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In this paper we consider three different kinds of domain-dependent control knowledge (temporal,
procedural and HTN-based) that are useful in planning. Our approach is declarative and relies
on the language of logic programming with answer set semantics (AnsProlog*). AnsProlog* is
designed to plan without control knowledge. We show how temporal, procedural and HTN-
based control knowledge can be incorporated into AnsProlog* by the modular addition of a small
number of domain-dependent rules, without the need to modify the planner. We formally prove
the correctness of our planner, both in the absence and presence of the control knowledge. Finally,
we perform some initial experimentation that demonstrates the potential reduction in planning
time that can be achieved when procedural domain knowledge is used to solve planning problems
with large plan length.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Plan generation; I.2.3 [Artificial Intelligence]: Deduction and Theo-
rem Proving—Logic programming; I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Representation languages

General Terms: Planning, Control Knowledge, Answer Set Planning

Additional Key Words and Phrases: Reasoning about actions, Procedural knowledge

1. INTRODUCTION AND MOTIVATION

The simplest formulation of planning – referred to as classical planning – entails
finding a sequence of actions that takes a world from a completely known initial
state to a state that satisfies certain goal conditions. The inputs to a corresponding
planner are the descriptions (in a compact description language such as STRIPS
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[Fikes and Nilson 1971]) of the effects of actions on the world, the description of the
initial state and the description of the goal conditions, and the output is a plan (if
it exists) consisting of a sequence of actions. The complexity of classical planning
is known to be undecidable in the general case [Chapman 1987; Erol et al. 1995]. It
reduces to PSPACE-complete for finite and deterministic domains [Bylander 1994].
By making certain assumptions such as fixing the length of plans, and requiring
actions to be deterministic the complexity reduces to NP-complete.

The ability to plan is widely recognized to be an important characteristic of an
intelligent entity. Thus, when developing intelligent systems, we often need to in-
corporate planning capabilities, despite their inherent complexity. Since the com-
plexity is due to the exponential size of the search space, planning approaches that
overcome this complexity require efficient and intelligent search. This is at the
crux of three common and successful approaches to planning: (i) using heuristics
[Bonet and Geffner 2001; Hoffmann and Nebel 2001; Blum and Furst 1997] that
are derived from the problem description, (ii) translating the planning problem
into a model finding problem in a suitable logic and using model finding techniques
for that logic [Kautz and Selman 1998a], and (iii) using domain-dependent control
knowledge1 [Bacchus and Kabanza 2000; Doherty and Kvarnstom 1999; Nau et al.
1999]. The use of domain-dependent control knowledge has led to several successful
planners, including TLPlan [Bacchus and Kabanza 2000], TALplan [Doherty and
Kvarnstom 1999] and SHOP [Nau et al. 1999], which have performed very well
on planning benchmarks. Strictly speaking, planners that use control knowledge
are no longer considered to be classical planners since they require the addition of
domain-dependent control knowledge to the problem specification. Nevertheless,
such planners are predicted to be the most scalable types of planning systems in
the long term [Wilkins and desJardines 2001]. In this paper we integrate the sec-
ond and the third approaches identified above by translating a planning problem
with domain-dependent control knowledge into a problem of model finding in logic
programming.

We integrate domain-dependent control knowledge into our planner in such a way
that planning can still be performed without this extra control knowledge. The
control knowledge may simply improve the speed with which a plan is generated
or may result in the generation of plans with particular desirable characteristics.
In this respect2 our approach is similar in spirit to the planning systems TLPlan
[Bacchus and Kabanza 2000], and TALplan [Doherty and Kvarnstom 1999], but
differs from typical Hierarchical Task Network (HTN) planners (e.g., SHOP [Nau
et al. 1999]) because HTN planners require integration of domain-dependent control

1This is alternatively referred to in the literature as ‘domain-dependent knowledge’, ‘control knowl-
edge’, ‘domain knowledge’, and ‘domain constraints’. We also sometimes use these shortened terms
in this paper.
2We differ from [Bacchus and Kabanza 2000] in another aspect. Unlike in [Bacchus and Kabanza
2000] where the domain knowledge is used by the search program thus controlling the search, our
domain knowledge is encoded as a logic program which is directly added to the logic program
encoding planning. In such an approach there is no guarantee that the added rules will reduce
the search during answer set computation; although our experimentation shows that it does for
large plan lengths. The paper [Huang et al. 1999] also comments on this aspect.
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knowledge into the specification of the planning problem. As such, HTN planning
cannot be performed without the existence of this knowledge, unlike our planner.

In this paper, we explore three kinds of domain control knowledge: temporal knowl-
edge, procedural knowledge, and HTN-based knowledge. Our treatment of tempo-
ral knowledge is similar to that used in both the TLPlan and TALplan systems. Our
formulation of procedural knowledge is inspired by GOLOG, referred to alterna-
tively as a logic programming language, or an action execution language [Levesque
et al. 1997]. Although our procedural knowledge is similar to the syntax of a
GOLOG program, how this knowledge is used in planning is quite different. Simi-
larly, our formulation of HTN-based knowledge is inspired by the partial-ordering
constructs used in HTN planners, but our use of this type of knowledge during
planning is very different from the workings of HTN planners. The main difference
is that both GOLOG programming and HTN planning rely on the existence of
domain-dependent control knowledge within the problem specification and cannot
perform classical planning in the absence of this knowledge. In contrast, our ap-
proach, which is similar to the approach in [Bacchus and Kabanza 2000], separates
the planner module from the domain knowledge (encoding temporal, procedural,
or HTN-based knowledge), and can plan independent of the domain knowledge.

To achieve our goal of planning using domain-dependent control knowledge, an
important first step is to be able to both reason about actions and their effects on the
world, and represent and reason about domain-dependent control knowledge. This
leads to the question of choosing an appropriate language for both reasoning and
representation tasks. For this we choose the action language B from [Gelfond and
Lifschitz 1998] and the language of logic programming with answer set semantics
(AnsProlog*) [Baral 2003], also referred to as A-Prolog [Gelfond and Leone 2002].
We discuss our choice on B in Section 2. We selected AnsProlog* over other action
languages for a number of important reasons, many of which are listed below. These
points are elaborated upon in [Baral 2003].

—AnsProlog* is a non-monotonic language that is suitable for knowledge repre-
sentation. It is especially well-suited to reasoning in the presence of incomplete
knowledge.

—The non-classical constructs give a structure to AnsProlog* programs and state-
ments, such as a head and a body, which allows us to define various subclasses of
the language, each with different complexity and expressivity properties [Dantsin
et al. 2001]. The subclass of AnsProlog* programs in which no classical negation
is allowed has the same complexity as propositional logic, but with added ex-
pressivity. The most general class of AnsProlog* programs, which allows “or” in
the head, has the complexity and expressivity of the seemingly more complicated
default logic [Reiter 1980]. In general, AnsProlog* is syntactically simpler than
other non-monotonic logics while equally as expressive as many.

—There exists a sizable body of “building block” results about AnsProlog* which
we may leverage both in knowledge representation tasks and in the analysis of
the correctness of the representations. This includes result about composition of
several AnsProlog* programs so that certain original conclusions are preserved
(referred to as ‘restricted monotonicity’), a transformation of a program so that it
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can deal with incomplete information, abductive assimilation of new knowledge,
language independence and tolerance, splitting an AnsProlog* program to smaller
components for computing its answer sets, and proving properties about the
original program.

—There exist several efficient AnsProlog* interpreters [Eiter et al. 1998; Simons
et al. 2002] and AnsProlog* has been shown to be useful in several application
domains other than knowledge representation and planning. This includes policy
description, product configuration, cryptography and encryption, wire routing,
decision support in a space shuttle and its ‘if’–‘then’ structure has been found to
be intuitive for knowledge encoding from a human expert point of view.

—Finally, AnsProlog* has already been used in planning [Subrahmanian and Zan-
iolo 1995; Dimopoulos et al. 1997; Lifschitz 1999b], albeit in the absence of
domain-dependent control knowledge. In this regard AnsProlog* is suitable for
concisely expressing the effects of actions and static causal relations between flu-
ents. Note that concise expression of the effects of actions requires addressing
the ‘frame problem’ which was one of the original motivation behind the devel-
opment of non-monotonic logics. Together with its ability to enumerate possible
action occurrences AnsProlog* is a suitable candidate for model-based planning,
and falls under category (ii) (above) of successful approaches to planning.

As evident from our choice of language, our main focus in this paper is the knowl-
edge representation aspects of planning using domain-dependent control knowledge.
In particular, our concerns includes:

—the ease of expressing effects of actions on the world, and reasoning about them,
—the ease of expressing and reasoning about various kinds of domain constraints,
—the ease of adding new kinds of domain constraints, and
—correctness results for the task of planning using an AnsProlog* representation

that includes domain constraints.

We also perform a limited number efficiency experiments, but leave more detailed
experimentation to future work.

With the above focus, the contributions of the paper and the outline of the paper
is as follows:

(1) In Section 3 we encode planning (without domain constraints) using AnsPro-
log* in the presence of both dynamic effects of actions and static causal laws,
and with goals expressed as a conjunction of fluent literals. We then formally
prove the relationship between valid trajectories of the action theory and an-
swer sets of the encoded program. Our approach is similar to [Lifschitz and
Turner 1999; Eiter et al. 2000] but differs from [Subrahmanian and Zaniolo
1995; Dimopoulos et al. 1997; Lifschitz 1999b]. The main difference between
our formulation and earlier AnsProlog* encodings in [Subrahmanian and Zan-
iolo 1995; Dimopoulos et al. 1997; Lifschitz 1999b] is in our use of static causal
laws, and our consideration of trajectories instead of plans. Our trajectories
are similar to histories in [Lifschitz and Turner 1999] and to optimistic plans
in [Eiter et al. 2000]. The reason we relate answer sets to trajectories rather
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than relating them to plans is because in the presence of static causal laws the
effects of actions may be non-deterministic.

(2) In Section 4.1 we show how to incorporate temporal constraints for planning
into our formulation of the planning problem. Incorporating temporal con-
straints simply requires the addition of a few more rules, illustrating the declar-
ative nature and elaboration tolerance of our approach. We define formulas for
representing temporal constraints and specify when a trajectory satisfies a tem-
poral constraint. We then formally prove the relationship between valid tra-
jectories of the action theory satisfying the temporal constraints, and answer
sets of the updated program. Our approach differs from [Bacchus and Ka-
banza 2000; Doherty and Kvarnstom 1999] in that we use AnsProlog* for both
the basic encoding of planning and the temporal constraints, while the plan-
ners in [Bacchus and Kabanza 2000; Doherty and Kvarnstom 1999] are written
in procedural languages. Preliminary experiments show that our approach is
less efficient than TLPlan and TALPlan. Nevertheless, both these systems are
highly optimized, so the poorer performance may simply reflect the lack of op-
timizations in our implementation. On the other hand, our use of AnsProlog*
facilitates the provision of correctness proofs, which is one of our major con-
cerns. Neither of [Bacchus and Kabanza 2000; Doherty and Kvarnstom 1999]
provide correctness proofs of their planners.

(3) In Section 4.2 we consider the use of procedural domain knowledge in planning.
An example of a procedural domain knowledge is a program written as a1; a2;
(a3 | a4 | a5);f?. This program tells the planner that it should make a plan
where a1 is the first action, a2 is the second action and then it should choose
one of a3, a4 or a5 such that after the plan’s execution f will be true.

We define programs representing procedural domain knowledge and specify
when a trajectory is a trace of such a program. We then show how to incorpo-
rate the use of procedural domain knowledge in planning to the initial planning
formulation described in item (1.). As in (2.) the incorporation involves only
the addition of a few more rules. We then formally prove the relation between
valid trajectories of the action theory satisfying the procedural domain knowl-
edge, and answer sets of the updated program. We also present experimental
results (Section 4.4) showing the improvement in planning time due to using
such knowledge over planning in the absence of such knowledge.

(4) In Section 4.3 we motivate the need for additional constructs from HTN plan-
ning to express domain knowledge and integrate features of HTNs with proce-
dural constructs to develop a more general language for domain knowledge. We
then define trace of such general programs and show how to incorporate them
in planning. We then formally prove the relation between valid trajectories of
the action theory satisfying the general programs containing both procedural
and HTN constructs, and answer sets of the updated program. To the best
of our knowledge this is the first time an integration of HTN and procedural
constructs has been proposed for use in planning.

(5) As noted above, a significant contribution of our work is the suite of correctness
proofs for our AnsProlog* formulations. All the proofs appear in Appendix A.
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For completeness Appendix B presents results concerning AnsProlog* that we
use in the Appendix A proofs.

In regards to closely related work, although satisfiability planning (see e.g., [Kautz
and Selman 1992; Kautz et al. 1994; Kautz and Selman 1996; 1998a]) has been
studied quite a bit, those papers do not have correctness proofs and do not use the
varied domain constraints that we use in this paper.

We now start with some preliminaries and background material about reasoning
about actions and AnsProlog*, which will be used in the rest of the paper.

2. PRELIMINARIES AND BACKGROUND

In this section, we review the basics of the action description language B, the answer
set semantics of logic programs (AnsProlog), and key features of problem solving
using AnsProlog.

2.1 Reasoning about actions: the action description language B
Recall that planning involves finding a sequence of actions that takes a world from
a given initial state to a state that satisfies certain goal conditions. To do planning,
we must first be able to reason about the impact of a single action on a world.
This is also the first step in ‘reasoning about actions’. In general, reasoning about
action involves defining a transition function from states (of the world) and actions
to sets of states where the world might be after executing the action. Since explicit
representation of this function would require exponential space in the size of the
number of fluents (i.e., properties of the world), actions and their effects on the
world are described using an action description language, and the above mentioned
transition function is implicitly defined in terms of that description. In this paper,
we adopt the language B [Gelfond and Lifschitz 1998], which is a subset of the
language proposed in [Turner 1997], for its simple syntax and its capability to rep-
resent relationships between fluents, an important feature lacking in many variants
of the action description language A [Gelfond and Lifschitz 1993]. We note that
the main results of this paper can be used in answer set planning systems which
use other languages for representing and reasoning about the effects of actions.

We now present the basics of the action description language B. An action theory
in B is defined over two disjoint sets, a set of actions A and a set of fluents F, which
are defined over a signature σ = 〈O,AN,FN〉 where

—O is a finite set of object constants;
—AN is a finite set of action names, each action name is associated with a number

n, n ≥ 0, which denotes its arity; and
—FN is a finite set of fluent names, each fluent name is associated with a number

n, n ≥ 0, which denotes its arity.

An action in A is of the form a(c1, . . . , cn) where a ∈ AN is a n-ary action name
and ci is a constant in O. A fluent in F is of the form f(c1, . . . , cm) where f ∈ FN
is an m-ary fluent name and ci is a constant in O. For simplicity, we often write a
and f to represent an action or a fluent whenever it is unambiguous. Furthermore,
we will omit the specification of σ when it is clear from the context.
ACM Transactions on Computational Logic, Vol. V, No. N, August 2006.
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A fluent literal is either a fluent f ∈ F or its negation ¬f . A fluent formula is a
propositional formula constructed from fluent literals. An action theory is a set of
propositions of the following form:

caused({p1, . . . , pn}, f) (1)
causes(a, f, {p1, . . . , pn}) (2)

executable(a, {p1, . . . , pn}) (3)
initially(f) (4)

where f and pi’s are fluent literals and a is an action. (1) represents a static causal
law, i.e., a relationship between fluents3. It conveys that whenever the fluent literals
p1, . . . , pn hold in a state, that causes f to also hold in that state. (2), referred to
as a dynamic causal law, represents the (conditional) effect of a while (3) encodes
an executability condition of a. Intuitively, an executability condition of the form
(3) states that a can only be executed if pi’s holds. A dynamic law of the form
(2) states that f is caused to be true after the execution of a in any state of the
world where p1, . . . , pn are true. Propositions of the form (4) are used to describe
the initial state. They state that f holds in the initial state.

An action theory is a pair (D, Γ) where Γ, called the initial state, consists of propo-
sitions of the form (4) and D, called the domain description, consists of propositions
of the form (1)-(3). For convenience, we sometimes denote the set of propositions
of the form (1), (2), and (3) by DC , DD, and DE , respectively.

Example 2.1. Let us consider a modified version of the suitcase s with two
latches from [Lin 1995]. We have a suitcase with two latches l1 and l2. l1 is up
and l2 is down. To open a latch (l1 or l2) we need a corresponding key (k1 or
k2, respectively). When the two latches are in the up position, the suitcase is
unlocked. When one of the latches is down, the suitcase is locked. The signature
of this domain consists of

—O = {l1, l2, s, k1, k2};
—AN = {open, close}, both action names are associated with the number 1, and

—FN = {up, locked, holding}, all fluent names are associated with the number 1.

In this domain, we have that

A = {open(l1), open(l2), close(l1), close(l2)}
and

F = {locked(s), up(l2), up(l1), holding(k1), holding(k2)}.
We now present the propositions describing the domain.

3A constraint between fluents can also be represented using static causal laws. For example, to
represent the fact that a door cannot be opened and closed at the same time, i.e. the fluents
opened and closed cannot be true at the same time, we introduce a new fluent, say inconsistent,
and represent the constraint by two static causal laws caused({opened, closed}, inconsistent) and
caused({opened, closed},¬inconsistent).
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Opening a latch puts it into the up position. This is represented by the dynamic
laws:

causes(open(l1), up(l1), {}) and causes(open(l2), up(l2), {}).
Closing a latch puts it into the down position. This can be written as:

causes(close(l1),¬up(l1), {}) and causes(close(l2),¬up(l2), {}).
We can open the latch only when we have the key. This is expressed by:

executable(open(l1), {holding(k1)}) and executable(open(l2), {holding(k2)}).
No condition is required for closing a latch. This is expressed by the two proposi-
tions:

executable(close(l1), {}) and executable(close(l2), {}).
The fact that the suitcase will be unlocked when the two latches are in the up
position is represented by the static causal law:

caused({up(l1), up(l2)},¬locked(s)).

Finally, to represent the fact that the suitcase will be locked when either of the two
latches is in the down position, we use the following static laws:

caused({¬up(l1)}, locked(s)) and caused({¬up(l2)}, locked(s))

The initial state of this domain is given by

Γ =





initially(up(l1))
initially(¬up(l2))
initially(locked(s))
initially(¬holding(k1))
initially(holding(k2))





2

A domain description given in B defines a transition function from pairs of actions
and states to sets of states whose precise definition is given below. Intuitively, given
an action a and a state s, the transition function Φ defines the set of states Φ(a, s)
that may be reached after executing the action a in state s. If Φ(a, s) is an empty
set it means that the execution of a in s results in an error. We now formally define
Φ.

Let D be a domain description in B. A set of fluent literals is said to be consistent
if it does not contain f and ¬f for some fluent f . An interpretation I of the fluents
in D is a maximal consistent set of fluent literals of D. A fluent f is said to be
true (resp. false) in I iff f ∈ I (resp. ¬f ∈ I). The truth value of a fluent formula
in I is defined recursively over the propositional connectives in the usual way. For
example, f ∧g is true in I iff f is true in I and g is true in I. We say that a formula
ϕ holds in I (or I satisfies ϕ), denoted by I |= ϕ, if ϕ is true in I.

Let u be a consistent set of fluent literals and K a set of static causal laws. We say
that u is closed under K if for every static causal law

caused({p1, . . . , pn}, f)
ACM Transactions on Computational Logic, Vol. V, No. N, August 2006.
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in K, if u |= p1 ∧ . . .∧ pn then u |= f . By ClK(u) we denote the least consistent set
of literals from D that contains u and is also closed under K. It is worth noting
that ClK(u) might be undefined. For instance, if u contains both f and ¬f for
some fluent f , then ClK(u) cannot contain u and be consistent; another example
is that if u = {f, g} and K contains

caused({f}, h)

and

caused({f, g},¬h),

then ClK(u) does not exist because it has to contain both h and ¬h, which means
that it is inconsistent.

Formally, a state of D is an interpretation of the fluents in F that is closed under
the set of static causal laws DC of D.

An action a is executable in a state s if there exists an executability proposition

executable(a, {f1, . . . , fn})
in D such that s |= f1 ∧ . . . ∧ fn. Clearly, if

executable(a, {})
belongs to D, then a is executable in every state of D.

The direct effect of an action a in a state s is the set

E(a, s) = {f | causes(a, f, {f1, . . . , fn}) ∈ D, s |= f1 ∧ . . . ∧ fn}.

For a domain description D, Φ(a, s), the set of states that may be reached by
executing a in s, is defined as follows.

(1) If a is executable in s, then

Φ(a, s) = {s′ | s′ is a state and s′ = ClDC (E(a, s) ∪ (s ∩ s′))};
(2) If a is not executable in s, then Φ(a, s) = ∅.
The intuition behind the above formulation is as follows. The direct effects of an
action a in a state s are determined by the dynamic causal laws and are given by
E(a, s). All fluent literals in E(a, s) must hold in any resulting state. The set s∩ s′

contains the fluent literals of s which continue to hold by inertia, i.e they hold in s′

because they were not changed by an action. In addition, the resulting state must
be closed under the set of static causal laws DC . These three aspects are captured
by the definition above. Observe that when DC is empty and a is executable in
state s, Φ(a, s) is equivalent to the set of states that satisfy E(a, s) and are closest
to s using symmetric difference4 as the measure of closeness [McCain and Turner
1995]. Additional explanations and motivations behind the above definition can be
found in [Baral 1995; McCain and Turner 1995; Turner 1997].

4We say s1 is strictly closer to s than s2 if s1 \ s ∪ s \ s1 ⊂ s2 \ s ∪ s \ s2.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2006.
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Every domain description D in B has a unique transition function Φ, and we say
Φ is the transition function of D. We illustrate the definition of the transition
function in the next example.

Example 2.2. For the suitcase domain in Example 2.1, the initial state given
by the set of propositions

Γ =





initially(up(l1))
initially(¬up(l2))
initially(locked(s))
initially(¬holding(k1))
initially(holding(k2))

is

s0 = {up(l1),¬up(l2), locked(s),¬holding(k1), holding(k2)}.
In state s0, the three actions open(l2), close(l1), and close(l2) are executable.
open(l2) is executable since holding(k2) is true in s0 while close(l1) and close(l2)
are executable since the theory (implicitly) contains the propositions:

executable(close(l1), {}) and executable(close(l2), {})
which indicate that these two actions are always executable. The following transi-
tions are possible from state s0:

{ up(l1), up(l2),¬locked(s),¬holding(k1), holding(k2) } ∈ Φ(open(l2), s0).
{ up(l1),¬up(l2), locked(s),¬holding(k1), holding(k2) } ∈ Φ(close(l2), s0).
{ ¬up(l1),¬up(l2), locked(s),¬holding(k1), holding(k2) } ∈ Φ(close(l1), s0).

2

For a domain description D with transition function Φ, a sequence s0a0s1 . . . an−1sn

where si’s are states and ai’s are actions is called a trajectory in D if si+1 ∈
Φ(si, ai+1) for i ∈ {0, . . . , n − 1}. A trajectory s0a0s1 . . . an−1sn achieves a fluent
formula ∆ if sn |= ∆.

A domain description D is consistent iff for every action a and state s, if a is
executable in s, then Φ(a, s) 6= ∅. An action theory (D, Γ) is consistent if D is
consistent and s0 = {f | initially(f) ∈ Γ} is a state of D. In what follows, we will
consider only5 consistent action theories.

A planning problem with respect to B is specified by a triple 〈D, Γ,∆〉 where (D, Γ)
is an action theory in B and ∆ is a fluent formula (or goal), which a goal state must
satisfy. A sequence of actions a0, . . . , am−1 is then called a possible plan for ∆ if
there exists a trajectory s0a0s1 . . . am−1sm in D such that s0 and sm satisfies Γ
and ∆, respectively. Note that we define a ‘possible plan’ instead of a ‘plan’. This
is because the presence of static causal laws in D allows the possibility that the

5We thank one of the anonymous referee for pointing out that without this assumption, finding a
plan would be Σ3P-complete even with respect to a complete initial state.
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effects of actions may be non-deterministic, and planning with non-deterministic
actions has the complexity of Σ2P-complete [Turner 2002] and hence is beyond the
expressiveness of AnsProlog. However, if D is deterministic, i.e., |Φ(a, s)| ≤ 1 for
every pair (a, s) of actions and states, then the notions of ‘possible plan’ and ‘plan’
coincide.

2.2 Logic Programming with answer set semantics (AnsProlog) and its application

In this section we review AnsProlog (a sub-class of AnsProlog*) and its applicability
to problem solving.

2.2.1 AnsProlog. Although the programming language Prolog and the field of
logic programming have been around for several decades, the answer set semantics
of logic programs – initially referred to as the stable model semantics, was only pro-
posed by Gelfond and Lifschitz in 1988 [Gelfond and Lifschitz 1988]. Unlike earlier
characterizations of logic programs where the goal was to find a unique appropriate
‘model’ of a logic program, the answer set semantics allows the possibility that a
logic program may have multiple appropriate models, or no appropriate models at
all. Initially, some considered the existence of multiple or no stable models to be
a drawback of stable model semantics, while others considered it to be a reflection
of the poor quality of the program in question. Nevertheless, it is this feature of
the answer set semantics [Marek and Truszczyński 1999; Niemelä 1999; Lifschitz
1999b] that is key to the use of AnsProlog for problem solving. We now present
the syntax and semantics of AnsProlog, which we will simply refer to as a logic
program.

A logic program Π is a set of rules of the form

a0 ← a1, . . . , am, not am+1, . . . , not an (5)

or

⊥ ← a1, . . . , am, not am+1, . . . , not an (6)

where 0 ≤ m ≤ n, each ai is an atom of a first-order language LP, ⊥ is a special
symbol denoting the truth value false, and not is a connective called negation-as-
failure. A negation as failure literal (or naf-literal) is of the form not a where a is
an atom. For a rule of the form (5)-(6), the left and right hand side of the rule are
called the head and the body, respectively. A rule of the form (6) is also called a
constraint.

Given a logic program Π, we will assume that each rule in Π is replaced by the
set of its ground instances so that all atoms in Π are ground. Consider a set of
ground atoms X. The body of a rule of the form (5) or (6) is satisfied by X if
{am+1, . . . , an} ∩X = ∅ and {a1, . . . , am} ⊆ X. A rule of the form (5) is satisfied
by X if either its body is not satisfied by X or a0 ∈ X. A rule of the form (6) is
satisfied by X if its body is not satisfied by X. An atom a is supported by X if a
is the head of some rule of the form (5) whose body is satisfied by X.

For a set of ground atoms S and a program Π, the reduct of Π with respect to S,
denoted by ΠS , is the program obtained from the set of all ground instances of Π
by deleting
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(1) each rule that has a naf-literal not a in its body with a ∈ S, and

(2) all naf-literals in the bodies of the remaining clauses.

S is an answer set (or a stable model) of Π if it satisfies the following conditions.

(1) If Π does not contain any naf-literal (i.e. m = n in every rule of Π) then S is
the smallest set of atoms that satisfies all the rules in Π.

(2) If the program Π does contain some naf-literal (m < n in some rule of Π), then
S is an answer set of Π if S is the answer set of ΠS . (Note that ΠS does not
contain naf-literals, its answer set is defined in the first item.)

A program Π is said to be consistent if it has an answer set. Otherwise, it is
inconsistent.

Many robust and efficient systems that can compute answer sets of propositional
logic programs have been developed. Two of the frequently used systems are dlv
[Eiter et al. 1998] and smodels [Simons et al. 2002]. Recently, two new systems
cmodels [Babovich and Lifschitz ] and ASSAT [Lin and Zhao 2002], which com-
pute answer sets by using SAT solvers, have been developed. XSB [Sagonas et al.
1994], a system developed for computing the well-founded model of logic programs,
has been extended to compute stable models of logic programs as well.

2.2.2 Answer set programming: problem solving using AnsProlog. Prolog and
other early logic programming systems were geared towards answering yes/no
queries with respect to a program, and if the queries had variables they returned
instantiations of the variables together with a ‘yes’ answer. The possibility of mul-
tiple answer sets and no answer sets has given rise to an alternative way to solve
problems using AnsProlog. In this approach, referred to as answer set programming
(also known as stable model programming) [Marek and Truszczyński 1999; Niemelä
1999; Lifschitz 1999b], possible solutions of a problem are enumerated as answer
set candidates and non-solutions are eliminated through rules with ⊥ in the head,
resulting in a program whose answer sets have one-to-one correspondence with the
solutions of the problem.

We illustrate the concepts of answer set programming by showing how the 3-coloring
problem of a bi-directed graph G can be solved using AnsProlog. Let the three
colors be red (r), blue (b), and green (g) and the vertex of G be 0, 1, . . . , n. Let
P (G) be the program consisting of

—the set of atoms edge(u, v) for every edge (u, v) of G,

—for each vertex u of G, three rules stating that u must be assigned one of the
colors red, blue, or green:

color(u, g) ← not color(u, b), not color(u, r)
color(u, r) ← not color(u, b), not color(u, g)
color(u, b) ← not color(u, r), not color(u, g)

and
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—for each edge (u, v) of G, three rules representing the constraint that u and v
must have different color:

⊥ ← color(u, r), color(v, r), edge(u, v)
⊥ ← color(u, b), color(v, b), edge(u, v)
⊥ ← color(u, g), color(v, g), edge(u, v)

It can be shown that for each graph G, (i) P (G) is inconsistent iff the 3-coloring
problem of G does not have a solution; and (ii) if P (G) is consistent then each
answer set of P (G) corresponds to a solution of the 3-coloring problem of G and
vice versa.

To make answer set style programming easier, Niemelä et al. [Niemelä et al. 1999]
introduce a new type of rules, called cardinality constraint rule (a special form of
the weight constraint rule) of the following form:

l{b1, . . . , bk}u ← a1, . . . , am, not am+1, . . . , not an (7)

where ai and bj are atoms and l and u are two integers, l ≤ u. The intuitive
meaning of this rule is that whenever its body is satisfied then at least l and at
most u atoms of the set {b1, . . . , bk} must be true. Using rules of this type, one
can greatly reduce the number of rules of programs in answer set programming.
For instance, in the above example, the three rules representing the constraint that
every node u needs to be assigned one of the three colors can be packed into one
cardinality constraint rule:

1{color(u, g), color(u, r), color(u, b)}1 ←
The semantics of logic programs with such rules is given in [Niemelä et al. 1999]
where a program with weight constraint rules is translated into a normal logic
program whose answer sets define the answer sets of the original program. For our
purpose in this paper we only need to consider rules with l ≤ 1, u = 1, and restrict
that if we have rules of the form (7) in our program then there are no other rules
with any of b1, . . . , bk in their head.

3. ANSWER SET PLANNING: USING ANSPROLOG FOR PLANNING

The idea of using logic programming with answer set semantics for planning was
first introduced in [Subrahmanian and Zaniolo 1995]. It has become more feasible
since the development of fast and efficient answer set solvers such as smodels
[Simons et al. 2002] and dlv [Eiter et al. 1998]. The term “answer set planning”
was coined by Lifschitz in [Lifschitz 1999b] referring to approaches to planning
using logic programming with answer set semantics, where the planning problem
is expressed as a logic program and the answer sets encode plans. In that paper
answer set planning is illustrated with respect to some specific examples.

We now present the main ideas of answer set planning6 when the effects of actions
on the world and the relationships between fluents in the world are expressed in

6Note that while [Lifschitz 1999b; 1999a; 2002] illustrated answer set planning through specific
examples, the papers [Lifschitz and Turner 1999; Lifschitz 1999a] mapped reasoning (not planning)
in the action description language C to logic programming.
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the action description language B. Given a planning problem 〈D,Γ, ∆〉, answer
set planning solves it by translating it into a logic program Π(D, Γ,∆) (or Π, for
short) consisting of domain-dependent rules that describe D, Γ, and ∆ and domain-
independent rules that generate action occurrences and represent the inertial law.
We assume that actions and fluents in A and F are specified by facts of the form
action(.) and fluent(.), respectively. The rules of Π are adapted mainly from
[Dimopoulos et al. 1997; Lifschitz 1999b; Lifschitz and Turner 1999; Lifschitz 1999a]
and based on conversations with Michael Gelfond in 1998-99. As customary in the
encoding of planning problems, we assume that the length of plans we are looking
for is given. We denote the length by the constant length and use a sort time,
whose domain is the set of integers from 0 to length, to represent the time moment
the system is in. We begin with the set of domain-dependent rules.

3.1 Domain-dependent rules

For an action theory (D, Γ), the encoding of (D, Γ) uses the following predicates:

(1) holds(F, T ) – the fluent literal F holds at the time moment T ;
(2) occ(A, T ) – the action A occurs at the time moment T ; and
(3) possible(A, T ) – the action A is executable at the time moment T .

The translation is as follows7.

(1) For each proposition

initially(l)

in Γ, the fact

holds(l, 0) (8)

belongs to Π. This says that at the time moment 0, the fluent literal l holds.
(2) For each executability condition

executable(a, {p1, . . . , pn})
in D, Π contains the rule:

possible(a, T ) ← time(T ), holds(p1, T ), . . . , holds(pn, T ). (9)

This rules states that it is possible to execute the action a at the time moment
T if {p1, . . . , pn} holds at T .

(3) For each dynamic causal law

causes(a, f, {p1, . . . , pn})
in D, Π contains the rule:

holds(f, T + 1) ← time(T ), occ(a, T ),
possible(a, T ), holds(p1, T ), . . . , holds(pn, T ). (10)

7A Sicstus-program that translates B planning problems into their corresponding smodels en-
codings is available at http://www.cs.nmsu.edu/~tson/ASPlan/Knowledge. (An earlier version of
this translator was posted to the TAG discussion web site http://www.cs.utexas.edu/users/vl/

tag/discussions.html).
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This rule says that if a occurs at the time moment T and a is executable at T
then the fluent literal f becomes true at T + 1 if there exists a dynamic law

causes(a, f, {p1, . . . , pn})
in D and the pi’s hold at T .

(4) For each static causal law

caused({p1, . . . , pn}, f)

in D, Π contains the following rule:

holds(f, T ) ← time(T ), holds(p1, T ), . . . , holds(pn, T ). (11)

This rule is a straightforward translation of the static causal law into logic
programming rule.

We demonstrate the above translation by encoding the blocks world domain from
Example 2.1.

Example 3.1. The rules encoding the fluents and actions of the suitcase domain
in Example 2.1 are:

action(open(l1)) ← fluent(up(l1)) ←
action(open(l2)) ← fluent(up(l2)) ←
action(close(l1)) ← fluent(locked(s)) ←
action(close(l2)) ← fluent(holding(k1))) ←

fluent(holding(k2))) ←
The first group of rules (left column) define the set A and the second group of rules
(right column) define F. The dynamic law causes(open(l1), up(l1), {}) is translated
into the rule:

holds(up(l1), T + 1) ← time(T ), occ(open(l1), T ).

The dynamic law causes(close(l1),¬up(l1), {}) is translated into the rule:

holds(¬up(l1), T + 1) ← time(T ), occ(close(l1), T ).

The executability condition executable(open(l1), {holding(k1)}) is translated into
the rule:

possible(open(l1), T ) ← time(T ), holds(holding(k1), T ).

The static causal law caused({up(l1), up(l2)},¬locked(s)) is encoded by the rule:

holds(¬locked(s), T ) ← time(T ), holds(up(l1), T ), holds(up(l2), T ).

The static causal law caused({¬up(l1)}, locked(s)) is encoded by the rule:

holds(locked(s), T ) ← time(T ), holds(¬up(l1), T ).

The encoding of other propositions of the domain is similar. 2
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3.2 Domain independent rules

The set of domain independent rules of Π consists of rules for generating action
occurrences and rules for defining auxiliary predicates. First, we present the rules
for the generation of action occurrences.

occ(A, T ) ← action(A), time(T ), possible(A, T ), not nocc(A, T ). (12)
nocc(A, T ) ← action(A), action(B), time(T ), A 6= B, occ(B, T ). (13)

In the above rules, A and B are variables representing actions. These rules generate
action occurrences, one at a time 8. The rules of inertia (or the frame axioms) and
rules defining literals are encoded using the following rules:

literal(F ) ← fluent(F ). (14)
literal(¬F ) ← fluent(F ). (15)

contrary(F,¬F ) ← fluent(F ). (16)
contrary(¬F, F ) ← fluent(F ). (17)

holds(L, T+1) ← literal(L), literal(G), time(T ), (18)
contrary(L,G), holds(L, T ), not holds(G,T+1).

The first two rules define what is considered to be a literal. The next two rules say
that ¬F and F are contrary literals. The last rule says that if L holds at T and
its contrary does not hold at T + 1, then L continues to hold at T + 1. Finally, to
represent the fact that ¬F and F cannot be true at the same time, the following
constraint is added to Π.

⊥ ← fluent(F ), holds(F, T ), holds(¬F, T ). (19)

3.3 Goal representation

The goal ∆ is encoded by two sets of rules. The first set of rules defines ∆ as a
formula over fluent literals and the second set of rules evaluates the truth value of
∆ at different time moments. In a later section, we show how fluent formulas can
be represented and evaluated. In this section, we will assume that ∆ is simply a
conjunction of literals, i.e.,

∆ = p1 ∧ . . . ∧ pk

where pi are literals. Then, ∆ is represented by the following rules:

goal ← holds(p1, n), . . . , holds(pk, n). (20)

(Recall that the constant n denotes the maximal length of trajectories that we are
looking for.)

8These two rules can be replaced by the smodels cardinality constraint rule

0{occ(A, T ) : action(A)}1 ← time(T )

and a set of constraints that requires that actions can occur only when they are executable and
when some actions are executable then one must occur. In many of our experiments, programs
with these rules yield better performance.
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3.4 Correctness of Π

Let Πn(D,Γ, ∆) be the logic program consisting of

—the set of rules encoding D and Γ (rules (8)-(11)) in which the domain of T is
{0, . . . , n} and the rules define actions and fluents of (D, Γ),

—the set of domain-independent rules (rules (12)-(19)) in which the domain of T
is {0, . . . , n},

—the rule in (20) and the constraint ⊥ ← not goal(n) that encodes the requirement
that ∆ holds at n.

In what follows, we will write Πn instead of Πn(D, Γ, ∆) when it is clear from the
context what D, Γ, and ∆ are. The following result (similar to the correspondence
between histories and answer sets in [Lifschitz and Turner 1999]) shows the equiv-
alence between trajectories achieving ∆ and answer sets of Πn. Before stating the
theorem, we introduce the following notation: for an answer set M of Πn, we define

si(M) = {f | f is a fluent literal and holds(f, i) ∈ M}.
Theorem 3.2. For a planning problem 〈D, Γ, ∆〉 with a consistent action theory

(D, Γ),

(i) if s0a0 . . . an−1sn is a trajectory achieving ∆, then there exists an answer set
M of Πn such that
(1) occ(ai, i) ∈ M for i ∈ {0, . . . , n− 1} and
(2) si = si(M) for i ∈ {0, . . . , n}.
and

(ii) if M is an answer set of Πn, then there exists an integer 0 ≤ k ≤ n such
that s0(M)a0 . . . ak−1sk(M) is a trajectory achieving ∆ where occ(ai, i) ∈ M for
0 ≤ i < k and if k < n then no action is executable in the state sk(M).

Proof. See Appendix A.1 2

Note that the second item of the theorem implies that the trajectory achieving ∆
corresponds to an answer set M of Πn that could be shorter than the predefined
length n. This happens when the goal is reached with a shorter sequence of actions
and no action is executable in the resulting state.

Recall that the sequence of actions a0, a1, . . . , an−1, where s0a0s1 . . . an−1sn is a tra-
jectory achieving ∆, is not necessarily a plan achieving the goal ∆ because the action
theory (D, Γ) may be non-deterministic. It is easy to see that whenever (D, Γ) is
deterministic, if s0a0s1 . . . an−1sn is a trajectory achieving ∆ then a0, a1, . . . , an−1

is indeed a plan achieving ∆. The next corollary follows directly from Theorem 3.2.

Corollary 3.3. For a planning problem 〈D, Γ, ∆〉 with a consistent and deter-
ministic action theory (D, Γ),

(1) for each plan a0, . . . , an−1 achieving ∆ from Γ, there exists an answer set M of
Πn such that occ(ai, i) ∈ M for i ∈ {0, . . . , n− 1}; and

(2) for each answer set M of Πn, there exists an integer 0 ≤ k ≤ n such that
a0, . . . , ak−1 is a plan achieving ∆ from Γ where occ(ai, i) ∈ M for 0 ≤ i < k
and if k < n then no action is executable in the state reached after executing
a0, . . . , ak−1 in the initial state.
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The first item of the corollary follows from Item (i) of Theorem 3.2. Nevertheless, we
do not need to include the condition on the states si(M) because si(M) is uniquely
determined by the initial state s0 and the sequence of actions a0, . . . , ai−1. The
second item of the corollary follows from Item (ii) of Theorem 3.2. Again, because
of the determinism of (D, Γ), we do not need to include the conditions on the states
si(M).

4. CONTROL KNOWLEDGE AS CONSTRAINTS

In this section, we present the main contribution of this paper: augmenting the
answer set planning program Π, introduced in the previous section, with different
kinds of domain knowledge, namely temporal knowledge, procedural knowledge,
and HTN-based knowledge. The domain knowledge acts as constraints on the
answer sets of Π. For each kind of domain knowledge (also referred to as constraints)
we introduce new constructs for its encoding and present a set of rules that check
when a constraint is satisfied. We now proceed to introduce the different types of
control knowledge. We start with temporal knowledge.

4.1 Temporal Knowledge

Use of temporal domain knowledge in planning was first proposed by Bacchus and
Kabanza in [Bacchus and Kabanza 2000]. In their formulation, temporal knowledge
is used to prune the search space while planning using forward search. In their
paper, temporal constraints are specified using a future linear temporal logic with
a precisely defined semantics. Since their representation is separate from the action
and goal representation, it is easy to add them to (or remove them from) a planning
problem. Planners exploiting temporal knowledge to control the search process
have proven to be highly efficient and to scale up well [Bacchus et al. 2000]. In
this paper, we represent temporal knowledge using temporal constraints. Temporal
constraints are built from fluent formulae using the temporal operators always,
until, next, and eventually, and a special goal operator goal. For simplicity
of the presentation, we will write fluent formulae in prefix notation and use the
propositional connectives and, or, and negation. Given a signature 〈O,AN,BN〉
we define term, formula, and closed formula, as follows.

Definition 4.1. A term is a variable or a constant in O.

Definition 4.2. A formula is either

—an expression of the form f(σ1, . . . , σn) where f is a n-ary fluent name and each
σi is a term;

—an expression of the form and(φ, ψ), where φ and ψ are formulae;
—an expression of the form or(φ, ψ), where φ and ψ are formulae;
—an expression of the form negation(φ), where φ is a formula; or
—an expression of the form (∃X.{c1, . . . , cn}φ) or (∀X.{c1, . . . , cn}φ) where X is a

variable, {c1, . . . , cn} is a set of constants in O, and φ is a formula.

We next define the notion of a closed formula.

Definition 4.3. The formula over which a quantifier applies is called the scope
of the quantifier. The scope of ∀X.{c1, . . . , cn} (resp. ∃X.{c1, . . . , cn}) in
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(∀X.{c1, . . . , cn}φ) (resp. (∃X.{c1, . . . , cn}φ)) is φ. An occurrence of a variable
in a formula is a bounded occurrence iff the occurrence is within the scope of a
quantifier which has the same variable immediately after the quantifier or is the
occurrence of that quantifier. An occurrence of a variable in a formula is a free
occurrence iff the occurrence is not bound. A variable is free in a formula if at least
one of its occurrences is a free occurrence.

Definition 4.4. A formula without free variables is called a closed formula.

Remark 4.5. The truth or falsity of a formula is evaluated with respect to state in
the standard way. It is easy to see that formulae with quantifiers can be translated
into equivalent formulae without quantifier as follows: ∀X.{c1, . . . , cn}φ is equiva-
lent to

∧n
i=1 φ(ci) and ∃X.{c1, . . . , cn}φ is equivalent to

∨n
i=1 φ(ci) where φ(ci) is

the formula obtained from φ by replacing every free occurrence of X in φ with ci.
For this reason, we will be dealing with formulae without quantifiers hereafter.

We are now ready to define the notion of a temporal constraint.

Definition 4.6. A temporal constraint is either

—a closed formula (Definition 4.4)
—an expression of the form goal(φ) where φ is a closed formula; or
—an expression of the form and(φ, ψ), or(φ, ψ), negation(φ), until(φ, ψ),

always(φ), eventually(φ), or next(φ) where φ and ψ are temporal constraints.

A temporal constraint is an atomic constraint if it is a fluent literal. Otherwise,
it is called non-atomic. In what follows, a constraint φ will be referred as a sub-
constraint of a constraint ψ if φ occurs in ψ. We will write sub(φ) to denote the set
of constraints consisting of φ and its sub-formulae. It is easy to see that constraints
without temporal operators or the goal operator are indeed fluent formulae. Tem-
poral operators are understood with their standard meaning while the goal operator
goal provides a convenient way for expressing the control knowledge which depends
on goal information. A temporal constraint is said to be goal-independent if no goal
formula occurs in it. Otherwise, it is goal-dependent. Bacchus and Kabanza [Bac-
chus and Kabanza 2000] observed that useful temporal knowledge in planning is
often goal-dependent. In the blocks world domain, the following goal-dependent
constraint9:

always(and(goal(on(X, tbl)), on(X, tbl)) ⊃ next(on(X, tbl))) (21)

can be used to express that if the goal is to have a block on the table and it is
already on the table then it should be still on the table in the next moment of time.
This has the effect of preventing the agent from superfluously picking up a block
from the table if it is supposed to be on the table in the goal state.

Notice that under this definition, temporal operators can be nested many times
but the goal operator goal cannot be nested. For instance, if ϕ is a fluent formula,
always(next(ϕ)) is a temporal formula, but goal(goal(ϕ)) is not.

9Because material implication (denoted by ⊃) can be replaced by ∨ and ¬, we omit it in the
definition but use it in writing the constraints, to simplify reading. As before, we use the convention
that a formula with variables represents the set of its ground instantiations.
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Goal-independent formulae will be interpreted over an infinite sequence of states of
D, denoted by I = 〈s0, s1, . . . , 〉. On the other hand, goal-dependent formulae will
be evaluated with respect to a pair 〈I, ϕ〉 where I is a sequence of states and ϕ is
a fluent formula. In the next two definitions, we formally define when a constraint
is satisfied. Definition 4.7 deals with goal-independent constraints while Definition
4.8 is concerned with general constraints.

Definition 4.7. (See [Bacchus and Kabanza 2000]) Let I = 〈s0, s1, . . . , sn, . . .〉 be
a sequence of states of D. Let f1 and f2 be goal-independent temporal constraints,
t be a non-negative integer, and f3 be a fluent formula. Let It = 〈st, st+1, . . . , 〉
denote the subsequence of I starting from st. We say that I satisfies f (f is either
f1, f2, or f3), denoted by I |= f , iff I0 |= f where

—It |= f3 iff st |= f3.
—It |= until(f1, f2) iff there exists t ≤ t2 such that It2 |= f2 and for all t ≤ t1 < t2

we have It1 |= f1.
—It |= next(f1) iff It+1 |= f1.
—It |= eventually(f1) iff there exists t ≤ t1 such that It1 |= f1.
—It |= always(f1) iff for all t ≤ t1 we have It1 |= f1.

For a finite sequence of states I = 〈s0, . . . , sn〉 and a goal-independent temporal
constraint f , we say that I satisfies f , denoted by I |= f , if I ′ |= f where I ′ =
〈s0, . . . , sn, sn, . . .〉. 2

Next we define when goal-dependent temporal constraints are satisfied by a se-
quence of states and a goal. Intuitively, this should be a straightforward extension
of the previous definition in which formulas of the form goal(ϕ) need to be ac-
counted for. Obviously, such a constraint can only be evaluated with respect to
a sequence of states and a formula encoding the goal. Furthermore, the intuition
behind the formula goal(ψ) is that ψ is true whenever the goal is true, i.e., ψ is
entailed by the goal. This is detailed in the second item of the following definition.

Definition 4.8. Let I = 〈s0, s1, . . . , sn, . . .〉 be a sequence of states of D and
ϕ be a fluent formula denoting the goal. Let f1 and f2 be temporal constraints
(possibly goal dependent), t be a non-negative integer, and f3 be a fluent formula.
Let It = 〈st, st+1, . . . , 〉. We say that I satisfies f (f is either f1, f2, or f3) with
respect to ϕ, denoted by 〈I, ϕ〉 |= f , iff 〈I0, ϕ〉 |= f where

—〈It, ϕ〉 |= f3 iff st |= f3.
—〈It, ϕ〉 |= goal(f3) iff ϕ |= f3

10.
—〈It, ϕ〉 |= until(f1, f2) iff there exists t ≤ t2 such that 〈It2 , ϕ〉 |= f2 and for all

t ≤ t1 < t2 we have 〈It1 , ϕ〉 |= f1.
—〈It, ϕ〉 |= next(f1) iff 〈It+1, ϕ〉 |= f1.
—〈It, ϕ〉 |= eventually(f1) iff there exists t ≤ t1 such that 〈It1 , ϕ〉 |= f1.
—〈It, ϕ〉 |= always(f1) iff for all t ≤ t1 we have 〈It1 , ϕ〉 |= f1.

10Here, by ϕ |= f3 we mean that ϕ entails f3.
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For a finite sequence of states I = 〈s0, . . . , sn〉, a temporal constraint f , and a
fluent formula ϕ we say that I satisfies f with respect to ϕ, denoted by 〈I, ϕ〉 |= f ,
if 〈I ′, ϕ〉 |= f where I ′ = 〈s0, . . . , sn, sn, . . .〉. 2

To complete the encoding of temporal constraints, we now provide the rules that
check the satisfiability of a temporal constraint given a trajectory. We define
the predicate hf(F, T ) whose truth value determines whether F is satisfied by
〈sT , sT+1, . . . sn〉, where sT refers to the state corresponding to time point T . It
is easy to see that rules for checking the satisfiability of temporal constraints can
be straightforwardly developed in logic programming with function symbols. For
example, the rules

hf(L, T ) ← holds(L, T ), literal(L)
hf(and(F1, F2), T ) ← hf(F1, T ), hf(F2, T )

can be used to determine whether or not the constraint and(F1, F2) is true at the
time moment T . The first rule is for atomic constraints and the second rule is for
non-atomic ones. Although these rules are intuitive and correct, we will need to
modify them for use with the currently available answer set solvers such as dlv and
smodels. This is because dlv does not allow function symbols and lparse – the
parser of the smodels system – requires that variables occurring in the head of a
rule are domain variables, i.e., in the second rule, we have to specify the domain of
F1 and F2.

We will now present two possible ways to deal with the answer set solver’s restric-
tion11. The first way is to represent a constraint by a set of rules that determine
its truth value. In other words, we specify the domains of F1 and F2 in the above
rules by grounding them. For example, for the conjunction and(f, g), the rules

hf(L, T ) ← literal(L), holds(L, T )
hf(and(f, g), T ) ← hf(f, T ), hf(g, T )

can be used. For the disjunction, or(f,and(g, h)), the rules

hf(L, T ) ← literal(L), holds(L, T )
hf(or(f, and(g, h)), T ) ← hf(f, T ).
hf(or(f, and(g, h)), T ) ← hf(and(g, h), T ).

hf(and(g, h), T ) ← hf(g, T ), hf(h, T ).

can be used. The encodings of other constraints are similar. Observe that the
number of rules for encoding a formula depends on the number of its sub-constraints.

An alternative to the above encoding is to assign names to non-atomic constraints,
to define a new type, called formula, and to provide the constraint-independent

11Another alternative for dealing with temporal constraints such as fluent formulae is
to convert them into disjunctive normal form and to develop, for each conjunction
and(f1,and(f2, . . . ,and(fn−1, fn))), a rule

hf(and(f1,and(f2, . . . ,and(fn−1, fn))), T ) ← holds(f1, T ), . . . , holds(fn, T ).

This method, however, cannot be easily extended for temporal constraints with temporal operators
or the goal operator.
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rules for checking the truth value of constraints. Atomic constraints are defined by
the rule:

formula(L) ← literal(L).

For each non-atomic formula φ, we associate with it a unique name nφ and encode it
by a set of facts, denoted by r(φ). This set is defined inductively over the structure
of φ as follows.

—If φ is a fluent literal l then r(φ) = {l};
—If φ = φ1 ∧ φ2 then r(φ) = r(φ1) ∪ r(φ2) ∪ {formula(nφ), and(nφ, nφ1 , nφ2)};
—If φ = φ1 ∨ φ2 then r(φ) = r(φ1) ∪ r(φ2) ∪ {formula(nφ), or(nφ, nφ1 , nφ2)};
—If φ = ¬φ1 then r(φ) = r(φ1) ∪ {formula(nφ), negation(nφ, nφ1)};
—If φ = next(φ1) then r(φ) = r(φ) ∪ {formula(nφ), next(nφ, nφ1)};
—If φ = until(φ1, φ2) then

r(φ) = r(φ1) ∪ r(φ2) ∪ {formula(nφ), until(nφ, nφ1 , nφ2)};
—If φ = always(φ1) then r(φ) = r(φ1) ∪ {formula(nφ), always(nφ, nφ1)};
—If φ = eventually(φ1) then r(φ) = r(φ1)∪ {formula(nφ), eventually(nφ, nφ1)}.
For simplicity, the names assigned to a constraint can be used in encoding other
constraints. For example, the constraints φ = and(f,and(g, h)) is encoded by the
atoms

formula(nψ).
and(nψ, g, h).
formula(nφ).
and(nφ, f, nψ).

We note that the above encodings can be generated automatically using a program
front-end to smodels that is available on the web-site containing the experimental
results presented in this paper. Note that during the grounding phase of smodels
(by lparse), atoms of the form formula(., .) will be removed. For this reason, we
use the second encoding in our experiments because it is easier to deal with changes
in the constraints used for encoding the control knowledge.

We now present the formula-independent rules for evaluating temporal con-
straints. As with defining the satisfaction of temporal constraints, we first consider
goal-independent temporal constraints. The rules needed for evaluating temporal
constraints whose first level operator is different than the goal operator are as
follows:

hf(L, T ) ← literal(L), holds(L, T ). (22)
hf(N, T ) ← formula(N), and(N, N1, N2), (23)

hf(N1, T ), hf(N2, T ). (24)
hf(N, T ) ← formula(N), or(N,N1, N2), hf(N1, T ). (25)
hf(N, T ) ← formula(N), or(N,N1, N2), hf(N2, T ). (26)
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hf(N, T ) ← formula(N), negation(N, N1)), not hf(N1, T ). (27)
hf(N, T ) ← formula(N), until(N, N1, N2), (28)

T ≤ T ′, hf during(N1, T, T ′), hf(N2, T
′).

hf(N, T ) ← formula(N), always(N, N1), (29)
hf during(N1, T, n).

hf(N, T ) ← formula(N), eventually(N,N1), (30)
hf(N1, T

′), T ≤ T ′.

hf(N, T ) ← formula(N), next(N, N1), hf(N1, T + 1). (31)
hf during(N, T, T ) ← hf(N,T ). (32)
hf during(N,T, T ′) ← hf(N,T ), T < T ′, hf during(N, T + 1, T ′). (33)

The meaning of these rules is straightforward. The first rule defines the truth value
of an atomic formula (a literal). Rule (23) says that a conjunction holds if its
conjuncts hold. Rules (25)-(26) say that a disjunction holds if one of its disjuncts
holds. The rule (27) states that the negation of a formula holds if its negation does
not hold. Its correctness is due to the assumption that initial states are complete.
Rules (28)-(33) deal with formulae containing temporal operators. The constant n
denotes the maximal length of trajectories that we are looking for. In the following,
we refer to this group of rules by Πformula.

The next theorem shows that rules (22)-(33) correctly implement the semantics of
goal-independent temporal formulae.

Theorem 4.9. Let S be a finite set of goal-independent temporal formulae,
I = 〈s0, s1 . . . sn〉 be a sequence of states, and

Πformula(S, I) = Πformula ∪ r(I) ∪ r(S)

where

—r(S) is the set of atoms used in encoding S, and
—r(I) = ∪n

t=0{holds(l, t) | l is a fluent literal and l ∈ st}.
Then,

(i) The program Πformula(S, I) has a unique answer set, X.
(ii) For every temporal formula φ such that formula(nφ) ∈ r(S), φ is true in It,

i.e., It |= φ, if and only if hf(nφ, t) belongs to X where It = 〈st, . . . sn〉.

Proof. See Appendix A.2 2

Having defined temporal constraints and specified when they are satisfied, adding
temporal knowledge to a planning problem in answer set planning is easy. We
must encode the knowledge as a temporal formula12 and then add the set of rules
representing this formula and the rules (22)-(33) to Π. Finally, we need to add the

12A set of temporal formulae can be viewed as a conjunction of temporal formulae.
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constraint that requires that the goal is true at the final state and the temporal
formula is satisfied. More precisely, for a planning problem 〈D, Γ,∆〉 and a goal-
independent temporal formula φ, let ΠTLP

n be the program consisting of

—the program Πn (Defined as in Sub-section 3.4),
—the rules (22)-(33)
—the rules encoding φ and the constraint ⊥ ← not hf(nφ, 0).

The next theorem is about the correctness of ΠTLP
n .

Theorem 4.10. For a planning problem 〈D, Γ, ∆〉 with a consistent action the-
ory (D, Γ) and a goal-independent temporal formula φ,

(i) if s0a0 . . . an−1sn is a trajectory achieving ∆ and I |= φ where I = 〈s0, . . . , sn〉,
then there exists an answer set M of ΠTLP

n such that
(1) occ(ai, i) ∈ M for i ∈ {0, . . . , n− 1},
(2) si = si(M) for i ∈ {0, . . . , n}, and
(3) hf(nφ, 0) ∈ M .
and

(ii) if M is an answer set of ΠTLP
n , then there exists an integer 0 ≤ k ≤ n such

that
(1) s0(M)a0 . . . ak−1sk(M) is a trajectory achieving ∆ where occ(ai, i) ∈ M for

0 ≤ i < k and
(2) I |= φ where I = 〈s0(M), . . . , sn(M)〉.
Proof. Observe that the set of literals of the program Πn, lit(Πn), is a splitting

set of the program ΠTPL
n and Πn = blit(Πn)(ΠTPL

n ). Thus, M is an answer set
of ΠTPL

n iff M = X ∪ Y where X is an answer set of Πn and Y is an answer
set of elit(Πn)(ΠTPL

n \ Πn, X) which consists of the set of rules (23)-(33), the set
of atoms {hf(l, t) | holds(l, t) ∈ X}, the rules encoding φ, and the constraint
⊥ ← not hf(nφ, 0). This constraint implies that hf(nφ, 0) must belong to every
answer set M of ΠTPL

n .

We now prove (i). It follows from Theorem 3.2 that there exists an answer set X
of Πn such that the first two conditions are satisfied. Because I |= φ, we can apply
Theorem 4.9 to show that any answer set Y of elit(Πn)(ΠTPL

n \ Πn, X) contains
hf(nφ, 0). Thus, X ∪ Y is an answer set satisfying (i).

To prove (ii), it is enough to notice that the answer set X of Πn, constructed in
the proof of Lemma A.4, can be used to construct an answer set M of ΠTPL

n such
that M satisfies (ii). 2

The above theorem shows how control knowledge represented as goal-independent
temporal formulae can be exploited in answer set planning. We will now extend
this result to allow control knowledge expressed using goal-dependent temporal
formulae. Based on Definition 4.8, where satisfaction of goal-dependent temporal
formulae is defined, we will need to encode ∆ |= ψ where ∆ is the goal and goal(ψ)
is a formula occurring in a control knowledge that we wish to use. To simplify this
encoding we make the same assumption that is made in most classical planning
literature including [Bacchus and Kabanza 2000]: the goal ∆ in a planning problem
ACM Transactions on Computational Logic, Vol. V, No. N, August 2006.



Domain-Dependent Knowledge in Answer Set Planning · 25

〈D, Γ, ∆〉 is a set of literals and each goal formula occurring in a temporal formula
representing our control knowledge is of the form goal(F ) where F is a fluent
literal. In the rest of this section, whenever we refer to a planning problem or a
goal-dependent temporal formula we assume that they satisfy this assumption. Let
〈D, Γ, ∆〉 be a planning problem and φ be a temporal formula. ΠTLP+Goal

n be the
program consisting of ΠTLP

n , the set of atoms {fomula(ngoall) | goal(l) is a goal
formula occurring in φ, and the set of rules

hf(ngoalf , T ) ← time(T ) (34)

for each f ∈ ∆. Intuitively, these rules assert that f is a part of the goal ∆. The
next theorem is about the correctness of ΠTLP+Goal

n .

Theorem 4.11. For a planning problem 〈D, Γ, ∆〉 with a consistent action the-
ory (D, Γ) and a temporal formula φ,

(i) if s0a0 . . . an−1sn is a trajectory achieving ∆ and 〈I, ∆〉 |= φ where I =
〈s0, . . . , sn〉, then there exists an answer set M of ΠTLP+Goal

n such that
(1) occ(ai, i) ∈ M for i ∈ {0, . . . , n− 1},
(2) si = si(M) for i ∈ {0, . . . , n}, and
(3) hf(nφ, 0) ∈ M .
and

(ii) if M is an answer set of ΠTLP+Goal
n , then there exists an integer 0 ≤ k ≤ n

such that
(1) s0(M)a0 . . . ak−1sk(M) is a trajectory achieving ∆ where occ(ai, i) ∈ M for

0 ≤ i < k and
(2) 〈I,∆〉 |= φ where I = 〈s0(M), . . . , sn(M)〉.
Proof. To prove this theorem, we first need to modify Theorem 4.9 by (i)

allowing goal-dependent formulae to be in the set S; (ii) adding a goal ∆ and the
rule (34) to the program Π of Theorem 4.9. The proof of this modified theorem is
very similar to the proof of Theorem 4.9. We omit it here for brevity. This result,
together with Theorem 3.2, proves the conclusion of this theorem. 2

4.2 Procedural Knowledge

Procedural knowledge can be thought of as an under-specified sketch of the plans to
be generated. The language constructs that we use in this paper to describe proce-
dural knowledge are inspired by GOLOG, an Algol-like logic programming language
for agent programming, control and execution; and based on a situation calculus
theory of action [Levesque et al. 1997]. GOLOG has primarily been used as a
programming language for high-level agent control in dynamical environments (see
e.g. [Burgard et al. 1998]). Although a planner can itself be written as a GOLOG
program (See Chapter 10 of [Reiter 2000]), in this paper, we view a GOLOG pro-
gram as an incompletely specified plan (or as a form of procedural knowledge) that
includes non-deterministic choice points that are filled in by the planner. For ex-
ample, the procedural knowledge (which is very similar to a GOLOG program)
a1; a2; (a3|a4|a5); f represents plans which have a1 followed by a2, followed by one
of a3, a4, or a5 such that f is true in the following (terminating) state of the plan.
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A planner, when given this procedural knowledge needs only to decide which one
of a3, a4, or a5 it should choose as its third action.

We now formally define the syntax of our procedural knowledge, which – keeping
with the GOLOG terminology – we refer to as a program. A program is built from
complex actions and procedures. Complex actions, procedures, and programs are
constructed using variables, actions, formulae, and procedural program constructs
such as sequence, if-then-else, while-do, or choice, etc. They are defined as
follows.

Definition 4.12. A complex action δ with a sequence of variables X1, . . . , Xn is

—a basic complex action:
—an expression of the form a(σ1, . . . , σm) where a is an m-ary action name, σi

is either a variable or a constant of the type ti, and if σi is a variable then it
belongs to {X1, . . . , Xn} or

—an expression of the form φ where φ is a formula whose free variables are from
{X1, . . . , Xn};

—a sequence: an expression of the form δ1; δ2 where δ1 and δ2 are complex actions
whose free variables are from {X1, . . . , Xn};

—a choice of actions: an expression of the form δ1 | . . . | δk where δj ’s are complex
actions whose free variables are from {X1, . . . , Xn};

—a if-then-else: an expression of the form if φ then δ1 else δ2 where φ is a formula
and δ1 and δ2 are complex actions whose free variables are from {X1, . . . , Xn};

—a while-do: an expression of the form while φ do δ1 where φ is a formula and δ1

is a complex action whose free variables are from {X1, . . . , Xn};
—a choice of arguments: an expression of the form pick(Y, {c1, . . . , cn}, δ1) where

Y 6∈ {X1, . . . , Xn}, {c1, . . . , cn} is a set of constants, and δ1 is a complex action
whose free variables are from {X1, . . . , Xn, Y }; and

—a procedure call: an expression of the form p(X1, . . . , Xn) where p is a procedure
name whose variables are X1, . . . , Xn.

Definition 4.13. A procedure with the name p and a sequence of variables
X1, . . . , Xn is of the form (p(X1, . . . , Xn) : δ) where δ, called the body, is a complex
action whose free variables are from {X1, . . . , Xn}.
A procedure (p(X1, . . . , Xn) : δ) is called a nested procedure if δ is a procedure call.

Intuitively, a complex action δ represents a sketch of a plan whose variations are
given by its variables and its structure. The execution of δ is done recursively over
its structure and starts with the instantiation of X1, . . . , Xn with some constants
c1, . . . , cn. In the process, an action might be executed, a formula might be evalu-
ated, other complex actions or procedures might be instantiated and executed. In
other words, the execution of δ might depend on the execution of other complex
actions. Let δ be a complex action with variables (X1, . . . , Xn) and c1, . . . , cn be
constants. In the following, we define

—the ground instance of δ with respect to the substitution {X1/c1, . . . , Xn/cn},
denoted by δ(c1, . . . , cn), and
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—the set of complex actions that the execution of δ(c1, . . . , cn) might depend on,
denoted by prim(δ(c1, . . . , cn)).

δ(c1, . . . , cn) and prim(δ(c1, . . . , cn)) are defined recursively as follows:

—if δ = a(σ1, . . . , σm), then δ(c1, . . . , cn) is the action a(c′1, . . . , c
′
m) where c′i = cj

if σi is the variable Xj and c′i = σi if σi is a constant and prim(δ(c1, . . . , cn)) =
{a(c′1, . . . , c

′
m)},

—if δ = φ then δ(c1, . . . , cn) = φ(c1, . . . , cn) where φ(c1, . . . , cn) is obtained
from φ by simultaneously replacing every free occurrence of Xi in φ by ci and
prim(δ(c1, . . . , cn)) = {φ(c1, . . . , cn)},

—if δ = δ1; δ2 then δ(c1, . . . , cn) = δ1(c1, . . . , cn); δ2(c1, . . . , cn) and
prim(δ(c1, . . . , cn)) = prim(δ1(c1, . . . , cn)) ∪ prim(δ2(c1, . . . , cn)),

—if δ = δ1 | . . . | δk then δ(c1, . . . , cn) = δ1(c1, . . . , cn) | . . . | δk(c1, . . . , cn) and
prim(δ(c1, . . . , cn)) =

⋃k
i=1 prim(δi(c1, . . . , cn)),

—if δ = if φ then δ1 else δ2 then
δ(c1, . . . , cn) = if φ(c1, . . . , cn) then δ1(c1, . . . , cn) else δ2(c1, . . . , cn) and
prim(δ(c1, . . . , cn)) = {φ(c1, . . . , cn)} ∪ prim(δ1(c1, . . . , cn)) ∪
prim(δ2(c1, . . . , cn)),

—if δ = while φ do δ1 then δ(c1, . . . , cn) =
while φ(c1, . . . , cn) do δ1(c1, . . . , cn) and
prim(δ(c1, . . . , cn)) = {φ(c1, . . . , cn)} ∪ prim(δ2(c1, . . . , cn)),

—if δ = pick(Y, {y1, . . . , ym}, δ1) then δ(c1, . . . , cn) = δ1(c1, . . . , cn, yj) for some j,
1 ≤ j ≤ m, and
prim(δ(c1, . . . , cn)) = {prim(δ1(c1, . . . , cn, yj)) | j = 1, . . . , m}; and

—If δ = p(X1, . . . , Xn) where (p(X1, . . . , Xn) : δ1) is a procedure then
δ(c1, . . . , cn) = δ1(c1, . . . , cn) and prim(δ(c1, . . . , cn)) = {p(c1, . . . , cn)} ∪
prim(δ(c1, . . . , cn)).

A ground instance of a procedure (p(X1, . . . , Xn) : δ) is of the form (p(c1, . . . , cn) :
δ(c1, . . . , cn)) where c1, . . . , cn are constants and δ(c1, . . . , cn) is a ground instance
of δ.

In what follows, δ(c1, . . . , cn) (resp. (p(c1, . . . , cn) : δ(c1, . . . , cn))) will be referred
to as a ground complex action (resp. ground procedure). As with complex actions,
for a procedure (p(X1, . . . , Xn) : δ) and the constants c1, . . . , cn, we define the set of
actions that the execution of p(c1, . . . , cn) might depend on by prim(p(c1, . . . , cn)) =
prim(δ(c1, . . . , cn)). It is easy to see that under the above definitions, a procedure
p may depend on itself. For example, for two procedures “(p : while φ1 do q)”
and “(q : while φ2 do p)”, we have that prim(p) = {p, q, φ1, φ2} and prim(q) =
{p, q, φ1, φ2}. Intuitively, this will mean that the execution of p (and q) might
be infinite. Since our goal is to use programs, represented as a set of procedures
and a ground complex action, to construct plans of finite length, procedures that
depend on themselves will not be helpful. For this reason, we define a notion called
well-defined procedures and limit ourselves to this type of procedure hereafter. We
say that a procedure p with variables X1, . . . , Xn is well-defined if there exists no
sequence of constants c1, . . . , cn such that p(c1, . . . , cn) ∈ prim(p(c1, . . . , cn)). We
will limit ourselves to sets of procedures in which no two procedures have the same
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name and every procedure is well-defined and is not a nested procedure. We call
such a set of procedures coherent and define programs as follows.

Definition 4.14 Program. A program is a pair (S, δ) where S is a coherent set of
procedures and δ is a ground instantiation of a complex action.

We illustrate the above definition with the following example.

Example 4.15. In this example, we introduce the elevator domain from
[Levesque et al. 1997] which we use in our initial experiments (Section 4.4). The
set of constants in this domain consists of integers between 0 and k representing
the floor numbers controlled by the elevator. The fluents in this domain and their
intuitive meaning are as follows:

—on(N) - the request service light of the floor N is on, indicating a service is
requested at the floor N ,

—opened - the door of the elevator is open, and
—currentF loor(N) - the elevator is currently at the floor N .

The actions in this domain and their intuitive meaning are as follows:

—up(N) - move up to floor N ,
—down(N) - move down to floor N ,
—turnoff(N) - turn off the indicator light of the floor N ,
—open - open the elevator door, and
—close - close the elevator door.

The domain description is as follows:

Delevator =





causes(up(N), currentF loor(N), {})
causes(down(N), currentF loor(N), {})
causes(turnoff(N),¬on(N), {})
causes(open, opened, {})
causes(close,¬opened, {})
caused({currentF loor(M)},¬currentF loor(N)) for all M 6= N
executable(up(N), {currentF loor(M),¬opened}) for all M < N
executable(down(N), {currentF loor(M),¬opened}) for all M > N
executable(turnoff(N), {currentF loor(N)})
executable(open, {})
executable(close, {})
executable(null, {})

We consider arbitrary initial states where opened is false, currentF loor(N) is true
for a particular N and a set of on(N) is true; and our goal is to have ¬on(N) for all
N . In planning to achieve such a goal, we can use the following set of procedural
domain knowledge. Alternatively, in the terminology of GOLOG, we can say that
the following set of procedures, together with the ground complex action control,
can be used to control the elevator, so as to satisfy service requests – indicated by
the light being on – at different floors. That is, the program for controlling the
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elevator is (S, control) where

S =





(go floor(N) : currentF loor(N)|up(N)|down(N))
(serve(N) : go floor(N); turnoff(N); open; close)

(serve a floor : pick(N, {0, . . . , k}, (on(N); serve(N))).
(park : if currentF loor(0) then open else [down(0); open])

(control : [while ∃N.{0, . . . , k} [on(N)] do serve a floor]; park).

Observe that the formula ∃N.d(N) [on(N)], as discussed before, is the shorthand
of the disjunction

or(on(0),or(on(1), . . . ,or(on(k − 1), on(k))))

where 0, . . . , k are the floor constants of the domain. 2

The operational semantics of programs specifies when a trajectory
s0a0s1 . . . an−1sn, denoted by α, is a trace of a program (S, δ). Intuitively,
if α is a trace of a program (S, δ) then that means a0, . . . , an−1 is a sequence of
actions (and α is a corresponding trajectory) that is consistent with the sketch
provided by the complex action δ of the program (S, δ) starting from the initial
state s0. Alternatively, it can be thought of as the program (S, δ) unfolding to the
sequence of actions a0, . . . , an−1 in state s0. We now formally define the notion of
a trace.

Definition 4.16 Trace. Let p = (S, δ) be a program. We say that a trajectory
s0a0s1 . . . an−1sn is a trace of p if one of the following conditions is satisfied:

—δ = a and a is an action, n = 1 and a0 = a;
—δ = φ, n = 0 and φ holds in s0;
—δ = δ1; δ2, and there exists an i such that s0a0 . . . si is a trace of (S, δ1) and

siai . . . sn is a trace of (S, δ2);
—δ = δ1 | . . . | δn, and s0a0 . . . an−1sn is a trace of (S, δi) for some i;
—δ = if φ then δ1 else δ2, and s0a0 . . . an−1sn is a trace of (S, δ1) if φ holds in

s0 or s0a0 . . . an−1sn is a trace of (S, δ2) if ¬φ holds in s0;
—δ = while φ do δ1, n = 0 and ¬φ holds in s0, or

φ holds in s0 and there exists some i > 0 such that s0a0 . . . si is a trace of (S, δ1)
and siai . . . sn is a trace of (S, δ); or

—δ = pick(Y, {y1, . . . , ym}, δ1) and s0a0s1 . . . an−1sn is a trace of (S, δ1(yj)) for
some j, 1 ≤ j ≤ m.

—δ = p(c1, . . . , cn) where (p(X1, . . . , Xn) : δ1) is a procedure, and
s0a0s1 . . . an−1sn is a trace of (S, δ1(c1, . . . , cn)).

2

The above definition allows us to determine whether a trajectory α constitutes a
trace of a program (S, δ). This process is done recursively over the structure of δ.
More precisely, if δ is not an action or a formula, checking whether α is a trace of
(S, δ) amounts to determining whether α is a trace of (S, δ′) for some component δ′

of δ. We note that because δ is grounded, δ′ is also a ground complex action; thus,
guaranteeing that (S, δ′) is a program and hence the applicability of the definition.
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It is easy to see that δ′ belongs to prim(δ). Because of the coherency of S and the
finiteness of the domains, this process will eventually stop.

We will now present the smodels encoding for programs. The encoding of a pro-
gram (S, δ) will include the encoding of all procedures in S and the encoding of
δ. The encoding of a complex action or a procedure consists of the encoding of all
of its ground instances. Similar to the encoding of formulae, each complex action
δ will be assigned a distinguished name, denoted by nδ, whenever it is necessary.
Because procedure names are unique in a program, we assign the name p(c1, . . . , cn)
to the complex action δ(c1, . . . , cn) where (p(X1, . . . , Xn) : δ) is a procedure and
c1, . . . , cn is a sequence of constants. In other words, nδ(c1,...,cn) = p(c1, . . . , cn).
We note that since the body of a procedure is not a procedure call, this will not
cause any inconsistency in the naming of complex actions. We now describe the set
of rules encoding a complex action δ, denoted by r(δ), which is defined inductively
over the structure of δ as as follows:

—For δ = a or δ = φ, r(δ) is the action a or the rules encoding φ, respectively.
—For δ = δ1; δ2, r(δ) = {sequence(nδ, nδ1 , nδ2)} ∪ r(δ1) ∪ r(δ2).
—For δ = δ1 | δ2 . . . | δn, r(δ) =

⋃
i=1,...,n r(δi) ∪ {in(nδi , nδ)|i = 1, . . . , n} ∪

{choiceAction(nδ)}.
—For δ = if φ then δ1 else δ2, r(δ) = r(φ)∪r(δ1)∪r(δ2)∪{if(nδ, nφ, nδ1 , nδ2)}.
—For δ = while φ do δ1, r(δ) = r(φ) ∪ r(δ1) ∪ {while(nδ, nφ, nδ1)}.
—For δ = pick(Y, {y1, . . . , ym}, δ1),

r(δ) =
j=m⋃

j=1

r(δ1(yj)) ∪R

where R = {choiceArgs(nδ, nδ1(yj)) | j = 1, . . . , m)}.
—For δ = p(c1, . . . , cn) where (p(X1, . . . , Xn) : δ1) is a procedure, r(δ) = {δ}.
A procedure (p(X1, . . . , Xn) : δ1) is encoded by the set of rules encoding the collec-
tion of its ground instances. The encoding of a program (S, δ) consists of r(δ) and
the rules encoding the procedures in S. Observe that because of S’s coherence, the
set of rules encoding a program (S, δ) is uniquely determined.

Example 4.17. In this example we present the encoding of the program
(S, control) from Example 4.15.

We start with the set of rules encoding the ground procedure (go floor(i) :
currentF loor(i) | up(i) | down(i)) where i is a floor constant. First, we assign
the name go floor(i) to the complex action currentF loor(i) | up(i) | down(i) and
encode this complex action by the set r(go floor(i)). This set consists of the fol-
lowing facts:

choiceAction(go floor(i)).
in(currentF loor(i), go floor(i)).

in(up(i), go floor(i)).
in(down(i), go floor(i)).

Similar atoms are needed to encode other instances of the procedure go floor(N).
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For each floor i, the following facts encode the complex action
go floor(i), turnoff(i), open, close, which is the body of a ground instance
of the procedure (serve(N) : go floor(N), turnoff(N), open, close):

sequence(serve(i), go floor(i), serve tail 1(i)).
sequence(serve tail 1(i), turnoff(i), open close).

sequence(open close, open, close).

To encode the procedure (serve a floor : pick(N, {0, 1, . . . , k}, (on(N); serve(N))),
we need the set of rules which encode serve(i), 0 ≤ i ≤ k, (above) and the rules
encode the complex action on(i); serve(i) for every i. These rules are:

sequence(body serve a floor(i), on(i), serve(i)),

where body serve a floor(i) is the name assigned to the complex action
on(i); serve(i), and the following rule:

choiceArgs(serve a floor, body serve a floor(i)).

The following facts encode the procedure (park :
if currentF loor(0) then open else [down; park]):

if(park, currentF loor(0), open, park 1).
sequence(park 1, down(0), open).

Finally, the encoding of the procedure control consists of the rules encoding the
formula

or(on(0),or(on(1), . . . ,or(on(k − 1), on(k))))

which is assigned the name ’existOn’ and the following rules:

sequence(control, while service needed, park).
while(while service needed, existOn, serve a floor).

2

We now present the AnsProlog rules that realize the operational semantics of pro-
grams. We define a predicate trans(P, T1, T2) where P is a program and T1 and T2

are two time points, T1 ≤ T2. Intuitively, we would like to have trans(p, t1, t2) be
true in an answer set M iff st1(M)at1 . . . at2−1st2(M) is a trace of the program p13.

trans(A, T, T + 1) ← action(A), occ(A, T ). (35)
trans(F, T1, T1) ← formula(F ), hf(F, T1). (36)
trans(P, T1, T2) ← sequence(P, P1, P2), T1 ≤ T ′ ≤ T2, (37)

trans(P1, T1, T
′), trans(P2, T

′, T2). (38)
trans(N,T1, T2) ← choiceAction(N), (39)

in(P1, N), trans(P1, T1, T2).
trans(I, T1, T2) ← if(I, F, P1, P2), hf(F, T1), trans(P1, T1, T2). (40)
trans(I, T1, T2) ← if(I, F, P1, P2), not hf(F, T1), trans(P2, T1, T2). (41)

13Recall that we define si(M) = {holds(f, i) ∈ M | f is a fluent literal}.
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trans(W,T1, T2) ← while(W,F, P ), hf(F, T1), T1 < T ′ ≤ T2, (42)
trans(P, T1, T

′), trans(W,T ′, T2).
trans(W,T, T ) ← while(W,F, P ), not hf(F, T ). (43)

trans(S, T1, T2) ← choiceArgs(S, P ), trans(P, T1, T2). (44)
trans(null, T, T ) ← (45)

Here null denotes a dummy program that performs no action. This action is
added to allow programs of the form if ϕ then p to be considered (this will
be represented as if ϕ then p else null). The rules are used for determining
whether a trajectory – encoded by answer sets of the program Πn – is a trace of
a program or not. As with temporal constraints, this is done inductively over the
structure of programs. The rules (35) and (36) are for programs consisting of an
action and a fluent formula respectively. The other rules are for the remaining cases.
For instance, the rule (42) states that the trajectory from T1 to T2 is a trace of a
while loop “while F do P”, named W and encoded by the atom while(W,F, P ),
if the formula F holds at T1 and there exists some T ′, T1 < T ′ ≤ T2 such that the
trajectory from T1 to T ′ is a trace of P and the trajectory from T ′ to T2 is a trace
of W ; and the rule (43) states that the trajectory from T to T is a trace of W if the
formula F does not holds at T . These two rules effectively determine whether the
trajectory from T1 to T2 is a trace of while(W,F, P ). The meanings of the other
rules are similar.

Observe that we do not have specific rules for complex actions which are proce-
dure calls. This is because of every trace of a procedure call p(c1, . . . , cn), where
p(X1, . . . , Xn) : δ) is a procedure, is a trace of the complex action δ(c1, . . . , cn) —
whose name is p(c1, . . . , cn), as described earlier — and vice versa. Furthermore, δ
is not a procedure call , traces of δ1 can be computed using the above rules. The
correctness of the above set of rules (see Theorem 4.18) means that procedure calls
are treated correctly in our implementation.

To specify that a plan of length n starting from an initial state must obey the sketch
specified by a program p = (S, δ), all we need to do is to add the rules encoding p
and the constraint ← not trans(np, 0, n) to Πn. We now formulate the correctness
of our above encoding of procedural knowledge given as programs, and relate the
traces of program with the answer sets of its AnsProlog encoding. Let ΠGolog

n be
the program obtained from Πn by (i) adding the rules (35)-(45) and (22)-(33), (ii)
adding r(p), and (iii) replacing the goal constraint with ⊥ ← not trans(np, 0, n).
The following theorem is similar to Theorem 3.2.

Theorem 4.18. Let (D, Γ) be a consistent action theory and p = (S, δ) be a
program. Then,

(i) for every answer set M of ΠGolog
n with occ(ai, i) ∈ M for i ∈ {0, . . . , n − 1},

s0(M)a0 . . . an−1sn(M) is a trace of p; and
(ii) if s0a0 . . . an−1sn is a trace of p then there exists an answer set M of ΠGolog

n

such that sj = sj(M) and occ(ai, i) ∈ M for j ∈ {0, . . . , n} and i ∈ {0, . . . , n−
1}.
Proof. See Appendix A.3 2
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To do planning using procedural constraints all we need to do is to add the goal
constraint to ΠGolog

n , which will filter out all answer sets where the goal is not
satisfied in time point n, and at the same time will use the sketch provided by the
program p.

4.3 HTN-Based Knowledge

The programs in the previous subsections are good for representing procedural
knowledge but prove cumbersome for encoding partial-ordering information. For
example, to represent that any sequence containing the n programs p1, . . . , pn, in
which p1 occurs before p2, is a valid plan for a goal ∆, one would need to list all
the possible sequences and then use the non-determinism construct. For n = 3, the
program fragment would be (p1; p2; p3|p1; p3; p2|p3; p1; p2). Alternatively, the use of
the concurrent construct ‖ from [De Giacomo et al. 2000], where p‖q represents the
set consisting of two programs p; q and q; p, is not very helpful either. This deficiency
of pure procedural constructs of the type discussed in the previous section prompted
us to look at the constructs in HTN planning [Sacerdoti 1974]. The partial-ordering
information allowed in HTN descriptions serves the purpose. Thus all we need is
to add constraints that says p1 must occur before p2.

The constructs in HTN by themselves are not expressive enough either as they
do not have procedural constructs such as procedures, conditionals, or loops, and
expressing a while loop using pure HTN constructs is not trivial. Thus we decided
to combine the HTN and procedural constructs and to go further than the initial
attempt in [Baral and Son 1999] where complex programs are not allowed to occur
within HTN programs.

We now define a more general notion of program that allows both procedural and
HTN constructs. For that we need the following notion. Let Σ = {(p1 : δ1), . . . , (pk :
δk)} be a set of procedures with free variables {X1, . . . , Xn}.
—An ordering constraint over Σ has the form pi ≺ pj where pi 6= pj .
—A truth constraint is of the form (pi, φ), (φ, pi), or (pi, φ, pt), where φ is a formula

whose free variables are from the set {X1, . . . , Xn}.
Given a set of procedures Σ and a set of constraints C over Σ, the execution of Σ will
begin with the grounding of Σ and C, i.e., the variables X1, . . . , Xn are substituted
by some constants c1, . . . , cn. The constraints in C stipulate an order in which the
procedures in Σ is executed. The intuition behind these types of constraints is as
follows:

—An ordering constraint pi ≺ pj requires that the procedure pi has to be executed
before the procedure pj .

—A truth constraint of the form (pi, φ) (resp. (φ, pi)) requires that immediately
after (resp. immediately before) the execution of pi, φ must hold.

—A constraint of the form (pi, φ, pt) indicates that φ must hold immediately after
pi is executed until pt begins its execution.

Because a constraint of the form (pi, φ, pt) implicitly requires that pi is executed
before pt, for convenience, we will assume hereafter that whenever (pi, φ, pt) belongs
to C, so does pi ≺ pt.
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The definition of general complex actions follows.

Definition 4.19 General Complex Action. For an action theory (D,Γ), a general
complex action with variables X1, . . . , Xn is either

—a complex action (Definition 4.12); or
—a pair (Σ, C) where Σ is a set of procedures and C is a set of constraints over Σ

and the variables of each procedure in Σ are from X1, . . . , Xn.

The definition of a procedure or program does not change. The notion of ground
instantiation, dependency, and well-definedness of a procedure can be extended
straightforwardly to general programs. We will continue to assume that programs
in consideration are well-defined. As in the case of programs, the operational seman-
tics of general programs is defined using the notion of trace. In the next definition,
we extend the notion of a trace to cover the case of general programs.

Definition 4.20 Trace of general programs. Let p = (S, δ) be a general program.
We say that a trajectory s0a0 . . . an−1sn is a trace of p if one of the following
conditions is satisfied:

—s0a0 . . . an−1sn and (S, δ) satisfy one of the condition in Definition 4.16; or
—δ = (Σ, C), Σ = {(p1 : δ1), . . . , (pk, δk)}, and there exists j0=0 ≤ j1 ≤ . . . ≤ jk=n

and a permutation (i1, . . . , ik) of (1, . . . , k) such that the sequence of trajectories
α1 = s0a0 . . . sj1 , α2 = sj1aj1 . . . sj2 , . . ., αk = sjk−1ajk−1 . . . sn satisfies the
following conditions:
(1) for each l, 1 ≤ l ≤ k, αl is a trace of (S, δil

),
(2) if nt ≺ nl ∈ C then it < il,
(3) if (φ, nl) ∈ C (or (nl, φ) ∈ C) then φ holds in the state sjl−1 (or sjl

), and
(4) if (nt, φ, nl) ∈ C then φ holds in sjt , . . . , sjl−1 .

2

The last item of the above definition can be visualized by the following illustration:

s0a0s1 . . . aj1−1sj1︸ ︷︷ ︸
α1
↑
↓

trace of (S,δi1 )

sj1aj1 . . . aj2−1sj2︸ ︷︷ ︸
α2
↑
↓

trace of (S,δi2 )

. . . sjl−1ajl−1+1 . . . ajl−1sjl︸ ︷︷ ︸
αl
↑
↓

trace of (S,δil )

. . . sjk−1ajk−1+1 . . . ajk−1sjk︸ ︷︷ ︸
αk
↑
↓

trace of (S,δik )

Next we show how to represent general programs. Similar to programs in the
previous section, we will assign names to general programs and their elements. A
general program p = (S, C) is encoded by the set of atoms and rules

r(p) = {htn(np, nS , nC)} ∪ r(S) ∪ r(C)

where r(S) and r(C) is the set of atoms and rules encoding S and C and is described
below. Recall that S is a set of programs and C is a set of constraints. Both S and C
are assigned unique names, nS and nC . The atoms set(nS) and set(nC) are added
to r(S) and r(C) respectively. Each element of S and C is encoded by a set of rules
which are added to r(S) and r(C), respectively. Finally, the predicate in(., .) is used
to specify what belongs to S and C, respectively. Elements of C are represented by
the predicates order(∗, +, +), postcondition(∗,+,−), precondition(∗,−, +), and
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maintain(∗,+,−, +) where the place holders ‘*’, ‘+’, and ‘-’ denote the name
of a constraint, a general program, and a formula, respectively. For example, if
n1 ≺ n2 belongs to C then the set of atoms encoding C will contain the atom
in(order(n0, n1, n2), nC) where n0 and nC are the names assigned to the ordering
constraint n1 ≺ n2 and C, respectively. Similarly, if C contains (n1, ϕ, n2) then
in(maintain(n0, nϕ, n1, n2), nC) (again, n0 and nC are the name assigned to the
truth constraint n1 ≺ n2 and C, respectively) will belong to the set of atoms
encoding C.

In the following example, we illustrate the encoding of a general program about the
blocks world domain.

Example 4.21. Consider a general program, (S,C), to build a tower from blocks
a, b, c that achieves the goal that a is on top of b and b is on top of c, i.e., the goal
is to make on(a, b) ∧ on(b, c) hold. We have S = {move(b, c),move(a, b)}, and

C =





o : move(b, c) ≺ move(a, b),
f1 : (clear(b), move(b, c)),
f2 : (clear(c),move(b, c)),
f3 : (clear(b), move(a, b)),
f4 : (clear(a),move(a, b))





The constant preceding the semicolon is the name assigned to the formula of C.
The encoding of p = (S,C) is as follows:

—r(p) = {htn(p, nS , nC)} ∪ r(S) ∪ r(C);
—r(S) = {set(nS), in(move(a, b), nS), in(move(b, c), nS)}; and
—r(C) consists of

—the facts defining nC and declaring its elements

{set(nC), in(o, nC), in(f1, nC), in(f2, nC), in(f3, nC), in(f4, nC)}
—the facts defining each of the constraints in C:

—the order constraint o: order(o,move(b, c),move(a, b)),
—the precondition constraints f1, . . . , f4:

—precondition(f1, clear(b), move(b, c)),
—precondition(f2, clear(c),move(b, c)),
—precondition(f3, clear(b), move(a, b)), and
—precondition(f4, clear(a), move(a, b)).

2

We now present the AnsProlog rules that realize the operational semantics of gen-
eral programs. For this purpose we need the rules (35)-(45) and the rules for
checking the satisfiability of formulae that were presented earlier. These rules are
for general programs whose top level structure is not an HTN. For general programs
whose top level feature is an HTN we add the following rule:

trans(N,T1, T2) ← htn(N, S, C), not nok(N,T1, T2). (46)

Intuitively, the above rule states that the general program N can be unfolded
between time points T1 and T2 (or alternatively: the trajectory from T1 and T2 is a
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trace of N) if N is an HTN construct (S, C), and it is not the case that the trajectory
from T1 and T2 is not a trace of N . The last phrase is encoded by nok(N, T1, T2)
and is true when the trajectory from T1 and T2 violates one of the many constraints
dictated by (S, C). The main task that now remains is to present AnsProlog rules
that define nok(N, T1, T2). To do that, as suggested by the definition of a trace
of a program (S, C), we will need to enumerate the permutations (i1, . . . , ik) of
(1, . . . , k) and check whether particular permutations satisfy the conditions in C.
We now introduce some necessary auxiliary predicates and their intuitive meaning.

—begin(N, I, T3, T1, T2) – This means that I, a general program belonging to N ,
starts its execution at time T3, and N starts and ends its execution at T1 and T2

respectively.
—end(N, I, T4, T1, T2) – This means that I, a general program belonging to N ,

ends its execution at time T4, and N starts and ends its execution at T1 and T2,
respectively.

—between(T3, T1, T2) – This is an auxiliary predicate indicating that the inequali-
ties T1 ≤ T3 ≤ T2 hold.

—not used(N,T, T1, T2) – This means that there exists no sub-program I of N
whose execution covers the time moment T , i.e., T < B or T > E where B and
E are the start and finish time of I, respectively.

—overlap(N, T, T1, T2) – This indicates that there exists at least two general pro-
grams I1 and I2 in N whose intervals contain T , i.e., B1 < T ≤ E1 and
B2 < T ≤ E2 where Bi and Ei (i = 1, 2) is the start- and finish-time of Ii,
respectively.

We will now give the rules that define the above predicates. First, to specify that
each general program I belonging to the general program (S,C), i.e., I ∈ S, must
start and end its execution exactly once during the time (S,C) is executed, we use
the following rules:

1{begin(N, I, T3, T1, T2) : between(T3, T1, T2)}1 ← htn(N, S, C), (47)
in(I, S),
trans(N, T1, T2).

1{end(N, I, T3, T1, T2) : between(T3, T1, T2)}1 ← htn(N, S, C), (48)
in(I, S),
trans(N, T1, T2).

The first (resp. second) rule says that I – a program belonging to S – must start
(resp. end) its execution exactly once between T1 and T2. Here, we use cardinality
constraints with variables [Niemelä et al. 1999] in expressing these constraints. Such
constraints with variables are short hand for a set of instantiated rules of the form
(7). For example, the first rule is shorthand for the set of rules corresponding to
the following cardinality constraint:

1{begin(N, I, T1, T1, T2), . . . , begin(N, I, T2, T1, T2)}1 ← htn(N, S,C),
in(I, S),
trans(N, T1, T2).
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We now give the rules defining not used(., ., ., .) and overlap(., ., ., .).

used(N, T, T1, T2) ← htn(N, S, C), in(I, S), (49)
begin(N, I, B, T1, T2),
end(N, I, E, T1, T2),
B ≤ T ≤ E.

not used(N, T, T1, T2) ← not used(N, T, T1, T2). (50)
overlap(N, T, T1, T2) ← htn(N, S, C), in(I1, S), (51)

begin(N, I1, B1, T1, T2),
end(N, I1, E1, T1, T2),
in(I2, S), begin(N, I2, B2, T1, T2),
end(N, I2, E2, T1, T2),
B1 < T ≤ E1, B2 < T ≤ E2, I1 6= I2.

The rule (49) states that if a general program I in N starts its execution at B and
ends its execution at E then its execution spans over the interval [B, E], i.e., every
time moment between B and E is used by some general program in N . The rule
(50) states that if a time moment between T1 and T2 is not used by some general
program in N then it is not used. The last rule in this group specifies the situation
when two general programs belonging to N overlap.

We are now ready to define nok(., ., .). There are several conditions whose violation
make nok true. The first condition is that the time point when a program starts
must occur before its finish time. Next, each general program belonging to the set
S of (S, C) must have a single start and finish time. The violation of these two
conditions is encoded by the following rules which are added to Π.

nok(N, T1, T2) ← htn(N, S, C), in(I, S), T3 > T4, (52)
begin(N, I, T3, T1, T2),
end(N, I, T4, T1, T2).

nok(N, T1, T2) ← htn(N, S, C), in(I, S), T3 ≤ T4, (53)
begin(N, I, T3, T1, T2),
end(N, I, T4, T1, T2),
not trans(I, T3, T4).

nok(N, T1, T2) ← htn(N, S, C), T1 ≤ T ≤ T2, (54)
not used(N, T, T1, T2).

nok(N, T1, T2) ← htn(N, S, C), T1 ≤ T ≤ T2, (55)
overlap(N, T, T1, T2).

Together the rules (47)-(55) define when the permutation determined by the set of
atoms of the form begin(N, I,B, T1, T2) and end(N, I, E, T1, T2) violates the initial
part of condition 8 of Definition 4.20. The rules (47)-(48) require each general
program in N to have a unique start and finish time and the rule (52) encodes the
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violation when the finish time is earlier than the start time. The rule (53) encodes
the violation when the trace of a general program in N does not correspond to its
start and finish times. The rule (54) encodes the violation when some time point
on the trajectory of N is not covered by the trace of a general program in N ; and
the rule (55) encodes the violation when the trace of two general programs in N
overlap.

The next group of rules encode the violation of conditions 8(b) – 8(d) of Definition
4.20.

nok(N, T1, T2) ← htn(N, S, C), in(I1, S), begin(N, I1, B1, T1, T2), (56)
in(I2, S), begin(N, I2, B2, T1, T2),
in(O, C), order(O, I1, I2), B1 > B2.

nok(N, T1, T2) ← htn(N, S, C), in(I1, S), end(N, I1, E1, T1, T2), (57)
in(I2, S), begin(N, I2, B2, T1, T2), E1 < T3 < B2,

in(O, C),maintain(O, F, I1, I2), not hf(F, T3).
nok(N, T1, T2) ← htn(N, S, C), in(I, S), begin(N, I,B, T1, T2), (58)

in(O, C), precondition(O, F, I), not hf(F, B).
nok(N, T1, T2) ← htn(N, S, C), in(I, S), end(N, I,E, T1, T2), (59)

in(O, C), postcondition(O, F, I), not hf(F,E).

The rule (56) encodes the violation when the constraint C of the general program
N = (S, C) contains I1 ≺ I2, but I2 starts earlier than I1. The rule (57) encodes the
violation when C contains (I1, F, I2) but the formula F does not hold in some point
between the end of I1 and start of I2. The rules (58) and (59) encode the violation
when C contains the constraint (F, I) or (I, F ) and F does not hold immediately
before or after respectively, the execution of I.

We now formulate the correctness of our above encoding of procedural and HTN
knowledge given as general programs, and relate the traces of a general program
with the answer sets of its AnsProlog encoding. For an action theory (D, Γ) and
a general program p, let ΠHTN

n be the AnsProlog program obtained from Πn by
(i) adding the rules (35)-(45) and (46)-(59), (ii) adding r(p), and (iii) replacing
the goal constraint with ⊥ ← not trans(nP , 0, n). The following theorem extends
Theorem 4.18.

Theorem 4.22. Let (D,Γ) be a consistent action theory and p be a general
program. Then,

(i) for every answer set M of ΠHTN
n with occ(ai, i) ∈ M for i ∈ {0, . . . , n − 1},

s0(M)a0 . . . an−1sn(M) is a trace of p; and

(ii) if s0a0 . . . an−1sn is a trace of p then there exists an answer set M of ΠHTN
n

such that sj = sj(M) and occ(ai, i) ∈ M for j ∈ {0, . . . , n} and i ∈ {0, . . . , n−1}
and trans(np, 0, n) ∈ M .

Proof. See Appendix A.4 2
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As before, to do planning using procedural and HTN constraints all we need to do
is to add the goal constraint to ΠHTN

n , which will filter out all answer sets where
the goal is not satisfied in time point n, and at the same time will use the sketch
provided by the general program p.

4.4 Demonstration Experiments

We tested our implementation with some domains from the general planning liter-
ature and from the AIPS planning competition [Bacchus et al. 2000]. In particular,
we tested our program with the Miconic-10 elevator domain. We also tested our
program with the Block domain. In both domains, we conducted tests with proce-
dural control knowledge. Our motivation was: (i) it has already been established
that well-chosen temporal and hierarchical constraints will improve a planner’s ef-
ficiency; (ii) we have previously experimented with the use of temporal knowledge
in the answer set planning framework [Tuan and Baral 2001]; and (iii) we are not
aware of any empirical results indicating the utility of procedural knowledge in
planning, especially in answer set planning. (Note that [Reiter 2000] concentrates
on using GOLOG to do planning in domains with incomplete information, not on
exploiting procedural knowledge in planning.)

We report the results obtained from our experiment with the elevator exam-
ple from [Levesque et al. 1997] (elp1-elp3) and the Miconic-10 elevator domain
(s1-0,. . . ,s5-0), proposed by Schindler Lifts Ltd. for the AIPS 2000 competition
[Bacchus et al. 2000]. Note that some of the planners, that competed in AIPS
2000, were unable to solve this problem. The domain description for this example
is described earlier in Example 4.15 and the smodels code can be downloaded from
http://www.cs.nmsu.edu/~tson/ASPlan/Knowledge. We use a direct encoding of
procedural knowledge in the Block domain to avoid the grounding problem. For
this reason, we do not include the results of our experiments on the Block domain in
this paper. The results and the encodings of this domain are available on the above
mentioned web site. We note that the direct encoding of procedural knowledge
in the Block domain yields significantly better results, both in terms of the time
needed to find a trajectory as well as the number of problems that can be solved.
Whether or not the methodology used in the Block domain can be generalized and
applied to other domains is an interesting question that we would like to investigate
in the near future.

The initial state for the elevator planning problem encodes a set of floors where
the light is on and the current position of the elevator. For instance, Γ =
{on(1), on(3), on(7), currentF loor(4)}. The goal formula is represented by the con-
junction ∧

f is a floor¬on(f). Sometimes, the final position of the elevator is added
to the goal. The planning problem is to find a sequence of actions that will serve all
the floors where the light is on and thus make the on predicate false for all floors,
and if required take the elevator to its destination floor.

Since there are a lot of plans that can achieve the desired goal, we can use procedural
constraints to guide us to preferable plans. In particular, we can use the procedural
knowledge encoded by the following set of simple GOLOG programs from [Levesque
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et al. 1997], which we earlier discussed in Example 4.15.

(go floor(N) : currentF loor(N)|up(N)|down(N))
(serve(N) : go floor(N); turnoff(N); open; close)

(serve a floor : pick(N, d(N), (on(N); serve(N))))
(park : if currentF loor(0) then open else [down(0); open])

(control : [while ∃N.{0, 1, . . . , k} [on(N)] do serve a floor(N)]; park)

We ran experiments on a Sony VAIO laptop with 256 MB Ram and an Intel Pentium
4 1.59 GHz processor, using lparse version 1.00.13 (Windows, build Aug 12, 2003)
and smodels version 2.27. for planning in this example with and without the
procedural control knowledge. The timings obtained are given in the following
table.

Problem Plan # Person # Floors With Control Without Control
Length Knowledge Knowledge

elp1 8 2 6 0.380 0.140
elp2 12 3 6 0.901 0.230
elp3 16 4 6 2.183 1.381
elp4 20 5 6 4.566 79.995
s1-0 4 1 2 0.120 0.020
s2-0 7 2 4 1.201 0.080
s3-0 9 3 6 5.537 0.310
s4-0 15 4 8 64.271 15.211
s5-0 19 5 10 260.183 1181.158

As can be seen, the encoding with control knowledge yields substantially better
performance in situations where the plan length is longer. In some instances with
small plan lengths, as indicated through boldface in column 6, the speed up due
to the use of procedural knowledge does not make up for the overhead needed in
grounding the knowledge. The output of smodels for each run is given in the
file result at the above mentioned URL. For larger instances of the elevator domain
[Bacchus et al. 2000] (5 persons or more and 10 floors or more), our implementation
terminated prematurely with either a stack overflow error or a segmentation fault
error.

5. CONCLUSION

In this paper we considered three different kinds of domain-dependent control
knowledge (temporal, procedural and HTN-based) that are useful in planning. Our
approach is declarative and relies on the language of logic programming with an-
swer set semantics. We showed that the addition of these three kinds of control
knowledge only involves adding a few more rules to a planner written in AnsProlog
that can plan without any control knowledge. We formally proved the correctness
of our planner, both in the absence and presence of the control knowledge. Finally,
we did some initial experimentation that illustrates the reduction in planning time
when procedural domain knowledge is used and the plan length is big.
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In the past, temporal domain knowledge has been used in planning in [Bacchus
and Kabanza 2000; Doherty and Kvarnstom 1999]. In both cases, the planners are
written in a procedural language, and there is no correctness proof of the plan-
ners. On the other hand the performance of these planners is much better14 than
our implementation using AnsProlog. In comparison, our focus in this paper is
on the ‘knowledge representation’ aspects of planning with domain dependent con-
trol knowledge and demonstration of relative performance gains when such control
knowledge is used. Thus, we present correctness proofs of our planners and stress
the ease of adding the control knowledge to the planner. In this regard, an interest-
ing observation is that it is straightforward to add control knowledge from multiple
sources or angles. Thus say two different general programs can be added to the
planner, and any resulting plan must then satisfy the two sketches dictated by the
two general programs.

As mentioned earlier our use of HTN-based constraints in planning is very different
from HTN-planning and the recent HTN-based planner [Nau et al. 1999]. Unlike
our approach in this paper, these planners cannot be separated into two parts: one
doing planning that can plan even in the absence of the knowledge encoded as HTN
and the other encoding the knowledge as an HTN. In other words, these planners
are not extended classical planners that allow the use of domain knowledge in the
form of HTN on top of a classical planner. The timings of the planner [Nau et al.
1999] on AIPS 2000 planning domains are very good though. To convince ourselves
of the usefulness of procedural constraints we used their methodology with respect
to procedural domain knowledge and wrote general programs for planning with
blocks world and the package delivery domain and as in [Nau et al. 1999] we wrote
planners in a procedural language (the language C to be specific) for these domains
and also observed similar performance. We plan to report this result in a future
work. With our focus on the knowledge representation aspects we do not further
discuss these experiments here.

Although we explored the use of each of the different kinds of domain knowledge
separately, the declarative nature of our approach allows us to use the different kinds
of domain knowledge for the same planning problem. For example, for a particular
planning problem we may have both temporal domain knowledge and a mixture
of procedural and hierarchical domain knowledge given as a general program. In
such a case, planning will involve finding an action sequence that follows the sketch
dictated by the general program and at the same time obeys the temporal domain
knowledge. This distinguishes our work from other related work [Huang et al. 1999;
Kautz and Selman 1998b; Baral and Son 1999; McIlraith 2000] where the domain
knowledge allowed was much more restricted.

A byproduct of the way we deal with procedural knowledge is that, in a proposi-
tional environment, our approach to planning with procedural knowledge can be
viewed as an off-line interpreter for a GOLOG program. Because of the declarative

14This provides a challenge to the community developing AnsProlog* systems to develop AnsPro-
log* systems that can match or come close to (if not surpass) the performance of planners with
procedural knowledge.
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nature of AnsProlog the correctness of this interpreter is easier to prove than the
earlier interpreters which were mostly written in Prolog.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/tocl/2006-V-N/p1-URLend.
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A. APPENDIX A — PROOFS

We apply the Splitting Theorem and Splitting Sequence Theorem [Lifschitz and
Turner 1994] several times in our proof15. For ease of reading, the basic notation and
the splitting theorem are included in Appendix B. Since we assume a propositional
language any rule in this paper can be considered as a collection of its ground
instances. Therefore, throughout the proof, we often say a rule r whenever we refer
to a ground rule r. By lit(π), we denote the set of literals of a program π.

Appendix A.1 - Proof of Theorem 3.2

For a planning problem 〈D, Γ, ∆〉, let

π = Πn(D, Γ, ∆) \ {(20), ⊥ ← not goal},
i.e., π is obtained from Πn(D, Γ, ∆) by removing the rules encoding ∆ and the
constraint ⊥ ← not goal. Let S be a set of literals of the form holds(l, t). Abusing
the notation, we say that S is consistent with respect to F (or consistent, for short)
if for every pair of a fluent f ∈ F and a time moment t, S does not contain both
holds(f, t) and holds(¬f, t). For a set of causal laws K and a set of fluent literals
Y , let

MK(Y ) = Y ∪ {l | ∃ caused({p1, . . . , pk}, l) ∈ K s.t. Y |= p1 ∧ . . . ∧ pk}. (60)

15To be more precise, we use a modified version of these theorems since programs in this paper
contain constraints of the form (6) which were not discussed in [Lifschitz and Turner 1994]. The
modification is discussed in Appendix B.
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It is easy to see that MK(Y ) is a monotonic function and bounded above by F. Thus,
the sequence 〈M i

K(Y )〉i<∞, where M0
K(Y ) = Y and M i+1

K (Y ) = MK(M i
K(Y )) for

i ≥ 0, is a convergent sequence. In other words, there exists some i ≥ 0 such
that M j+1

K (Y ) = M j
K(Y ) for j ≥ i. Let C(K, Y ) =

⋃
i<∞M i

K(Y ). We have that
C(K, Y ) is closed under K. We can prove the following lemma.

Lemma A.1. For a set of causal laws K and a set of fluent literals Y ,

(1 ) C(K, Y ) is consistent and C(K, Y ) = ClK(Y ) iff ClK(Y ) is defined; and
(2 ) C(K, Y ) is inconsistent iff ClK(Y ) is undefined.

Proof. The lemma is trivial for inconsistent set of literals Y . We need to prove
it for the case where Y is consistent.

(1) Consider the case where C(K, Y ) is consistent. From the definition of the
function MK in (60), we have that MK(S) ⊆ ClK(S) for every set of literals S.
Therefore, M i

K(Y ) ⊆ ClK(Y ) for every i. Thus, C(K,Y ) ⊆ ClK(Y ). Because
C(K, Y ) is closed under K and ClK(Y ) is the least set of literals closed under
K, we can conclude that ClK(Y ) ⊆ C(K, Y ).

To complete the proof of the first item, we need to show that if ClK(Y ) is
defined, then C(K, Y ) is consistent and C(K, Y ) = ClK(Y ). Again, it follows
immediately from Equation (60) that MK(S) ⊆ ClK(S) for every consistent
set S. This implies that M i

K(Y ) ⊆ ClK(Y ) for every i. Thus, we have that
C(K, Y ) ⊆ ClK(Y ). This implies the consistency of C(K, Y ). The equality
C(K, Y ) = ClK(Y ) follows from the closeness of C(K, Y ) with respect to K
and the definition of ClK(Y ). This concludes the first item of the lemma.

(2) Consider the case where C(K, Y ) is inconsistent. Assume that ClK(Y ) is
defined. By definition of M i

K(Y ), we know that if M i
K(Y ) is inconsistent

then M i+1
K (Y ) is also inconsistent. Thus, there exists an integer k such that

Mk
K(Y ) is consistent and Mk+1

K (Y ) is inconsistent. Because of the consistency
of ClK(Y ) and Mk

K(Y ) ⊆ ClK(Y ), we conclude that Mk+1
K (Y ) \ ClK(Y ) 6= ∅.

Consider l ∈ Mk+1
K (Y ) \ ClK(Y ). By the definition of MK , there exists some

static causal law

caused({p1, . . . , pn}, l)
in K such that {p1, . . . , pn} ⊆ Mk

K(Y ). This implies that ClK(Y ) is not closed
under K, which contradicts the definition of ClK(Y ). This shows that ClK(Y )
is undefined.

Now, consider the case where ClK(Y ) is undefined. Using contradiction and
the result of the first item, we can also show that C(K, Y ) is inconsistent. This
concludes the proof of the second item of the lemma.

2

Lemma A.2. For a set of causal laws K and a set of fluent literals Y , for every
integer k, the program consisting of the following rules:

holds(l, k) ← holds(l1, k), . . . , holds(lm, k) (if caused({l1, . . . , lm}, l) ∈ K)
holds(l, k) ← (if l ∈ Y )

⊥ ← fluent(f), holds(f, k), holds(¬f, k) (if f ∈ F)
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(1 ) has a unique answer set {holds(l, k) | l ∈ ClK(Y )} iff ClK(Y ) is defined; and
(2 ) does not have an answer set iff ClK(Y ) is undefined.

Proof. Let us denote the given program by Q and P be the program consisting
of the rules of Q with the head different than ⊥. Since P is a positive program,
we know that it has a unique answer set, says X. It is easy to see that if X is
consistent with respect to F, then X is the unique answer set of Q; otherwise, Q
does not have an answer set.

It is easy to see that X = {holds(l, k) | l ∈ C(K, Y )} is the unique answer set of
P . Consider the two cases:

(1) ClK(Y ) is defined. Lemma A.1 implies that C(K, Y ) = ClK(Y ), and hence, X
is consistent with respect to F. This implies that X is the unique answer set of
Q.

(2) ClK(Y ) is undefined. Lemma A.1 implies that C(K, Y ) is inconsistent, which
implies that X is inconsistent with respect to F, and hence, Q does not have
an answer set.

2

We now prove some useful properties of π. We will prove that if (D, Γ) is consistent
then π is consistent (i.e., π has an answer set) and that π correctly implements
the transition function Φ of D. First, we simplify π by using the splitting theo-
rem [Lifschitz and Turner 1994] (Theorem B.1, Appendix B). Let V be the set of
literals in the language of π whose parameter list does not contain the time param-
eter, i.e., V consists of auxiliary atoms of the form literal(l), fluent(f), action(a),
contrary(l1, l2).

It is easy to see that V is a splitting set of π. Furthermore, it is easy to see that
the bottom program bV (π) consists of the rules that define actions, fluents, and
the rules (14)–(17). Obviously, bV (π) is a positive program, and hence, it has a
unique answer set. Let us denote the unique answer set of bV (π) by A0. The partial
evaluation of π with respect to (V, A0), π1 = eV (π \ bV (π), A0), is the collection of
the following rules:

holds(l, t+1) ← occ(a, t), holds(l1, t), . . . , holds(lk, t). (61)
(if causes(a, l, {l1, . . . , lk}) ∈ D)

holds(l, t) ← holds(l1, t), . . . , holds(lm, t). (62)
(if caused({l1, . . . , lm}, l) ∈ D)

possible(a, t) ← holds(l1, t), . . . , holds(lt, t). (63)
(if executable(a, {l1, . . . , lt}) ∈ D)

holds(l, 0) ← (64)
(if initially(l) ∈ Γ)

occ(a, t) ← possible(a, t), not nocc(a, t). (65)
(if a is an action)

nocc(a, t) ← occ(b, t). (66)
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(for every pair of actions a 6= b)
holds(f, t+1) ← holds(f, t), not holds(¬f, t+1). (67)

(for every fluent f)
holds(¬f, t+1) ← holds(¬f, t), not holds(f, t+1). (68)

(for every fluent f)
⊥ ← holds(f, t), holds(¬f, t). (69)

(for every fluent f)

It follows from the splitting theorem that to prove the consistency and correctness
of π it is enough to prove the consistency of π1 and that π1 correctly implements
the transition function Φ of D. We prove this in the next lemmas.

Lemma A.3. Let (D, Γ) be a consistent action theory. Let X be an answer set
of π1. Then,

(1 ) st(X) is a state of D for every t ∈ {0, . . . , n} 16 for every t ∈ {0, . . . , n− 1},
(2 ) if X contains occ(a, t) then a is executable in st(X) and st+1(X) ∈ Φ(a, st(X)),

and
(3 ) for every t ∈ {0, . . . , n−1}, if occ(a, t) 6∈ X for every action a, then st+1(X) =

st(X).

Proof. It is easy to see that the sequence 〈Ut〉nt=0, where

Ut = {holds(l, k) | l is a literal and k ≤ t}∪
{occ(a, k) | a is an action and k ≤ t}∪
{nocc(a, k) | a is an action and k ≤ t}∪
{possible(a, k) | a is an action and k ≤ t} ∪ {⊥},

is a splitting sequence of π1. Since X is an answer set of π1, by the splitting
sequence theorem (Theorem B.2, Appendix B), there exists a sequence of sets of
literals 〈Xt〉nt=0 such that Xt ⊆ Ut \ Ut−1, and

—X =
⋃n

i=0 Xi,
—X0 is an answer set of bU0(π1) and
—for every t > 0, Xt is an answer set of eUt(bUt(π1) \ bUt−1(π1),

⋃
i≤t−1 Xi).

We will prove the lemma by inductively proving that for every t, 0 ≤ t ≤ n, the
following holds:

(i) Xt is complete and consistent with respect to F in the sense that for each fluent
f , Xt contains either holds(f, t) or holds(¬f, t) but not both,

(ii) Xt contains at most one atom of the form occ(a, t),
(iii) st(Xt) is a state of D, and
(iv) if occ(a, t − 1) ∈ Xt−1 then a is executable in st−1(Xt−1) and st(Xt) ∈

Φ(a, st−1(Xt−1)); if no atom of the form occ(a, t − 1) belongs to Xt−1 then
st−1(Xt−1) = st(Xt).

16Recall that for every set Y , st(Y ) is the set {f | holds(f, t) ∈ Y }
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Base case: t = 0. Trivially, X0 satisfies (iv). So, we only need to show that
X0 satisfies (i)-(iii). Let P0 = bU0(π1). We have that P0 consists of only rules of
the form (62)-(66) and (69) with t = 0. Let Z0 = {holds(f, 0) | f is a fluent} ∪
{holds(¬f, 0) | f is a fluent}. We can easily checked that Z0 is a splitting set of
P0. Thus, by the splitting theorem, X0 = M0 ∪ N0 where M0 is an answer set of
bZ0(P0) and N0 is an answer set of eZ0,M0 = eZ0(P0 \ bZ0(P0),M0). Because M0

contains only literals of the form holds(l, 0) and N0 contains only literals of the
form occ(a, 0), nocc(a, 0), and possible(a, 0), we have that s0(X0) = s0(M0) and
occ(a, 0) ∈ X0 iff occ(a, 0) ∈ N0. Hence, to prove that X0 satisfies (i)-(iii), we show
that M0 satisfies (i) and (iii) and N0 satisfies (ii).

We have that the bottom program bZ0(P0) consists of rules of the form (64) and
(62). Because of the consistency of (D, Γ), we have that s0 = {f | initially(f) ∈ Γ}
is consistent and hence {holds(f, 0) | initially(f) ∈ Γ} is consistent with respect to
F. It follows from Lemma A.2 that M0 = {holds(f, 0) | f ∈ s0} is the unique answer
set of bZ0(P0) where s0 is the initial state of (D, Γ). Because of the completeness of Γ
and the consistency of (D, Γ), we can conclude that M0 is complete and consistent.
Thus, M0 satisfies (i). Furthermore, because s0(M0) = s0, we conclude that M0

satisfies (iii).

The partial evaluation of P0 with respect to (Z0,M0), eZ0,M0 , consists of

eZ0,M0 =





possible(a, 0) ← (a1)
(if executable(a, {l1, . . . , lm}) ∈ D
and holds(li, 0) ∈ M0)

occ(a, 0) ← possible(a, 0), not nocc(a, 0). (a2)
nocc(a, 0) ← occ(b, 0). (a3)

(for every pair of actions a 6= b)
← holds(f, 0), holds(¬f, 0) (a4)

(for every fluent f)

Let R be the set of atoms occurring in the rule (a1) of eZ0,M0 . There are two cases:

—Case 1: R = ∅. Obviously, the empty set is the unique answer set of eZ0,M0 .
Thus, N0 does not contain any atom of the form occ(a, 0).

—Case 2: R 6= ∅. By applying the splitting theorem one more time with the
splitting set R we can conclude that N0 is an answer set of eZ0,M0 if and only if
there exists some action a, possible(a, 0) ∈ R, and

N0 = R ∪ {occ(a, 0)} ∪ {nocc(b, 0) | b is an action in D, b 6= a}.
Thus, N0 contains only one atom of the form occ(a, 0).

The above two cases show that N0 contains at most one atom of the form occ(a, 0).
This concludes the proof of the base case.

Inductive step: Assume that Xt, t < k, satisfies (i)-(iv). We will show that Xk

also satisfies (i)-(iv). Let Mk−1 =
⋃k−1

t=0 Xt. The splitting sequence theorem implies
that Xk is an answer set of Pk that consists of the following rules:

holds(l, k) ← (70)
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(if occ(a, k − 1) ∈ Mk−1,

causes(a, l, {l1, . . . , lm}) ∈ D,

holds(li, k − 1) ∈ Mk−1)
holds(l, k) ← holds(l1, k), . . . , holds(lm, k). (71)

(if caused({l1, . . . , lm}, l) ∈ D)
possible(a, k) ← holds(l1, k), . . . , holds(lt, k). (72)

(if executable(a, {l1, . . . , lt}) ∈ D)
occ(a, k) ← possible(a, k), not nocc(a, k). (73)

(if a is an action)
nocc(a, k) ← occ(b, k). (74)

(for every pair of actions a 6= b)
holds(f, k) ← not holds(¬f, k). (75)

(if holds(f, k − 1) ∈ Mk−1)
holds(¬f, k) ← not holds(f, k). (76)

(if holds(¬f, k − 1) ∈ Mk−1)
⊥ ← holds(f, k), holds(¬f, k). (77)

From the constraint (77), we have that for every fluent f , Xk cannot contain both
holds(f, k) and holds(¬f, t). This means that Xk is consistent. We now show that
Xk is also complete. Assume the contrary, i.e., there exists a fluent f such that
neither holds(f, k) nor holds(¬f, f) belongs to Xk. Because of the completeness of
sk−1(Xk−1) (Item (i), inductive hypothesis), either holds(f, k − 1) ∈ sk−1(Xk−1)
or holds(f, k − 1) 6∈ sk−1(Xk−1). If the first case happens, rule (75) belongs to
Pk, and hence, Xk must contain holds(f, k), which contradicts our assumption
that holds(f, k) 6∈ Xk. Similarly, if the second case happens, because of rule (76),
we can conclude that holds(¬f, k) ∈ Xk which is also a contradiction. Thus, our
assumption on the incompleteness of Xk is incorrect. In other words, we have
proved that Xk is indeed complete and consistent, i.e., (i) is proved for Xk. We
now prove the other items of the conclusion. Let

Yk = {holds(l, k) | l is a fluent literal and holds(l, k) ∈ Xk}

and

Zk = {holds(l, k) | l is a fluent literal}.
Zk is a splitting set of Pk. Let πk = bZk

(Pk). From the splitting theorem, we know
that Yk must be an answer set of the program (πk)Yk that consists of the following
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rules:

holds(l, k) ← (b1)
(if occ(a, k − 1) ∈ Mk−1, causes(a, l, {l1, . . . , lm}) ∈ D,
holds(li, k − 1) ∈ Mk−1 for i = 1, . . . , m)

holds(l, k) ← holds(l1, k), . . . , holds(ln, k). (b2)
(if caused({l1, . . . , ln}, l) ∈ D)

holds(f, k) ← (b3)
( if holds(f, k − 1) ∈ Mk−1 and holds(¬f, k) 6∈ Yk)

holds(¬f, k) ← (b4)
( if holds(¬f, k − 1) ∈ Mk−1 and holds(f, k) 6∈ Yk)

⊥ ← holds(f, k), holds(¬f, k). (b5)
(for every fluent f)

Let Q1 and Q2 be the set of atoms occurring in the rule (b1) and (b3)-(b4), respec-
tively. Let C1 = {l | holds(l, k) ∈ Q1} and C2 = {l | holds(l, k) ∈ Q2}. There are
two cases:

—Case 1: Mk−1 does not contain an atom of the form occ(a, k− 1). We have that
Q1 = ∅ and C2 ⊆ sk−1(Xk−1). From Lemma A.2, we know that (πk)Yk has a
unique answer set {holds(f, k) | f ∈ ClDC

(C2)} which is Yk. Because sk(Xk) =
{f | f ∈ Yk} and the definition of ClDC

, we have that sk(Xk) ⊆ sk−1(Xk−1). The
completeness and consistency of sk(Xk) and sk−1(Xk−1) implies that sk(Xk) =
sk−1(Xk−1). Because Xk−1 satisfies (i)-(iv), Xk also satisfies (i)-(iv).

—Case 2: There exists an action a such that occ(a, k−1) ∈ Mk−1. Because of the
rule (b1) we have that C1 = E(a, sk−1(Xk−1)). The completeness of sk(Xk) and
sk−1(Xk−1) and the rules (b3)-(b4) imply that C2 = sk(Xk)∩ sk−1(Xk−1). Fur-
thermore, Lemma A.2 implies that (πk)Yk has a unique answer set {holds(f, k) |
f ∈ ClDC

(C1 ∪ C2)} which is Yk (because Yk is an answer set of πk). Hence,
sk(Xk) = ClDC

(E(a, sk−1(Xk−1)) ∪ (sk(Xk) ∩ sk−1(Xk−1))). This implies that
sk(Xk) ∈ Φ(a, sk−1(Xk−1)). In other words, we have proved that Xk satisfies
(iii)-(iv).

The above two cases show that Xk satisfies (iii) and (iv). It remains to be shown
that Xk contains at most one atom of the form occ(a, k). Again, by the splitting
theorem, we can conclude that Nk = Xk \Yk must be an answer set of the following
program

eYk
=





possible(a, k) ←
(if executable(a, {l1, . . . , lm}) ∈ D
and holds(li, k) ∈ Yk)

occ(a, k) ← possible(a, k), not nocc(a, k).
(if a is an action)

nocc(a, k) ← occ(b, k).
(for every pair of actions a 6= b)

Let Rk be the set of atoms occurring in the first rule of eYk
. Similar to the proof

of the base case, we can show that for every answer set Nk of eYk
, either Nk does

not contain an atom of the form occ(a, k) or there exists one and only one action
a such that possible(a, k) ∈ Rk and NK = Rk ∪ {occ(a, k)} ∪ {nocc(b, a) | b is an
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action, b 6= a}. In either case, we have that Xk = Yk ∪Nk satisfies the conditions
(ii). The inductive step is proved.

The conclusion of the lemma follows immediately from the fact that st(X) = st(Xt)
for every t and occ(a, t) ∈ X iff occ(a, t) ∈ Xt and Xt satisfies the property (i)-(iv).
The lemma is proved. 2

Lemma A.4. For every trajectory s0a0 . . . an−1sn in D and a consistent action
theory (D, Γ), π1 has an answer set X such that

(1 ) st(X) = st for every t, 0 ≤ t ≤ n, and

(2 ) occ(at, t) ∈ X for every t, 0 ≤ t ≤ n− 1.

Proof. We prove the theorem by constructing an answer set X of π1 that sat-
isfies the Items 1 and 2. Again, we apply the splitting sequence theorem with the
splitting sequence 〈Ut〉nt=0, where

Ut = {holds(l, k) | l is a literal and k ≤ t}∪
{occ(a, k) | a is an action and k ≤ t}∪
{nocc(a, k) | a is an action and k ≤ t}∪
{possible(a, k) | a is an action and k ≤ t} ∪ {⊥}.

For every t, 0 ≤ t ≤ n, let Rt = {possible(a, t) | a is executable in st}. We define a
sequence of sets of literals 〈Xt〉nt=0 as follows.

—For 0 ≤ t ≤ n− 1,

Xt = {holds(f, t) | f ∈ st} ∪ {occ(at, t)}∪
{nooc(b, t) | b is an action in D, b 6= at} ∪Rt.

—If Rn 6= ∅, then let an be an arbitrary action that is executable in sn and

Xn = {holds(f, n) | f ∈ sn} ∪ {occ(an, n)}∪
{nooc(b, t) | b is an action in D, b 6= an} ∪Rn.

—If Rn = ∅, then

Xn = {holds(f, n) | f ∈ sn} ∪ {nooc(b, t) | b is an action in D} ∪Rn,

We will prove that 〈Xt〉nt=0 is a solution to π1 with respect to 〈Ut〉nt=0. This amounts
to prove that

—X0 is an answer set of bU0(π1) and

—for every t > 0, Xt is an answer set of eUt(bUt(π1) \ bUt−1(π1),
⋃

i≤t−1 Xi).

We first prove that X0 is an answer set of P0 = bU0(π1). By the construction of P0
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and X0, we have that (P0)X0 consists of the following rules:

(P0)X0 =





holds(f, 0) ← (if initially(f) ∈ Γ) (a1)
holds(l, 0) ← holds(l1, 0), . . . , holds(lm, 0). (a2)

(if caused({l1, . . . , lm}, l) ∈ D)
possible(a, 0) ← holds(l1, 0), . . . , holds(lm, 0). (a3)

(if executable(a, {l1, . . . , lm}) ∈ D)
occ(a0, 0) ← possible(a0, 0). (a4)
nocc(b, 0) ← occ(a, 0). (a5)

(for every pair of actions b 6= a)
⊥ ← holds(f, 0), holds(¬f, 0) (a6)

(for every fluent f)

We will show that X0 is a minimal set of literals closed under the rules (a1)-(a6)
and therefore is an answer set of P0. Since holds(f, 0) ∈ X0 iff f ∈ s0 (Definition
of X0) and f ∈ s0 iff initially(f) ∈ Γ (Definition of s0), we conclude that X0 is
closed under the rule of the form (a1). Because of s0 is closed under the static
causal laws in D, we conclude that X0 is closed under the rule of the form (a2).
The definition of R0 guarantees that X0 is closed under the rule of the form (a3).
Since s0a0 . . . an−1sn is a trajectory of D, a0 is executable in S0. This implies that
possible(a0, 0) ∈ R0. This, together with the fact that occ(a0, 0) ∈ X0, implies that
X0 is closed under the rule (a4). The construction of X0 also implies that X0 is
closed under the rule (a5). Finally, because of the consistency of Γ, we have that
X0 does not contain holds(f, 0) and holds(neg(f), 0) for any fluent f . Thus, X0 is
closed under the rules of (P0)X0 .

To complete the proof, we need to show that X0 is minimal. Consider an arbitrary
set of atoms X ′ that is closed under the rules (a1)-(a6). This implies the following:

—holds(f, 0) ∈ X ′ for every f ∈ s0 (because of the rule (a1)).
—R0 ⊂ X ′ (because of the rule (a3) and the definition of R0).
—occ(a0, 0) ∈ X ′ (because of the rule (a4)).
—{nocc(b, 0) | b is an action, b 6= a} ⊆ X ′ (because occ(a0, 0) ∈ X ′ and the rule

(a5)).

The above items imply that X0 ⊆ X ′. In other words, we show that X0 is a minimal
set of literals that is closed under the rules (a1)-(a6). This implies that X0 is an
answer set of (P0)X0 , which implies that X0 is an answer set of P0.

To complete the proof of the lemma, we will prove by induction over t, t > 0, that
Xt is an answer set of Pt = eUt(bUt−1(π1) \ bUt−1(π1),

⋃
i≤t−1 Xi). Since the proof

of the base case (t = 1) and the inductive step is similar, we skip the base case and
present only the proof for the inductive step. Now, assuming that Xt, t < k, is an
answer set of Pt. We show that Xk is an answer set of Pk. Let Mk−1 =

⋃
i≤k−1 Xi.

The program Pk consists of the following rules:

holds(l, k) ← (78)
(if causes(ak−1, l, {l1, . . . , lm}) ∈ D, holds(li, k − 1) ∈ Mk−1)

holds(l, k) ← holds(l1, k), . . . , holds(lm, k). (79)
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(if caused({l1, . . . , lm}, l) ∈ D)
possible(a, k) ← holds(l1, k), . . . , holds(lt, k). (80)

(if executable(a, {l1, . . . , lt}) ∈ D)
occ(a, k) ← possible(a, k), not nocc(a, k). (81)

(if a is an action)
nocc(a, k) ← occ(b, k). (82)

(for every pair of actions a 6= b)
holds(f, k) ← not holds(¬f, k). (83)

(if holds(f, k − 1) ∈ Mk−1)
holds(¬f, k) ← not holds(f, k). (84)

(if holds(¬f, k − 1) ∈ Mk−1)
⊥ ← holds(f, k), holds(¬f, k). (85)

It is easy to see that Pk can be split by the set of literal Zk = {holds(f, k) | f is a
fluent literal} and the bottom program πk = bZk

(Pk) consists of the rules (78)-(79)
and (83)-(84). We will prove first that Yk = {holds(l, k) | holds(l, k) ∈ Xk} is an
answer set of the program (πk)Yk that consists of the following rules:

holds(l, k) ← (b1)
(if causes(ak−1, l, {l1, . . . , lm}) ∈ D,
holds(li, k − 1) ∈ Mk−1 for i = 1, . . . , m)

holds(l, k) ← holds(l1, k), . . . , holds(ln, k). (b2)
(if caused({l1, . . . , ln}, l) ∈ D)

holds(f, k) ← (b3)
(if holds(f, k − 1) ∈ Mk−1 and holds(¬f, k) 6∈ Yk)

holds(¬f, k) ← (b4)
(if holds(¬f, k − 1) ∈ Mk−1 and holds(f, k) 6∈ Yk)

⊥ ← holds(f, k), holds(¬f, k). (b5)

Let Q1 and Q2 be the set of atoms occurring in the rule (b1) and (b3)-(b4), re-
spectively. Let C1 = {l | holds(l, k) ∈ Q1} and C2 = {l | holds(l, k) ∈ Q2}.
Rule (b1) and the fact that f ∈ sk−1(Xk−1) iff holds(f, k − 1) ∈ Mk−1 imply
that C1 = E(ak−1, sk−1(Xk−1)). Similar argument allows us to conclude that
C2 = sk(Xk) ∩ sk−1(Xk−1). Lemma A.2 implies that (πk)Yk has a unique answer
set Y = {holds(f, k) | f ∈ ClDC

(C1 ∪ C2)}. Since occ(ak−1, k − 1) ∈ Mk−1 and
sk(Xk) ∈ Φ(ak−1, sk−1(Xk−1)), we have that sk(Xk) = ClDC

(C1 ∪ C2). It follows
from the definition of Yk that Yk = Y . Thus, Yk is an answer set of πk. It follows
from the splitting theorem that to complete the proof of the inductive step, we need
to show that Nk = Xk \ Yk is an answer set of the partial evaluation of Pk with
ACM Transactions on Computational Logic, Vol. V, No. N, August 2006.
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respect to (Zk, Yk), eZk,Yk
= eZk

(Pk \ bZk
(Pk), Xk), which is the following program

eZk,Yk
=





possible(a, k) ← (if executable(a, {l1, . . . , lm}) ∈ D
and holds(li, k) ∈ Yk)

occ(a, k) ← possible(a, k), not nocc(a, k).
(if a is an action)

nocc(a, k) ← occ(b, k).
(for every pair of actions a 6= b)

It is easy to see that the reduct of eZk,Yk
with respect to Nk, (eZk,Yk

)Nk , consists
of the following rules

(eZk,Yk
)Nk =





possible(a, k) ← (if executable(a, {l1, . . . , lm}) ∈ D
and holds(li, k) ∈ Yk)

occ(ak, k) ← possible(ak, k).
nocc(a, k) ← occ(b, k).

(for every pair of actions a 6= b)

Let Rk be the set of atoms occurring in the first rule of (eZk,Yk
)Nk . Because

s0a0 . . . ansn is a trajectory in D, ak is executable in sk. Thus, possible(ak, k)
belongs to Rk. It is easy to see that Nk is the unique answer set of (eZk,Yk

)Nk . In
other words, Nk is an answer set of eZk,Yk

. The inductive step is proved.

The property of Xt implies that the sequence 〈Xt〉nt=0 is a solution to π1 with
respect to the sequence 〈Ut〉nt=0. By the splitting sequence theorem, X =

⋃n
t=0 Xt

is an answer set of π1. Because of the construction of Xt, we have that st(X) =
st(Xt) = st for every t and occ(at, t) ∈ X for every t, 0 ≤ t ≤ n. The lemma is
proved. 2

The above lemmas lead to the following corollaries.

Corollary A.5. Let X be an answer set of π. Then,

(i) st(X) is a state of D for every t, 0 ≤ t ≤ n,
(ii) if X contains occ(a, t) then a is executable in st(X) and st+1(X) ∈ Φ(a, st(X))

for every t, 0 ≤ t ≤ n− 1, and
(iii) if occ(a, t) 6∈ X for every action a, then st+1(X) = st(X) for every t, 0 ≤ t ≤

n− 1.

Proof. It follows from the splitting theorem that Y = X ∩ lit(π1) is an answer
set of π1. Because st(X) = st(Y ) and Lemma A.3, we conclude that X satisfies
the (i)-(iii). 2

Corollary A.6. For every trajectory s0a0 . . . an−1sn in D and a consistent
action theory (D, Γ), π has an answer set X such that

(i) st(X) = st for every t, 0 ≤ t ≤ n, and
(ii) occ(at, t) ∈ X for every t, 0 ≤ t ≤ n− 1.

Proof. From Lemma A.4, there exists an answer set Y of π1 such that st(Y ) =
st and occ(at, t) ∈ Y . Again, from the splitting theorem, we can conclude that there
exists an answer set X of π such that Y = X ∩ lit(π1). Because st(X) = st(Y ), we
conclude that X satisfies (i)-(ii). 2
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The next observation is also useful.

Observation A.7. For every answer set X of π, if there exists an t such that
X does not contain an atom of the form occ(a, t), then X does not contain an atom
of the form occ(a, t′) for t ≤ t′.

Using the result of the above corollaries we can prove Theorem 3.2.

Theorem A.8 (Main Text 3.2). For a planning problem 〈D, Γ,∆〉,
(i) if s0a0 . . . an−1sn is a trajectory achieving ∆, then there exists an answer set

M of Πn such that
(1) occ(ai, i) ∈ M for i ∈ {0, . . . , n− 1} and
(2) si = si(M) for i ∈ {0, . . . , n}.
and

(ii) if M is an answer set of Πn, then there exists an integer 0 ≤ k ≤ n such
that s0(M)a0 . . . ak−1sk(M) is a trajectory achieving ∆ where occ(ai, i) ∈ M for
0 ≤ i < k and if k < n then no action is executable in the state sk(M).

Proof. We have that Πn = π ∪{(20),← not goal}. Assume that ∆ = p1 ∧ . . .∧
pk.

(i). Since s0a0 . . . an−1sn is a trajectory achieving ∆, the existence of X that
satisfies the condition (i) of the theorem follows from Corollary A.6. Furthermore,
because of sn |= ∆, we can conclude that holds(pi, n) ∈ X for every i, 1 ≤ i ≤ k.
Thus, X ∪{goal} is an answer set of Πn. This implies the existence of M satisfying
(i).

(ii). Let M be an answer set of Πn. It is easy to see that this happens iff goal ∈ M
and X = M\{goal} is an answer set of π and holds(pi, n) ∈ X for every i, 1 ≤ i ≤ k.
It follows from Observation A.7 that there exists an integer k ≤ n such that for
each i, 0 ≤ i < k, there exists an action ai such that occ(ai, i) ∈ M and for t ≥ k,
occ(a, t) 6∈ M for every action a. By Corollary A.5, we know that ai is executable
in si(M) and si+1(M) ∈ Φ(ai, si(M)). This means that s0(M)a0 . . . ak−1sk(M) is
a trajectory and sk(M) = sn(M). Moreover, ∆ holds in sn(M) = sk(M). Thus,
s0(M)a0 . . . ak−1sk(M) is a trajectory achieving ∆. Furthermore, it follows from
Corollary A.5 and the rules (65) and (66) that if k < n then M does not contain
literals of the form possible(a, k). This implies that no action is executable in sk(M)
if k < n. 2

Appendix A.2 - Proofs of Theorem 4.9

Theorem A.9 (Main Text 4.9). Let S be a finite set of goal-independent
temporal formulae, I = 〈s0, s1 . . . sn〉 be a sequence of states, and

Πformula(S, I) = Πformula ∪ r(I) ∪ r(S)

where

—r(S) is the set of atoms used in encoding S, and
—r(I) = ∪n

t=0{holds(l, t) | l is a fluent literal and l ∈ st}.
Then,
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(i) The program Πformula(S, I) has a unique answer set, X.
(ii) For every temporal formula φ such that formula(nφ) ∈ r(S), φ is true in It,

i.e., It |= φ, if and only if hf(nφ, t) belongs to X where It = 〈st, . . . sn〉.
Proof. First, we prove (i). We know that if a program is locally stratified then

it has a unique answer set. We will show that Πformula(S, I) (more precisely, the set
of ground rules of Πformula(S, I)) is indeed locally stratified. To accomplish that we
need to find a mapping λ from literals of Πformula(S, I) to N that has the property:
if A0 ← A1, A2, . . . An, not B1, not B2, . . . not Bm is a rule in Πformula(S, I), then
λ(A0) ≥ λ(Ai) for all 1 ≤ i ≤ n and λ(A0) > λ(Bj) for all 1 ≤ j ≤ m.

To define λ, we first associate to each constant φ that occurs as the first param-
eter of the predicate formula(.) in Πformula(S, I) a non-negative number σ(φ) as
follows.

—σ(l) = 0 if l is a literal (recall that if l is a literal then nl = l).
—σ(nφ) = σ(nφ1) + 1 if φ has the form negation(φ1), next(φ1), eventually(φ1),

or always(φ1).
—σ(nφ) = max{σ(nφ1), σ(nφ2)} + 1 if φ has the form and(φ1, φ2), or(φ1, φ2), or

until(φ1, φ2).

We define λ as follows.

—λ(hf(nφ, t)) = 5 ∗ σ(nφ) + 2,
—λ(hf during(nφ, t, t′)) = 5 ∗ σ(nφ) + 4, and
—λ(l) = 0 for every other literal of Πformula(S, I).

Examining all the rules in Πformula(S, I), we can verify that λ has the necessary
property.

We now prove (ii). Let X be the answer set of Πformula(S, I). We prove the second
conclusion of the lemma by induction over σ(nφ).

Base: Let φ be a formula with σ(nφ) = 0. By the definition of σ, we know that φ
is a literal. Then φ is true in st iff φ is in st, that is, iff holds(φ, t) belongs to X,
which, because of rule (22), proves the base case.

Step: Assume that for all 0 ≤ j ≤ k and formula φ such that σ(nφ) = j, the
formula φ is true in st iff hf(nφ, t) is in X.

Let φ be such a formula that σ(nφ) = k + 1. Because of the definition of σ, φ is a
non-atomic formula. We have the following cases:

—Case 1: φ = negation(φ1). We have that σ(nφ1) = σ(nφ)− 1 = k. Because of
formula(nφ) ∈ X and negation(nφ, nφ1) ∈ X, hf(nφ, t) ∈ X iif the body of rule
(27) is satisfied by X iff hf(nφ1 , t) /∈ X iff st 6|= φ1 (by inductive hypothesis) iff
st |= φ.

—Case 2: φ = and(φ1, φ2). Similar to the first case, it follows from the rule (23)
and the facts formula(nφ) and and(nφ, nφ1 , nφ2) that hf(nφ, t) ∈ X iif the body
of rule (23) is satisfied by X iff hf(nφ1 , t) ∈ X and hf(nφ2 , t) ∈ X iff st |= φ1

and st |= φ2 (inductive hypothesis) iff st |= φ.
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—Case 3: φ = or(φ1, φ2). The proof is similar to the above cases, relying on the
two rules (25), (26), and the fact formula(nφ) ∈ X and or(nφ, nφ1 , nφ2) ∈ X.

—Case 4: φ = until(φ1, φ2). We have that σ(nφ1) ≤ k and σ(nφ2) ≤ k. Assume
that It |= φ. By Definition 4.7, there exists t ≤ t2 ≤ n such that It2 |= φ2 and
for all t ≤ t1 < t2, It1 |= φ1. By inductive hypothesis, hf(nφ2 , t2) ∈ X and for
all t1, t ≤ t1 < t2, hf(nφ1 , t1) ∈ X. It follows that hf during(nφ1 , t, t2) ∈ X.
Because of rule (28), we have hf(nφ, t) ∈ X.
On the other hand, if hf(nφ, t) ∈ X, because the only rule supporting hf(nφ, t) is
(28), there exists t ≤ t2 ≤ n such that hf during(nφ1 , t, t2) ∈ X and hf(nφ2 , t2).
It follows from hf during(nφ1 , t, t2) ∈ X that hf(nφ1 , t1) ∈ X for all t ≤ t1 < t2.
By inductive hypothesis, we have It1 |= φ1 for all t ≤ t1 < t2 and It2 |= φ2. Thus
It |= until(φ1, φ2), i.e., It |= φ.

—Case 5: φ = next(φ1). Note that σ(nφ1) ≤ k. Rule (31) is the only rule
supporting hf(nφ, t) where φ = next(φ1). So hf(nφ, t) ∈ X iff hf(nφ1 , t+1) ∈ X
iff It+1 |= φ1 iff It |= next(φ1) iff It |= φ.

—Case 6: φ = always(φ1). We note that σ(nφ1) ≤ k. Observe that hf(nφ, t) is
supported only by rule (29). So hf(nφ, t) ∈ X iff hf during(nφ1 , t, n) ∈ X. The
latter happens iff hf(nφ1 , t1) ∈ X for all t ≤ t1 ≤ n, that is, iff It1 |= φ1 for all
t ≤ t1 ≤ n which is equivalent to It |= always(φ1), i.e., iff It |= φ.

—Case 7: φ = eventually(φ1). We know that hf(nφ, t) ∈ X is supported only by
rule (30). So hf(nφ, t) ∈ X iff there exists t ≤ t1 ≤ n such that hf(nφ1 , t1) ∈ X.
Because σ(nφ1) ≤ k, by induction, hf(nφ, t) ∈ X iff there exists t ≤ t1 ≤ n such
that It1 |= φ1, that is, iff It |= eventually(φ1), i.e., iff It |= φ.

The above cases prove the inductive step, and hence, the theorem. 2

Appendix A.3 - Proof of Theorem 4.18

We first prove some lemmas that are needed for proving Theorem 4.18. Abusing the
notation, by πf we denote the program consisting of the rules of π (Appendix A.1)
and the set of rules Πformula where the time constant T takes the value between 0
and n.

Lemma A.10. For a consistent action theory (D,Γ), a ground complex action
p, and an answer set M of ΠGolog

n with occ(ai, i) ∈ M for i ∈ {0, . . . , n − 1},
s0(M)a0s1(M) . . . an−1sn(M) is a trace of p.

Proof. It is easy to see that the union of the set of literals of πf and the
set of rules and atoms encoding p, i.e., U = lit(πf ) ∪ r(p), is a splitting set of
ΠGolog

n . Furthermore, bU (ΠGolog
n ) = πf ∪ r(p). Thus, by the splitting theorem, M

is an answer set of ΠGolog
n iff M = X ∪ Y where X is an answer set of πf ∪ r(p),

and Y is an answer set of eU (ΠGolog
n \ πf , X). Because of the constraint ⊥ ←

not trans(np, 0, n), we know that if M is an answer set of ΠGolog
n then every answer

set Y of eU (ΠGolog
n \πf , X) must contain trans(np, 0, n). Furthermore, we have that

st(X) = st(M) for every t. Hence, in what follows we will use st(X) and st(M)
interchangeably. We prove the conclusion of the lemma by proving a stronger
conclusion17:

17Recall that for simplicity, in encoding programs or formulae we use l or a as the name associated
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(*) for every ground complex action q with the name nq and two time points t1, t2
such that q 6= null and trans(nq, t1, t2) ∈ M , st1(M)at1st1+1(M) . . . at2−1st2(M)
is a trace of q (the states si(M) and actions ai are given in the Lemma’s state-
ment).

Denote π3 = eU (ΠGolog
n \ πf , X). We have that π3 consists of the following rules:

trans(a, t, t + 1) ← (if action(a) ∈ X, occ(a, t) ∈ X) (86)
trans(f, t1, t1) ← (if formula(f, .) ∈ X, hf(f, t1) ∈ X) (87)
trans(p, t1, t2) ← t1 ≤ t′ ≤ t2, trans(p1, t1, t

′), trans(p2, t
′, t2). (88)

(if sequence(p, p1, p2) ∈ X))
trans(n, t1, t2) ← trans(p1, t1, t2). (89)

(if choiceAction(n) ∈ X, in(p1, n) ∈ X)
trans(i, t1, t2) ← trans(p1, t1, t2). (90)

(if if(i, f, p1, p2) ∈ X, hf(f, t1) ∈ X)
trans(i, t1, t2) ← trans(p2, t1, t2). (91)

(if if(i, f, p1, p2) ∈ X, hf(f, t1) 6∈ X)
trans(w, t1, t2) ← t1 < t′ ≤ t2, trans(p, t1, t

′), trans(w, t′, t2). (92)
(if while(w, f, p) ∈ X, hf(f, t1) ∈ X)

trans(w, t, t) ← (if while(w, f, p) ∈ X,hf(f, t) 6∈ X) (93)
trans(s, t1, t2) ← trans(p, t1, t2). (94)

(if choiceArgs(s, p) ∈ X)
trans(null, t, t) ← (95)

Clearly, π3 is a positive program. Thus, the unique answer set of π3, denoted by
Y , is the fix-point of the Tπ3 operator, defined by Tπ3(X) = {o | there exists a rule
o ← o1, . . . , on in π3 such that oi ∈ X for i = 1, . . . , n}. Let Yk = T k

π3
(∅). By

definition Y = limn→∞ Yn.

For every atom o ∈ Y , let ρ(o) denote the smallest integer k such that for all
0 ≤ t < k, o 6∈ Yt and for all t ≥ k, o ∈ Yt. (Notice that the existence of ρ(o) is
guaranteed because Tπ3 is a monotonic, fix-point operator.)

We prove (*) by induction over ρ(trans(nq, t1, t2)).

Base: ρ(trans(nq, t1, t2)) = 0. Then π3 contains a rule of the form
trans(nq, t1, t2) ←. Because q 6= null, we know that trans(nq, t1, t2) ← comes
from a rule r of the form (86), (87), or (93).

—r is of the form (86). So, q is some action a, i.e., action(a) and occ(a, t) both
belong to X. Further, t2 = t1 + 1. Because of Corollary A.5 we know that a is
executable in st1(X) and st2(X) ∈ Φ(a, st1(X)). Since st(M) = st(X) for every
t, we have that st1(M) a st2(M) is a trace of q.

to l or a, respectively.
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—r is of the form (87). Then q = φ, t2 = t1 = t, where φ is a formula and hf(nφ, t)
is in X. By Theorem 4.9, φ holds in st(X). Again, because st(M) = st(X), we
have that st(M) is a trace of q.

—r is of the form (93). Then, t1 = t2, while(nq, φ, p1) ∈ X, and hf(nφ, t1) 6∈ X.
That is, q is the program “while φ do p1” and φ does not holds in st1(M).
Thus, st1(M) is a trace of q.

Step: Assume that we have proved (*) for ρ(trans(nq, t1, t2)) ≤ k. We need to
prove it for the case ρ(trans(nq, t1, t2)) = k + 1.

Because trans(nq, t1, t2) is in Tπ3(Yk), there is some rule trans(nq, t1, t2) ←
A1, . . . Am in π3 such that all A1, . . . Am are in Yk. From the construction of π3,
we have the following cases:

—r is a rule of the form (88). Then, there exists q1, q2, t
′ such that

sequence(nq, nq1 , nq2) ∈ X, trans(nq1 , t1, t
′) ∈ Yk, and trans(nq2 , t

′, t2).
Hence, ρ(trans(nq1 , t1, t

′)) ≤ k and ρ(trans(nq2 , t
′, t2)) ≤ k. By in-

ductive hypothesis, st1(M)at1st1+1(M) . . . at′−1st′(M) is a trace of
q1 and st′(M)at′st′+1(M) . . . at2−1st2(M) is a trace of q2. Since
sequence(nq, nq1, nq2) ∈ X we know that q = q1; q2. By Definition 4.16,
st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of q.

—r is a rule of the form (89). Then, choiceAction(nq) is in X. So, q
is a choice program, say q = q1 | q2 . . . | ql. In addition, there ex-
ists 1 ≤ j ≤ l such that in(nqj , nq) ∈ X and trans(nqj , t1, t2) ∈ Yk.
By the definition of ρ, ρ(trans(qj , t1, t2)) ≤ k. By inductive hypothesis,
st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of qj . By Definition 4.16, it is also
a trace of q.

—r is a rule of the form (90). Then, by the construction of π3, there exists φ, q1,
q2 such that if(nq, nφ, nq1 , nq2) ∈ X, hf(nφ, t1) ∈ X, and trans(nq1 , t1, t2) ∈ Yk.
Thus q is the program “if φ then q1 else q2” and ρ(trans(nq1 , t1, t2)) ≤
k. Again, by inductive hypothesis, st1(M)at1st1+1(M) . . . at2−1st2(M) is
a trace of q1. Because of Theorem 4.9, φ holds in st1(M). Hence,
st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of q.

—r is a rule of the form (91). Similarly to the previous items, we
know that there exist φ, q, q1, and q2 such that if(nq, nφ, nq1 , nq2) ∈
X, hf(nφ, t1) 6∈ X, and trans(nq2 , t1, t2) ∈ Yk. This means that
ρ(trans(nq2 , t1, t2)) ≤ k. Hence, by inductive hypothesis and Theorem
4.9, st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of q2 and φ is false in
st1(M), which mean that st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of
“if φ then q1 else q2”, i.e., a trace of q.

—r is a rule of the form (92). This implies that there exist a formula φ,
a program q1 and a time point t′ > t1 such that while(nq, nφ, nq1) ∈
X and hf(nφ, t1) ∈ X, trans(nq1 , t1, t

′) and trans(nq, t
′, t2) are in Yk.

It follows that q is the program “while φ do q1”. Furthermore, φ
holds in st1(M), and st1(M)at1st1+1(M) . . . at′−1st′(M) is a trace of q1 and
st′(M)at′st′+1(M) . . . at2−1st2(M) is a trace of q. By Definition 4.16, this im-
plies that st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of q.
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—r a rule of the form is (94). Then, q has the form pick(X, {c1, . . . , cn}, q1).
Therefore, choiceArgs(nq, nq1(cj)) is in X for j = 1, . . . , n. trans(nq, t1, t2) ∈ Y
implies that there exists an integer j, 1 ≤ j ≤ n, such trans(nq1(cj), t1, t2) ∈ Yk.
By the definition of ρ, ρ(trans(nq1(cj), t1, t2)) ≤ k. By inductive hypothesis,
st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of program q1(cj). Thus, we can
conclude that st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of q.

The above cases prove the inductive step for (*). The lemma follows immediately
since trans(np, 0, n) belongs to M . 2

To prove the reverse of Lemma A.10, we define a function µ that maps each ground
complex action q into an integer µ(q) that reflects the notion of complexity of q
(or the number of nested constructs in q). µ(q) is defined recursively over the
construction of q as follows.

—For q = φ and φ is a formula, or q = a and a is an action, µ(q) = 0.
—For q = q1; q2 or q = if φ then q1 else q2, µ(q) = 1 + µ(q1) + µ(q2).
—For q = q1 | . . . | qm, µ(q) = 1 + max{µ(qi) | i = 1, . . . ,m}.
—For q = while φ do q1, µ(q) = 1 + µ(q1).
—For q = pick(X, {c1, . . . , cn}, q1), µ(q) = 1 + max{µ(q1(cj)) | j = 1, . . . , n}.
—For q = p(c1, . . . , cn) where (p(X1, . . . , Xn) : δ1) is a procedure, µ(q) = 1 +

µ(δ1(c1, . . . , cn)).

It is worth noting that µ(q) is always defined for programs considered in this paper.

Lemma A.11. Let (D,Γ) be a consistent action theory, p be a program, and
s0a0 . . . sn−1an be a trace of p. Then ΠGolog

n has an answer set M such that

—occ(ai, t) ∈ M for 0 ≤ i ≤ n− 1,
—st = st(M) for every 0 ≤ t ≤ n, and
—trans(np, 0, n) ∈ M .

Proof. We prove the lemma by constructing an answer set of ΠGolog
n that sat-

isfies the conditions of the lemma. Similar to the proof of Lemma A.10, we split
ΠGolog

n using U = lit(πf ) ∪ r(p). This implies that M is an answer set of ΠGolog
n

iff M = X ∪ Y where X is an answer set of bU (ΠGolog
n ) and Y is an answer set

of π3 = eU (ΠGolog
n \ bU (ΠGolog

n ), X), which is the program consisting of the rules
(86)-(95) with the corresponding conditions.

Because s0a0 . . . an−1sn is a trace of p, it is a trajectory in D. By Corollary A.6,
we know that πf has an answer set X ′ that satisfies the two conditions:

—occ(ai, t) ∈ X ′ for 0 ≤ i ≤ n− 1 and
—st = st(X ′) for every 0 ≤ t ≤ n.

Because r(p) consists of only rules and atoms encoding the program p, it is easy to
see that there exists an answer set X of πf ∪ r(p) such that X ′ ⊆ X. Clearly, X
also satisfies the two conditions:

—occ(ai, t) ∈ X for 0 ≤ i ≤ n− 1 and
—st = st(X) for every 0 ≤ t ≤ n.
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Since π3 is a positive program we know that π3 has a unique answer set, say Y .
From the splitting theorem, we have that M = X ∪ Y is an answer set of ΠGolog

n .
Because st(X) = st(M), M satisfies the first two conditions of the lemma. It
remains to be shown that M also satisfies the third condition of the lemma. We
prove this by proving a stronger conclusion:

(*) If q is a program with the name nq and there exists two integers t1 and t2 such
that st1(M)at1 . . . at2−1st2(M) is a trace of q then trans(nq, t1, t2) ∈ M . (the
states si(M) = si – see above – and the actions ai are defined as in the Lemma’s
statement)

We prove (*) by induction over µ(q), the complexity of the program q.

Base: µ(q) = 0. There are only two cases:

—q = φ for some formula φ, and hence, by Definition 4.16, we have that t2 = t1. It
follows from the assumption that st1(M) is a trace of q that st1(M) satisfies φ.
By Theorem 4.9, hf(nφ, t1) ∈ X, and hence, we have that trans(nφ, t1, t1) ∈ Y
(because of rule (87)).

—q = a where a is an action. Again, by Definition 4.16, we have that t2 = t1 + 1.
From the assumption that st1(M)at1st2(M) is a trace of q we have that at1 = a.
Thus, occ(a, t1) ∈ M . By rule (86) of π3, we conclude that trans(a, t1, t2) ∈ Y ,
and thus, trans(a, t1, t2) ∈ M .

The above two cases prove the base case.

Step: Assume that we have proved (*) for every program q with µ(q) ≤ k. We
need to prove it for the case µ(q) = k + 1. Because µ(q) > 0, we have the following
cases:

—q = q1; q2. By Definition 4.16, there exists t′, t1 ≤ t′ ≤ t2, such that st1at1 . . . st′

is a trace of q1 and st′at′ . . . st2 is a trace of q2. Because µ(q1) < µ(q) and
µ(q2) < µ(q), by inductive hypothesis, we have that trans(nq1 , t1, t

′) ∈ M and
trans(nq2 , t

′, t2) ∈ M . q = q1; q2 implies sequence(nq, nq1 , nq2) ∈ M . By rule
(88), trans(nq, t1, t2) must be in M .

—q = q1 | . . . | qi. Again, by Definition 4.16, st1at1 . . . at2−1st2 is a trace of some qj .
Since µ(qj) < µ(q), by inductive hypothesis, we have that trans(nqj , t1, t2) ∈ M .
Because of rule (89), trans(nq, t1, t2) is in M .

—q = if φ then q1 else q2. Consider two cases:
—φ holds in st1 . This implies that st1(M)at1 . . . at2−1st2(M) is a trace of q1. Be-

cause of Theorem 4.9, hf(nφ, t1) ∈ M . Since µ(q1) < µ(q), trans(nq1 , t1, t2) ∈
M by inductive hypothesis. Thus, according to rule (90), trans(nq, t1, t2) must
belong to M .

—φ does not holds in st1 . This implies that st1(M)at1 . . . at2−1st2(M) is a trace of
q2. Because of Theorem 4.9, hf(nφ, t1) does not hold in M . Since µ(q1) < µ(q),
trans(nq2 , t1, t2) is in M by inductive hypothesis. Thus, according to rule (91),
trans(nq, t1, t2) ∈ M .

—q = while φ do q1. We prove this case by induction over the length of the
trace, t2 − t1.
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—Base: t2 − t1 = 0. This happens only when φ does not hold in st1(M). As
such, because of rule (93), trans(nq, t1, t2) is in M . The base case is proved.

—Step: Assume that we have proved the conclusion for this case for 0 ≤ t2−t1 <
l. We will show that it is also correct for t2 − t1 = l. Since t2 − t1 > 0, we
conclude that φ holds in st1 and there exists t1 < t′ ≤ t2 such that st1at1 . . . st′

is a trace of q1 and st′at′ . . . st2 is a trace of q. We have µ(q1) < µ(q), t′− t1 ≤
t2− t1 and t2− t′ < t2− t1 = l. By inductive hypothesis, trans(nq1 , t1, t

′) and
trans(nq, t

′, t2) are in M . By Theorem 4.9, hf(nφ, t1) is in M and from the
rule (92), trans(nq, t1, t2) is in M .

—q = pick(X, {c1, . . . , cn}, q1). So, there exists an integer j, 1 ≤ j ≤ n,
such that the trace of q is a trace of q1(cj). Since µ(q1(cj)) < µ(q),
we have that trans(nq1(cj), t1, t2) ∈ M . This, together with the fact that
choiceArgs(nq, nq1(cj)) ∈ r(p), and the rule (94) imply that trans(nq, t1, t2) is in
M .

—q = p(c1, . . . , cn) for some procedure (p(X1, . . . , Xn), q1). This implies that
st1(M)at1 . . . at2−1st2(M) is a trace of q1(c1, . . . , cn). Since µ(q1(c1, . . . , cn)) <
µ(q), we have that trans(nq1 , t1, t2) ∈ M . Since nq1 = p(c1, . . . , cn) and nq = q,
we have that trans(nq, t1, t2) ∈ M . This proves the inductive step for this case
as well.

The above cases prove the inductive step of (*). The conclusion of the lemma
follows. 2

We now prove the Theorem 4.18.

Theorem A.12 (Main Text 4.18). Let (D, Γ) be a consistent action theory
and p be a program. Then,

(i) for every answer set M of ΠGolog
n with occ(ai, i) ∈ M for i ∈ {0, . . . , n − 1},

s0(M)a0 . . . an−1sn(M) is a trace of p; and
(ii) if s0a0 . . . an−1sn is a trace of p then there exists an answer set M of ΠGolog

n

such that sj = sj(M) and occ(ai, i) ∈ M for j ∈ {0, . . . , n} and i ∈ {0, . . . , n−1}.
Proof. (i) follows from Lemma A.10 and (ii) follows from Lemma A.11. 2

Appendix A.4 - Proof of Theorem 4.22

Let p now be a general program. To prove Theorem 4.22, we will extend the
Lemmas A.10-A.11 to account for general programs. Similarly to the proofs of
Lemmas A.10-A.11, we will split ΠHTN

n by the set U = lit(πf ) ∪ r(p). Thus M is
an answer set of ΠHTN

n iff M = X ∪Y where X is an answer set of πf ∪ r(p) and Y
is an answer set of the program eU (ΠHTN

n \ bU (ΠHTN
n ), X), denoted by π4, which

consists of the rules of program π3 (with the difference that a program is now a
general program) and the following rules:

trans(n, t1, t2) ← not nok(n, t1, t2). (96)
(if htn(n, s, c) ∈ X)

1{begin(n, i, t3, t1, t2) :
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between(t3, t1, t2)}1 ← trans(n, t1, t2). (97)
(if htn(n, s, c) ∈ X, in(i, s) ∈ X)

1{end(n, i, t3, t1, t2) :
between(t3, t1, t2)}1 ← trans(n, t1, t2). (98)

(if htn(n, s, c) ∈ X, in(i, s) ∈ X)
used(n, t, t1, t2) ← begin(n, i, b, t1, t2), (99)

end(n, i, e, t1, t2),
b ≤ t ≤ e.

(if htn(n, s, c) ∈ X, in(i, s) ∈ X)
not used(n, t, t1, t2) ← not used(n, t, t1, t2). (100)
overlap(n, t, t1, t2) ← begin(n, i1, b1, t1, t2), (101)

end(n, i1, e1, t1, t2),
begin(n, i2, b2, t1, t2),
end(n, i2, e2, t1, t2),
b1 < t ≤ e1, b2 < t ≤ e2.

(if htn(n, s, c) ∈ X, in(i1, s) ∈ X, in(i2, s) ∈ X)
nok(n, t1, t2) ← t3 > t4, begin(n, i, t3, t1, t2), (102)

end(n, i, t4, t1, t2).
(if htn(n, s, c) ∈ X, in(i, s) ∈ X)

nok(n, t1, t2) ← t3 ≤ t4, begin(n, i, t3, t1, t2), (103)
end(n, i, t4, t1, t2),
not trans(i, t3, t4).
(if htn(n, s, c) ∈ X, in(i, s) ∈ X)

nok(n, t1, t2) ← t1 ≤ t ≤ t2, not used(n, t, t1, t2). (104)
(if htn(n, s, c) ∈ X)

nok(n, t1, t2) ← t1 ≤ t ≤ t2, overlap(n, t, t1, t2). (105)
(if htn(n, s, c) ∈ X)

nok(n, t1, t2) ← begin(n, i1, b1, t1, t2), (106)
begin(n, i2, b2, t1, t2),
b1 > b2.

(if htn(n, s, c) ∈ X, in(i1, s) ∈ X, in(i2, s) ∈ X,

in(o, c) ∈ X, order(o, i1, i2) ∈ X))
nok(n, t1, t2) ← end(n, i1, e1, t1, t2), (107)

begin(n, i2, b2, t1, t2), e1 < t3 < b2.

(if htn(n, s, c) ∈ X, in(i1, s) ∈ X, in(i2, s) ∈ X,

in(o, c) ∈ X, maintain(o, f, i1, i2) ∈ X,

and hf(f, t3) 6∈ X)
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nok(n, t1, t2) ← begin(n, i, b, t1, t2), end(n, i, e, t1, t2), (108)
(if htn(n, s, c) ∈ X, in(i, s) ∈ X,

in(o, c) ∈ X, precondition(o, f, i) ∈ X

and hf(f, b) 6∈ X)
nok(n, t1, t2) ← begin(n, i, b, t1, t2), end(n, i, e, t1, t2). (109)

(if htn(n, s, c) ∈ X, in(i, s) ∈ X,

in(o, c) ∈ X, postcondition(o, f, i) ∈ X,

and hf(f, e) 6∈ X)

We will continue to use the complexity of program defined in the last appendix and
extend it to allow the HTN-construct by adding the following to the definition of
µ(q).

—For q = (S, C), µ(q) = 1 + Σp∈Sµ(p).

Notice that every literal of the program π4 has the first parameter as a program18.
Hence, we can associate µ(q) to each literal l of π4 where q is the first parameter
of l. For instance, µ(trans(q, t1, t2)) = µ(q) or µ(nok(q, t1, t2)) = µ(q) etc.. Since
we will continue to use splitting theorem in our proofs, the following observation is
useful.

Observation A.13. The two cardinality constraint rules (97)-(98) can be re-
placed by the following normal logic program rules:

begin(n, i, t, t1, t2) ← trans(n, t1, t2),
t1 ≤ t ≤ t3 ≤ t2, not nbegin(n, i, t, t1, t2).

nbegin(n, i, t, t1, t2) ← trans(n, t1, t2),
t1 ≤ t ≤ t2, t1 ≤ t3 ≤ t2, t 6= t3, begin(n, i, t3, t1, t2).

end(n, i, t, t1, t2) ← trans(n, t1, t2),
t1 ≤ t ≤ t3 ≤ t2, not nend(n, i, t, t1, t2).

nend(n, i, t, t1, t2) ← trans(n, t1, t2),
t1 ≤ t ≤ t2, t1 ≤ t3 ≤ t2, t 6= t3, end(n, i, t3, t1, t2).

That is, let π∗ be the program obtained from π4 by replacing the rules (97)-
(98) with the above set of rules. Then, M is an answer set of π4 iff M ′ =
M ∪ {nbegin(n, i, t3, t1, t2) | begin(n, i, t, t1, t2) ∈ M, t 6= t3, t1 ≤ t, t3 ≤ t2} ∪
{nend(n, i, t3, t1, t2) | t 6= t3, t1 ≤ t, t3 ≤ t2, end(n, i, t, t1, t2) ∈ M} is an answer
set of π∗.

The next lemma generalizes Lemma A.10.

Lemma A.14. Let q be a general program, Y be an answer set of the program
eU (ΠHTN

n \ bU (ΠHTN
n ), X) (i.e. program π4), and t1, t2 be two time points such

that q 6= null and trans(nq, t1, t2) ∈ Y . Then, st1(M)at1st1+1(M) . . . at2−1st2(M)
is a trace of q where M = X ∪ Y .

18More precisely, a program name.
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Proof. Let Uk = {l | l ∈ lit(π4), µ(l) ≤ k}.
From observation A.13, we know that we can use the splitting theorem on π4. It
is easy to see that 〈Uk〉k<∞ is a splitting sequence of π4. From the finiteness of π4

and the splitting sequence theorem, we have that Y =
⋃

i<∞ Yi where

(1) Y0 is an answer set of the program bU0(π4) and
(2) for every integer i, Yi+1 is an answer set for eUi

(bUi+1(π4) \ bUi
(π4),

⋃
j≤i Yj).

We prove the lemma by induction over µ(q).

Base: µ(q) = 0. From trans(nq, t1, t2) ∈ Y , we have that trans(nq, t1, t2) ∈ Y0. It
is easy to see that bU0(π4) consists of all the rules of π4 whose program has level
0. It follows from Lemma A.10 st1(M)at1st1+1(M) . . . at2−1st2(M) is a trace of q.
The base case is proved.

Step: Assume that we have proved the lemma for µ(q) = k. We prove it for
µ(q) = k + 1. From the fact that trans(nq, t1, t2) ∈ M and µ(nq) = k + 1 we
have that trans(nq, t1, t2) ∈ Yk+1 where Yk+1 is an answer set of the program
eUk

(bUk+1(π4) \ bUk
(π4),

⋃
j≤k Yk) which consists of rules of the form (96)-(109)

and (88)-(94) whose program has the level k + 1, i.e., µ(q) = k + 1. Because
trans(nq, t1, t2) ∈ Y we know that there exists a rule that supports trans(nq, t1, t2).
Let r be such a rule. There are following cases:

—r is a rule of the form (88)-(94), the argument is similar to the argument using
in the inductive step for the corresponding case in Lemma A.10. Notice a minor
difference though: in Lemma A.10, we do not need to use µ(q).

—r is a rule of the form (96), which implies that q = (S, C) where S is a set of
programs and C is a set of constraints C. By definition of answer sets, we know
that nok(nq, t1, t2) 6∈ Yk+1. Furthermore, because of the rules (97) and (98), the
fact that trans(nq, t1, t2) ∈ Yk+1 and the definition of weight constraint rule, we
conclude that for each qj ∈ S there exists two numbers jb and je, t1 ≤ jb, je ≤
t2 such that begin(nq, nqj , jb, t1, t2) ∈ Yk+1 and end(nq, nqj , je, t1, t2) ∈ Yk+1.
Because of rule (103), we conclude that trans(nqj , jb, je) ∈

⋃
i≤k Yi. Otherwise,

we have that nok(nq, t1, t2) ∈ Yk+1, and hence, trans(nq, t1, t2) 6∈ Yk+1, which
is a contradiction. By definition of µ(q), we have that µ(qj) < µ(q). Thus, by
inductive hypothesis, we can conclude that: for every qj ∈ S, there exists two
numbers jb and je, t1 ≤ jb, je ≤ t2, sjb

(M)ajb
. . . aje−1sje(M) is a trace of qj .

Furthermore, rules (99)-(105) imply that the set {jb | qj ∈ S} creates a permu-
tation of {1, . . . , |S|} that satisfies the first condition of Definition 4.20.

Consider now an ordering qj1 ≺ qj2 in C. This implies that the body of rule
(106) will be satisfied if jb1 > jb2 which would lead to trans(nq, t1, t2) 6∈ Yk+1.
Again, this is a contradiction. Hence, we must have jb1 ≤ jb2 that means that
the permutation {jb | qj ∈ S} also satisfies the second condition of Definition
4.20.

Similarly, using (107)-(109) we can prove that the permutation {jb | qj ∈ S} also
satisfies the third and fourth conditions of Definition 4.20.

It follows from the above arguments that st1(M)at1 . . . at2−1st2(M) is a trace of
q). The inductive step is proved for this case.
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The above cases prove the inductive step. This concludes the lemma. 2

In the next lemma, we generalize the Lemma A.11.

Lemma A.15. Let (D, Γ) be a consistent action theory, p be a general program,
and s0a0 . . . an−1sn be a trace of p. Then, there is an answer set M of ΠHTN

n such
that si(M) = si and occ(ai, i) ∈ M and trans(np, 0, n) ∈ M .

Proof. Based on our discussion on splitting ΠHTN
n using lit(πf )∪ r(q) and the

fact that s0a0 . . . an−1sn is also a trace in D, we know that there exists an answer
set X of π ∪ r(p) such that si(X) = si and occ(ai, i) ∈ X. Thus, it remains to
be shown that there exists an answer set Y of π4 such that trans(np, 0, n) ∈ Y .
Similar to the proof of Lemma A.14, we use 〈Uk〉k<∞ as a splitting sequence of π4

where Uk = {u | u ∈ lit(π4), µ(u) ≤ k}. From the splitting sequence theorem, we
have that Y =

⋃
i<∞ Yi where

(1) Y0 is an answer set of the program bU0(π4) and
(2) for every integer i, Yi+1 is an answer set for eUi

(bUi+1(π4) \ bUi
(π4),

⋃
j≤i Yj).

We prove the lemma by induction over µ(q). Similar to Lemma A.11, we prove this
by proving a stronger conclusion:

(*) There exists an answer set Y =
⋃

i<∞ Yi of π4 such that for every program q 6=
null occurring in p, st1at1 . . . at2−1st2 is a trace of q iff trans(nq, t1, t2) ∈ Yµ(q).
(the states si and the actions ai are defined as in the Lemma’s statement)

We will prove (*) by induction over µ(q).

Base: µ(q) = 0. Similar to the base case in Lemma A.11 .

Step: Assume that we have proved (*) for µ(q) ≤ k. We need to prove (*)
for µ(q) = k + 1. We will construct an answer set of π+ = eUk

(bUk+1(π4) \
bUk

(π4),
⋃

j≤k Yk) such that for every program q occurring in p with µ(q) = k + 1,
if st1at1 . . . at2−1st2 is a trace of q then trans(nq, t1, t2) ∈ Yk+1.

Let Yk+1 be the set of atoms defined as follows.

—For every program q with µ(q) = k + 1, if q is not of the form (S, C) and
st1at1 . . . at2−1st2 is a trace of q, Yk+1 contains trans(nq, t1, t2).

—For every program q with µ(q) = k + 1, q = (S, C), and st1at1 . . . at2−1st2 is a
trace of q. By definition, there exists a permutation {j1, . . . , j|S|} of {1, . . . , |S|}
satisfying the conditions (a)-(d) of Item 8 (Definition 4.20). Consider such a
permutation. To simplify the notation, let us denote the begin- and end-time of
a program qj ∈ S in the trace of q by bj and ej , respectively, i.e., sbj abj . . . sej is
a trace of qj . Then, Yk+1 contains trans(nq, t1, t2) and the following atoms:
(1) begin(nq, nqj , bj , t1, t2) for every qj ∈ S,
(2) end(nq, nqj , ej , t1, t2) for every qj ∈ S, and
(3) used(nq, t, t1, t2) for for every qj ∈ S and bj ≤ t ≤ ej .

—Yk+1 does not contain any other atoms except those mentioned above.

It is easy to see that Yk+1 satisfies (*) for every program q with µ(q) = k+1. Thus,
we need to show that Yk+1 is indeed an answer set of π+. First, we prove that Yk+1

is closed under (π+)Yk+1 . We consider the following cases:
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—r is a rule of the form (88). Obviously, if r belongs to (π+)Yk+1 , then q = q1; q2

and there exists a t1 ≤ t′ ≤ t2 such that trans(nq1 , t1, t
′) and trans(nq2 , t

′, t2)
belong to

⋃
j≤k Yk because µ(q1) < µ(q) and µ(q2) < µ(q). By inductive hy-

pothesis, st1at1 . . . st′ is a trace of q1 and st′at′ . . . st2 is a trace of q2. By Def-
inition 4.16, st1at1 . . . st2 is a trace of q. By construction of Yk+1 we have that
trans(nq, t1, t2) ∈ Yk+1. This shows that Yk+1 is closed under r. Similar argu-
ments conclude that Yk+1 is closed under the rule of the form (89)-(94).

—r is a rule of the form (96) of (π+)Yk+1 . Then, q = (S, C) and by construction of
Yk+1, if st1at1 . . . st2 is a trace of q then we have trans(nq, t1, t2) ∈ Yk+1. Thus.
Yk+1 is closed under the rules of the form (96) too.

—r is a rule of the form (97) and (98). Yk+1 is also closed under r because whenever
trans(nq, t1, t2) ∈ Yk+1, we now that there is a trace st1at1 . . . st2 of q, and
hence, by Definition 4.20, we conclude the existence of the begin- and end-time
points bj and ej of qj , respectively. By construction of Yk+1, we have that
begin(nq, nqj

, bj , t1, t2) and end(nq, nqj
, ej , t1, t2) belong to Yk+1 and for each qj ,

there is a unique atom of this form in Yk+1. Hence, Yk+1 is closed under rules of
the form (97) and (98).

—r is a rule of the form (100)-(109). The construction of Yk+1 ensures that the
body of r is not satisfied by Yk+1, and hence, Yk+1 is closed under r.

—r is a rule of the form (99). Because used(nq, t, t1, t2) belongs to Yk+1 for every
t, t1 ≤ t ≤ t2. we have that Yk+1 is closed under r too.

The conclusion that Yk+1 is closed under (π+)Yk+1 follows from the above cases.

To complete the proof, we need to show that Yk+1 is minimal. Assume the contrary,
there exists a proper subset Y ′ of Yk+1 such that Y ′ is closed under (π+)Yk+1 . Let
u ∈ Yk+1 \ Y ′. Since u ∈ Yk+1, we have the following cases:

—u is the head of a rule of the form (88)-(94). By definition of π+, we know that
a rule of this form belongs to π+ iff its body is empty. Thus, from the closeness
of Y ′ we have that u ∈ Y ′. This contradicts the fact that u 6∈ Y ′.

—u is the head of a rule of the form (96). Similar to the above case, we can conclude
that u ∈ Y ′ which again contradicts the fact that u 6∈ Y ′.

—u is the head of a rule r of the form (97). Because of u ∈ Yk+1 we conclude that
trans(nq, t1, t2) ∈ Yk+1. The above case concludes that trans(nq, t1, t2) ∈ Y ′.
Since the body of r is true, we conclude that there exists some qj ∈ S such that
Y ′ does not contain an atom of the form begin(nq, nqj , bj , t1, t2). Thus, Y ′ is not
closed under r. This contradicts the assumption that Y ′ is closed under (π+)Yk+1 .

—u is the head of a rule r of the form (98). Similar to the above case, we can prove
that it violates the assumption that Y ′ is closed under (π+)Yk+1 .

—u is the head of a rule r of the form (99). Because u ∈ Yk+1 we know that the
body of r is satisfied by Yk+1, and hence, r belongs to (π+)Yk+1 . Again, because
of the closeness of Y ′, we conclude that u ∈ Y ′ which violates the assumption
that u 6∈ Y ′.

The above cases imply that Y ′ is not closed under (π+)Yk+1 . Thus, our assumption
that Yk+1 is not minimal is incorrect. Together with the closeness of Yk+1, we have
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that Yk+1 is indeed an answer set of π+. The inductive step is proved since Yk+1

satisfies (*) for every program q with µ(q) = k + 1. This proves the lemma. 2

Theorem A.16 (Main Text 4.22). Let (D, Γ) be a consistent action theory
and p be a general program. Then,

(i) for every answer set M of ΠHTN
n with occ(ai, i) ∈ M for i ∈ {0, . . . , n − 1},

s0(M)a0 . . . an−1sn(M) is a trace of p; and
(ii) if s0a0 . . . an−1sn is a trace of p then there exists an answer set M of ΠHTN

n

such that sj = sj(M) and occ(ai, i) ∈ M for j ∈ {0, . . . , n} and i ∈ {0, . . . , n−1}
and trans(np, 0, n) ∈ M .

Proof. (i) follows from Lemma A.14 and (ii) follows from Lemma A.15. 2

B. APPENDIX B — SPLITTING THEOREM

In this appendix, we review the basics of the Splitting Theorem [Lifschitz and
Turner 1994]. Because programs in this paper do not contain classical negations,
some of the definitions have been modified from the original presentation in [Lifs-
chitz and Turner 1994].

Let r be a rule

a0 ← a1, . . . , am, not am+1, . . . , an.

By head(r), body(r), and lit(r) we denote a0, {a1, . . . , an}, and {a0, a1, . . . , an},
respectively. pos(r) and neg(r) denote the set {a1, . . . , am} and {am+1, . . . , an},
respectively.

For a program Π over the language LP, a set of atoms of LP, A, is a splitting set
of Π if for every rule r ∈ Π, if head(r) ∈ A then lit(r) ⊆ A.

Let A be a splitting set of Π. The bottom of Π relative to A, denoted by bA(Π), is
the program consisting of all rules r ∈ Π such that lit(r) ⊆ A.

Given a splitting set A for Π, and a set X of atoms from lit(bA(Π)), the partial eval-
uation of Π by X with respect to A, denoted by eA(Π, X), is the program obtained
from Π as follows. For each rule r ∈ Π \ bA(Π) such that

(1) pos(r) ∩A ⊆ X;
(2) neg(r) ∩A is disjoint from X;

we create a rule r′ in eA(Π, X) such that

(1) head(r′) = head(r), and
(2) pos(r′) = pos(r) \A,
(3) neg(r′) = neg(r) \A.

Let A be a splitting set of Π. A solution to Π with respect to A is a pair 〈X, Y 〉 of
sets of atoms satisfying the following two properties:

(1) X is an answer set of bA(Π); and
(2) Y is an answer set of eA(Π \ bA(Π), X);

The splitting set theorem is as follows.
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Theorem B.1 Splitting Set Theorem, [Lifschitz and Turner 1994].
Let A be a splitting set for a program Π. A set S of atoms is a consistent answer
set of Π iff S = X ∪ Y for some solution 〈X,Y 〉 to Π with respect to A. 2

A sequence is a family whose index set is an initial segment of ordinals {α | α <
µ}. A sequence 〈Aα〉α<µ of sets is monotone if Aα ⊆ Aβ whenever α < β, and
continuous if, for each limit ordinal α < µ, Aα =

⋃
γ<α Aγ .

A splitting sequence for a program Π is a nonempty, monotone, and continuous
sequence 〈Aα〉α<µ of splitting sets of Π such that lit(Π) =

⋃
α<µ Aα.

Let 〈Aα〉α<µ be a splitting sequence of the program Π. A solution to Π with respect
to A is a sequence 〈Eα〉α<µ of set of atoms satisfying the following conditions.

(1) E0 is an answer set of the program bA0(Π);
(2) for any α such that α + 1 < µ, Eα+1 is an answer set for eAα(bAα+1(Π) \

bAα
(Π),

⋃
γ≤α Eγ); and

(3) For any limit ordinal α < µ, Eα = ∅.
The splitting set theorem is generalized for splitting sequence next.

Theorem B.2 Splitting Sequence Theorem, [Lifschitz and Turner 1994].
Let A = 〈Aα〉α<µ be a splitting sequence of the program Π. A set of atoms E is an
answer set of Π iff E =

⋃
α<µ Eα for some solution 〈Eα〉α<µ to Π with respect to

A. 2

To apply Theorems B.1-B.2 to programs with constraints of the form (6), we need
to modify the notation of the bottom of a program relative to a set of atoms as
follows.

Let Π = Π1 ∪ Π2 be a program with constrains where Π1 is a set of rules of the
form (5) and Π2 is a set of rules of the form (6). For a splitting set A of Π, we
define bA(Π) = bA(Π1) ∪ cA(Π2) where cA(Π2) = {r | r ∈ Π2, lit(r) ⊆ A}.

We can prove that Theorems B.1-B.2 hold for programs with constraints. For
example, if A is a splitting of the program Π, then S is an answer set of Π iff A =
X∪Y where X is an answer set of bA(Π) and Y is an answer set of eA(Π\bA(Π), X).
The proof of the modified theorems is based on two observations: (i) a set A of
atoms from lit(Π) is a splitting set of Π iff it is a splitting set of Π1 (because
⊥ 6∈ lit(Π)); and (ii) a set of atoms S is an answer set of Π iff S is answer set of Π1

and S satisfies the rules of Π2.
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