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Abstract. Multiagent planning deals with the problem of generating plans for
multiple agents. It requires formalizing ways for the agents to interact and coop-
erate, in order to achieve their goals. One way for the agents to interact is through
negotiations. Integration of negotiation in multiagent planning has not been ex-
tensively investigated and a systematic way for this task has yet to be found. We
develop a generic model for negotiation in dynamic environments and apply it to
generate joint-plans with negotiation for multiple agents. We identify the minimal
requirements for such a model and propose a general scheme for one-to-one nego-
tiations. This model of negotiation is instantiated to deal with dynamic knowledge
of planning agents. We demonstrate how logic programming can be employed as
a uniform platform to support both planning and negotiation, providing an ideal
testbed for experimenting with multiagent planning with negotiations.

1 Introduction
Negotiation and planning are two important tasks that autonomous agents are frequently
engaged in during their existence. Theories of negotiation have been developed to pro-
vide the agents with strategies and methods for doing negotiation (e.g., [1, 4, 13, 15, 19,
20, 17]). On the other hand planning research gears towards developing systems and al-
gorithms that allow agents with a way to select appropriate courses of actions to achieve
their individual goals (e.g., [11]). It is interesting to observe that there has been limited
connection between these research communities. On the other hand, in many practical
situations, there is a need for intelligent agents to negotiate when they are planning,
especially in multiagent systems. This can be seen in the following simple example.

Example 1 (From [18]). Two home builder agents, A and B, need to hang a mirror (A’s
job) and a picture (B’s job). A can use a screw with a screwdriver to hang the mirror.
B can only use a nail and a hammer. Initially, A has a screwdriver and can buy a nail,
while B has a screw and a hammer. A and B cannot achieve their goals independently.

Let us now consider the following conversation between A and B: (1) A to B: can
you give me your screw? (2) B to A: yes, but only if you give me a nail; (3) A to B:
ok, but wait for me to buy some nails. Thereafter, A buys a nail and exchanges it for the
screw with B. Both can then achieve their goals independently. 2



This story illustrates two important issues that agents are facing in a multiagent environ-
ment. Besides the planning capabilities, agents may also need to negotiate in order to
achieve their goals—where negotiation becomes a form of cooperation between agents.

In this paper, we are interested in the problem of predicting whether a group of
agents, each with her own planning problem to solve, can achieve their independent
goals. In the process, the agents might need to negotiate with each others to place them-
selves in a position where they can achieve their goals.

We start by proposing a generic model of negotiation. This model is novel with
respect to existing formalisms (e.g., [1, 4, 13, 17, 19, 20]). Our focus is on agents in dy-
namic environments, whereas most of the other formalisms concentrate on agents in
static environments. One of the main objectives is in predicting/generating successful
negotiations within the context of the agents achieving their planning goals. The plan-
ning process is driven by the goals of all agents, while negotiations are only a means for
agents to achieve their goals. This is different from other models of negotiation (e.g.,
[1, 13, 17, 19, 20, 24]), where the focus is on providing the receiver with explanations
about negotiations or on the development of languages for logic-based negotiations.

We instantiate the proposed model of negotiation to the context of multiagent plan-
ning and define two different notions of planning with negotiations. The first notion
views complete negotiations as individual steps during planning, while the second one
allows the interleaving of steps of negotiations and action executions. Our main goal
is to generate a joint-plan for the agents before its execution. In this regards, our work
differs from many distributed continual planning systems (e.g., [6]), which concentrate
on planning and replanning or deal with unexpected events during plan execution. More
significantly, we explore the use of negotiation as a means for agents to cooperate.

A key contribution of this work is to demonstrate how logic programming allows a
direct and modular encoding of both negotiation and multiagent planning. To the best of
our knowledge, this logic programming based solution is the first attempt to deal with
negotiation in multiagent planning. The declarative nature of logic programming allows
us to provide a compositional solution to the problem, by combining two orthogonally
developed logic programs—one describing the planning problem and one describing
the negotiation process.

In the past, multiagent planning has been considered using refinement planning
(e.g., [2, 12, 5]) but without negotiation. In [14], negotiation has been integrated with
planning and control operations in the cycle theories, to create an agent architecture
and to ensure that the agents can achieve their goals. However, negotiation is used
mainly to ensure that the execution of a given plan is successful, e.g., to acquire neces-
sary resources for the execution of a plan—in particular, the authors do not investigate
the integration of negotiation within the planning phase. Negotiation using logic pro-
gramming has been investigated by others (e.g., [4]), with a focus on the principles of
negotiation and building new proposals, when the current one is not acceptable. Our
characterization is in similar spirit to this approach.

2 Background: Answer Set Planning
In this section, we review the language A [9] for representing and reasoning about
actions and plans in single-agent domains. To simplify the notations in the rest of the



paper, we will assume that the discussion in this section is associated to an agent i. We
assume the reader to be familiar with the basic concepts of answer set programming.

A planning problem for i is defined over a set of fluents Fi and a set of actions Ai.
We assume that Ai contains a special action noop, which does not have any effect on
the agent’s world. A fluent literal is either a fluent f ∈ Fi or its negation ¬f . A domain
specification Di over Fi and Ai describes the actions of an agent and consists of laws of
the following forms:1 (a causes ` if ϕ) (if ϕ = true then the if part will be omitted)
and (a executable ϕ), where a is an individual action (in Ai), ` is a fluent literal and ϕ
is a set of fluent literals (interpreted as a conjunction). The first law is a dynamic law,
and states that if a is executed when ϕ is true then ` becomes true. The second law is
an executability condition and it states that a can be executed only if ϕ is true.

The semantics of a domain specification Di is defined by the notion of state and
by a transition function ΦDi

, that specifies the result of the execution of an action a in
a state s. A set of literals s satisfies a fluent literal `, denoted by s |= `, if ` ∈ s. For
a set of fluent literals φ, s |= φ if s |= ` for every ` ∈ φ. A state s is a set of fluent
literals that is consistent—i.e., for each fluent f ∈ Fi we have that {f,¬f} 6⊆ s—and
complete—i.e., for every f either f ∈ s or ¬f ∈ s. In the following, we use ` to denote
the complement literal of `, i.e., if ` = f for some f ∈ Fi, then ` = ¬f ; if ` = ¬f for
some f ∈ Fi, then ` = f . For a set of literals S, S = {` | ` ∈ S}.

An action a is executable in a state s if there exists an executability condition of the
form a executable ϕ in Di such that s |= ϕ. Let

ea(s) = {` | ∃(a causes ` if φ) ∈ Di.[s |= φ]}
The result of the execution of a in s is defined by ΦDi(a, s) = fails, if a is not exe-
cutable in s, and ΦDi(a, s) = s∪ea(s)\ea(s) if a is executable in s. The function ΦDi

can be extended to reason about the effects of a sequence of actions:

Definition 1. Let Di be a domain specification, s be a state, and α = [a1; . . . ; an]
be a sequence of actions. We define Φ̂Di(α, s) = s if n = 0, and Φ̂Di(α, s) =
ΦDi(an, Φ̂Di([a1; . . . ; an−1], s)), otherwise. Observe that ΦDi(a, fails) = fails.

An agent can use the transition function to reason about effects of its actions and to
perform planning. A planning problem is a tuple 〈Di, Ii, Oi〉 where Di is a domain
specification, Ii is a state describing the initial configuration of the world for i, and Oi

is a set of literals representing the desired goal.

Definition 2. Let Pi = 〈Di, Ii, Oi〉 be a planning problem. An action sequence α is a
plan for Pi iff Oi is true in Φ̂Di(α, Ii).
Example 2. The domain specification DA for A in Ex. 1 is defined over FA = {h nail,
h screw, mirror on, h hammer, h screwdriver} and AA = {hw screw, buy nail},
with the set of laws:

buy nail causes h nail hw screw causes mirror on
hw screw causes ¬h screw hw screw executable h screw, h screwdriver

The domain specification of B is defined over AB = {hw nail} and FB = {h nail,
h screw, picture on, h hammer, h screwdriver}, with the set of laws:

hw nail causes picture on hw nail causes ¬h nail
hw nail executable h nail, h hammer

1 Originally, A did not include a executable ϕ. It was later introduced by the creator of A.



In all of the above, the prefix hw stands for “hang with” and h stands for “has.” 2

Answer set planning (e.g., [16, 23]) refers to approaches to planning using logic
programming with answer set semantics [8]. In these approaches, a planning problem
is translated into a logic program, whose answer sets correspond one-to-one to the so-
lutions of the original problem. As with the action language A, answer set planning
approaches have mainly focused on solving single agent planning problems. An excep-
tion is [10], dealing with multiagent systems supporting message-based coordination.

Let Pi = 〈Di, Ii, Oi〉 be a planning problem of agent i. We will now describe the
logic program Πn(Pi) that encodes Pi. Let us denote with n the maximal length of a
plan. The key predicates of Πn(Pi) are:
• h(i, `, t)—the fluent literal ` holds at the time step t; and
• o(i, a, t)—the action a is executed (by the agent) at the time step t;
• poss(i, a, t)—the action a can be executed at the time step t.

h(i, `, t) can be extended to define h(i, ϕ, t) for an arbitrary fluent formula ϕ, which
states that ϕ holds at the time step t. We use h(i, {l1, . . . , lk}, T ) as a shorthand for
h(i, l1, T ), . . . , h(i, lk, T ). In all the program rules, T denotes a time step, ranging from
0 to n. Πn(Pi) is defined as follows:
• Rules for declaring fluents and actions of an agent i: For each fluent f ∈ Fi and

action a ∈ Ai, Πn(Pi) contains facts of the form fluent(i, f) and action(i, a).
• Rules for reasoning about effects of actions: For each action a ∈ Ai,

◦ if Di contains the law a executable ϕ then Πn(Pi) contains the rules

poss(i, a, T ) ← h(i, ϕ, T ). (1)

← o(i, a, T ),not poss(i, a, T ). (2)

◦ if Di contains the law a causes l if ϕ then Πn(Pi) contains the rule

h(i, l, T + 1) ← o(i, a, T ), h(i, ϕ, T ). (3)

• Rules describing the initial state and the goal state: For each literal ` ∈ Ii and for
each `′ ∈ Oi, Πn(Pi) contains the rules

h(i, `, 0) ← ← not h(i, `′, n).

• Rules for encoding inertia: For each fluent f ∈ Fi, Πn(Pi) contains the rules

h(i, f, T + 1)←h(i, f, T ),not h(i,¬f, T+1). (4)

h(i,¬f, T + 1)←h(i,¬f, T ),not h(i, f, T+1). (5)

← h(i, f, T ), h(i,¬f, T ). (6)

• Rules for generating action occurrences: Πn(Pi) contains the rule

1 {o(i, A, T ) : action(i, A)} 1 ← T < n. (7)

which states that, at any time step, the agent must execute one of its actions.
The following theorem can be proved.

Theorem 1. The program Πn(Pi) is consistent iff Pi has a plan of length n.

Let PA be the planning problem for A from Example 1. We can easily check that for
every n, Πn(PA) is inconsistent. Likewise, Πn(PB) is inconsistent.



3 Multiagent Planning and Answer Set Planning
In this paper, we are interested in the planning problem in multiagent environments.
We focus on situations where each agent has her own planning problem, and the agents
are loosely connected—i.e., they might or might not use the same language in their
representations (e.g., they might use different names to describe the same property).
Furthermore, there are group actions that should be executed together for their effects
to take place. Likewise, there are actions that cannot be executed by a group at the same
time. Let us start with some preliminary definitions.

Definition 3. Let {Pi}i∈AG be a set of planning problems of agents in AG. A tagged-
fluent is of the form f [i] where f is a fluent in Pi. A tagged-formula over AG is a
formula constructible from the set of tagged fluents.

We will call a sequence of states S = 〈si〉i∈AG a combined state between agents in
AG. Given a tagged-formula ϕ over AG and a combined state S = 〈si〉i∈AG , the truth
value of ϕ in 〈si〉i∈AG is determined as follows: if ϕ is a tagged-fluent f [i] (resp. the
negation of a tagged-fluent ¬f [i]) then ϕ is true in S if f is true (resp. false) in si; the
truth value of a complex formula is computed in the usual way.

Definition 4. A multiagent planning problemM is a tuple 〈AG, {Pi}i∈AG ,F ,NC, C〉
where (i) AG is a set of agents, (ii) Pi is a planning problem for each agent i ∈ AG,
(iii)F is the set of tagged-formulas overAG, and (iv)NC and C are sets of sets of pairs
(i, ai) where i is an agent and ai is an action in Ai.

Intuitively, F is a set of constraints on the combined states, NC is the set of non-
concurrent actions, and C is the set of concurrent actions within AG. For a multiagent
planning problemM, a joint-action sequence of length k of agents inAG is a sequence
〈αi〉i∈AG where, for each i ∈ AG, αi = [ai

0, . . . , a
i
k] is a sequence of actions in Di,

executed by i at the time steps 0, 1, . . . , k.

Definition 5. A joint-action sequence 〈αi〉i∈AG of length k is said to be compatible if,
for every l, 0 ≤ l ≤ k, the following conditions are satisfied:
• For each tagged-formula ϕ ∈ F , ϕ is true in 〈Φ̂Di(αi[l], Ii)〉i∈AG where αx[l]

denotes the action sequence [ax
0 , . . . , ax

l ].
• For each S ∈ NC, there exists some (i, a) ∈ S such that ai

l 6= a.
• For each S ∈ C, either {a | (i, a) ∈ S and a = ai

l} = {a | (i, a) ∈ S} or
{a | (i, a) ∈ S and a = ai

l} = ∅.

Intuitively, a joint-action sequence is compatible if no constraint in M is violated. The
first item indicates that the combined states must not violate the constraints in F , i.e.,
the individual sequence of actions must agree with each other on their effects in shared
environment. The second and third items make sure that non-concurrent and concurrent
action constraints in NC and C are maintained by the joint-action sequence.

Definition 6. LetM = 〈AG, {Pi}i∈AG ,F ,NC, C〉 be a multiagent planning problem.
A joint-action sequence of length n, 〈αi〉i∈AG , is a joint plan of length n for M if
〈αi〉i∈AG is compatible and for each i ∈ AG, αi is a plan of Pi.

Intuitively, a joint plan is composed of individual plans which allow the agents to
achieve their own goals and satisfy the various constraints of the problem.



Example 3. The story in Example 1 can be formalized as a multiagent planningMAB =
〈{A,B}, {PA,PB}, ∅, ∅, ∅〉wherePA = 〈DA, IA, OA〉 andPB = 〈DB , IB , OB〉with
DA and DB are given in Example 2 and
◦ IA = {¬h nail,¬mirror on, h screwdriver,¬h screw,¬h hammer},
◦ OA = {mirror on},
◦ IB = {¬h nail,¬picture on, h screw,¬h screwdriver, h hammer}, and
◦ OB = {picture on}.

We can easily show that MAB has no solution. 2

Answer set planning can be easily extended to compute solutions of multiagent planning
problems. This is achieved by defining a program Πn(M), which consists of the rules
of Πn(Pi) along with rules enforcing the constraints in F , NC, and C:
• For each tagged-formula ϕ in F , a set of rules defining an atom h(tagged, nϕ, T ),

where nϕ is a unique name assigned to ϕ. Due to lack of space, we omit the set of
rules defining this atom (that can be found in [22]). To make sure that the formula is
satisfied by the combined state at each time point, we add to Πn(M) the constraint:

← not h(tagged, nϕ, T ).
• For each set {(i1, a1), . . . , (ik, ak)} in C, the constraint

← 0 {o(i1, a1, T ), . . . , o(ik, ak, T )} k − 1.
which makes sure that if a part of S is executed, i.e., o(ij , aj , T ) belongs to an an-
swer set, then the whole set S is executed.

• For each set {(i1, a1), . . . , (ik, ak)} in NC, the constraints
← o(i1, a1, T ), . . . , o(ik, ak, T ).

This guarantees that not all actions a1, . . . , ak are executed at the same time.
We can extend Th. 1 and prove that the program Πn(M) is consistent iff M has a
solution of length n.

4 Negotiations Between Agents in Dynamic Environments
We consider one-to-one negotiations between agents in a dynamic environment and as-
sume that the negotiation is related to the world representation of each agent. Each agent
maintains her own world representation and has her own means to affect the world. Ex-
changes between agents can be characterized by logical formulae constructible from
their representation languages. The acceptance by an agent i of an exchange coming
from agent j will affect i’s state of the world, and possibly that of j as well.

We assume that each agent i uses her own representation language Li and a knowl-
edge base KBi, whose set of modelsWi represents the acceptable states that she could
be in. We assume that there exists a relation Ri,j ⊆ Wi ×Wj which encodes the set
of compatible models between agents i and j—i.e., a pair (wi, wj) ∈ Ri,j is a possible
combined state of the agents i and j. We will assume that Rj,i is the inverse relation of
Ri,j . We will not worry about how Ri,j could be defined or what properties it should
have. For example, if the agents in Example 1 have only one hammer, then any pair of
possible worlds between them should indicate that exactly one of them has the hammer.

Since negotiation entails an exchange between agents, and the agents can potentially
rely on distinct languages, we introduce partial functions ρi,j , called language matching
functions, that map formulae of Li to formulae of Lj . We will assume that the these
functions are unambiguous w.r.t. equivalence of formulas, i.e., ρi,j(ϕ) = ρi,j(ψ) if



ϕ ≡ ψ. In the case of planning agents, the function ρA,B could be used to map fluents
of A to corresponding fluents of B—e.g., ρA,B(f) = g states that when A refers to
f , it will mean g for B. We require that for each pair of agents i and j there are two
functions ρi,j and ρj,i that are used by the agents in their communications. As in the
case of the compatible relationR, we will not worry about how ρ is defined. Before we
continue, let us illustrate these notions using the agents A and B from Ex. 1.

Example 4. A and B can use the languages constructible from FA and FB as LA and
LB respectively. Thus, we have that WA (resp. WB) is the set of possible states of A
(resp. B). Since there are no constraints on the combined states, we have that RA,B =
WA ×WB . The language matching functions between A and B are identities. 2

A negotiation originates from an agent i (originator), who is trying to have agent j
(recipient) to establish for her a property (ψ). In turn, i may have to agree to establish
ϕ for j. Such an exchange is captured by the notion of a conditional proposal.

Definition 7. A conditional proposal (or, simply, proposal) from i to j has the form
ϕ

i,j⇒ ψ, where ϕ and ψ are formulae in Li s.t. ρi,j(ϕ) and ρi,j(ψ) are both defined.

A proposal ϕ
i,j⇒ ψ says that i is willing to establish ϕ for j (i.e., j can consider that

ρi,j(ϕ) is true in her state) and, in exchange, i requires j to establish ρi,j(ψ) for her.
For example, the conditional proposal h nail

A,B⇒ h screw from A to B in Ex. 1 states
that A wants to exchange her nail for B’s screw. A can make this offer if she has a nail,
and it will have a screw in the resulting state after the proposal is accepted by B.

Agents will negotiate by exchanging proposals. Each agent has her own way of
evaluating and assimilating proposals within her knowledge base. We will assume that
each agent i is associated with three functions, RPrei, RPosti, and OPosti, which
map models and proposals to sets of models. The use of separate originators/receivers
functions allows us to formalize various types of negotiations, e.g., asymmetric ones.

OPosti describes the possible states i will be in if her proposal is accepted. RPrei

and RPosti represent the conditions for i to consider a received proposal and the con-
sequences of accepting it. These functions satisfy the following conditions:

• RPrei(w,ϕ
j,i⇒ ψ) ⊆ Wi and for each w′ ∈ RPrei(w, ϕ

j,i⇒ ψ), w′ |= ρj,i(ψ).
• RPosti(w, ϕ

j,i⇒ ψ) ⊆ Wi.
• OPosti(w,ϕ

i,j⇒ ψ) ⊆ Wi and for each w′ ∈ OPosti(w, ϕ
i,j⇒ ψ), w′ |= ψ.

The condition on RPrei indicates that if i wants to accept the proposal ϕ
j,i⇒ ψ then she

should (somehow) have ρj,i(ψ) to satisfy the proposal. OPosti requires that if i made
the proposal ϕ

i,j⇒ ψ then she should have ψ if the proposal is accepted by j. Finally,
for all functions, it is required that the agent considers only acceptable states.

Example 5. Consider the agents in Example 4. A possible definition for RPreA w.r.t.
the proposal h screw

B,A⇒ h nail is

RPreA(w, h screw
B,A⇒ h nail) =

{{w} if w |= h nail
∅ otherwise

(i.e., to accept the proposal, A should have a nail). A possible definition of RPostA



w.r.t. the proposal h screw
B,A⇒ h nail is

RPostA(w, h screw
B,A⇒ h nail) =




{w′ | w′ = w \ {¬h screw, h nail}∪

{h screw,¬h nail}} if w |= h nail
∅ otherwise

A possible definition of OPostB w.r.t. the proposal h screw
B,A⇒ h nail is given next:

OPostB(w, h screw
B,A⇒ h nail) =




{w′ | w′ = w \ {h screw,¬h nail}∪

{¬h screw, h nail}} if w |= h screw
∅ otherwise

Let us define when an agent can make a proposal and what she can do if a proposal
was made to her. If a proposal ϕ

i,j⇒ ψ is made, j can either accept the proposal, re-
ject it, or continue with the negotiation. First, if j were to accept the proposal, then
RPrej(w,ϕ

i,j⇒ ψ) should not be empty, since this set tells j that she can satisfy
the request of i (e.g., she has the formula that is being requested by i). Furthermore,
RPostj(w, ϕ

i,j⇒ ψ) should not be empty as this set indicates that the consequence of
accepting the proposal is acceptable to j. Otherwise, j can make a counter proposal
or reject the offer. A counter proposal can only be made if j thinks that she can offer
ρi,j(ψ) to i in exchange for ϕ′, i.e., ρj,i(ϕ′)

i,j⇒ ψ should be a possible proposal. If j
cannot accept the proposal and cannot make a counter proposal to i, then she will reject
the proposal. We formulate these notions in the next definitions—where α = ϕ

i,j⇒ ψ is
a proposal from i to j and wi and wj are the current states of i and j, respectively.

Definition 8. α is acceptable to both i and j w.r.t. wi and wj if
◦ wi |= ϕ and OPosti(wi, α) 6= ∅ (α is O-acceptable w.r.t. wi).
◦ RPrej(wj , α) 6= ∅ and RPostj(wj , α) 6= ∅ (α is R-acceptable w.r.t. wj).

Observe that the definitions of RPrej and RPostj take care of converting the formulae
in the proposal (that are in the language of i) to the local language of j.

Definition 9. α is R-negotiable w.r.t. wj if α is not R-acceptable w.r.t. wj , and there is
some ϕ′ (in the language of j) s.t. RPrej(wj , β) 6= ∅ and RPostj(wj , β) 6= ∅ where
β = ρj,i(ϕ′)

i,j⇒ ψ. α is R-rejectable if it is not R-acceptable and not R-negotiable.

Definition 10. α is O-negotiable w.r.t. wi if α is not O-acceptable w.r.t. wi, and there
exists some ϕ′ such that wi |= ϕ′ and OPosti(wi, ϕ

′ i,j⇒ ψ) 6= ∅. α is O-rejectable if it
is not O-acceptable and not O-negotiable.

Example 6. Let us assume that RPreB , RPostB , and OPostB are defined similarly
to RPreA, RPostA, and OPostA in Example 5. Given two states wA = IA and
wB = IB (Example 3) of A and B, we can easily check the following: (a) h nail

A,B⇒
h screw is O-negotiable in wA; (b) true

A,B⇒ h screw is O-acceptable w.r.t. wA and
R-acceptable to B; (c) h nail

A,B⇒ h screw is R-acceptable in wB . 2

We will next define the notion of a negotiation. An exchange between i and j is either
a formula in Li or a critique, which is either accept or reject.



Definition 11. Let i and j be two agents and wi and wj be their current states. A
sequence of exchanges m0, . . . ,mn, . . . is a (i, j)-negotiation for ψ w.r.t. wi and wj if

• for every k, m2k
i,j⇒ ψ is O-negotiable w.r.t. wi and m2k+1

i,j⇒ ψ is R-negotiable
w.r.t. wj;
• if mn is a critique then the sequence is finite and
◦ if mn = accept then mn−1

i,j⇒ ψ is acceptable w.r.t. wi and wj .

◦ if mn = reject then mn−1
i,j⇒ ψ is O-rejectable w.r.t. wi if n is even or

mn−1
i,j⇒ ψ is R-rejectable w.r.t. wj if n is odd.

Since acceptance of a proposal leads two agents to possibly change states, states com-
patibility becomes an issue:

Definition 12. Let i and j be two agents and wi and wj be their states. A finite (i, j)-
negotiation (m0, . . . ,mn) for ψ w.r.t. wi and wj is practical if mn = accept and
there exists a pair (w′i, w

′
j) ∈ Ri,j such that w′i ∈ OPosti(wi,mn−1

i,j⇒ ψ) and w′j ∈
RPostj(wj , mn−1

i,j⇒ ψ). We say that mn−1
i,j⇒ ψ is the outcome of the negotiation.

Definition 13. A (i, j)-negotiation m0, . . . for ψ w.r.t. wi and wj is non-repeating if,
for every pair of k 6= t, mk is not logically equivalent to mt (i.e., 6|= mk ⇔ mt).

The following theorem is an immediate consequence of the finiteness of the languages
of i and j and the definition of non-repeating negotiation.

Theorem 2. Any non-repeating (i, j)-negotiation for ψ w.r.t. wi and wj is finite.

5 Integration of Negotiation in Multiagent Planning
In this section, we will integrate the proposed method for negotiation in planning in
presence of multiple agents. We have seen (e.g., Ex. 3) that a planning problem may not
have a solution (e.g., agents A and B cannot achieve their goals). It is easy to see that, if
A purchases a nail and exchanges it with B for a screw, then both A and B can achieve
their goals. Thus, negotiation can provide the interaction between multiple agents nec-
essary to achieve success. In order for the negotiation to be used during planning, we
will need to instantiate our model of negotiation to the case of multiagent planning.
5.1 Negotiation in Multiagent Planning
Let us consider a multiagent planning problem M = 〈AG, {Pi}i∈AG ,F ,NC, C〉. In
this case, the language Li for negotiation used by agent i is the propositional language
built using the set of fluents Fi in Di. The set Wi of permissible states of i is the set
of all possible states in Pi.2 In this paper, we are concerned with the case where each
successful (i, j)-negotiation with outcome ϕ

i,j⇒ ψ, where ϕ and ψ are conjunctions of
literals, will result in (i) agent i having ψ and ϕ in the next state; and (ii) agent j having
ϕ and ψ in the next state (recall that ψ denotes the {` | ` ∈ ψ}). In order to accept
a proposal ϕ

i,j⇒ ψ, an agent j should have ψ. This means that the functions RPrej ,
RPostj , and OPosti are defined as follows.

2 This set could exclude some interpretations, e.g., because of the F constraints of Def. 4.



RPrej(w, ϕ
i,j⇒ ψ) =

8
<
:
{w} if w |= ρi,j(ψ)

∅ otherwise

RPostj(w, ϕ
i,j⇒ ψ) =

8
<
:
{w ∪ e \ ē} if w |= ρi,j(ψ)

∅ otherwise

where e = ρi,j(ϕ) ∪ ρi,j(ψ). Furthermore,

OPosti(w, ϕ
i,j⇒ ψ) =

{{w ∪ e′ \ e′} if w |= ϕ
∅ otherwise

where e′ = ψ ∪ ϕ. The model compatibility relation Ri,j consists of (s, s′) if there
exists a combined state 〈wt〉t∈AG such that s = wi, s′ = wj , and the formulas in F
are satisfied by 〈wt〉t∈AG . As there is no explicit requirement on the languages used in
formalizing M, we will keep assuming the existence of a language matching function
ρ. In our examples, ρ will simply correspond to the identity function.

5.2 Planning with Non-Interleaved Negotiations
The first approach we consider is the case where agents participating in a negotiation
are prevented from performing any other activities until the negotiation is complete.

Let us assume that each finite length negotiation between any two distinct agents in
AG is assigned a unique name, and let us denote with Ni,j the set of the names of all
finite (i, j)-negotiations. A joint-action sequence with negotiation of length k for the
agents in AG is a sequence 〈αi〉i∈AG where, for each i ∈ AG, αi = [ai

0, . . . , a
i
k] and,

for each 0 ≤ l ≤ k, ai
l is either an action in Di or an element of Ni,j ∪ Nj,i. A joint-

action sequence 〈αi〉i∈AG of length k is said to be compatible if: (i) It is compatible
w.r.t. Definition 5, and (ii) If ai

l ∈ Ni,j ∪Nj,i then aj
l = ai

l . This is illustrated next.

Example 7. Consider the multiagent planning problem MAB in Ex. 3, where MAB

has no solution. It is easy to see that the following joint-action sequence can achieve the
goals of both A and B: (1) A buys a nail. (2) A proposes to B to exchange a screw for a
nail. (3) B accepts the proposal of A and the exchange is made. (4) A hangs the mirror
with her screwdriver and the screw. (5) B hangs the picture with the nail and the ham-
mer. This can be represented as 〈αi〉i∈{A,B}, where αA = [buy nail, N1, hw screw]
and αB = [noop, N1, hw nail], where N1 = h nail

A,B⇒ h screw, accept. 2

Let us extend the definition of the transition function Φ to encompass negotiations.

Definition 14. Let N ∈ Ni,j be an (i, j)-negotiation and si and sj be the states of i
and j, respectively. We define Φ(N, si) and Φ(N, sj) as follows.

• If N ends with reject, then Φ(N, si) = si and Φ(N, sj) = sj .

• If N ends with accept and the outcome is ϕ
i,j⇒ ψ, then

Φ(N, si) = OPosti(si, ϕ
i,j⇒ ψ) and Φ(N, sj) = RPostj(sj , ϕ

i,j⇒ ψ). 3

3 Note that we slightly abuse the notation since OPost and RPost return singleton sets.



The function Φ̂ can be extended to the case of sequences of actions with negotiations.
Definition 6 can then be used to define the notion of a joint-plan with negotiation for
multi-agent planning problems. For example, it is easy to see that 〈αi〉i∈{A,B} (Exam-
ple 7) is a joint-plan with negotiation for A and B in the problem MAB .

5.3 Planning with Interleaved Negotiations
A joint-plan with negotiation as defined in the previous subsection does not consider the
case where agents may align themselves to make a proposal acceptable. For example,
if B makes the proposal h screw

B,A⇒ h nail to A in the initial state, A—by virtue
of having no nail—will reject it. On the other hand, A can accept the proposal after it
purchases a nail, i.e., the following could be considered a joint-plan for A and B:

αA = [noop, buy nail, accept, hw screw]
αB = [h screw

B,A⇒ h nail, noop, noop, hw nail]
In the above joint-plan, individual exchanges of a negotiation act like individual actions.
To accommodate this, we introduce negotiation actions of the following forms:

a. starts(i, j, ϕ, ψ): i starts a negotiation with j, by making the proposal ϕ
i,j⇒ ψ;

b. proposes(i, j, ϕ, ψ): ϕ is a non-critique exchange in an (i, j)-negotiation for ψ;

c. accepts(i, j, ϕ, ψ): i and j accept the proposal ϕ
i,j⇒ ψ;

d. rejects(i, j): i and j reject the last exchange made and terminate the negotiation.
These actions are referred to as (i, j)-negotiation actions.

The notion of a compatible joint-action sequence has to be modified to account for
negotiation actions. Different views may lead to different definitions of a joint-action
with negotiation actions. In the following, we will require the following:
◦ at any time, one agent is engaged in at most one negotiation; and
◦ agents must finish one negotiation before they can start a new one.

We extend the definition of transition function to account for the negotiation actions:
ΦDi(starts(i, j, ϕ, ψ), w) = w
ΦDj (starts(i, j, ϕ, ψ), w) = fails
ΦDx(proposes(i, j, ϕ, ψ), w) = w
ΦDx(rejects(i, j), w) = w

ΦDi(accepts(i, j, ϕ, ψ), w) = OPosti(w,ϕ
i,j⇒ ψ)

ΦDj (accepts(i, j, ϕ, ψ), w) = RPostj(w,ϕ
i,j⇒ ψ)

where x ∈ {i, j}. Let αi = [ai
1, . . . , a

i
k] and αj = [aj

1, . . . , a
j
k] be two action sequences,

containing ordinary actions from Di and Dj and/or negotiation actions. Let αi ⊕ αj =
[C1, . . . , Ck] where Cl is the set of negotiation actions among {ai

l, a
j
l }. Let Ag(Cl) =

{x | ax
l ∈ Cl}. We say that (αi, αj) is syntactically correct if

• Cl is either an empty set or a singleton, i.e., |Cl| ≤ 1;
• for each 1 ≤ l < l′ ≤ k s.t. Cl 6= ∅ and Cl′ 6= ∅, if Cl+1 = · · · = Cl′−1 = ∅ then

Ag(Cl) ∪Ag(Cl′) = {i, j}.
The pair (αi, αj) is (i, j)-syntactically correct if it is syntactically correct and
• either no (i, j)-negotiation action occurs in αi ⊕ αj , or
• for each (i, j)-negotiation action ai

x or aj
x in αi⊕αj there exists l 6= l′ such that (a)

l ≤ x ≤ l′, (b) Cl = {ai
l} = {starts(i, j, ϕl, ψ)}, (c) for every l < t < l′, Ct = ∅



or Ct = {proposes(i, j, ϕt, ψ)}, and (d) either ai
l′ = aj

l′ = accepts(i, j, ϕl′ , ψ) or
ai

l′ = aj
l′ = rejects(i, j).

We say a joint-action sequence 〈αi〉i∈AG of length k, where each ai
l is an action in Pi

or one of the negotiation actions, is compatible if:
• it satisfies the conditions in Definition 5; and
• for every i 6= j, (αi, αj) is (i, j)-syntactically correct and, for every Ct in αi ⊕ αj

containing an (i, j)-negotiation action a we have that:

− if a = starts(i, j, ϕ, ψ) then ϕ
i,j⇒ ψ is O-negotiable w.r.t. Φ̂Di

(αi[t− 1], Ii);
− if a = proposes(i, j, ϕ, ψ) and Ag(Ct) = i then ϕ

i,j⇒ ψ is O-negotiable w.r.t.
Φ̂Di

(αi[t− 1], Ii);
− if a = proposes(i, j, ϕ, ψ) and Ag(Ct) = j then ϕ

i,j⇒ ψ is R-negotiable w.r.t.
Φ̂Dj (αj [t− 1], Ij);

− if a = accepts(i, j, ϕ, ψ) then ϕ
i,j⇒ ψ is acceptable w.r.t. Φ̂Di(αi[t − 1], Ii)

and Φ̂Dj
(αj [t− 1], Ij);

− if a = rejects(i, j) and proposes(i, j, ϕ, ψ) or starts(i, j, ϕ, ψ) is the last
occurrence of an (i, j)-negotiation action in αi ⊕ αj before t, then ϕ

i,j⇒ ψ is
O-rejectable w.r.t. Φ̂Di(αi[t− 1], Ii) or R-rejectable w.r.t. Φ̂Dj (αj [t− 1], Ij).

Joint-plans with negotiation are defined accordingly.

5.4 Computing Plan with Negotiation Using Logic Programming
In the rest of this section, we will present a set of rules that, when added to Πn(M),
will generate joint-plans with negotiation. We refer to the new program as Γn(M).
Due to lack of space, we omit some of the more technical details and we make use of
a rather informal logic programming syntax. In the following rules, i, j, and k denote
possible agents. As in the previous discussion, we will consider the case where formulae
involved in negotiations are composed only of sets of literals. We assume the existence
of negotiation formula atoms in the program formula name(.), naming the possible set
of literals. The composition of the actual formula ϕ can be described as a collection of
facts in formula(ϕ, `) for each literal ` ∈ ϕ (with a slight abuse of notation, we will
use ϕ as the name of the formula itself). We also assume that the language matching
functions are identities. For each agent i, we introduce

NAi =
{

starts(i, j, ϕ, ψ), proposes(i, j, ϕ, ψ),
accepts(i, j, ϕ, ψ), rejects(i, j) j ∈ AG, ϕ, ψ are fomulas names

}
.

A predicate na(i, a) is used to identify the elements a ∈ NAi. Since the construction of
an exchange requires hypothetical reasoning, we assume a predicate hyp h(i, ϕ, ψ, `, T )
that is true if ` is true in OPosti(w, ϕ

i,j⇒ ψ), where w is the state for i described by
h(i, ·, T ). The definition of hyp h is straightforward. This allows us to describe states
that are not acceptable; in our case:

bad(i, ϕ, ψ, T ) ← fluent(i, f), hyp h(i, ϕ, ψ, f), hyp h(i, ϕ, ψ, neg(f))
The rules used to describe the effects of negotiation can be summarized as follows.
• Generation rules: The rule for generating action occurrences is expanded to:

1{o(i, a, T ) : na(i, a), o(i, A, T ) : action(i, A)}1 ← agent(i), time(T ), T < n



• Negotiation rules: These rules control the ability to perform steps of negotiation;
the predicate wait is used to indicate that it is not the agent’s turn to respond to a
negotiation, allowing to enforce the exchange protocol described earlier. Each non-
critique exchange will prompt wait to become true; each generated exchange will also
invalidate the wait of the other party. In the following, x ∈ {i, j} and ī = j and j̄ = i.
The variable T denotes the time parameter.

%% i starts
h(i, wait(i, j, ϕ, ψ), T + 1) ← o(i, starts(i, j, ϕ, ψ), T ).
h(j, neg(wait(i, j, ϕ, ψ)), T + 1) ← o(i, starts(i, j, ϕ, ψ), T ).
%% x exchanges
h(x, wait(i, j, ϕ, ψ), T + 1) ← o(x, proposes(i, j, ϕ, ψ), T ).
h(x̄, neg(wait(i, j, ϕ, ψ)), T + 1) ← o(x, proposes(i, j, ϕ, ψ), T ).
%% Suspend waiting on termination
h(x, neg(wait(i, j, ϕ, ψ)), T + 1) ← o(x, accepts(i, j, ϕ, ψ), T ).
h(x, neg(wait(i, j, ϕ, ψ)), T + 1) ← o(x, rejects(i, j), T ).

A successful completion of a negotiation will be achieved when an acceptable exchange
is reached. The bad predicate will be used to validate acceptability:

acceptable(i, j, T ) ← h(i, wait(i, j, ϕ, ψ), T ), h(i, ϕ, T ),not bad(i, ϕ, ψ, T ).
acceptable(i, j, T ) ← h(j, wait(i, j, ϕ, ψ), T ), h(j, ψ, T ),not bad(j, ψ, ϕ, T ).

If the negotiation is not acceptable, then an attempt to generate a new exchange is
made. We use a repeated predicate to avoid repeated exchanges (the code is simple but
tedious, and omitted).

valid proposal(i, j, ϕ′, T ) ← h(i, wait(i, j, ϕ, ψ), T ), formula name(ϕ′),
not repeated(i, j, ϕ′, T ), h(i, ϕ′, T ),not bad(i, ϕ′, ψ, T ).

valid proposal(i, j, ϕ′, T ) ← h(j, wait(i, j, ϕ, ψ), T ), formula name(ϕ′),
not repeated(i, j, ϕ′, T ), h(j, ψ, T ),not bad(j, ψ, ϕ′, T ).

negotiable(i, j, T ) ← h(i, wait(i, j, ϕ, ψ), T ),not acceptable(i, j, T ),
valid proposal(i, j, ϕ′, T ).

negotiable(i, j, T ) ← h(j, wait(i, j, ϕ, ψ), T ),not acceptable(i, j, T ),
valid proposal(i, j, ϕ′, T ).

Using the above characterizations of what is acceptable and negotiable, we can intro-
duce constraints that will avoid generation of unsuitable negotiation actions:

%% Protocol: actions must be done in exchange way
← o(x, proposes(i, j, ϕ′, ψ′), T ), h(x, neg(wait(i, j, ϕ, ψ)), T ).
← o(x, accepts(i, j, ϕ′, ψ′), T ), h(x, neg(wait(i, j, ϕ, ψ)), T ).
← o(x, rejects(i, j)), h(x, neg(wait(i, j, ϕ, ψ)), T ).

%% Ensure only valid actions are performed
← o(i, starts(i, j, ϕ, ψ), T ),not h(i, ϕ, T ).
← o(i, proposes(i, j, ϕ, ψ), T ),not valid proposal(i, j, ϕ, T ).
← o(j, proposes(i, j, ϕ, ψ), T ),not valid proposal(i, j, ϕ, T ).
← o(i, accepts(i, j, ϕ, ψ), T ),not acceptable(i, j, T ).
← o(j, accepts(i, j, ϕ, ψ), T ),not acceptable(i, j, T ).
← o(i, rejects(i, j), T ),not negotiable(i, j, T ),not acceptable(i, j, T ).

Finally, we introduce rules to describe the state changes produced by a negotiation:
h(i, `, T + 1) ← o(i, accepts(i, j, ϕ, ψ), T ), in formula(ψ, `).



h(i, `, T + 1) ← o(i, accepts(i, j, ϕ, ψ), T ), in formula(ϕ, `).
h(j, `, T + 1) ← o(j, accepts(i, j, ϕ, ψ), T ), in formula(ϕ, `).
h(j, `, T + 1) ← o(j, accepts(i, j, ϕ, ψ), T ), in formula(ψ, `).

Theorem 3. For a multiagent planning problem M and an integer n,
• if I is an answer set of Γn(M) and αi = [ai

0, . . . , a
i
n−1] such that o(i, ai

t, t) ∈ I ,
then 〈αi〉i∈AG is a joint-plan.
• if 〈αi〉i∈AG where αi = [ai

0, . . . , a
i
n−1] is a joint-plan of length n, then there is an

answer set I of Γn(M) such that o(i, ai
t, t) ∈ I for i ∈ AG and 0 ≤ t ≤ n− 1.

Observe that the program Γn(M) can be easily modified to generate plans with non-
interleaved negotiations by adding constraints forbidding an occurrence of an ordinary
action for an agent i when the fluent wait(i, j, ., .) or wait(j, i, ., .) is true.

6 Discussion and Conclusions
In this paper, we presented a preliminary investigation of the use of logic programming
technology to address the composite problem of multiagent planning and negotiation.
We developed a generic model of negotiation, suitable for dynamic environments, and
instantiate it to the case of multiple planning agents with independent goals. We defined
different notions of planning with negotiations. We illustrated how logic programming
provides an elegant and modular encoding of the different aspects of the problem. Ob-
serve that the use of logic programming allows for a simple integration between plan-
ning and negotiation. The generation of an answer set satisfying the goal of the planning
problem drives the generation of any negotiation that needs to occur between agents.

This preliminary work offers several directions for future research. Part of our dis-
cussion relies on the use of identity function as a language matching functions. This
restriction was imposed for the sake of simplicity and it should be lifted to allow more
complex scenarios. For example, in planning with resources, two agents—one using
British pounds and one using Dollars—would need matching functions that convert be-
tween the two currencies. Other examples include agents using ontologies with different
granularities; e.g., agent i uses has nail brand x(foo) to describe nail named foo,
while agent j uses separate predicates to describe individual properties of foo (e.g.,
is nail(foo) and is brand x(foo)). Thus, ρi,j applied to has nail brand x(foo)
should result in the formula is nail(foo)∧is brand x(foo)∧has(foo). The language
matching functions are domain-dependent but still expressible in logic programming.

The proposed model of negotiation is grounded and used in the most simple way.
It is suitable for negotiations involving exchanges of consumable resources, such as the
nail or the screw. Non-consumable resources may require different definitions of the
functions OPost, RPre, and RPost. In practice, there could be situations in which the
owner of a resource does not lose it after an exchange has happened. For example, a
student, agreeing to give another student a ride to school in exchange for the solution
of a homework, does not lose her car after the exchange.

There are also situations in which an agent may need to take into consideration
what other agents offer before deciding to accept or reject an offer. For example, a
student with a car without gasoline could agree to drive some friends to school if the
friends give her enough money to buy gasoline. In this case, the student has to take into
consideration what was offered before accepting the offer.



The implementation in planning assumes that agents negotiate on sets of literals.
This is not a limitation of the general planning framework, but the consequence of the
language restrictions of several answer set solvers. This restriction could be lifted by
adopting a more general logic programming framework e.g., [3, 7].

Further generalizations include the use of negotiation models involving groups of
agents, preferences, more expressive action languages (e.g., with static causal laws,
concurrent actions), and more complex planning scenarios (e.g., joint-goals).
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