

using currently available answer set solvers. Following this approach, all we need to do to
compute answer sets of a program P is to compute its unfolded program unfolding(P) and
then use an answer set solver to compute the answer sets of unfolding(P). One disadvantage
of this method lies in the fact that the size of the program unfolding(P) can be exponential
in the size of P—which could potentially become unmanageable. Theoretically, this is not
a surprise, as the problem of determining the existence of answer sets for propositional
programs with aggregates depends on the types of aggregates present in the program (see
also [30] and Chapter 6 in [24]).

In what follows, we present an alternative characterization of the semantics for pro-
grams with aggregates, whose underlying principle is still the unfolding mechanism. This
alternative characterization allows us to compute the answer sets of a program by using
the generate-and-test procedure. The key difference is that the unfolding is now performed
with respect to a given interpretation.

4.1 Unfolding w.r.t. an Interpretation

Let us start by specializing the notion of solution of an aggregate with respect to a fixed
interpretation.

Definition 14 (M-solution) For a ground aggregate literal c and an interpretation M ,
its M -solution set is

SOLN∗(c, M) = {Sc | Sc ∈ SOLN(c), Sc.p ⊆ M,Sc.n ∩M = ∅} .

Intuitively, SOLN∗(c,M) is the set of solutions of c which are true in M . For a solution
Sc ∈ SOLN∗(c,M), the unfolding of c in M w.r.t. S is the conjunction

∧
a∈Sc.p a. We say

16

that c′ is an unfolding of c with respect to M if c′ is an unfolding of c in M with respect to
some Sc ∈ SOLN∗(c,M). When SOLN∗(c,M) = ∅, we say that ⊥ is the unfolding of c in
M .

The unfolding of a rule r ∈ ground(P) with respect to M is the set of rules
unfolding∗(r,M) and is defined as follows:

1. If neg(r) ∩M 6= ∅, or if there is a c ∈ agg(r) such that ⊥ is the unfolding of c in M ,
then unfolding∗(r,M) = ∅;

2. If neg(r) ∩ M = ∅ and ⊥ is not the unfolding of c for every c ∈ agg(r) then r′ ∈
unfolding∗(r,M) if

(a) head(r′) = head(r)

(b) there exists a sequence of aggregate solutions 〈Sc〉c∈agg(r) of aggregates in agg(r)
such that Sc ∈ SOLN∗(c,M) for every c ∈ agg(r) and pos(r′) = pos(r) ∪⋃

c∈agg(r) Sc.p.

Given a program P , we denote with unfolding∗(P, M) the set

unfolding∗(P, M) =
⋃

r∈ground(P)

unfolding∗(r,M)

We define M to be an ASPA-answer set of P iff M is an answer set of unfolding∗(P,M).

Example 6 Consider the program P1 presented earlier and consider the interpretation M =
{p(a), p(b)}. If c is the aggregate Count({X | p(X)}) > 0, then we have that

SOLN∗(c,M) = {〈{p(a)}, ∅〉, 〈{p(b)}, ∅〉, 〈{p(a), p(b)}, ∅〉}

The unfolding∗(P1,M) is:

p(a) ← p(a). p(a) ← p(b).
p(a) ← p(a), p(b). p(b) ← not q. q ← not p(b).

Observe that M is indeed an answer set of unfolding∗(P1,M).

Example 7 Consider the program P2 presented earlier and let us consider M =
{p(1), p(2), p(3), p(5), q}. Observe that, if we consider the aggregate c of the form Sum({X |
p(X)}) > 10 then

SOLN∗(c,M) = {〈{p(1), p(2), p(3), p(5)}, ∅〉}
The unfolding∗(P2,M) is:

p(1). p(2). p(3). p(5) ← q. q ← p(1), p(2), p(3), p(5).

This program has the unique answer set {p(1), p(2), p(3)} which is different from M ; thus
M is not an answer set of P2.

The next theorem proves that this new definition is equivalent to the one in Section 3.

17

Theorem 4 For any ASPA program P , the interpretation M of P is an answer set of
unfolding(P) iff M is an answer set of unfolding∗(P, M).

Proof. Let R = unfolding∗(P, M) and Q = (unfolding(P))M . We have that R and Q are
definite programs. We will prove by induction on k that if M is an answer set of Q then
TQ ↑ k = TR ↑ k for every k ≥ 0. The equation holds trivially for k = 0. Let us consider
the case for k > 0, assuming that TQ ↑ l = TR ↑ l for 0 ≤ l < k.

• Consider p ∈ TQ ↑ k. This means that there exists some rule r′ ∈ Q such that
head(r′) = p and body(r′) ⊆ TQ ↑ k − 1. From the definition of the Gelfond-Lifschitz
reduction and the definition of the unfolded program, we can conclude that there
exists some rule r ∈ ground(P) and a sequence of aggregate solutions 〈Sc〉c∈agg(r) for
the aggregates in body(r) such that pos(r′) = pos(r) ∪ ⋃

c∈agg(r) Sc.p, and (neg(r) ∪⋃
c∈agg(r) Sc.n) ∩ M = ∅. In other words, r′ is the Gelfond-Lifschitz reduction with

respect to M of the unfolding of r with respect to 〈Sc〉c∈agg(r). These conditions imply
that r′ ∈ R. Together with the inductive hypothesis, we can conclude that p ∈ TR ↑ k.

• Consider p ∈ TR ↑ k. Thus, there exists some rule r′ ∈ R such that head(r′) = p
and body(r′) ⊆ TR ↑ k − 1. From the definition of R, we can conclude that there
exists some rule r ∈ ground(P) and a sequence of aggregate solutions 〈Sc〉c∈agg(r) for
the aggregates in body(r) such that pos(r′) = pos(r) ∪ ⋃

c∈agg(r) Sc.p, and (neg(r) ∪⋃
c∈agg(r) Sc.n) ∩M = ∅. Thus, r′ ∈ Q. Together with the inductive hypothesis, we

can conclude that p ∈ TQ ↑ k.

This shows that, if M is an answer set of Q, then M is an answer set of R.
Similar arguments can be used to show that if M is an answer set of R, TQ ↑ k = TR ↑ k

for every k ≥ 0, which means that M is an answer set of Q. 2

The above theorem shows that we can compute answer sets of aggregate programs in the
same generate–and–test order as in normal logic programs. Given a program P and an
interpretation M , instead of computing the Gelfond-Lifschitz’s reduct PM we compute
the unfolding∗(P, M). This method of computation might yield better performance but
requires modifications of the answer set solver.

Another advantage of this alternative characterization is its suitability to handle aggre-
gates as heads of program rules, as discussed next.

4.2 Aggregates in the Head of Rules

As in most earlier proposals, with the exception of Smodels-weight constraint [22] and logic
programs with abstract constraint atoms [20], the language discussed in Section 2 does not
allow aggregates as facts (or as head of a rule). To motivate the need for aggregates as rule
heads, let us consider the following example. Let us have a set of three students who have
taken an exam, and let us assume that at least two got ’A’. This can be encoded as the
Smodels program with the set of facts about students and the weight constraint

2 ≤ {gotA(X) | student(X)}.
If aggregates were allowed in the head, we could encode this problem as the following ASPA

program
Count({X | gotA(X)}) ≥ 2.

18

along with a constraint stating that if gotA(X) is true then student(X) must be true as
well (which can be encoded using the constraint ⊥ ← gotA(X), not student(X)). This
program should have four answer sets, each representing a possible grade distribution, in
which either one of the students does not receive the ’A’ grade or all the three students
receive ’A’. This suggests that aggregates in the head of a rule are convenient.

We will next discuss how the semantics in the previous subsection can be extended to
allow for aggregate literals in the head of rules. The unfolding is done in two steps. In the
first step, we replace a rule with aggregate in the head by a rule without aggregate in the
head. The second step is done exactly as in Subsection 4.1.

Let P be a program with aggregates in the head and M be an interpretation of P . Let
r be one of the rules where head(r) is an aggregate literal. We define r⊥ = {⊥ ← body(r)}
and r〈S1,S2〉 = {l ← body(r) | l ∈ S1}.

For an interpretation M , let P ′ be a program obtained from P by replacing each rule
r ∈ P whose head is an aggregate literals with either

(a) r⊥ if SOLN∗(head(r),M) = ∅; or

(b) r〈S1,S2〉 for some 〈S1, S2〉 ∈ SOLN∗(head(r), M).

P ′ is called an aggregate-free head reduct of P with respect to M .
A logic program Q is an unfolding of P with respect to M if Q = unfolding∗(P ′,M)

for some aggregate-free head reduct of P with respect to M . We then can say that a set of
atoms M is an answer set of P iff M is an answer set of one of the unfoldings of P with
respect to M . Observe that, because of aggregates in the head, an ASPA-answer set might
be non minimal.

Example 8 Consider the Smodels program

student(a). student(b). student(c).
2 {gotA(X) : student(X)}.

which could be represented using aggregates as follows (program P5):

student(a). student(b). student(c).
2 ≤ Count({X | gotA(X)}).
← gotA(X), not student(X).

Let us unfold P5 with respect to two different interpretations

M1 = {student(a), student(b), student(c), gotA(a)}
M2 = {student(a), student(b), student(c), gotA(a), gotA(b)}.

Let c denote the aggregate literal 2 ≤ Count({X | gotA(X)}).
For M1, we can check that c is not satisfied by M1, and hence, the unfolding of the

fourth rule of P5 is the set of rules {⊥}, i.e., the unfolding of P5 w.r.t. M1 is the following
program:

student(a). student(b). student(c).
⊥.
← gotA(X), not student(X).

19

This program does not have any answer set. Thus, M1 is not an ASPA-answer set of P5.
For M2, we have that c is satisfied by M2 and

SOLN∗(c,M2) = {〈{gotA(a), gotB(b)}, ∅〉, 〈{gotA(a), gotB(b)}, {gotA(c)}〉}.
Since r〈{gotA(a),gotB(b)},∅〉 = r〈{gotA(a),gotB(b)},{gotA(c)}〉 and contains only two facts gotA(a)
and gotA(b), we have that the unfolding of P5 w.r.t. M2 is the program

student(a). student(b). student(c).
gotA(a). gotA(b).
← gotA(X), not student(X).

which has M2 as an answer set. Therefore, M2 is an ASPA-answer set of P5.

5 Related Work

In this section, we relate our definition of ASPA-answer sets to several formulations of ag-
gregates proposed in the literature. We begin with a comparison of the unfolding semantics
with the two most recently proposed semantics, the ultimate stable model semantics [24–26]
and the minimal answer set semantics [9]. We then relate our work to earlier proposals,
such as perfect models of aggregate-stratified programs (e.g., [21]), fixpoint answer set of
monotonic programs [17], and programs with weight constraints [22]. Finally, we briefly
discuss the relation of ASPA-answer sets to other proposals.

5.1 Pelov’s Approximation Semantics for Logic Program with Aggregates

The doctoral thesis of Pelov [24] contains a nice generalization of several semantics of
logic programs to logic programs with aggregates. The key idea in his work is the use
of approximation theory in defining the semantics of logic programs with aggregates. He
also developed a translation of logic programs with aggregates to normal logic programs,
denoted by tr, which was first given in [25] and then in [24]. It is interesting to note that the
translation in [25] and the unfolding proposed in Section 2 have similarities.7 We will now
provide a more detailed comparison between the two translations. For the completeness of
the paper, we will review the basics of the translation of [25], expressed using our notation.

Given a logic program with aggregates P , tr(P) denotes the normal logic program
obtained after the translation. The translation begins with the translation of each aggregate
literal ` = P(s) into a disjunction tr(`) =

∨
F

At(s)
(s1,s2) where At(s) is the set of atoms of p—the

predicate of s—in BP , (s1, s2) belongs to an index set, s1 ⊆ s2 ⊆ At(s), and each F
At(s)
(s1,s2) is

a conjunction of the form ∧

l∈s1

l ∧
∧

l∈s\s2

not l

The construction of tr(`) considers only pairs of (s1, s2) satisfying the following condition:
every interpretation I such that s1 ⊆ I and s \ s2 ∩ I = ∅ also satisfies `. tr(P) is then

7We would like to thank a reviewer of an earlier version of this paper who provided us with the pointers to
these works. Our translation builds on the previous work of the authors on semantics of logic programming
with sets and aggregates [4, 5, 7] and was concurrently and independently developed as [25].

20

created by rewriting rules with disjunction in the body by a set of rules in a straightforward
way. For example, the rule

a ← (b ∨ c), d.

is replaced by the two rules
a ← b, d.
a ← c, d.

We can prove a lemma that connects unfolding(P) and tr(P).

Lemma 3 For every aggregate literal ` = P(s), S is a solution of ` if and only if
F

At(s)
(S.p,S.p∪(At(s)\S.n)) is a disjunct in tr(`).

Proof. The result is a trivial consequence of the definition of a solution and the definition
of tr(`). 2

This lemma allows us to prove the following relationship between unfolding(P) and tr(P).

Corollary 5.1 For every program P , A is an ASPA-answer set of P if and only if A is an
exact stable model of P with respect to [26].

Proof. The result is a trivial consequence of the fact that unfolding(P) = tr(P) and tr(P)
has the same set of partial stable models as P [25]. 2

5.2 ASPA-Answer Sets and Minimality Condition

In this subsection, we investigate the relationship between ASPA-answer sets and the notion
of answer set defined by Faber et al. in [9]. The notion of answer set proposed in [9] is based
on a new notion of reduct, defined as follows. Given a program P and a set of atoms S,
the reduct of P with respect to S, denoted by SP , is obtained by removing from ground(P)
those rules whose body is not satisfied by S. In other words,

SP = {r | r ∈ ground(P), S |= body(r)}.

The novelty of this reduct is that it does not remove aggregates and negation-as-failure
literals satisfied by S.

Definition 15 (FLP-answer set, [9]) For a program P , S is a FLP-answer set of P if
it is a minimal model of SP .

Observe that the definition of answer set in this approach explicitly requires answer sets
to be minimal, thus requiring the ability to determine minimal models of a program with
aggregates. In the following propositions, we will show that ASPA-answer sets of a program
P are FLP-answer sets and that FLP-answer sets of P are minimal models of unfolding(P),
but not necessary ASPA-answer sets.

Theorem 5 Let P be a program with aggregates. If M is an ASPA-answer set, then M is
a FLP-answer set of P .

If M is a FLP-answer set of P then M is a minimal model of unfolding(P).

21

Proof. Let Q = unfolding(P). Since M is an ASPA-answer set, we have that M is an
answer set of Q Lemma 2 shows that M is a model of ground(P) and hence is a model of
R = M (ground(P)).

Let us assume that M is not a minimal model of R. This means that there exists
M ′ (M such that M ′ is a model of M (P).

We will show that M ′ is a model of Q′ = QM where QM is the result of the Gelfond-
Lifschitz transformation of the program Q with respect to M .

Consider a rule r2 ∈ Q′ such that M ′ |= body(r2), i.e., pos(r2) ⊆ M ′. From the definition
of the Gelfond-Lifschitz transformation, we conclude that there exists some r′ ∈ Q such that
pos(r′) = pos(r2) and neg(r′) ∩ M = ∅. This implies that there is a rule r ∈ ground(P)
and a sequence of solutions 〈Sc〉c∈agg(r) of aggregates in r such that r′ is the unfolding of r
with respect to 〈Sc〉c∈agg(r) and for every c ∈ agg(r), Sc.p ⊆ M ′ and Sc.n ∩M = ∅. Since
M ′ ⊆ M , we can conclude that M |= body(r), i.e., r ∈ R. Furthermore, M ′ |= body(r)
because pos(r) ⊆ pos(r′) = pos(r2) ⊆ M ′, neg(r) ⊆ neg(r′) and neg(r′) ∩M = ∅, and for
every c ∈ agg(r), Sc.p ⊆ M ′ and Sc.n ∩M ′ = ∅. Since M ′ is a model of R, we have that
head(r) ∈ M ′. Since head(r2) = head(r′) = head(r), we have that M ′ satisfies r2. This
holds for every rule of Q′. Thus, M ′ is a model of Q. This contradicts the fact that M is
an answer set of Q. 2

The next example shows that FLP-answer sets might not be ASPA-answer sets.8

Example 9 Consider the program P6 where

p(1) ← Sum({X | p(X)}) ≥ 0.
p(1) ← p(−1).
p(−1) ← p(1).

The interpretation M = {p(1), p(−1)} is a FLP-answer set of P6. We will show next that
P6 does not have an answer set according to our definition. It is possible to show9 that
the aggregate literal Sum({X | p(X)}) ≥ 0 has the following solutions with respect to BP =
{p(1), p(−1)}: 〈∅, {p(1), p(−1)}〉, 〈{p(1)}, {p(−1)}〉, 〈{p(1)}, ∅〉, and 〈{p(1), p(−1)}, ∅〉. The
unfolding of P6, unfolding(P6), consists of the following rules:

p(1) ← not p(1), not p(−1).
p(1) ← p(1), not p(−1).
p(1) ← p(1).
p(1) ← p(1), p(−1).
p(1) ← p(−1).
p(−1) ← p(1).

It is easy to see that unfolding(P6) does not have answer sets. Thus, P6 does not have
ASPA-answer sets. 2

8We would like to thank an anonymous reviewer of an earlier version of this paper who suggested this
example.

9We follow the common practice that the sum of an empty set is equal to 0.

22

Remark 1 If we replace in P6 the rule p(1) ← Sum({X | p(X)}) ≥ 0 with the intuitively
equivalent Smodels weight constraint rule

p(1) ← 0[p(1) = 1, p(−1) = −1].

we obtain a program that does not have answer sets in Smodels.

The above example shows that our characterization of programs with aggregates differs
from the proposal in [9]. Apart from the lack of support for aggregates in the heads of
rules, the semantics of [9] might accept answer sets that are not ASPA-answer sets. Remark
1 shows that our definition is closer to Smodels understanding of aggregates. As shown
earlier, our definition allows the use of aggregates in the head of rules, and thus is applicable
for logic programs with weight constraints, whereas it is unclear how to modify the definition
in [9] to accommodate this class of programs.

5.3 Stratified Programs

Various forms of stratification (e.g., lack of recursion through aggregates) have been pro-
posed to syntactically identify classes of programs that admit a unique minimal model, e.g.,
local stratification [21], modular stratification [21], and XY-stratification [35]. Efficient
evaluation strategies for some of these classes have been investigated (e.g., [14, 16]). Let us
show that the simpler notion of aggregate stratification leads to a unique ASPA answer set.
The program with aggregates P is aggregate-stratified if there is a function lev : ΠP 7→ N
such that, for each rule H ← L1, . . . , Lk in P ,

• lev(pred(H)) ≥ lev(pred(Li)) if Li is an ASP-atom;

• lev(pred(H)) > lev(pred(Ai)) if Li is the ASP-literal not Ai; and

• lev(pred(H)) > lev(p) if Li = P(s) is an aggregate literal with p as the predicate of
s.

The notion of perfect model is defined as follows.

Definition 16 (Perfect Model, [21]) The perfect model of an aggregate-stratified pro-
gram P is the minimal model M such that

• if M ′ is another model of P , then the extension of each predicate p of level 0 in M
is a subset of the extension of p in M ′

• if M ′ is another model of P such that M and M ′ agree on the predicates of all levels
up to i, then the extension of each predicate at level i + 1 in M is a subset of the
extension of the same predicate in M ′

From [17, 21] we learn that each aggregate-stratified program has a unique perfect model.
We will show next that ASPA-answer sets for aggregate-stratified programs are perfect
models.

Theorem 6 Let P be an aggregate-stratified program P . The following holds:

1. If M is an ASPA-answer set of P then M is the perfect model of P .

23

2. The perfect model of P is an ASPA-answer set of P .

Proof. The proof is fairly mechanical and it can be found in [31]. 2

The following corollary follows directly from the fact that an aggregate-stratified pro-
gram has a unique perfect model and the above theorem.

Corollary 5.2 Every aggregate-stratified program admits a unique ASPA-answer set.

We believe this equivalence can be easily proved for other forms of aggregate-stratification.

5.4 Monotonic Programs

The notion of monotonic programs has been introduced in [21], and later elaborated by
other researchers (e.g., [17, 28]), as another class of programs for which the existence of a
unique intended model is guaranteed, even in presence of recursion through aggregation.
The notion of monotonic programs, defined only for programs with aggregates and without
negation, is as follows.

Definition 17 (Monotonic Programs, [17]) Let F be a collection of base predicates and
B be an interpretation of F . A program P is monotonic with respect to B if, for each rule
r in ground(P) where pred(head(r)) /∈ F , and for all interpretations I and I ′, where
B ⊆ I ⊆ I ′, we have that I |= body(r) implies I ′ |= body(r).

We will follow the convention used in [28] of fixing the set of base predicates F to be equal
to the set of EDB predicates, i.e., it contains only predicates which do not occur in the head
of rules of P . This will also mean that B is fixed and B is true in every interpretation of
the program P . As such, instead of saying that P is monotonic with respect to B, we will
often say that P is monotonic whenever there is no confusion.

For a monotonic program P with respect to the interpretation B of a set of base predi-
cates F , the fixpoint operator, denoted by TB

P , is extended to include B as follows:

TB
P (I) = {head(r) | r ∈ ground(P), pred(head(r)) /∈ F, I ∪B |= body(r)}.

It can be shown that TB
P is monotonic and hence has a unique least fixpoint, denoted by

lfp(TB
P). We will next prove that monotonicity also implies uniqueness of ASPA-answer

sets. First, we prove a simple observation characterizing aggregate solutions in monotonic
programs.

Proposition 1 Let P be a monotonic program with respect to B and r be a rule in
ground(P). Assume that c ∈ agg(r) and Sc is a solution of c. Then, 〈Sc.p, ∅〉 is also
a solution of c.

Proof. Due to the monotonicity of P we have that M |= c for every interpretation M
satisfying the condition Sc.p ⊆ M . This implies that 〈Sc.p, ∅〉 is a solution of c. 2

Theorem 7 Let P ′ be a monotonic program w.r.t. B and let P = P ′ ∪ B. Then lfp(TB
P)

is an ASPA-answer set.

24

Proof. Let M = lfp(TB
P), Q = (unfolding(P))M , and M ′ = TQ ↑ ω. We will prove that

M = M ′. First of all, observe that B ⊆ M ∩M ′, since the elements of B are present as
facts in P . Since the predicates used in B do not appear as head of any other rule in P ′, in
the rest we can focus on the elements of M, M ′ which are distinct from B.

• M ′ ⊆ M : we prove by induction on k that TQ ↑ k ⊆ M . The result is obvious for
k = 0. Assume that TQ ↑ k ⊆ M and consider p ∈ TQ(TQ ↑ k). This implies that
there is a rule r′ ∈ Q such that p = head(r′) and pos(r′) ⊆ TQ ↑ k ⊆ M . This
means that there exists a rule r ∈ ground(P) and a sequence of aggregate solutions
〈Sc〉c∈agg(r) such that r′ is obtained from r′′, which is the unfolding of r with respect
to 〈Sc〉c∈agg(r), by removing neg(r′′) from its body, i.e., neg(r′′)∩M = ∅. This implies
that

– head(r) = head(r′)
– pos(r′) = pos(r′′) = pos(r) ∪⋃

c∈agg(r) Sc.p and pos(r′) ⊆ TQ ↑ k ⊆ M

– neg(r′′) =
⋃

c∈agg(r) Sc.n and neg(r′′) ∩M = ∅.
This implies that M |= c for every c ∈ agg(r) and pos(r) ⊆ M . This allows us to
conclude that M |= body(r). By the definition of TB

P ′ , we have that p = head(r) ∈ M .

• M ⊆ M ′: we will show that TB
P ↑ k ⊆ M ′ for k ≥ 0. We prove this by induction

on k. The result is obvious for k = 0. Assume that TB
P ↑ k ⊆ M ′. Consider

p ∈ TB
P (TB

P ↑ k). This implies the existence of a rule r ∈ ground(P) such that
head(r) = p and TB

P ↑ k |= body(r). This means that pos(r) ⊆ TB
P ↑ k ⊆ M ′ and

TB
P ↑ k |= c for every c ∈ agg(r). From Proposition 1, we know that there exists a

sequence of aggregate solutions 〈Sc〉c∈agg(r) such that Sc.n = ∅ and Sc.p ⊆ TB
P ↑ k.

This implies that r′, the unfolding of r with respect to 〈Sc〉c∈agg(r), is a rule in Q and
body(r′) ⊆ M ′. Hence, p = head(r) = head(r′) ∈ M ′.

The above results allow us to conclude that M = M ′. 2

Since lfp(TB
P) is unique, we have the following.

Corollary 5.3 Every monotonic program admits exactly one ASPA-answer set.

5.5 Logic Programs with Weight Constraints

Let us consider the weight constraints employed by Smodels and let us describe a transla-
tion method to convert them into our language with aggregates. To start with, we will focus
on weight constraint that are used in the body of rules (see Sect. 4.2 for aggregates in the
heads of rules). For simplicity, we will also focus on weight constraints with non-negative
weights (the generalization can be obtained through algebraic manipulations, as described
in [22]). A ground weight constraint c has the form:10

L ≤ {p1=w1, . . . , pn=wn, not r1=v1, . . . , not rm=vm} ≤ U

where pi, rj are ground atoms, and wi, vj , L, U are numeric constants. pi’s and not rj ’s
are called literals of c. lit(c) denotes the set of literals of c. The local weight function

10Note that grounding removes Smodels’ conditional literals.

25

of a constraint c, w(c), returns the weight of its literals. For example, w(c)(pi) = wi and
w(c)(not ri) = vi. The weight of a weight constraint c in a model S, denoted by W (c, S),
is given by

W (c, S) =
∑

p∈lit(c), p∈S

w(c)(p) +
∑

not q∈lit(c), q /∈S

w(c)(not p).

We will now show how weight constraints in Smodels can be translated into aggregates
in our language. For each weight constraint c, let agg+

c and agg−c be two new predicates
which do not belong to the language of P . Let r(c) be the set of following rules:

agg+
c (1, w1) ← p1. · · · agg+

c (n,wn) ← pn.
agg−c (1, v1) ← r1. · · · agg−c (m, vm) ← rm.

Intuitively, agg+
c , agg−c assign a specific weight to each literal originally present in the weight

constraint. The weight constraint itself is replaced by a conjunction τ(c):

τ(c) =
Sum({{X | ∃Y.agg+

c (Y, X)}}) = S+∧
Sum({{X | ∃Y.agg−c (Y, X)}}) = S−∧

L ≤ S+ +
∑m

i=1 vi − S− ≤ U

where Sum is an aggregate function with its usual meaning.
Given a Smodels program P , let τ(P) be the program obtained from P by replacing

every weight constraint c in P with τ(c) and adding the set of rules r(P) to P where
r(P) =

⋃
c is an weight constraint in P r(c). For each set of atoms S, let us denote with Ŝ =

S ∪ Tr(P)(S).11 We have that

Ŝ =
S ∪ {agg+

c (i, wi) | c is a weight constraint in P, pi = wi ∈ c, pi ∈ S}
∪ {agg−c (i, vi) | c is a weight constraint in P, not qi = vi ∈ c, qi ∈ S}. (2)

This implies the following lemma.

Lemma 4 Let S be a set of atoms and c be a weight constraint. For Ŝ = S ∪ Tr(P)(S),

W (c, S) = Sum({{X | ∃Y.agg+
c (Y, X)}}Ŝ) +

m∑

i=1

vi − Sum({{X | ∃Y.agg−c (Y, X)}}Ŝ)

Proof. Follows directly from Equation 2 and the definition of W (c, S). 2

Corollary 5.4 Given a set of atoms S and a weight constraint c, S |= c iff Ŝ |= τ(c).

The next theorem relates P and τ(P).

Theorem 8 Let P be a ground Smodels program with weight constraints only in the body
and with no negative literals in the weight constraints. Let τ(P) be its translation to aggre-
gates. It holds that

1. if S is a Smodels answer set of P then Ŝ is an ASPA-answer set of τ(P);
11Tr(P) is the immediate consequence operator of program r(P).

26

2. if Ŝ is an ASPA-answer set of τ(P) then Ŝ ∩ lit(P) is a minimal Smodels answer
set of P .

Proof. Since negation-as-failure literals can be replaced by weight constraints, without the
lost of generality, we can assume that P is a positive program with weight constraints. Let
S be a set of atoms and R be the Smodels reduct of P with respect to S. Furthermore,
let Q = (unfolding(τ(P)))Ŝ . Using Corollary 5.4, we can prove by induction on k that if
S is a Smodels answer set of P (resp. Ŝ is an answer set of τ(P)) then

1. TQ ↑ k ⊆ ̂(TR ↑ k) for k ≥ 0

2. TR ↑ k ⊆ (TQ ↑ k) ∩ lit(P) for k ≥ 0

This proves the two items of the theorem. 2

The following example, used in [26] to show that Smodels-semantics for weight con-
straints is counter-intuitive in some cases, shows that the equivalence does not hold when
negative literals are allowed in the weight constraint.

Example 10 Let us consider the Smodels program P6

p(0) ← {not p(0) = 1}0.

According to the semantics described in [22], we can observe that, for S = ∅, the reduct PS
6

is ∅ making it an answer set of P6. For S = {p(0)}, the reduct PS
6 is

p(0).

thus making {p(0)} an answer set of P6.
On the other hand, the intuitively equivalent program using aggregates (we make use of

the obvious extension that allows negations in the aggregate) is:

p(0) ← Count({X | not p(X)}) ≤ 0.

The unfolding of this program is
p(0) ← p(0).

which has the single answer set ∅.

5.6 Logic Program with Abstract Constraint Atoms

A very general semantic characterization of programs with aggregates has been proposed
by Marek et al. in [20]. The framework offers a model where general aggregates can be
employed both in the body and in the head of rules. The authors introduce the notion
of abstract constraint atom, C(X), where C is a set of sets of atoms (the solutions of the
aggregate) and X is a set of atoms. An interpretation M satisfies C(X) if X ∩ M ∈ C.
In particular, the focus is only on monotonic constraints, i.e., constraints C(X) where if
A ∈ C then all supersets of A are also in C. A program is composed of rules of the form

B0(X) :−B1(X1), . . . , Bn(Xn), not Bn+1(Y1), . . . , not Bn+m(Ym)

27

where each Bi (i ≥ 0) is an abstract constraint atom. The semantics of this language is
developed as a generalization of answer set semantics [20].

It is possible to show that the semantics of [20] differs from our proposal (and it is,
instead, closer to the semantics of [9]). Consider the set of atoms At = {p(1), p(−1)} and the
abstract aggregate constraints C = {∅, {p(1)}, {p(1), p(−1)}} and UAt = {X ⊆ At |X 6= ∅}
which are clearly monotonic. We define the program

UAt(p(1)) :− C({p(1), p(−1)}).
UAt(p(1)) :− UAt(p(−1)).
UAt(p(−1)) :− UAt(p(1)).

This program is intuitively equivalent to the program of Example 9. Let us consider M =
{p(1), p(−1)}. The reduct of this program corresponds to the program itself, since there
are no negated atoms. Let us show that M is a derivable model according to [20]; let us
consider the P -computation:

X0 = ∅ Tnd
P (∅) = {{p(1)}, {p(1), p(−1)}}

X1 = {p(1)} Tnd
P ({p(1)}) = {{p(1), p(−1)}}

X2 = {p(1), p(−1)} Tnd
P ({p(1), p(−1)}) = {{p(1), p(−1)}}

X3 = {p(1), p(−1)}
Thus M = {p(1), p(−1)} is a derivable model of the program, and thus it is also a stable
model of P according to [20].

5.7 Answer Sets for Propositional Theories

The proposal of Ferraris [10] applies a novel notion of reduct and answer sets, developed for
propositional theories, to the case of aggregates containing arbitrary formulae. The intuition
behind the notion of satisfaction of an aggregate relies on translating the aggregate to a
propositional formula that guarantees that all cases where the aggregate is false are ruled
out. In particular, for an aggregate of the form F ({α1 = w1, . . . , αk = wk})¯ R, where αi

are propositional formulae, wj and R are real numbers, F is a function from multisets of real
numbers to R∪ {+∞,−∞}, and ¯ is a relational operator (e.g., ≤, 6=), the transformation
leads to the propositional formula:

∧

I ⊆ {1, . . . , k}
F ({wi | i ∈ I}) 6¯R




(∧

i∈I

αi

)
⇒


 ∨

i∈{1,...,k}\I
αi







The results in [10] show that the new notion of reduct, along with this translation for
aggregates, applied to the class of logic programs with aggregates of [9], captures exactly
the class of FLP-answer sets.

5.8 Other Proposals

Another semantic characterization of aggregates that has been adopted by several re-
searchers [2, 7, 13, 17] can be simply described as follows. Given a program P and an
interpretation M , let G(M, P) be the program obtained by:

28

(i) removing all the rules with an aggregate or a negation-as-failure literal which is false
in M ; and

(ii) removing all the remaining aggregates and negation-as-failure literals.

M is a stable set of P if M is the least model of G(M, P). We can prove the following
result.

Theorem 9 Let P be a program with aggregates. If M is an ASPA-answer set of P , then
M is a stable set of P .

Proof: The proof can be found in [31]. 2

The converse is not true in general, since stable sets could be not subset-minimal. For
example, the program P2 in Example 3 has {p(1), p(2), p(3), p(5), q} as a stable set.

A somewhat different direction has been explored in [3]. The semantics proposed in [3]
relies on approximation theory, and does not in general coincide with answer set semantics
on normal programs. The work in [26] addresses this problem and provides a new semantics
for aggregate programs which guarantees minimality of total answer sets, as in our case.
We discussed the relationship between the work in [26] and ours in Subsection 5.1.

6 Discussions

In this section, we present a program with aggregates in which the unfolding transformation
(as well as the translation discussed in [24]) is not applicable. We also briefly discuss the
computational complexity issues related to the class of logic programs with aggregates.

6.1 A Limitation of the Unfolding Transformation

The key idea of our approach lies in that, if an aggregate literal is satisfied in an inter-
pretation, one of its solutions must be satisfied. Since our main interest is in the class of
programs whose answer sets can be computed by currently available answer set solvers,
we are mainly concerned with finite programs and aggregate literals with finite solutions.
Here, by a finite solution we mean a solution S whose components S.p and S.n are finite sets
of atoms. Certain modifications to our approach might be needed to deal with programs
with infinite domains which can give raise to infinite solutions. For example, consider the
program P8 which consists of the rules:

q ← Sum(X | p(X)) ≥ 2.
p(X/2) ← p(X).
p(0). p(1).

It is easy to see that the aggregate literal c = Sum(X | p(X)) ≥ 2 has two aggregate
solutions, S = 〈Q, ∅〉 and T = 〈Q\{p(0)}, ∅〉, where Q = {p(1/(2i)) | i = 0, 1, . . . , }∪{p(0)}.
Both solutions are infinite. As such, the unfolded version of program P8 is no longer a normal
logic program—in the sense that it contains some rules whose body is not a finite set of
ASP-literals. Presently, it is not clear how answer sets of such programs should be defined.

29

In [30], we provide an alternative (equivalent) definition of ASPA answer sets which
utilizes the notion of solutions but does not employ the unfolding transformation. This
semantics yields the intuitive answer for P8.

6.2 Computational Complexity

Our main goal in this paper is to develop a framework for dealing with aggregates in Answer
Set Programming. As we have demonstrated in Section 3.3, the proposed semantics can
be easily integrated to existing answer set solvers. In [30], we proved that the complexity
of checking the existence of an answer set of a program with aggregates depends on the
complexity of evaluating aggregate literals and on the complexity of checking aggregate
solutions. In particular, we proved that there are large classes of programs, making use
of the standard aggregate functions (e.g., Sum, Min), for which the answer set checking
problem is tractable and the problem of determining the existence of an answer set is in
NP. These results are in line with similar results presented in [24].

7 Conclusions and Future Works

In this paper, we presented a novel characterization of aggregates in logic programming.
Our definition is based on a translation process, which reduces programs with aggregates
to normal logic programs. We showed that our approach naturally extends and subsumes
many of the existing proposals. We also showed how our approach can be extended to deal
with aggregates as heads of rules. We discussed the basic ideas for an implementation based
on standard answer set solvers and described ASPA, a system capable of computing answer
sets of program with aggregates.

As we noticed in this work, there are some subtle differences between distinct semantic
characterizations recently proposed for logic programming with aggregates; as future work,
we propose to investigate formalization of semantics of aggregates that can be parameter-
ized in such a way to cover the most relevant proposals. Our immediate future work is also
to investigate whether our alternative characterization for answer sets, based on unfolding
w.r.t. a given interpretation, might be used to improve the performance of our implemen-
tation. We also plan to extend our implementation to consider the class of logic programs
with aggregates in the heads of rules.

Acknowledgments

We would like to thank Vladimir Lifschitz and Michael Gelfond for the numerous discus-
sions, related to the topics of this paper. We also wish to thanks the anonymous referees
of a preliminary version of this work, for their insightful comments. The authors have
been supported by the NSF grants CNS-0220590, CNS-0454066, and HRD-0420407. The
description of the system ASPA has been presented in [8].

30

References

[1] D. Chan. An Extension of Constructive Negation and its Application in Coroutining. In
North American Conference on Logic Programming, pages 477–493. MIT Press, 1989.

[2] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Functions in
Disjunctive Logic Programming: Semantics, Complexity, and Implementation in DLV.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI), pages 847–852, 2003.

[3] M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate Well-founded and Stable Se-
mantics for Logic Programs with Aggregates. In International Conference Logic Pro-
gramming, pages 212–226. Springer Verlag, 2001.

[4] A. Dovier, E. Pontelli, and G. Rossi. Constructive Negation and Constraint Logic
Programming with Sets. New Generation Computing, 19(3):209–256, 2001.

[5] A. Dovier, E. Pontelli, and G. Rossi. Intensional Sets in CLP. In International Con-
ference on Logic Programming, pages 284–299. Springer Verlag, 2003.

[6] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv:
Progress Report, Comparisons, and Benchmarks. In Int. Conf. on Principles of Knowl-
edge Representation and Reasoning, pages 406–417, Morgan Kaufmann, 1998.

[7] I. Elkabani, E. Pontelli, and T. C. Son. Smodels with CLP and its Applications: a
Simple and Effective Approach to Aggregates in ASP. In International Conference on
Logic Programming, pages 73–89. Springer Verlag, 2004.

[8] I. Elkabani, E. Pontelli, and T. C. Son. SmodelsA – A System for Computing Answer
Sets of Logic Programs with Aggregates. In LPNMR, pages 427–431. Springer Verlag,
2005.

[9] W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates in Disjunctive Logic Pro-
grams: Semantics and Complexity. In JELIA, Springer Verlag, pages 200–212, 2004.

[10] P. Ferraris. Answer Sets for Propositional Theories. In LPNMR, Springer Verlag, pp.
119–131, 2005.

[11] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
International Conf. and Symp. on Logic Programming, MIT Press, pages 1070–1080,
1988.

[12] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–387, 1991.

[13] M. Gelfond. Representing Knowledge in A-Prolog. In Computational Logic: Logic
Programming and Beyond, Springer Verlag, pages 413–451, 2002.

[14] S. Greco. Dynamic Programming in Datalog with Aggregates. IEEE TKDE, 11(2):265–
283, 1999.

31

[15] M. Heidt. Developing an Inference Engine for ASET-Prolog. Master Thesis, University
of Texas at El Paso, 2001.

[16] D. B. Kemp and K. Ramamohanarao. Efficient Recursive Aggregation and Negation
in Deductive Databases. IEEE TKDE, 10(5):727–745, 1998.

[17] D. B. Kemp and P. J. Stuckey. Semantics of Logic Programs with Aggregates. In ISLP,
MIT Press, pages 387–401, 1991.

[18] Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver Enhanced to
Non-tight Programs. In LPNMR, Springer Verlag, pages 346–350, 2004.

[19] F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of A Logic Program By SAT
Solvers. In AAAI, 112–117, 2002.

[20] V.W. Marek and M. Truszczynski. Logic Programs with Abstract Constraint Atoms.
In AAAI, pp. 86–91, 2004.

[21] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The Magic of Duplicates and Ag-
gregates. In 16th International Conference on Very Large Data Bases, pages 264–277.
Morgan Kaufmann, 1990.

[22] I. Niemelä and P. Simons. Extending the Smodels System with Cardinality and Weight
Constraints. In Logic-based Artificial Intelligence, pages 491–521. Kluwer Academic
Publishers, 2000.

[23] I. Niemelä and P. Simons. Smodels - An Implementation of the Stable Model and Well-
founded Semantics for Normal Logic Programs. In LPNMR, Springer Verlag, pages
420–429, 1997.

[24] N. Pelov. Semantic of Logic Programs with Aggregates. PhD thesis, Katholieke Uni-
versiteit Leuven, 2004.

[25] N. Pelov, M. Denecker, and M. Bruynooghe. Translation of Aggregate Programs to
Normal Logic Programs. In ASP 2003, Answer Set Programming: Advances in Theory
and Implementation), vol 78, CEUR Workshop, pages 29–42, 2003.

[26] N. Pelov, M. Denecker, and M. Bruynooghe. Partial Stable Models for Logic Pro-
grams with Aggregates. In International Conference on Logic Programming and Non-
monotonic Reasoning, pages 207–219. Springer Verlag, 2004.

[27] A. Pettorossi and M. Proietti. Transformation of Logic Programs. In Handbook of
Logic in Artificial Intelligence, pages 697–787. Oxford University Press, 1998.

[28] K. A. Ross and Y. Sagiv. Monotonic Aggregation in Deductive Database. J. Comput.
Syst. Sci., 54(1):79–97, 1997.

[29] A. Roychoudhury, K. Kumark, C.R. Ramakrishnan, and I.V. Ramakrishnan. An Un-
fold/Fold Transformation Framework for Definite Logic Programs. ACM Transactions
on Programming Languages and Systems, 26(3):464–509, 2004.

32

[30] T. C. Son and E. Pontelli. A Constructive Semantic Characterization of Aggregates in
Answer Set Programming. Technical Report NMSU-CS-2005-007, New Mexico State
University, 2005. www.cs.nmsu.edu/~tson/papers/agg-007.pdf

[31] T. C. Son, E. Pontelli, and I. Elkabani. A Translational Semantics for Aggregates in
Logic Programming. Technical Report NMSU-CS-2005-005, New Mexico State Uni-
versity, 2005. www.cs.nmsu.edu/~tson/papers/agg-005.pdf

[32] P.J. Stuckey. Negation and Constraint Logic Programming. Information & Computa-
tion, 118(1):12–33, 1995.

[33] H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In Interna-
tional Conference on Logic Programming, pages 127–138, 1984.

[34] A. Van Gelder. The well-founded semantics of aggregation. In PODS, 127–138. ACM
Press, 1992.

[35] C. Zaniolo, N. Arni, and K. Ong. Negation and Aggregates in Recursive Rules: the
LDL++ Approach. In DOOD, ACM Press, pages 204–221, 1993.

33

