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SUMMARY

The goal of this paper is to investigate the application of parallel programming techniques
to boost performance of heuristic search-based planning systems in various aspects. It
shows that an appropriate parallelization of a sequential planning system often brings
gain in performance and/or scalability. We start by describing general schemes for
parallelizing the construction of a plan. We then discuss the applications of these
techniques to two domain-independent heuristic search based planners—a competitive
conformant planner (CpA) and a state-of-the-art classical planner (FF). We present
experimental results—on both shared memory and distributed memory platforms—
which show that performance improvements and scalability are obtained in both cases.
Finally, we discuss the issues that should be taken into consideration when designing a
parallel planning system and relate our work to the existing literature.
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1. INTRODUCTION AND MOTIVATION

Planning is the problem of finding a sequence of actions that changes the state of the world from
an initial state to a state that satisfies a given set of requirements. Planning is computationally
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2 E. PONTELLI ET AL.

hard. Even the problem of searching for a polynomially bounded plan for propositional domains
is NP-complete [14], and it becomes computationally even harder (Σ2

P -complete) when the
initial state is incomplete [5]. These complexity results suggest that domain-independent
planners are likely to fail to build a plan within acceptable time bounds for certain problem
instances.

In spite of these limitations, over the years, we have witnessed a continuous interest by
researchers in building domain-independent planners. The challenge has led to the development
of more creative ways to attack this problem, such as the development of new data structures
(e.g., the planning graph [7]), the development of several domain-independent heuristics (e.g.,
[9, 32]), and the development of new computational approaches to planning (e.g., SAT-based
or model checking based planners [38, 17, 6, 16], Answer Set planning [46]).

Different classes of planning problems can be identified, depending on the amount and type
of knowledge about the initial state of the world that is available to the planning agent.
Complete knowledge implies that the agent has precise knowledge about all the properties
of interest describing the initial state of the world. Incomplete knowledge implies that the
initial values of some properties are unknown. Conformant planning is the problem of finding
a sequence of actions that changes the state of the world from every possible initial state
(or equivalently, a set of initial states) to a state that satisfies a given set of requirements
(i.e., the goal). This type of planning arises in several application domains, where complete
knowledge is an unrealistic expectation and the use of sensing actions might be impractical or
too expensive (and used only as a last resource). Conformant planning has gained relevance
in recent years, leading also to specialized tracks in the recent planning competitions (e.g.,
IPC-V). Like classical planning, which deals with planning problems in presence of a complete
initial state, conformant planning can be viewed as a search problem. Several approaches
to conformant planning have been developed. Graphplan has been extended in [61] to deal
with partial observability of the initial state. Satisfiability and model-based planning have
been applied to conformant planning in [17, 13]. Conformant answer set planning has been
discussed in [25].

Planning as heuristic search has played an important role in planning research. Indeed,
heuristic search planners are among the best domain-independent planners† for classical
domains (e.g., FF, HSP2, AltAlt, etc. [1, 34, 29]). For domains with incomplete information,
heuristic search conformant planners are also among the fastest developed (e.g., [11, 12]). The
main difference between classical planning and conformant planning lies in the size of the
search space. The former searches for solutions in the state-space—which can be exponential
in the number of propositions in the problem—while the latter performs the search in the
belief-state space—which is double exponential in the number of propositions.

The key to the success of domain-independent search based planners is the design of good
heuristics and a better and compact representation of the search space (e.g., [12]). It is
known, however, that there is a trade-off between the cost of computing a heuristic function
and its performance. In this regard, it is interesting to observe that a domain-independent

†SAT-based planners are becoming more competitive (zeus.ing.unibs.it/ipc-5), thanks to the availability
of efficient SAT-solvers, but we believe heuristic-based planners will remain important for many years.
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conformant planner [62], called CpA, has been proved competitive with many state-of-the-art
conformant planners, even though it uses a rather simple heuristic to guide its search. Instead of
employing a sophisticated heuristic, CpA uses approximation, thus leading to a more compact
representation of the search space. The performance of CpA demonstrates that, for various
classes of planning problems, the performance of a heuristic function can be compensated by
changes in the reasoning mechanisms.

In this paper, we continue along this same line of thought, proposing another mechanism,
orthogonal to the development of new heuristics, to enhance performance of heuristic search
planners. More precisely, we investigate the use of parallelism to exploit the concurrency that
is inherent in the reasoning process employed in planning. Our approach is motivated by:

(a) the demand for solving larger planning instances;
(b) the architectural trends of providing users with affordable multi-core platforms;
(c) the availability of affordable components to build Beowulf clusters;‡

(d) the observation that, with few and relatively simple exceptions (e.g., [68]), existing
planning systems are tailored to sequential computing platforms.

These issues lead to the following research questions: (1) Can the computing power of parallel
platforms be used to improve planning efficiency? In turn, can the gain in efficiency be such
to improve scalability and solve problems that are beyond the capabilities of existing sequential
planning systems? and (2) Which parallel computing techniques can be applied to planning?
In this paper, we propose a study of the applicability of different parallel processing techniques
to certain significant classes of planning systems—forward-chaining and conformant planners
based on heuristic search. Our study offers the following outcomes:

1. Parallel machines can be effectively used to improve the performance of the considered
planning systems and enable them to tackle larger problem instances;

2. Parallel search techniques [31] cannot be applied blindly;
3. Parallel machines can effectively compensate the informativeness of the heuristic

function;
4. Representative forward-chaining and conformant planners can be adapted to take full

advantage of the added computational power provided by both multi-core and distributed
memory platforms.

The work proposed in this paper, that we refer to as parallel planning, is different from the
common notion of distributed planning explored in the literature [47, 66]. Our focus is on
improving efficiency of sequential planning systems by distributing the workload of a planner
to multiple processes, while distributed planning often deals with the problem of coordination
between agents to create a plan for all agents.

Let us also underline that an extensive literature exists dealing with the development
of parallel solutions to search problems in various domains (e.g., constraint solving, logic

‡A Beowulf cluster is simply a cluster of commodity components, usually identical computers interconnected
using an off-the-shelf interconnection network (e.g., Myrinet, Infiniband), running open-source software (e.g.,
Linux, MPI), and dedicated to distributed memory parallel computations.
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4 E. PONTELLI ET AL.

programming, SAT, combinatorial optimization [31, 54, 71, 39, 44, 43]). These works provide a
basic backbone to our effort. On the other hand, it is interesting to observe that the conclusions
reached in the context of different domains are radically different; techniques and heuristics
found effective for one class of problems (e.g., the use of certain scheduling strategies) have
been shown to produce the worst parallel performance in other classes of problems (e.g., as
discussed in [43]). This state of affairs is behind the continuously growing literature that
explores exploitation of search parallelism from different domains (e.g., the very recent works
on parallelization of logic programming, constraint programming, combinatorial optimizations,
and theorem proving [52, 44, 20, 51]).

Preliminary experiments conducted using mapping of planning problems to parallel logic
programming solutions (e.g., as discussed in [42]) provided very modest parallel performance,
suggesting that also the domain of planning may have peculiar behavior in terms of exploitation
of parallelism. Thus, it is important to know what will be the pros and cons of parallelization
of a planning system and what are the issues that need to be investigated. We hope this paper
will provide directions in answering such questions.

The rest of the paper is organized as follows. Section 2 provides some background definitions
from the field of planning and reasoning about actions and change. Section 3 introduces the
different models of parallelism we explored in our design. Section 4 describes the prototypes
developed and their implementation. Section 5 discusses the benchmarks adopted and the
results obtained on both multi-core and distributed memory platforms. Section 6 discusses
related proposals that have appeared in the literature. Finally, Section 7 presents conclusions
and possible future work.

2. PRELIMINARIES

2.1. Action Description Languages

The common practice is to encode a planning domain and its problem instances using languages
(action languages) with a formal semantics. Action languages describe the domain using two
main classes of concepts: actions, describing the capabilities of an agent to change the world,
and fluents, boolean properties used to describe the state of the world. The truth value of
fluents may change over time in response to execution of actions. In this project we consider two
languages for the description of planning domains: the Planning Domain Definition Language
(PDDL) [49, 28], for the description of classical domains, and the action language AL [4], for
the description of domains with static causal laws and incomplete knowledge.

2.1.1. The Planning Domain Definition Language (PDDL)

PDDL is a widely used language for the description of planning domains. For example, the
planner FF [33] makes use of PDDL as its input language.
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Let us summarize some of the key features of basic PDDL—the reader is referred to the
literature (e.g., [49, 28]) for a detailed discussion of the syntax and features of this language.

A PDDL definition is composed of two parts: a domain description and a problem
specification.

The domain description defines:
◦ what predicates are used to describe the properties of the world—known as fluents if

their state can change over time, otherwise they are known as timeless—and
◦ the actions the described agent can perform.

Both predicates and actions can have parameters. The format of a simple domain definition
has the form

(define (domain NAME)
(:predicates (Pred_Name_1 ?arg1 ... ?argk)

....
(Pred_Name_n ?arg1 ... ?argm))

(:action Action_name_1
:parameters (?parm1 ... ?parmh)
:precondition Precond_Formula
:effect Effect_Formula)

(:action ... )
)

Each action specification describes a class of actions parameterized by the parameters parm1
... parmh, the condition under which they can be executed, and their effects on the world.
The precondition could be as simple as an atomic formulae, i.e., (Pred Name arg1 ... argk),
or a more complex formula, such as a conjunction (and Formula 1 ... Formula m). PDDL
allows also the use of disjunctions and quantifiers.

The effect formula could be an atom (which is going to be added as true to the resulting
state), a negated atom (which will lead to the deletion of the corresponding atom from the
state), or a conjunction of effects. More complex effect formulae (e.g., involving conditional
effects and universal quantifiers) are also possible.

A problem definition introduces a description of the initial state (what is true at the
beginning of the plan execution) and of the goal—i.e., what properties the final resulting
state should satisfy. A typical (simple) problem definition has the form

(define (problem Problem_Name)
(:domain Domain_Name)
(:objects obj1 ... objk)
(:init Atom1 ... Atomn)
(:goal Condition_formula)

)

For planning with complete information, the initial state is described by a collection of atoms
that are true in the initial state. All the other atoms are assumed to be false. For conformant
planning, there have been different uses of PDDL in the specification of the initial states. Some
planners use unknown(l) to specify that the fluent l is unknown. Other uses oneof(l, not
l) for this purpose. The formula used in the description of the goal has the same form as the
formula used for the preconditions of the actions.
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6 E. PONTELLI ET AL.

The original specification of PDDL allows also the use of axioms (a.k.a. static causal laws).
These are statements of static relationships between propositions within a state. An axiom
has the form

(:axiom
:vars (?arg1 ... ?argn)
:context Condition_formula
:implies Atom

)

It is required that predicates defined by the :implies part of an axiom are not allowed to
occur as effects of actions. The advantage of axioms in planning has been discussed in [64].

Example 1. We have a suitcase with two latches l1 and l2. Initially, l1 is up and l2 is down.
To open a latch (l1 or l2) we need a corresponding key (k1 or k2, respectively). When the two
latches are in the up position, the suitcase will be unlocked. When one of the latch is in the down
position, the suitcase is locked. The signature of this domain consists of two actions—open(L)
and close(L), where L ∈ {l1, l2}—and three fluents—up(L), locked, and available(K), where
L ∈ {l1, l2} and K ∈ {k1, k2}.

We now present the axioms describing the domain. The open action can be performed only
if we have the right key, and the effect is to open the corresponding latch; this can be described
as

(action open
:parameters (?latch ?key)
:precondition (and

(key_for ?key ?latch)
(available ?key))

:effect (up ?latch)
)

Similarly, the action close will falsify the up property:

(action close
:parameters (?latch)
:effect (not (up ?latch))

)

The fact that the suitcase will be unlocked when the two latches are in the up position, and
vice versa, is represented by axioms:

(:axiom
:context (and (up l1) (up l2))
:implies (not (locked))

)

(:axiom
:vars ?latch
:context (not (up ?latch))
:implies (locked)

)
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An initial state for this domain could be

(:init (key_for k1 l1)
(key_for k2 l2)
(locked)
(available k2)
(available k1)
(up l1)

)

2.1.2. The Action Language AL

A more expressive language we have considered is the action languageAL [4] for the description
of planning domains and planning problem instances in presence of static causal laws and/or
incomplete knowledge. A planning problem instance is P = 〈D, I,G〉, where D (the planning
domain) encodes the actions with their effects and preconditions, and I and G describe the
initial state of the world and the goal. The initial configuration of the world I can be represented
by a set of states ΣI , where a state is an assignment of truth values to the properties of interest
(also know as fluents). ΣI is said to be complete if |ΣI | = 1—i.e., there is no ambiguity about
the initial configuration of the world.

The description of the planning domain D is composed of a collection of axioms. Three types
of axioms are used:

• For each action action name, we have a set of executability conditions
executable action name(~x) if condition

where ~x are the parameters of the action and condition is a logical formula. The axiom
expresses the conditions the state of the world has to meet to enable the execution of
the action.

• For each action action name, we have a set of dynamic causal laws
action name(~x) causes effect if condition

where effect is a literal (a fluent or its negation) and condition is a logical formula.
The axiom asserts that if the action is executed in a state of the world that satisfies
condition, then it will transform the world in such a way to make effect true.

• Axioms (static causal laws) of the form
effect caused by condition

where effect is a literal and condition a logical formula. The axiom states that each
state of the world that satisfies condition must also satisfy effect.

Syntactically, the main difference between L and PDDL lies in that there is no restriction
on static causal laws in L. Therefore, domains in L can be nondeterministic (i.e., the execution
of an action in a state could result into different states), even when actions have deterministic
effects. Planning with L domains is Σ2

P -complete (see, e.g. [65]).

Example 2. Let us encode the suitcase domain described earlier using AL. The signature
of this domain consists of two actions—open(L) and close(L), where L ∈ {l1, l2}—and three
fluents—up(L), locked, and available(K), where L ∈ {l1, l2} and K ∈ {k1, k2}.
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8 E. PONTELLI ET AL.

We now present the axioms describing the domain. Opening a latch puts it into the up
position. This is represented by the dynamic causal laws:

open(l1) causes up(l1) if true
open(l2) causes up(l2) if true

Closing a latch puts it into the down position—this can be written as:

close(l1) causes ¬ up(l1) if true
close(l2) causes ¬ up(l2) if true

We can open the latch only when we have the key. This is expressed by:

executable open(l1) if available(k1)
executable open(l2) if available(k2)

The fact that the suitcase will be unlocked when the two latches are in the up position, and vice
versa, is represented by the static causal laws:

¬ locked caused by up(l1) ∧ up(l2)
locked caused by ¬ up(l1)
locked caused by ¬ up(l2)

An initial state for this domain could be

I =





initially(¬up(l2))
initially(locked)
initially(¬available(k1))
initially(available(k2))





This instance is incomplete, and

ΣI = {I ∪ {up(l1)}, I ∪ {¬ up(l1)}}.
The semantics of a planning domain can be defined by a state-transition system (S,A, Φ),

where S is the set of states, A is the set of actions, and Φ is a mapping from a pair of the form
(action, state) to a set of states. For an action a and a state s, Φ(a, s) denotes the set of possible
states resulting from the execution of action a in the state s. When a is not executable in s (or
its preconditions are not satisfied in s), Φ(a, s) = ∅. An action is deterministic if |Φ(a, s)| ≤ 1.

For a set of states S, also called a belief state (or b-state for short), and an action
a, we say that a is executable in S if a is executable in every s ∈ S, and we write
Φ(a, S) =

⋃
s∈S Φ(a, s); otherwise, Φ(a, S) = ∅ (a is not executable in S). Φ is also extended

to Φ̂, which maps action sequences and b-states to b-states. Φ̂(α, S) is defined as Φ̂([], S) = S;
and Φ̂([a0, . . . , an], S) = Φ̂([a1, . . . , an], Φ(a0, S)). An action sequence α is a solution (or a
plan) to P if Φ̂(α, ΣI) 6= ∅ and for every s ∈ Φ̂(α, ΣI), s satisfies G.
Here, we experiment with planning problems where:

1. actions are deterministic;
2. the domains might or might not contain static causal laws; and
3. the initial state might be incomplete.
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Algorithm 1: FwdPlan(D, I,G)

1. S = ΣI; Queue = {(S, [])}; V isited = {S}
2. while Queue 6= ∅ do

3. select (S, p) with the best heuristic value from Queue

4. for each action a executable in S

5. S′ = Φ(a, S)

6. if S′ satisfies G then return [p; a] endif

7. else if S′ 6∈ V isited then

8. compute heuristic for S′

9. Queue = Queue ∪ { (S′, [p; a]) }
10. V isited = V isited ∪ { S′ }
11. end if

12. end for

13. end while

Figure 1. A heuristic forward search algorithm

2.2. Planning as Search

Planning can be viewed as a search problem (e.g., [9]) in the space 2S of b-states. Figure 1
shows a generic algorithm for planning as search, where ΣI is the initial belief state and G is
the goal. We assume that ΣI does not satisfy G.

The algorithm maintains a queue, which is employed to drive the search process. The items
in the queue are pairs, composed of a b-state and the corresponding sequence of actions used
to build it. The queue is initialized with the b-state ΣI (i.e., the known initial configuration
of the world) and the empty sequence of actions (line 1).

The main loop (lines 2-13) selects the element from the queue with the best heuristic value—
i.e., the element (S′, `) in the queue such that

heuristics(S′) = max{heuristics(S) | (S, l) ∈ Queue}
The successor states of S′ are computed by applying to it all executable actions (line 5).
The new states (along with the corresponding sequence of actions) are deposited back into
the queue (line 9). Observe that no repeated states are inserted in the queue—thanks to the
Visited set of b-states (line 7).

The search terminates when a state S′ satisfying the goal is constructed (line 6).

2.3. Two Sequential Planning Systems

We use two sequential planning systems in our investigation. The two systems have been chosen
because of their efficiency, the fact that they are both search-based planners, and the fact that
they address two different classes of planning problems (classical and conformant).
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The first system, FF (members.deri.at/~joergh/ff.html), is a planner for classical
domains, where the initial state is complete. FF is one of the state-of-the-art classical planners
[33], and has received several awards for its outstanding performance in international planning
competitions. This version of FF does not consider static causal laws. In FF, the next state
is computed by the equation Φ(a, s) = s ∪ e+

a (s) \ e−a (s) where e+
a (s) (resp. e−a (s)) is the set

of positive effects (resp. the set of negative effects) of a in the state s. For this reason, the
computation of Φ(a, s) is very fast, as it relies on two simple set operations. FF also modifies the
general algorithm of Fig. 1 by adding an initial phase of local search (based on hill-climbing),
and entering the best-first search only upon failure of the local search phase. The outstanding
performance of FF can be attributed to the accuracy of its heuristic.

The second system used in our study is a modification of the CpA system§ [62], developed
for conformant planning problems (i.e., |ΣI | > 1). CpA uses AL as its input language and the
number of fulfilled subgoals as heuristic measure (which is known for being not very accurate).
CpA cannot match the performance of FF in most of the classical domains. Nevertheless, CpA
is very competitive with most of the state-of-the-art conformant planners. The main difference
between CpA and other conformant planners is that it considers axioms directly, and it uses
Φ∗, a deterministic approximation of Φ, to deal with non-determinism (caused by axioms) and
incompleteness. Informally, given an action a and a set of literals δ approximating the state
of the world, the next state of the world Φ∗(a, δ) is approximated by a fixpoint computation,
whose iterations δi compute (i) the set of fluents that cannot possibly be changed or hold
in δi; and (ii) the set of direct effects of a in δi—where δ0 = δ. This process might require
n2 computations where n is the number of propositions in the domain. Detailed definition
of Φ∗(a, δ) can be found in [62]. As we will see later, this will be an important source of
parallelism.

3. GENERAL SCHEMES FOR PARALLELIZING HEURISTIC SEARCH
PLANNERS

We will use the generic term process to indicate an instance of the concurrent planning engine
that cooperates with other processes in the search for a solution to a planning problem. Observe
that this does not necessarily imply that a (Unix) process is used at the implementation
level. Indeed, we will make use of threads for the implementations on multi-core platforms.
The generic structure of a forward search algorithm, as illustrated in Fig. 1, suggests two
natural approaches for the transparent exploitation of parallelism. Intuitively, the two forms
of parallelism correspond to the two forms of non-determinism expressed in the algorithm.
Using the traditional terminology of logic programming, we have don’t care non-determinism
in Line 4 (computation of the successor states) and don’t know non-determinism in Line 3
(choice of the next state to explore).

§www.cs.nmsu.edu/~tphan/software.htm
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Figure 2. Vertical and Horizontal Parallelism

3.1. Vertical Parallelism

The algorithm in Fig. 1 explores a search space, described by the possible b-states and the
function Φ (or Φ∗). Vertical Parallelism arises from the exploitation of parallelism from the
non-determinism of the search process. Thus, instead of extracting and exploring only one pair
(S, p) from the queue (Line 3), we proceed to extract multiple pairs (with high heuristic values)
and process them concurrently. This is intuitively illustrated in Figure 2 (left). Effectively, the
different processes are exploring alternative ways to reach a goal b-state, by concurrently
building distinct plans.

The advantage of this approach is the possibility of pursuing alternative plans, which is
particularly advantageous when the heuristic function is ineffective in discriminating between
b-states to explore. On the other hand, if the different processes use a common representation
of the search space (e.g., a single queue), then we run the risk of

1. exploring speculative parts of the search space (e.g., b-states with a low heuristic value),
and

2. modifying the order of exploration of the search space—which might negatively impact
the heuristic search.

3.2. Horizontal Parallelism

Horizontal Parallelism arises from the use of different processes in constructing one particular
plan. Thus, the processes are cooperating in the development of a single plan. This is effectively
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12 E. PONTELLI ET AL.

achieved by distributing the iterations of the for-loop of Line 4 between the processes, as
intuitively illustrated in Figure 2 (right).

The advantage of this approach is the fact that the structure of the search space is unchanged
w.r.t. a sequential execution. Thus, parallelism does not interfere with the heuristics function.
The drawbacks arise from the potentially small granularity of the tasks—e.g., when the states
in Φ(a, S) are “easy” to compute—and the possible contention in the use of a common queue
when depositing the successor b-states computed.

3.3. From the General Idea to a Concrete System

The rest of this paper presents the introduction of these ideas in two concrete planning systems.
Before we enter into these details, let us make some general considerations on the possible
complications one may encounter.

The key in the exploitation of vertical parallelism lies in the distribution of several states
having high heuristic value to different processors for concurrent exploration.

Two essential aspects characterize the way this process is conducted. First of all, states
are expected to appear in a representation of a priority queue. The systems we have
analyzed provide an explicit priority queue, implemented either using existing libraries (e.g.,
C++ Standard Template Library) or as an explicitly implemented data structure. The
implementation of the priority queue has impact on the ease of parallelization. In a shared
memory context (as is the case for multi-core architectures) several threads will concurrently
access a common implementation of the priority queue. These accesses have to be treated as
critical sections. The naive introduction of mutex locks around the access calls is likely to
create severe bottlenecks (as experienced in analogous situations in other domains [67, 44]).
A more effective approach requires the use of dedicated parallel data structures to increase
the potential of concurrent accesses to the priority queue. Several data structures with such
properties have been described in the literature (e.g., [63, 55, 58]).

The representation of the individual states is another critical aspect. In a parallel
implementation, states have to be accessed and used by different processors. Certain planners
rely on an explicit representation of the components of the state (possibly facilitated by the
use of hash tables), while others describe the state in an implicit fashion, e.g., describing it
in terms of the sequence of actions required to construct it from the initial state. An implicit
representation has the benefit of requiring (on average) less memory, and thus it will reduce
the extent of the critical sections when accessing the priority queue. On the other hand, an
explicit representation has the advantage of providing a significantly better memory locality.

The choice of which representation of state to rely on is dictated by the underlying
parallel architecture. A shared memory implementation suggests the use of explicit state
representations; this is particularly true for multi-core platforms, where good locality and good
cache behavior is critical (see, e.g., [60]). On the other hand, implementations on distributed
memory systems (e.g., Beowulf clusters) suggest the need for reduced communication and short
messages. In this context, an implicit representation scheme is preferred.

The exploitation of horizontal parallelism imposes relatively fewer requirements on the
existing planning system. The only critical change is related to the ability to distribute sets
of actions to different processors for concurrent application. It is fairly common for planning
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systems to maintain actions in the forms of indices, which can be easily collected and shared
between processors. It is essential that the planner does not rely on excessive global data
structures that could complicate the application of each individual action. If information
about applicability of each action is collected throughout the execution (in the same style as
in planners based on answer set programming [46]), then data structures representing actions
will typically have to be duplicated between processors. This is necessary to avoid conflicts.
Nevertheless, we have encountered very few systems with this type of problem (e.g., neither
FF nor CpA rely on heavy global data structures to determine applicability of actions).

4. SYSTEM DESCRIPTION

4.1. mCpA: a Parallel CpA

The parallel versions of CpA have been developed using a common parallel architecture. The
model adopted relies on a shared memory structure. The processes in charge of performing
the computation are represented by concurrent threads—implemented through standard Posix
Threads. All forms of communication between the computing processes are realized through
access and modifications of data structures allocated in shared memory (global variables).
Synchronization is required to coordinate access to shared memory (via Posix mutex locks).

We explore alternative implementations, aimed at exploiting specific computational features
of the planning domains. Vert is a purely vertical implementation, aimed at domains where
the heuristics function is not satisfactory (e.g., many b-states are generated with the same
best heuristic value). The horizontal models (Horz1-Horz4) are aimed at domains where
the computation of the successor states is expensive. The Hybr1 and Hybr2 models address
domains where both vertical and horizontal conditions are present (possibly only in moderate
terms).

4.1.1. Vertical Parallelism

Our first implementation, called Vert, is based on the vertical parallelism approach.
The implementation of this scheme on a multi-core platform maintains a unique central

queue, representing the frontier of the search space, with the b-states ranked according to the
heuristics function (as in Figure 1). The central queue is a priority queue, implemented in C++
STL, and it is allocated in shared memory, accessible by all the cores. We also use a shared
table (implemented using a C++ STL set structure) to store visited b-states. Modifications
of the central queue and the visited b-states table are critical sections and mutex locks are
acquired by the processes for each update.

During the search, each individual process P extracts a b-state S with the best heuristic
value from the central queue (i.e., the one on top of the queue), and it determines actions
that are executable in S. For each executable action, P computes the successor b-state S′ and
its heuristic value. If S′ satisfies the goal then a solution is returned. Otherwise, if S′ is not
present in the visited b-states table, P will add S′ to the queue and to the visited b-states
table. When a process P satisfies the goal, it sets a flag to notify the others of termination. To
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14 E. PONTELLI ET AL.

detect the situation in which there is no solution, each process P is associated to a flag that
indicates whether P is idle. P is idle if it runs out of work and the central queue is empty.
When all processes are idle (i.e., their idle flags are set to true) they stop and report that no
solution has been found.

The system includes also an efficient implementation of priority queues for handling the
central state queue. The scheme adopted is a modification of the algorithm described in [63].

The implementation on a distributed memory platform relies on a similar structure, except
that a master process is employed to maintain the central queue. The other processes (slaves)
explicitly obtain b-states from the master, perform their computations, and return the new
states back to the master for insertion in the queue.

4.1.2. Horizontal Parallelism

For horizontal parallelism, we have realized four systems, exploring alternative strategies to
interact with the central queue.¶ In particular, Horz1 considers the case of large number
of actions or actions having comparable “complexity”, while Horz2 and Horz3 address
domains where the number of actions might be large but the cost of applying the actions
and determining successor states might widely vary. The Horz4 prototype considers domains
where actions are very simple (not expensive) and overheads should be avoided.

The Horz1 system relies on the use of a central queue to store open nodes—i.e., unexplored
b-states—and a set structure to store visited b-states, both located in shared memory. In
Horz1, we statically divide the set of all actions into equal size segments, and assign each
segment to a distinct process. During the search, an arbitrary process, say P0, extracts a b-
state S with the highest heuristic value from the queue, and all processes, including P0 itself,
compute the successor b-states for S. Each process P computes the successor b-states of S for
each applicable action belonging to the segment of actions assigned to P . These b-states are
stored locally and they are transferred to the central queue only at the end (with corresponding
update of the visited b-states table). This structure guarantees, in most of the cases, that the
b-states in the central queue are in the same order as in a sequential execution of CpA.‖

The Horz2 system modifies Horz1; instead of assigning to a process a fixed number of
actions to compute the successor b-states, we dynamically allocate actions to processes at run
time. Given n processes and m actions that need to be tested in computing the successor
b-states, if process P is available, then P will receive a segment containing m

4×n unexplored
actions.∗∗ At the same time, the value m of unexplored actions is updated to m− m

4×n . This
process is repeated until the successor b-states for all actions have been computed. The net
effect is to start by assigning coarse tasks to the processes, and refining them to smaller
tasks as the computation continues, ultimately creating a better load balancing between the
processes (since different actions may require a different amount of time to be processed). All
the computed successor b-states are stored in a local queue, associated to the corresponding

¶This type of variations have led to significant differences in other parallel systems [31].
‖There are rare exceptions to this, as discussed later.
∗∗This formula has been experimentally chosen.
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process. As in Horz1, when all the actions have been applied, the content of the local queues
is transferred to the central queue.

Horz3 is similar to Horz2, with the exception that each process receives only one action
at the time. The objective is to improve load-balancing, by creating very fine grained tasks.

Finally, Horz4 is identical to Horz3, except that the b-states computed by the processes are
immediately inserted in the central queue. The goal is to avoid the sequential phase required
to transfer b-states from the local queues to the central one. The new b-states may appear
in the central queue in an order different from the one of sequential execution (if multiple
b-states with the same highest heuristics value are present). Thus, the parallel planner is likely
to explore the search space in a different order than sequential execution.

Observe that horizontal parallelism is expected to be fine grained, requiring fairly frequent
communications between processes. For this reason, this model of execution seems unsuitable
to computing platforms with larger communication latencies, as in the case of Beowulf clusters.
Our experiments on horizontal parallelism are limited to the case of multi-core platforms.

4.1.3. Hybrid Parallelism

Hybr1 is a combination of horizontal and vertical parallelism. The processes are divided
into groups of equal size (4 in our experiments). At any time, an arbitrary process P of
each group extracts the b-state from the top of the central queue, and shares the work of
computing successor b-states with all processes in the group, including P itself, as done in
Horz1. Checking visited b-states is done as in the previous implementations. The central
queue and the visited b-states table are both allocated in shared memory.

The design adopted in Hybr1 has been inspired by the structure of modern Beowulf cluster
architectures. These platforms are typically composed of collections of nodes, linked by an
interconnection network, where each node is a multi-core machine. Our experiments report
implementations of Hybr1 on both a purely shared memory platform (a multi-core machine)
as well as cluster, where teams are mapped to nodes and member of each team are mapped to
individual cores of a multi-core machine.

In Hybr2, processes are divided into two groups, each with a private queue and visited states
table. Unlike Hybr1, where all groups play the same role, in Hybr2, the first group uses the
strategy of Vert: at any time during the search each process in the group extracts the b-state
from the top of the group’s queue, computes the successor b-states for executable actions and
inserts them into the group’s queue. The second group works in the same way as Horz1, where
actions are divided into segments of equal size and each segment is associated with a process in
the group to compute successor b-states. Maintaining the visited b-states table and detecting
termination in each group are done as in the other implementations. Intuitively, the design of
Hybr2 has been suggested by the desire of making vertical and horizontal parallelism compete
against each other. This has been suggested by experimental observations, where certain classes
of problems have shown good behavior under vertical parallelism while others have shown poor
performance under vertical parallelism but strong results under horizontal parallelism.
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4.2. mFF: Parallel FF

The parallelization of FF follows the model of vertical parallelism. The choice of not exploring
horizontal parallelism is dictated by the high efficiency of FF in computing Φ, which would
make horizontal parallelism too fine-grained. The implementation of vertical parallelism has
been adapted to FF with minor modifications:
◦ One process (master) maintains the central queue, and performs best-first search following

the sequential FF scheme.
◦ The other processes (slaves) are allowed to extract b-states from the central queue and

perform search starting from the given b-state. Given a b-state S, the slave process proceeds
by first attempting a hill-climbing local search starting from S, and entering the best-first
search only upon failure of hill-climbing (thus, effectively restarting the FF computation from
S as initial state). The best-first search conducted by the slave is limited by a maximum
number of steps, and the frontier of the final search tree developed by the slave process
replaces S in the central queue (if a solution is found, it will be reported and the computation
will terminate).

Asserting a limit on the best-first search conducted by each slave process is useful to guarantee
that the slave process does not enter a “low quality” part of the search tree, without requiring
excessive interaction with the other processes and the central queue. The number of steps
allowed is initially set to an experimentally determined constant (500 in our experiments) and
it is adaptive. This is incremented as the search goes deeper into the global search tree.

5. EXPERIMENTAL EVALUATION

5.1. Benchmarks

To evaluate the performance of our systems, we use two test suites. The first includes classical
planning domains, while the second includes conformant planning domains. In the discussion,
we loosely use the term speedup to denote the ratio between the sequential and the parallel
execution time, a measure of how much parallel search contributes to improve the performance
of a given sequential system††. Note that we do not present all the results (e.g., performance of
each system on each benchmark) due to lack of space. In particular, for each problem domain,
we present instances that we consider representatives. They are large enough to warrant the
use of parallelism and they are representative of the behavior observed on other instances of
the domain. Observe that in general we did not observe meaningful differences in the behavior
of the planner in different instances of each domain, except for the cases explicitly discussed.
We also do not report results in terms of memory consumption; although memory consumption
is clearly higher than the sequential case, because of the ability of exploring larger numbers of

††This is different from the theoretical notion of speedup [36], that requires the absolute best sequential time
using any sequential system.
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states, in none of the experiments conducted we have observed any memory issue of concern
to the feasibility of the executions.

The benchmarks have been drawn from the existing literature and from the international
planning competitions, and their main properties are highlighted next.

5.1.1. Classical Domain Benchmarks
Name: Gripper
Source: [50]
Instance reported: n = 100
Description: in this problem, a robot needs to transport n balls between two locations. The
robot is capable of holding two balls at a time and it can perform three actions (move, pick,
and drop). The domain is fairly simple, standard heuristics tend to perform well and produce
optimal length plans. The cost for computing the next state is moderate (due to the high
number of possible next states).

Name: Miconic
Source: [40]
Instance reported: p = 20, f = 20
Description: guide a lift transporting p passengers between f floors; the problem includes
constraints on the movement, such as priority of passengers, passengers that must move non-
stop, and passengers that have to be accompanied. This domain generates a large space of
possible sequences of actions; the actions are simple and the computation of the successor
state is fast.

Name: Pathways
Source: [23]
Instance reported: p = 1, . . . , 30
Description: find a sequence of biochemical reactions in an organism to produce selected
substances. The parameter indicates the number p of different compounds that have to be
created. The creation of compounds require the availability of other substances, that have
to be themselves synthesized. Furthermore, different compounds may compete on the use of
certain previously created substances. There are 3 different kinds of basic actions corresponding
to the different kinds of reactions that appear in the biochemical pathway.

This is a challenging domains; the number of actions and fluent instances is very large. A
good heuristics is essential, but often not sufficient to solve larger instances of this domain. In
particular, the order in which the goals have to be satisfied is critical. Actions are very simple
and the results of their applications can be quickly computed.

Name: PipesWorld
Source: [22]
Instance reported: p = 9, 10, 15, 20
Description: Planners control the flow of oil derivatives through a pipeline network obeying
various constraints such as product compatibility and tankage restrictions. The parameter
denotes the size of the network. The problem generates long plans and large search spaces,

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



18 E. PONTELLI ET AL.

but with simple actions. The problem is very challenging for large instances due to the size of
the search space and the ineffective behavior of standard heuristics.
Name: OpenStacks
Source: [22]
Instance reported: p = 30
Description: this is an instance of a known combinatorial problem (minimum maximum
simultaneous open stacks). A manufacturer has to manage a number of orders, each composed
of different products, and each product has to be manufactured in a single instance. The
problem is relatively simple, with simple actions and even simple heuristics tend to be effective.
Name: Storage
Source: [22]
Instance reported: p = 17
Description: the problem deals with moving a certain number of crates by hoists from
containers to depots; within each depot, the hoist can move following given spatial maps.
The domain has five actions; the search space is large and even good heuristics tend to be
ineffective; the individual actions are simple and can be quickly computed.

5.1.2. Conformant Domains

Name: Bomb
Source: [11]
Instance reported: b = 200, t = 20
Description: the problem deals with disarming a number of bombs by dunking them in toilets
(that might get clogged). In this domain, the lack of complete initial knowledge leads to a large
number of possible worlds; simple heuristics work well in guiding the search, and the individual
actions are simple.
Name: Cleaner
Source: [62]
Instance reported: n = 10, p = 50
Description: A robot moves around n rooms to clean p objects in each room. The problem has
relatively short plans but they require handling a large number of possible worlds. The actions
are complex and they activate a large number of static causal laws—making the computation
of successor states expensive.
Name: Ring
Source: [17]
Instance reported: n = 30
Description: a robot moves around a n-room building to lock windows in a cyclic fashion.
This problem has been problematic for many planners. The initial position of the robot as well
as the state of the windows is initially unknown. The number of actions is small (4). The large
size of the b-states makes the computation of the successor state expensive.
Name: Cube
Source: [17]
Instance reported: n = 9
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Description: a robot moves in a n×n×n grid to reach the center. This is a regular problem,
with several actions, a large search space, and hard to tackle with traditional heuristics.

Name: Safe
Source: [11]
Instance reported: n = 50
Description: the problem consists of opening a safe whose combination is unknown and there
are n possible combinations. The problem has large b-states, which makes the computation
of the successor state expensive. The search space is not very large and heuristics tend to be
effective.

Name: Logistic
Source: [11]
Instance reported: l = 3, c = 3, p = 3
Description: the problem is to transport p packages within l locations in c cities via trucks
and airplanes. The uncertainty derives from the unknown location of the package in the origin
city. This problem is sensitive to the heuristics used (only the conformant version of FF is
capable of solving it quickly). The size of b-states is considerable, but the main complexity is
the size of the search space.

Name: Coin
Source: [10]
Instance reported: n = 10
Description: a robot needs to pick up n coins randomly scattered on the floors. This is a
simpler problem, with a small search space, and where heuristics tend to be effective. The size
of the b-states is moderate and there are no static causal laws.

Name: Comm
Source: [10]
Instance reported: n = 8 and n = 10
Description: several packets need to be certified, and they are replaced if bad. In this problem,
we have a large number of initial states, leading to very large b-states. The problem is difficult
for the majority of the existing conformant planners.

5.2. Classical Domains
We experimented with both mCpA and mFF on classical planning domains. In both cases, we
selected domains and instances which provide a coverage of different types of domains (in terms
of complexity of the search space and numbers of actions and fluents). Times are reported in
seconds and the experiments rely on a 2-hour time limit (TO denotes time-out). The execution
times reported have been obtained as the average execution times from four out of six runs,
removing the largest and smallest execution time.
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Table I. Classical Benchmarks using mCpA
Domain n=2 n=4 n=8 n=12 n=14

Mic(20,20) CpA: 1232
Vert 396 (3.12) 193 (6.39) 95 (12.94) 57 (21.51) 45 (27.54)
Horz1 637 (1.94) 340 (3.63) 204 (6.04) 161 (7.66) 150 (8.23)
Horz2 693 (1.78) 525 (2.35) 398 (3.10) 294 (4.20) 265 (4.65)
Horz3 639 (1.93) 333 (3.70) 197 (6.25) 154 (8.01) 144 (8.57)
Horz4 1094 (1.13) 291 (4.23) 154 (7.99) 90 (13.66) 200 (6.15)
Hybr1 617 (2.00) 400 (3.08) 182 (6.78) 89 (13.83) 231 (5.34)
Hybr2 1236 (1.00) 637 (1.94) 198 (6.21) 257 (4.80) 220 (5.59)

Gripper(100) CpA: 5255
Vert 3095 (1.70) 2109 (2.49) 1032 (5.09) 845 (6.22) 727 (7.23)
Horz1 2711 (1.94) 1395 (3.77) 778 (6.75) 578 (9.09) 530 (9.92)
Horz2 2821 (1.86) 1499 (3.51) 878 (5.99) 619 (8.50) 565 (9.31)
Horz3 2687 (1.96) 1379 (3.81) 763 (6.89) 563 (9.34) 511 (10.29)
Horz4 2638 (1.99) 1414 (3.72) 788 (6.67) 574 (9.16) 508 (10.34)
Hybr1 3899 (1.35) 3260 (1.61) 1591 (3.30) 1197 (4.39) 901 (5.83)
Hybr2 5276 (1.00) 2722 (1.93) 1404 (3.74) 987 (5.32) 873 (6.02)

Pathways(1) CpA: 4.2
Vert 1.79(2.35) 0.56(7.50) 1.49(2.82) 2.92(1.44) 4.12(1.02)
Horz1 3.76(1.12)
Horz2 4.39(0.96) 3.7(1.14) 4.45(0.94) 4.96(0.85) 5.07(0.83)
Horz3 4.42(0.95) 3.54(1.19) 4.32(0.97) 4.82(0.87) 5(0.84)
Horz4 4.07(1.03) 2.67(1.57) 0.9(4.67) 3.22(1.30) 3.62(1.16)
Hybr1 4.34(0.97) 3.65(1.15) 1.25(3.36) 4.85(0.87) 0.82(5.12)
Hybr2 6.62(0.63) 1.89(2.22) 1.28(3.28) 2.67(1.57) 1.89(2.22)

Pathways(2) CpA: 2629.91
Vert 317.15 ( 8.29 ) 96.77 ( 27.18 ) TO ( - ) 768.49 ( 3.42 ) 1210.58 ( 2.17 )
Horz1 TO ( - ) TO ( - ) TO ( - ) TO ( - ) TO ( - )
Horz2 TO ( - ) TO ( - ) TO ( - ) TO ( - ) TO ( - )
Horz3 TO ( - ) TO ( - ) TO ( - ) TO ( - ) TO ( - )
Horz4 TO ( - ) TO ( - ) TO ( - ) 1147.45 ( 2.29 ) TO ( - )
Hybr1 3.73 ( 705.07 ) 106.25 ( 24.75 ) 4.78 ( 550.19 ) 88.51 ( 29.71 ) 4.66 ( 564.36 )
Hybr2 TO ( - ) 77.78 ( 33.81 ) 1686.58 ( 1.56 ) T0 ( - ) T0 ( -)

Pathways(4) CpA: 23.02
Vert 4.57 ( 5.04 ) 7.2 ( 3.20 ) 3.39 ( 6.79 ) 4.87 ( 4.73 ) 7.46 ( 3.09 )
Horz1 20.05 ( 1.15 ) 17.51 ( 1.31 ) 3.74 ( 6.16 )
Horz2 15.76 ( 1.46 ) 12.24 ( 1.88 ) 12.77 ( 1.80 ) 13.48 ( 1.71 ) 14.57 ( 1.58 )
Horz3 15.87 ( 1.45 ) 11.03 ( 2.09 ) 12.01 ( 1.92 ) 13.15 ( 1.75 ) 13.82 ( 1.67 )
Horz4 15.07 ( 1.53 ) 10.06 ( 2.29 ) 6.75 ( 3.41 ) 2.49 ( 9.24 ) 10.59 ( 2.17 )
Hybr1 12.85 ( 1.79 ) 7.12 ( 3.23 ) 6.98 ( 3.30 ) 11.05 ( 2.08 ) 7.05 ( 3.27 )
Hybr2 27.08 ( 0.85 ) 5.96 ( 3.86 ) 6.23 ( 3.70 ) 2.17 ( 10.61 ) 8.8 ( 2.62 )

5.2.1. mCpA

mCpA has been implemented on a Sun Enterprise 4500 shared memory machine, with 14
processors, 4GB of memory, and running Solaris 9. Table I reports the experimental results
using different numbers of processes (from 1 to 14). The leftmost column of the table shows the
problem and the version of mCpA used. In each of the other cells, we report the execution time
for the corresponding parallel version, and the corresponding number of processes, followed in
parentheses by the ratio of performance improvement w.r.t. sequential CpA.

Vert obtained good performance on the Miconic domain—a speedup of 27.54 using 14
processes in Mic(20, 20). The reason for the super-linear speedup is due to the fact that
multiple processes are exploring different branches of the search tree, and Vert determines
a shorter plan than CpA. E.g., for Mic(20, 20), the length of the plan that Vert with 14
processes returned is 86, comparing to 166 of the sequential version. The speedups of Horz1
and Horz3 on this problem are also quite good—more than 8 using 14 processes. They are
lower due to the relatively fast computation of successor b-states. We observe drops in speedups
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in the other systems due to contention on locks and lack of sufficient processes to follow the
most promising plans (e.g., the length of the plan doubles in Hybr2 going from 12 to 14
processes).

In the Gripper domain, the length of the plan returned by Vert is not always shorter than
that found by CpA. E.g., with 14 processes, the length of the plan returned by Vert is 377
while that of CpA is 319. This explains why the speedup of the vertical parallel implementation
Vert is not as good. The speedups obtained by all the versions, on this domain, grow steadily,
gradually increasing as the number of processes increases. This is because the length of the
plan found by the sequential version is almost optimal (i.e., the heuristics of CpA works well
in this case).

The Pathway domain reminds us how important the heuristic is in search. The actions are
deterministic and the number of actions and fluents is large. The domain does not contain
axioms. As a result, horizontal parallelism does not pay off, while vertical parallelization
provides good speedup.

Overall, it is interesting to observe that in the large majority of experiments, parallelism
has enhanced the efficiency of planning. We would like to point out that this is not a trivial
result, considering the risk of slowdown due to overhead. Thus, our approaches meet the no-
slowdown criteria, as stated in the literature on parallel logic programming [31]—in general,
we have rarely encountered overheads higher than 5% w.r.t. the sequential execution time.

In some benchmarks, we notice an irregular behavior in the execution time when increasing
the number of agents. This is not an uncommon behavior and it has been observed in other
investigations of parallelization of search (e.g., [31, 15, 54, 45, 30]. This is due to a combination
of effects, ranging from additional contention on shared resources (e.g., locks), to the interaction
between concurrent search and quality of the heuristic function. In cases like Pathway, the
addition of more processes leads to an increased rate of production of nodes on the queue (not
effectively distinguished by the heuristic function), pushing the nodes that can lead to the
solution away from the top of the queue. The decrease in performance in cases like horizontal
parallelism in Pathway is also due to the limited number of applicable actions (for smaller
instances) and the heavy contention on the queue—as applying actions is a very fast operation.

Only in the Pathway domain the mCpA was able to meet the additional goal of improved
scalability—by actually solving instances that were beyond the reach of the sequential version.
This is partly due to the overly simplistic structure of CpA, which is really designed to meet
the needs of conformant planning and is not very competitive as a classical planner.

5.2.2. mFF

mFF has been developed on a 6-core Sun T1000, running Solaris 9. The experiments conducted
deal with instances of problems (drawn from the IPC-5 competition) that are challenging for
the sequential FF system. Table II shows the main results. In parentheses we show the ratio
between sequential time and parallel time.

The application of parallelism to FF demonstrates the ability of not only improving efficiency
but also enhancing scalability. The important result to underline here is the ability to solve
various instances that are unsolvable by sequential FF (actually, many of the time-out reported
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Table II. Results using mFF
Domain Instance Number of Procs

FF 2.3 2 4 6
Pathways 9 TO 4.47 ( ) 2.71 ( ) 3.06 ( )

11 TO 6.57 ( ) 6.55 ( ) 3.16 ( )
12 TO TO ( ) TO ( ) 264.79 ( )
13 TO 4.64 ( ) 3.51 ( ) 2.03 ( )
15 TO 48.39 ( ) 4.59 ( ) 4.61 ( )
20 83.08 75.45 (1.10) 21.21 (3.92) 17.83 (4.66)
30 TO 121.18 ( ) 7.09 ( ) 7.08 ( )

Stacks 30 202.82 203.16 (0.99) 190.6 (1.06) 115.01 (1.76)
PipesWorld 9 180.64 92.12 (1.96) 67.44 (2.68) 110.01 (1.64)

10 442.62 48.7 (9.01) 35.28 (12.55) 17.9 (24.7)
11 64.53 15.49 (4.17) 15.06 (4.28) 12.3 (5.25)
15 1289.01 1280.15 (1.0) 502.53 (2.57) 397.8 (3.25)
20 TO TO 1393.87 ( ) 1259.15 ( )

Storage 17 732.36 8.95 (81.83) 4.93 (148.55) 0.91 (804.4)

are for instances that took longer than 24 hours). In this context, the benefits of parallelism
are two-fold:

◦ the ability to overlap different types of search (standard best-first search and hill-climbing
local search). This is the case of Storage(17), where hill-climbing is time consuming while
best-first quickly converges to a solution;

◦ the ability to concurrently explore branches that have equally high heuristic values (this
is the case of Pathways).

Observe that the current implementation is not particularly good in maintaining a low level of
communication. We can notice that using 6 processes the performance occasionally degrades
(e.g., PipesWorld(9)) due to excessive contention on the locks of the central queue. A more
careful implementation using known techniques (e.g., the splitting mechanisms described
in [56]) can avoid such issues.

5.3. Conformant Domains

The experiments on conformant domains have been performed using mCpA. For reference,
we compared our systems with CFF [11] and KACMBP [17], which are two of the fastest
conformant planners. Unfortunately, we could not obtain the Solaris executables for these
planners, and we had to run them on a Linux machine and scale the timings to our Sun 4500.
For each problem, we compute a time conversion ratio by running CpA on both the Linux
and Solaris platforms. Some experimental results are shown in Table III. The execution times
of the sequential planners are shown in the same row with the problem name. In other cells,
t (s) stands for the time of the parallel version and the speedup w.r.t. sequential CpA.

In the Bomb and Cleaner domains, we do not see much speedup in Vert, especially in the
case of Bomb(200,20), when the number of processes increases. This is because the heuristic
of CpA works well on this domain. CpA took 744 seconds to solve Bomb(200,20), whereas
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CFF took around one hour and fortyfive minutes while KACMBP timed-out. The best parallel
implementation on this domain is Horz4, where the speedup obtained on Bomb(200,20) peaks
at 5.29 using 12 processes. The superiority of Horz4 is due to the fact that the computed
successor b-states are immediately inserted in the queue (without waiting for all processes
to complete). The slight decrease of performance at 14 processes is simply due to additional
contention on the shared queue.

Horizontal parallelism performs very well on the Cleaner domain, since computing successor
b-states is expensive. The speedups obtained by Horz2—Horz4 are more than 8 using 14
processes. Vertical parallelism is ineffective and produces a stable speedup of about 1.4.

In the Ring domain, the horizontal parallelism implementations (Horz1–Horz4) scale well
up to 4 processes, and then they become almost constant. The reason is that the number
of actions in the domain is only 4, leaving other processes idle. A similar behavior occurs
in the Cube domain, whose number of actions is 6. However, the performance of Hybr1 on
Cube(9) is better (9.86 speedup using 12 processes). This is due to the poor performance of
the heuristic function. This becomes more apparent when we look at the performance of Vert.
The speedups of Vert on Cube(9) using 14 processes is 13.31, and the length of the plan is
43, compared to 63 of sequential CpA. In the Safe domain, the speedups of all systems are
very good.

The Logistic domain is problematic for sequential CpA, because the heuristic function
performs poorly, especially on Log(4,3,3). Sequential CpA, KACMBP, and most of our parallel
implementations, except Horz2, could not solve it within the time limit. Thanks to parallelism,
we could solve this problem (Horz2) using 10 processes (in 1282 sec.). For the Log(3,3,3)
problem, the speedups obtained by Vert and Hybr2 are impressive: the speedup of Vert
with 14 processes is 24.82 and the speedup of Hybr2 is 37.56 with 12 processes. The speedups
obtained by the other implementations are also good, ranging from 7.40 (Horz1) to 9.75
(Horz4). In the Coin domain, the speedups obtained by our parallel implementations range
from 1.22 (Horz3, 2 processes) to 8.28 (Horz4, 4 processes). In the Comm domain, the number
of initial states is huge. This forces CpA to search for plans from a b-state consisting of 2n

partial states, leading to time-out for n > 7. Most of the parallel versions can solve Comm(8)
within 20 minutes. Also, Vert can solve the Comm(10) problem.

The super-linear speedups are due to changes in the search pattern caused by parallelism; in
the case of vertical parallelism, this is obvious (as multiple paths are concurrently explored).
In the case of horizontal parallelism, this may occur because the order of the b-states in the
central queue might differ from the sequential execution (the heuristic is currently computed
on the first state of a b-state, and this may change during horizontal parallelism).

In summary, in the domains where the heuristic function does not function well (i.e., various
elements receive the highest value, and the one on top of the queue might not lead to the
shortest plan), vertical parallelism is very effective, sometimes leading to super-linear speedups.
On the contrary, in the domains where the heuristic function performs well, the speedup
obtained by the horizontal approach, although less than linear, is usually good. Furthermore,
the more expensive the computation of a successor b-state is, the higher the speedup obtained
via horizontal parallelism. The hybrid approach provides a good balance between these two
situations.
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In general, in the conformant planning problems we can observe significant improvements in
efficiency. For example, several instances provide super-linear speedups. We can also observe
enhanced scalability in at least one domain (Comm), where problems beyond the reach of the
sequential planner can be addressed in a reasonable amount of time. It is also important to
observe that in most of the tests the granularity of the parallel work appears to be coarser
than what we observed in the non-conformant problems. This leads to better speedups, and
the cases where an increased number of processes leads to a reduced speedups are significantly
more rare.

5.4. Planning on Distributed Memory Machines

As mentioned earlier, large scale scalability cannot be completely measured on shared memory
platforms (e.g., multi-core), as these are currently limited on the number of cores available
(e.g., 16-core cpus have been announced for 2008). We want to explore how the proposed
models perform on more scalable platforms, specifically Beowulf clusters.

5.4.1. Scalable Engines

We developed two prototypes (Mpi1 and Mpi2), designed to avoid the use of shared memory
and suitable to distributed memory systems.

Mpi1 is based on the master-slave paradigm. A master process is responsible for controlling
the search and distributing the work to all the other processes (the slaves). The list of open
b-states is stored in a queue in the master, and whenever a slave P is free, the master picks up
a b-state with the highest heuristic value from the queue and sends it to P to explore. When a
slave runs out of work, it requests a new b-state from the master. For each action a, P computes
the successor b-state S′ of S, i.e., Φ∗(a, S). If S′ satisfies the goal, then it will return a solution
and inform the master by sending a SOLUTION MSG message. Otherwise, it immediately sends
S′ to the master, to be inserted into the central queue, and continues computing the successor
b-state for the next action. In addition to controlling the search and distributing the work,
the master also participates in the search whenever there are no incoming messages. To reduce
communication between the master and slaves, each process maintains a data structure to
store the (locally) visited b-states, and successor b-states are sent to the master only if they
are not in such table, which is updated when a b-state is computed by the slave.

Mpi2is a combination of the shared memory and distributed memory methodologies.
Similarly to Mpi1, Mpi2 has a special process called the master which is responsible for
controlling the search and distributing the work. However, each slave (one node of our cluster)
is a group of processes instead of a single one. Processes in each slave share the work of
computing the successor b-states, as in Hybr1.

5.4.2. Experimental Results

The prototypes Mpi1 and Mpi2 have been developed on a Beowulf cluster, having 32 dual-
processor nodes. We have experimented with problems from the blocks world domain (Block(4)
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Table III. Conformant Benchmarks: Time in seconds (speedups in parenthesis)
Domain n=2 n=4 n=8 n=12 n=14

Bomb(200,20) CpA: 744 CFF: 71289 KACMBP: 7233
Vert 499 (1.49) 414 (1.80) 484 (1.54) 634 (1.17) 675 (1.10)
Horz1 407 (1.83) 265 (2.81) 233 (3.19) 263 (2.83) 276 (2.70)
Horz2 416 (1.79) 260 (2.86) 207 (3.59) 229 (3.25) 245 (3.04)
Horz3 402 (1.85) 244 (3.05) 200 (3.72) 233 (3.20) 250 (2.98)
Horz4 401 (1.86) 242 (3.08) 194 (3.83) 141 (5.29) 151 (4.92)
Hybr1 521 (1.43) 507 (1.47) 421 (1.77) 408 (1.82) 455 (1.64)
Hybr2 745 (1.00) 410 (1.81) 267 (2.79) 235 (3.17) 234 (3.17)

Cleaner(10,50) CpA: 1171 CFF: Maximum length exceeded KACMBP: TO
Vert 1110 (1.05) 938 (1.25) 859 (1.36) 823 (1.42) 834 (1.40)
Horz1 598 (1.96) 308 (3.80) 179 (6.53) 170 (6.89) 173 (6.77)
Horz2 593 (1.98) 307 (3.81) 171 (6.85) 143 (8.20) 143 (8.18)
Horz3 592 (1.98) 305 (3.84) 170 (6.90) 143 (8.21) 142 (8.22)
Horz4 603 (1.94) 309 (3.79) 171 (6.85) 142 (8.27) 141 (8.29)
Hybr1 1194 (0.98) 1216 (0.96) 627 (1.87) 532 (2.20) 483 (2.42)
Hybr2 1172 (1.00) 605 (1.95) 308 (3.78) 226 (5.26) 202 (5.79)

Ring(30) CpA: 1269 CFF: TO KACMBP: 1
Vert 897 (1.42) 728 (1.74) 655 (1.94) 684 (1.86) 668 (1.90)
Horz1 754 (1.68) 392 (3.24) 391 (3.25) 392 (3.24) 394 (3.22)
Horz2 695 (1.83) 390 (3.26) 392 (3.23) 392 (3.24) 396 (3.21)
Horz3 696 (1.82) 390 (3.25) 391 (3.24) 392 (3.24) 394 (3.22)
Horz4 786 (1.61) 349 (3.64) 348 (3.65) 342 (3.71) 399 (3.18)
Hybr1 1029 (1.23) 873 (1.45) 566 (2.24) 396 (3.21) 330 (3.85)
Hybr2 1271 (1.00) 757 (1.68) 390 (3.26) 390 (3.26) 390 (3.26)

Cube(9) CpA: 2475 CFF: TO KACMBP: < 1
Vert 1502 (1.65) 666 (3.72) 365 (6.78) 240 (10.31) 186 (13.31)
Horz1 1217 (2.03) 807 (3.07) 420 (5.89) 421 (5.87) 426 (5.81)
Horz2 1198 (2.07) 787 (3.15) 422 (5.86) 423 (5.85) 427 (5.80)
Horz3 1195 (2.07) 787 (3.14) 422 (5.87) 422 (5.87) 425 (5.82)
Horz4 976 (2.54) 919 (2.69) 417 (5.94) 556 (4.45) 381 (6.49)
Hybr1 1332 (1.86) 854 (2.90) 430 (5.76) 251 (9.86) 273 (9.07)
Hybr2 2356 (1.05) 1221 (2.03) 768 (3.22) 425 (5.83) 399 (6.20)

Safe(50) CpA: 5581 CFF: 232 KACMBP: < 1
Vert 2808 (1.99) 1667 (3.35) 777 (7.18) 874 (6.39) 722 (7.73)
Horz1 3257 (1.71) 1611 (3.46) 849 (6.58) 606 (9.20) 598 (9.33)
Horz2 2785 (2.00) 1461 (3.82) 806 (6.92) 562 (9.92) 550 (10.16)
Horz3 2778 (2.01) 1456 (3.83) 802 (6.96) 569 (9.81) 508 (10.98)
Horz4 2778 (2.01) 1410 (3.96) 723 (7.72) 533 (10.47) 516 (10.81)
Hybr1 2785 (2.00) 1461 (3.82) 813 (6.87) 572 (9.76) 514 (10.86)
Hybr2 5497 (1.02) 2595 (2.15) 1488 (3.75) 1388 (4.02) 1208 (4.62)

Log(3,3,3) CpA: 3510 CFF: < 1 KACMBP: 2197
Vert 422 (8.32) 180 (19.48) 127 (27.57) 175 (20.07) 141 (24.82)
Horz1 1815 (1.93) 1005 (3.49) 619 (5.67) 521 (6.73) 474 (7.40)
Horz2 1760 (1.99) 945 (3.71) 571 (6.14) 461 (7.61) 439 (7.99)
Horz3 1748 (2.01) 936 (3.75) 555 (6.33) 459 (7.65) 437 (8.03)
Horz4 1234 (2.84) 915 (3.84) 570 (6.15) 504 (6.96) 360 (9.75)
Hybr1 1029 (3.41) 1003 (3.50) 478 (7.34) 429 (8.18) 387 (9.08)
Hybr2 3408 (1.03) 438 (8.02) 192 (18.30) 93 (37.56) 108 (32.38)

Coin(10) CpA: 1257 CFF: < 1 KACMBP: 4540
Vert 274 (4.58) 170 (7.38) 323 (3.89) 326 (3.86) 380 (3.31)
Horz1 239 (5.25) 160 (7.84) 161 (7.8) 168 (7.46) 234 (5.37)
Horz2 436 (2.88) 303 (4.14) 199 (6.32) 184 (6.82) 188 (6.7)
Horz3 1032 (1.22) 191 (6.57) 312 (4.03) 309 (4.07) 249 (5.05)
Horz4 276 (4.55) 152 (8.28) 249 (5.05) 153 (8.24) 224 (5.6)
Hybr2 265 (4.75) 262 (4.8) 288 (4.36) 341 (3.69) 421 (2.98)
Hybr1 630 (2.00) 313 (4.01) 237 (5.30) 221 (5.70) 224 (5.61)

Comm(8) CpA: TO CFF: < 1 KACMBP: TO
Vert TO 228.99 ( - ) 355.95 ( - ) 433.65 ( - ) 521.81 ( - )
Horz2 TO 209.78 ( - ) 188.69 ( - ) 726.52 ( - ) 159.55 ( - )
Horz3 TO 183.64 ( - ) 370.05 ( - ) 217.07 ( - ) 180.81 ( - )
Horz4 TO 309.06 ( - ) 687.38 ( - ) 158.4 ( - ) 158.29 ( - )
Hybr1 TO 228.26 ( - ) 247.66 ( - ) 249.51 ( - ) 190.51 ( - )
Hybr2 TO 211.99 ( - ) 152.68 ( - ) 232.99 ( - ) 294.74 ( - )

Comm(10) CpA: TO CFF: < 1 KACMBP: TO
Vert TO 1541.88 (-) 2000.77 (-) 2917.47 (-) 2744.72 (-)
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Table IV. Mpi1 and Mpi2: Execution Times (in seconds) and Speedups (within parenthesis)
Mpi1: n=1 n=2 n=4 n=8 n=16 n=32
Block(4) 149 84 (1.8) 52 (2.8) 15 (10.3) 14 (10.7) 7 (19.9)
Block(5) 309 92 (3.4) 42 (7.3) 21 (14.6) 21 (15.1) 10 (31.1)
Mic(20,20) 260 52 (5.0) 41 (6.3) 20 (12.9) 14 (18.3) 11 (23.3)
Mic(40,40) 3166 3381 (1.0) 1797 (1.8) 695 (4.7) 384 (8.5) 274 (11.9)
Log(3,3,3) 493 76 (6.5) 37 (13.5) 23 (21.7) 16 (30.0) 14 (36.0)
Log(4,3,3) 3866 1506 (2.57) 797 (4.85) 627 (6.17) 494 (7.82) 265 (14.60)
Mpi2: n=1 n=2 n=4 n=8 n=16 n=30
Block(4) 149 87 (1.7) 41 (3.6) 8 (19.8) 5 (28.4) 7 (21.5)
Block(5) 309 86 (3.6) 23 (13.7) 12 (26.3) 9 (34.4) 11 (27.1)
Mic(20,20) 260 162 (1.6) 31 (8.3) 13 (19.9) 8 (33.2) 9 (29.0)
Mic(40,40) 3166 3965 (0.8) 643 (4.9) 474 (6.7) 160 (19.8) 113 (28.1)
Log(3,3,3) 493 295 (1.7) 28 (17.4) 17 (29.9) 17 (29.6) 27 (18.6)
Log(4,3,3) 3866 3307 (1.17) 1646 (2.35) 575 (6.73) 376 (10.28) 838 (4.61)

and Block(5) from [25]), the Miconic domain (Mic(20,20), Mic(40,40)), and the logistic domain
(Log(3,3,3) and Log(4,3,3)).

The experimental results are shown in Table IV. The table reports the execution times and
the speedups obtained for each distributed prototype, where n is the number of master/slaves
(“n=1” is sequential CpA).

In spite of the relative simplicity of these prototypes, the results are impressive. On the
Block(5), the speedups obtained by Mpi1 and Mpi2, when run on 32 master/slaves, are 31.14
and 27.05. This benchmark has a large search space, with several successful plans. Vertical
parallelism is very effective and it is the reason for the high speedups in both engines.

Mpi1 also performs well on the logistic domain. The speedups of Mpi1 on Log(3,3,3) reaches
35.99 on 32 nodes. The solutions scale well (increased speedups with increase of number of
processes). The performance of Mpi2 is very good up to 16 slaves. There are occasional drops
in speedups for large numbers of slaves, due to excessive traffic in the master. This (fairly
infrequent) problem suggests the need to consider either more distributed representations
of the queues of tasks or fully distributed scheduling strategies (e.g., as adopted in several
implementations of parallel logic programming systems [44]).

The experiments on the Miconic benchmarks are also very satisfactory. This benchmark
has a very large search space, but in addition the cost of computation of successor states
is relevant. This effect can be observed in Mic(20,20), where better speedups are produced
by Mpi2, thanks to the ability of each team to use local horizontal parallelism to quickly
compute successor states and produce more quickly good states to be distributed to the rest
of the system. The same behavior is also demonstrated in Mic(40,40).

6. RELATED WORK

In this work, we provide a uniform characterization of strategies for exploitation of parallelism
from heuristic search planning. The idea of exploiting parallelism in planning is not new,
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and instances of the individual forms of parallelism (horizontal, vertical) can be found in the
literature—though there have not been previous attempts to experimentally compare them.

A form of horizontal parallelism in a heuristic search planner has been described in the
ODMP project [68]. In ODMP, parallelism is exploited by enabling different agents to
concurrently apply distinct actions to a selected state and compute the set of successor states
(along with their heuristic values). ODMP works with a simple STRIPS-based planner, in a
situation of complete knowledge and without static causal laws). The effectiveness of ODMP
arises from those domains where actions have variables and the planner has to invest time
to compute action instantiation. The ODMP approach relies on some key assumptions: the
planner makes use of an effective heuristics, the number of actions is small and actions are
relatively expensive, and the communication costs are low (ideally, the model is designed
for a multi-threaded architecture). In this paper, we propose a more general perspective,
not limited to these assumptions; in particular, we debate (and experimentally demonstrate)
that parallelism can be effective in addressing issues of larger scale scalability and ineffective
heuristics.

An example of exploitation of vertical parallelism can be found in the work of Kabanza et
al. [37]. In this work, a distributed version of the hierarchical task planning system SHOP
is presented (DSHOP). The parallel model described resembles more closely the traditional
models of or-parallelism explored in logic programming [31]; a master process implements
scheduling, by maintaining the central queue of unexplored states, while each slave process
completely explores a branch of the search tree, returning new states to the master. Following
the tradition of work on or-parallelism, the method explores the distinction between copying
and recomputation to address the sharing of work between processes [43]. The model of vertical
parallelism we propose targets heuristic search. It is unclear how to easily adapt the or-parallel
search of DSHOP to address heuristics (without excessively increasing interaction between the
master and the slaves). Concerning the task sharing strategy, we rely on a copying scheme; the
presence of static causal laws suggests avoiding recomputation (which can be very expensive);
furthermore, implementations like CpA already include compact closed representations of b-
states, that can be easily shared and copied.

As already mentioned earlier, our view of parallel planning, as considered in this paper, is
actually different from the notion of distributed planning introduced by several authors [47, 66].
The main difference is that our focus is strictly on improving efficiency of sequential planning
systems, by distributing the workload of a planner across multiple processes, while distributed
planning often deals with the problem of coordination between agents to create a plan for
all agents. A number of distributed planning systems‡‡ make use of on-line planning, where
planning is dynamically inter-mixed with execution steps. Our focus is on off-line planning,
where processes share the same goal and representation, and they stop when one finds a plan.
Furthermore, efficiency is not the first issue in distributed planning. Issues of parallelization
have been explored in this context, by either partitioning actions and goals between agents
so that separate plans can be computed and composed (e.g., interaction graphs [35]) or by

‡‡Note that there are also distributed planning systems that are not reactive.
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adopting a hierarchical approach, where distinct “regions” of the plan are given to distinct
processes (e.g., [21, 19]). These approaches are “global” versions of horizontal parallelism.

Our approach to planning, in this paper, is perhaps more closely related to the distributed
problem planning in which the planning process is distributed but a centralized plan need to
be found. An example of this perspective can be found in [24], where process communication
and plan sharing and merging are discussed. Our proposed approach could be viewed as a
special case of system in view of [24], where one process distributes the work and all processes
search for a plan until one is found.

Observe that the planning problems we are dealing with in this work are significantly
different from the type of planning encountered in other domains, e.g., motion planning (as used
for robots). In these situations, the planning involves moving across a static (though possibly
not completely known) graph using relatively uniform moves. Often there is a single type of
move, possibly parameterized by a simple cost information. Planning is mostly reactive/on-
line, while in our framework we are dealing with off-line planning, and typically dealing with
a lower dimensionality space but with the added complexity of imprecise actions. Parallel
and distributed algorithms for motion planning have been studied (e.g., [70, 2]), typically
based on a hierarchical decomposition of the state space and the use of separate threads to
develop a motion plan within each region. The work in [70] addresses the additional problem
of coordination between multiple agents cooperating in solving the path-finding problem.

Some of the design decisions adopted in this work have their roots in the existing literature
on parallel execution of logic and constraint programming [54, 31, 15, 60]. In particular,
the perspective of segmenting a search tree horizontally and vertically corresponds to the
two traditional forms of parallelism recognized in logic programming (and-parallelism and
or-parallelism). Nevertheless, the actual techniques used in both or-parallelism and and-
parallelism are, for the most part, not directly applicable to our context. Execution models
for or-parallelism do not account for a heuristic search, and they include further limitations
dictated by the desire of reproducing the familiar semantics of logic programming languages [56]
(i.e., depth-first left-to-right exploration of the search tree). Similar considerations hold for and-
parallelism, which is deeply different from the what we consider here as horizontal parallelism.
The former might span segments of branches intermixed by choice points, while horizontal
parallelism focuses on an individual edge of the search tree.

Another domain where similar investigations have been performed is operation research.
Several investigations have studied the parallelization of branch-and-bound algorithms to
tackle hard combinatorial problem. In fact, branch-and-bound algorithms offer similar
strategies for exploitation of parallelism—e.g., Crainic et al. [20] recognize two parallelization
strategies:

• node-based strategies (referred to as parallelism of type 1 in [27])—effectively
corresponding to horizontal parallelism, and

• tree-based strategies (referred to as parallelism of type 2 in [27])—corresponding to
vertical parallelism.

The large majority of the proposed systems deals with tree-based strategies [27, 48, 20].
Vertical parallelism is also related to the literature on parallelization of other search-based

procedures. The literature is rich (e.g., [53, 41, 59, 18, 54, 57]), yet such solutions have to be
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still customized to the structures of specific problem at hand. Let us also point out that our
goal is not to propose a generic algorithm for parallel search, as our experience in several other
domains (e.g., logic programming, constraint programming, satisfiability solving) shows that
generic parallel search algorithms do not provide the desired level of scalability and efficiency.

7. CONCLUSION AND FUTURE WORK

Over the years, two main reasons have led to performance improvements of automated
planners: new algorithms and faster computers. The latter has allowed to apply the same
planning algorithms to solve more complex problems without any changes. This trend is
expected to change, as computer manufacturers are moving away from focusing on single-
thread performance and focusing on multi-core platforms.

In this paper we presented an investigation of alternative methodologies for parallelization
of heuristic search planners on multi-core and distributed platforms. Although the use of
parallelism in reasoning about actions and change has been explored in the literature, to the
best of our knowledge this paper presents the first uniform characterizations of the distinct
types of parallelism in heuristic search planning and experimental comparison between them.
We identified two major forms of parallelism and investigated their exploitation. The results
are very encouraging, in terms of improved execution time, speedups, and scalability.

Although the techniques have been explored in the context of heuristic search planners, they
are general and we believe they can be applied to other classes of planning systems. In related
publications, we have explored the positive impact of vertical parallelism on planners based
on logic programming solvers [3, 44].

We recognize that this is the first step of a long-term research vision. In particular,

• The focus of our effort has been placed on specific classes of planning systems; we believe
such classes are important and have played an important role in practical deployments
of planning systems.

• Our exclusive focus in the handling of parallelism has been on the search for improved
performance and execution time; there are other aspects of planning that can benefit
from parallelism, in particular in improving the quality of plans (e.g., length, cost).

A wide array of options have been opened by this research and deserve further exploration.
Some of the main avenue of research we intend to pursue are the following:

1. Implementations on Multi-core Platforms: the shared memory implementations reported
in this paper provide good results, yet they are experimental in nature and can
be significantly optimized. The existing literature on parallel execution of logic and
constraint programming (e.g., [54, 31, 15]) provides several alternative ways for
optimizing the implementation of parallel search systems. Several of such techniques
have the potential of improving the implementation of vertical parallelism in planning.
In particular, we believe that significant improvements could be achieved by moving from
an asymmetric scheduling structure, where dedicated processors are used to exclusively
handle scheduling operations—as is the case of our approach, with a centralized
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queue—to a symmetric scheduling organization. In symmetric scheduling, each processor
alternates between concrete computation (i.e., search for plans) and scheduling (i.e.,
balancing of load with other processors). In particular, this implies that a centralized
queue is replaced by several local queues, which are balanced through explicit load
balancing operations. Similar solutions have been successfully adopted to parallelize
other search-based problems (e.g., as done in [43] for answer set programming systems).
Symmetric scheduling with local queues has the potential to reduce the contention on
the shared resource and enhance scalability. On the other hand, this requires a complete
redesign of the planning agents, to enable dynamic load balancing and alternation
between computation and scheduling. Furthermore, it requires the investigation of
customized strategies for scheduling (e.g., as discussed in [44]) and the introduction
of some form of granularity control (to avoid ineffective load balancing operations). All
these aspects require extensive research and empirical investigation.
Another important aspect to be explored relates to the peculiar characteristics of modern
multi-core architectures. Believing that a single technique, perhaps drawn from the
past literature, can address the use of multi-core platforms, is misleading. Multi-core
architectures are complex, with memory performance far more critical that old fashioned
shared memory platforms. For example, [60] reports a simple experiment, where separate
threads running on different cores access random positions of the same very large object;
performance, that in the ideal case should be independent of the number of cores, instead
rapidly decreases with increased number of threads—due to conflicts on cache access.
Extracting parallelism, especially at a fine grained level, requires understanding memory
access patterns, and adapting scheduling mechanisms accordingly.

2. Implementations on Beowulf Clusters: the distributed memory implementations are also
experimental. The prototypes have been effective in confirming the potential scalability
on larger platforms. The performance of these implementations can be greatly enhanced.
The use of a master-slave structure in the distributed vertical implementation is expected
to be a bottleneck for planning problems with large search spaces and fine grained tasks
(e.g., alternatives leading to fast failures). This has been observed in similar parallel
problems (e.g., [44]). Schemes for fully distributed dynamic scheduling (e.g., based on
the stack-splitting principles [56]) have been proposed and should be evaluated in this
context.

3. Evaluation and Optimization: along with the investigation of schemes to enhance
performance and scalability, it is important to investigate other performance parameters.
Memory consumption is a factor that could be critical to the performance of a parallel
implementation—especially in consideration of the significant growth in the number of
states explored by the parallel system w.r.t. a sequential planner. In our experiments,
we did not encounter any challenging situations in terms of memory consumption, but
a formal study in this direction is needed.
Another factor is the quality of the plans produced by the parallel planners. We have
repeatedly observed in our experiments relevant improvements in the quality of the
plans produced by the parallel planners with respect to the plans returned by the
corresponding sequential implementations. This is particularly true for the case of vertical

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls



APPLICATIONS OF PARALLEL PROCESSING TECHNOLOGIES IN PLANNING 31

parallelism, where alternative search paths are concurrently explored. Nevertheless, a
formal investigation of the impact of parallelism on plans quality is missing.

4. Other Planning Structures: the design we described in this work focused on progression-
based heuristic search planners. We conjecture that similar parallel structures can be
effective in other classes of planning systems. For example, several regression search
planners (e.g., HSPr [8]) organize their search according to patterns very similar to
those described in Figure 1, and thus can provide analogous forms of parallelism and
similar benefits.
Other planning solutions are expected, instead, to provide significantly different
opportunities for exploitation of parallelism. For example, hierarchical task planning
(HTN [26]) creates the opportunity for a divide-and-conquer style of parallelization
(see, e.g., [69])—where tasks are concurrently decomposed by different processors. These
alternative schemes are interesting and should be properly explored.
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