
On the Completeness of Approximation Based Reasoning and Planning in Action
Theories with Incomplete Information

Tran Cao SonandPhan Huy Tu
Computer Science Department
New Mexico State University

PO Box 30001, MSC CS
Las Cruces, NM 88003, USA

tson|tphan@cs.nmsu.edu

Abstract

In this paper, we study the completeness of the 0-
approximation for action theories with incomplete informa-
tion. We propose a sufficient condition for which an action
theory under the 0-approximation semantics is complete with
respect to the possible world semantics. We then introduce
the notion ofdecisive sets of fluents, based on which an ac-
tion theory can be modified into another action theory such
that the modified action theory under the 0-approximation
is complete with respect to the original theory. We present
a polynomial time algorithm for computing decisive sets for
action theories and use it in the development of a sound and
complete conformant planner. Finally, we compare our plan-
ner with other state-of-the-art conformant planners.

Introduction

Reasoning about effects of actions in the presence of in-
complete information has been widely studied by AI re-
searchers (Etzioniet al. 1992; Golden, Etzioni, & Weld
1996; Golden & Weld 1996; Goldman & Boddy 1994;
1996; Levesque 1996; Moore 1985; Peot & Smith 1992;
Pryor & Collins 1996; Smith & Weld 1998; Thielscher 2002;
Weld, Anderson, & Smith 1998; Cimatti, Roveri, & Bertoli
2004). Most of early proposals rely on the possible world se-
mantics that is introduced in (Moore 1985). The basic idea
of this approach lies in that to reason about the effects of
an action (or an action sequence) with its incomplete knowl-
edge about the current state of the world, an agent has to
considerall possible state of the worldswhich are consistent
with its knowledge. Following this approach, the problem
of finding a (polynomial length) conformant plan isΣ2P-
complete (Baral, Kreinovich, & Trejo 2000).

An alternative alternative to the possible world semantics
is based on approximations (Son & Baral 2001). The ba-
sic idea is to approximate the set of possible world states
by a single partial state. Perhaps the main advantage of
the approximation-based approach is its low complexity in
reasoning and planning tasks (Baral, Kreinovich, & Trejo
2000). It has proved to be useful in the development of a
regression based conditional planner (Tuanet al. 2004) and
a logic programming based conditional planner (Son, Tu, &

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Baral 2004). It has also been extended to action theories
with state constraints and used in the implementation of dif-
ferent conformant planners whose performance is compara-
ble to those of state-of-the-art conformant planners (Sonet
al. 2005b; 2005a).

The main weakness of the approximation-based approach
is its incompleteness1 w.r.t. the possible world semantics,
i.e., a reasoner based on this approach may answer a query
about the truth value of a fluent formula after the execution
of a sequence of actions with ‘unknown’ while another rea-
soner using the possible world approach would answer with
either ‘true’ or ‘false’. This also implies that a conformant
planner based on approximations may not find a plan even
when one exists. In this paper, we investigate methods that
allow for complete reasoning using one of those approxima-
tions, called the 0-approximation (Son & Baral 2001).

A trivial method is to do exactly what the possible world
approach does: considersall possible initial states. This so-
lution is not satisfactorysince(i) it does not scale up well;
and(ii) in several cases, it isnot necessaryas can be seen in
the following example.
Example 1 Consider a simple instance of the bomb-in-the-
toilet domain with only one toilet and one package. Initially,
the package may or may not contain a bomb and whether or
not the toilet is clogged is unknown. Dunking the package
into the toilet disarms the bomb; in addition, it also makes
the toilet clogged. This action can be executed only if the
toilet is unclogged. Flushing the toilet makes it unclogged.
One can encode this domain in the languageA (Gelfond &
Lifschitz 1992) as follows.

D1 =





dunk causes¬armed if armed
dunk causesclogged
flush causes¬clogged
executabledunk if ¬clogged





Intuitively, we would like to conclude that the bomb will
be disarmed after the execution of the sequence of actions
[flush; dunk] no matter what the initial state is. Figures
1a-b illustrate the reasoning process based on the possible
world approach and on the 0-approximation respectively.

Using the possible world approach (Figure 1a), since
both armed and clogged are unknown in the beginning,

1Soundness of the approximations is proved in (Son & Baral
2001).

a)

b)

c)

Possible World Semantics

Approximation

Approximation with Set of
Partial States

world state

partial state

Legend:

armed,clogged

armed, clogged

 armed,clogged

armed, clogged

armed, clogged

armed, clogged

flush

armed,clogged

dunk

flush dunk

 clogged clogged

armed

armed

armed, clogged

armed, clogged

flush

armed,clogged

dunk

Figure 1: Possible World Semantics vs. Approximation Based Reasoning

there are four possible initial states corresponding to dif-
ferent assignments of their truth values. After perform-
ing the actionflush, the two possible successor states are
{armed,¬clogged} and{¬armed,¬clogged} as flushing
the toilet makes it unclogged. After performingdunk, the fi-
nal state of the world is{¬armed, clogged}. Consequently,
we can conclude that the bomb would be disarmed in the
final state.

The 0-approximation (Figure 1b), on the other hand, does
not help us to draw that conclusion. The reason is that it
approximates the four possible initial states by∅, the empty
partial state2, and performing the actionflush in ∅ results
in the partial state{¬clogged}. Executingdunk in this par-
tial state results in the final partial state{clogged} and thus
armed is unknown.

It is easy to see that if the truth values ofarmed were
considered separately in the beginning (by partitioning the
empty partial state into two possible partial states{armed}
and{¬armed}) then the status ofarmed after the execution
of [flush; dunk] will be known (see Figure 1c). Partitioning
the initial partial state over{clogged}, on the contrary, does
not help us to draw the conclusion. 2

Similar situations may happen when executability condi-
tions of actions are taken into account. The following ex-
ample illustrates this point.

Example 2 Consider the domain:

D2 =

{
a causesg,
executablea if h
executablea if ¬h

}

2A partial state is a consistent set of fluent literals.

Assume that we know nothing about the initial state of the
world. It is easy to check that the 0-approximation will
not allow us to conclude thatg is true after the execution
of a. Nevertheless, if we consider{h} and{¬h}, instead
of ∅, as the two possible initial partial states then the 0-
approximation will allow us to conclude thatg is true after
the execution ofa. 2

The above examples show that the completeness of reason-
ing based on the 0-approximation (w.r.t. the possible world
semantics)3 sometimes can be achieved without having to
examine all possible initial states. It also raises the following
question: why did we choose the set of fluents{armed} but
not {clogged} in Example 1 (or{h} but not{g} in Exam-
ple 2) to partition the initial knowledge? In a more general
form, the question is: what fluents should be chosen to split
the initial knowledge in order for the 0-approximation to be
complete. One of our main goals in this paper is to address
the problem of identifying such fluents. Furthermore, the
chosen set of fluents should be as small as possible because
it helps reduce the number of possible initial partial states
and gain in efficiency.

Our approach to solve this problem as follows. First, we
study a sufficient condition for which an action theory4 with
a single initial partial state under the 0-approximation se-
mantics is complete. Second, we introduce a notion called
a decisive setfor action theories with a single partial state
δ. Intuitively, a decisive set is a setF of unknown fluents

3From now on, whenever we say about the incompleteness or
completeness of an approximation, we mean it with respect to the
possible world semantics

4An action theory is a domain description and a set of partial
states describing the initial knowledge of an agent about the world.

such that the 0-approximation is complete if the partition of
δ usingF is considered. This is then extended to the case
when the initial state of the world is described by more than
one partial state (i.e., disjunctive information about the ini-
tial state is included). To evaluate the usefulness of our pro-
posal, we develop a sound and complete conformant plan-
ning system based on this idea, calledCPA+. The exper-
iments show thatCPA+ is competitive with other state-of-
the-art planners.

To summarize, the main contributions of the paper are:
• A sufficient condition for which an action theory is com-

plete (Theorem 1).
• The notion of decisive sets (Definition 4); these sets can

be used to modify an action theory in such a way that
the 0-approximation semantics of the modified theory is
complete with respect to the possible world semantics of
the original theory (Theorems 2 and 3).

• A polynomial time algorithm for computing decisive sets
(Figure 2).

• A sound and complete planning system based on the 0-
approximation that exploits the above results; its perfor-
mance is shown to be competitive with other state-of-the-
art conformant planners.
The paper is organized as follows. In Section 2, we re-

view the basics of an action language, the possible world
semantics, and the 0-approximation semantics. In Section 3,
we present our proposal to make the 0-approximation com-
plete. Section 4 shows how our study on the completeness
of the 0-approximation can be used to develop a sound and
complete conformant planner and presents some experimen-
tal results. Sections 5 and 6 provide discussion and related
work, and the conclusion of the paper.

Preliminaries

In this section, we first review the basic definitions of a vari-
ant of the languageA from (Gelfond & Lifschitz 1992) that
allows for the representation of actions with conditional ef-
fects and executability conditions. We then review the pos-
sible world semantics and the 0-approximation.

Action Representation
The alphabet of a domain consists of a setA of action names
and a setF of fluent names. A (fluent) literal is either a fluent
f ∈ F or its negation¬f . A fluent formulais composed of
literals and connectives∧, ∨, and¬ as usual. Adomain
description(or a domain for short)D is a set of laws of the
following forms:

a causes l if ψ (1)

executablea if ψ (2)

wherea ∈ A is an action,l is a literal, andψ is a set of
literals. (1) is called adynamic law, describing the effect of
actiona. It says that ifa is performed in a situation wherein
ψ holds thenl will hold in the successor situation. (2) is an
executability conditionon a, stating thata is executable in
any situation in whichψ holds.

For a literall, by¬l we denote its complement. For a set
σ of literals, we denote by¬σ the set{¬l | l ∈ σ}. σ is

consistent if it does not contain two contrary literals, that is,
for every literall, eitherl or¬l does not belong toσ. In this
paper, we will use two termsconsistent set of literalsand
partial statealternatively, depending on the context they are
being used.σ is complete if for every fluentf , eitherf or
¬f belongs toσ. Whenσ is consistent and complete, it is
called astate.

Given a consistent setσ of literals, a literall (resp. set of
literalsγ) holdsin a set of literalsσ if l ∈ σ (resp.γ ⊆ σ); l
(resp.γ) possibly holdsin σ if ¬l 6∈ σ (resp.¬γ ∩ σ = ∅).
The value of a formulaϕ in σ, denoted byσ(ϕ), may be
either true, false, or unknown and is defined as usual. It is
easy to see that ifσ is a state then for every formulaϕ, the
value ofϕ is known inσ. An actiona is executablein σ if
there exists an executability condition (2) ona such thatψ
holds inσ; a is executable in a setΣ of consistent sets of
literals if a is executable in every element ofΣ. From now
on, to avoid confusion, we will use letters (possibly indexed)
σ, δ, ands to denote a set of literals, a partial state, and a
state respectively.

Given a domainD, for a states and an actiona executable
in s, the direct effect ofa in s is defined by

e(a, s) = {l | a causesl if ψ ∈ D, ψ holds ins}
D is inconsistentif there exist states and actiona executable
in s such thate(a, s) is inconsistent. In the rest of the paper,
we are interested in consistent domains only. The successor
state after executinga in s, Resc(a, s), is defined as follows.

Resc(a, s) =

{ (s ∪ e(a, s)) \ ¬e(a, s)
if a is executable ins

⊥ otherwise

where⊥ denotes that the execution ofa in s fails. For con-
venience, we sometimes use the notationResc(a, S), where
S is a set of states, to refer to

⋃
s∈S{Res(a, s)}.

It can be proved that ifD is consistent anda is executable
in s thenResc(a, s) is a state. TheResc-function is then
extended for reasoning about effects of a sequence of actions
as follows.

Φc([a1; . . . ; an], s) =





⊥ if s = ⊥
s if n = 0
Φc([a2; . . . ; an], Resc(a1, s))

if n ≥ 1
(3)

This function can be used to answer queries of the form

ϕ after α, (4)

whereα is an action sequence andϕ is a formula. It asks
whetherϕ is true in the final state after the execution ofα in
the initial state.

In the presence of incomplete information about the initial
state, the initial state is not completely specified. In general,
anaction theoryis given by a pair(D,∆) whereD is a do-
main and∆ is a non-empty set of partial states representing
the initial state5. Queries (4) can be answered by using the

5This allows for an explicit representation of disjunctive infor-
mation about the initial state. When no disjunctive information
about the initial state is available∆ is a singleton, i.e.,|∆| = 1.

possible world semantics (Moore 1985). Besides, approx-
imations (Son & Baral 2001) provide an alternative. They
are both briefly reviewed in the next subsections, suppose
that an action theory(D, ∆) is given.

Possible World Semantics
The possible world semantics is defined based on the tran-
sition functionΦc in Eq. (3). A states containing a partial
stateδ is called acompletionof δ. By ext(δ) we denote the
set of all completions ofδ. Observe that the intersection of
all the states inext(δ) is δ. For a set∆ of partial states, let
ext(∆) = ∪δ∈∆ext(δ). An action theory(D, ∆) is said to
entail a query (4) with respect to the possible world seman-
tics, denoted by,

(D,∆) |=P ϕ after α

if for every s ∈ ext(∆), Φc(α, s) 6= ⊥ andϕ is true in
Φc(α, s).
Example 3 Consider the domainD1 in Example 1 and let
∆1 = {∅}. We haveext(∆1) = {s0, s1, s2, s3} where
s0 = {armed, clogged}, s1 = {armed,¬clogged}, s2 =
{¬armed, clogged}, ands3 = {¬armed,¬clogged}.

For state s0 and action flush, we have
e(flush, s0)={armed,¬clogged}. Hence,

Resc(flush, s0) = {armed,¬clogged} = s1

Likewise, we have

Resc(flush, s1) = {armed,¬clogged} = s1

Resc(flush, s2) = {¬armed,¬clogged} = s3

Resc(flush, s3) = {¬armed,¬clogged} = s3

On the other hand, we can check that

Resc(dunk, s1) = Resc(dunk, s3) = s2

So, for everys ∈ ext(∆1) we have

Φc([flush; dunk], s) = s2

This implies that

(D1,∆1) |=P ¬armed after [flush; dunk]

For the domainD2 in Example 2, let∆2 = {∅}.
Then, the four possible initial states areext(∆2) =
{{g, h}, {g,¬h}, {¬g, h}, {¬g,¬h}}.

We have

Φc([a], {g, h}) = Φc([a], {¬g, h}) = {g, h}
Φc([a], {g,¬h}) = Φc([a], {¬g,¬h}) = {g,¬h}

Hence,g holds in the final state aftera is executed. That is,

(D2,∆2) |=P g after [a]

2

0-Approximation
The 0-approximation is introduced in (Son & Baral 2001).
Instead of using the transition function between states
(Resc) to compute the result of the execution of an action,
it defines another transition function, denoted byRes, be-
tween partial states.

For a partial stateδ and an actiona executable inδ, let

• e(a, δ) = {l | there existsa causesl if ψ inD s.t.ψ hold
in δ}, and

• pe(a, δ) = {l | there existsa causesl if ψ in D s.t. ψ
possibly holds inδ}.

Intuitively, e(a, δ), pe(a, δ) are sets of literals thatmust hold
andmay hold, respectively, after executinga in δ. Observe
that the definition ofe(a, δ) extends the definition ofe(a, s)
described in the previous section to the case of partial states.
The transition functionRes is defined by:

Res(a, δ) =

{ (δ ∪ e(a, δ)) \ ¬pe(a, δ)
if a is executable inδ

⊥ otherwise

Similarly toResc, the functionRes is extended to define the
partial state after executing a sequence of actions in a given
partial state. The new function is calledΦ and defined sim-
ilarly to Φc in Eq. (3). The 0-entailment, denoted by|=A,
is defined as follows (recall that∆ is a set partial states).
(D, ∆) entails a queryϕ after α w.r.t. the 0-approximation,
denoted by

(D,∆) |=A ϕ after α,

if for every δ ∈ ∆, Φ(α, δ) 6= ⊥ andϕ is true inΦ(α, δ).
Example 4 Consider the action theory(D1, ∆1) in Exam-
ple 3. We have

e(flush, ∅)={¬clogged} andpe(flush, ∅)={¬clogged}
Hence,δ1 = Res(flush, ∅) = {¬clogged}.

Furthermore, we have

e(dunk, δ1)={clogged} and

pe(dunk, δ1)={clogged,¬armed}
Thus,Res(dunk, δ1) = {clogged}. Accordingly we have

Φ([flush; dunk], ∅) = {clogged}
This implies that

(D1, ∆1) 6|=A ¬armed after [flush; dunk]

For the action theory(D2, ∆2), the only initial partial
state isδ = ∅. However, because neitherh nor ¬h holds
in this partial state, the actiona is not executable inδ. As a
result, we have

Φ([a], δ) = ⊥
Hence,

(D2, ∆2) 6|=A g after [a]
2

A Sufficient Condition for the Completeness of|=A

As discussed previously, the main disadvantage of the 0-
approximation is its incompleteness if∆ — the set of initial
partial states — does not contain sufficient information for
its reasoning. For instance, Examples 3 and 4 show that

(D1, ∆1) 6|=A ¬armed after [flush; dunk]

while

(D1, ∆1) |=P ¬armed after [flush; dunk]

In the introductory example, we show that it is possible
to make|=A complete with respect to|=P without having
to examine all possible initial states, by partitioning∆1 into
the set of partial states∆∗

1 = {{armed}, {¬armed}}.
Why do we chose the set of fluents{armed} but not

{clogged} to partition ∆1, although botharmed and
clogged are unknown in the initial state? In other words,
why considering the truth values ofarmed separately in the
beginninginfluencesthe outcomes of the reasoning process
whereas this is not true forclogged? In this section, we will
provide an answer to this question.

Let us formalize the problem. First, we define what it
means by “|=A is complete with respect to|=P ”.
Definition 1 An action theory (D, ∆∗) (under the 0-
approximation) is said to becompletewith (D, ∆) (under
the possible world semantics) if for every formulaϕ and ac-
tion sequenceα, we have that
(D,∆∗) |=A ϕ after α if and only if (D, ∆) |=P ϕ after α.

Then the problem of our interest is:Given an action theory
(D,∆), find a set∆∗ of partial states such that(D, ∆∗) is
complete with(D, ∆).

We will solve this problem by answering step by step the
following questions:

Question 1:What is a sufficient condition for(D, {δ}) to
be complete (with itself)?

Question 2: How can we modify(D, {δ}) into (D, ∆∗)
such that(D, ∆∗) is complete with(D, {δ})?
Question 3: How can we modify(D, ∆) into (D, ∆∗)
such that(D, ∆∗) is complete with(D, ∆)?

In answering Question 1 we rely on our earlier observation:
there are certain fluents whose values need to be known inδ
if (D, {δ}) were to be complete. In other words, the values
of other fluents depend on the values of some fluents. To
make it precise, we introduce the notion of dependencies
between fluents and between actions and fluents as follows.
Definition 2 A literal l1 depends ona literal l2, writtenl1 ¢

l2, if
• l1 ≡ l2,
• there exists a dynamic law

a causes l1 if ψ
in D such thatl2 ∈ ψ,

• there existsl3 such thatl1 ¢ l3 andl3 ¢ l2, or
• ¬l1 ¢ ¬l2.
An actiona depends ona literal l, writtena ¢ l, if
• there exists an executability condition

executable a if ψ
in D such thatl ∈ ψ, or

• there existsl1 such thata ¢ l1 andl1 ¢ l.
For each literall (resp. actiona), we denote byΩ(l) (resp.
Ω(a)) the set of literals thatl (resp. a) depends on. As an
example, for the domainD1, we have

Ω(clogged) = {clogged}
Ω(¬clogged) = {¬clogged}
Ω(armed) = {armed,¬armed}
Ω(¬armed) = {armed,¬armed}
Ω(dunk) = {¬clogged} Ω(flush) = ∅

and for the domainD2, we have

Ω(g) = {g} Ω(h) = {h}
Ω(¬g) = {¬g} Ω(¬h) = {¬h} Ω(a) = {h,¬h}

Intuitively, l1 ¢ l2 means that knowledge aboutl2 might be
needed in reasoning about the truth value ofl1 after the exe-
cution of some sequence of actions;a¢ l means thatl might
have influence on determining the executability of actiona.
In the next definition, we characterize a set of statesS for
which the 0-approximation— starting from the partial state
δ = ∩s∈Ss— is complete.

Definition 3 LetS be set of states andδ be the intersection
of all states inS. We say thatS is approximatableif

1. there exists no literall such that for everys ∈ S, l ¢ l1
for somel1 ∈ s \ δ, and

2. there exists no actiona such that for everys ∈ S, a ¢ l1
for somel1 ∈ s \ δ.

Example 5 Consider the domainD1. Let δ = ∅. Then,
S1 = ext(δ) is not approximatable because (i) for every
s ∈ S1, eitherarmed or ¬armed belongs tos \ δ (Re-
call thatδ = ∩s∈ext(δ)s); and (ii) l = armed depends on
both armed and¬armed. For the same reason, the sets
ext({clogged}) andext({¬clogged}) are not approximat-
able.

On the other hand, the setsext({armed}) and
ext({¬armed}) are approximatable because there exists no
literal l (or actiona) which depends on bothclogged and
¬clogged.

For the domainD2, the set of statesS2 = ext(∅) is not
approximatable because for everys ∈ S2, eitherh or ¬h
belongs tos \ ∅ anda depends on bothh and¬h. We can
easily check that the setsext({g}) andext({¬g}) are not
approximatable either.ext({h}) andext({¬h}), however,
are approximatable sets. 2

The following proposition shows an interesting property
of an approximatable set.

Proposition 1 LetS be an approximatable set of states,δ be
the intersection of states inS, anda be an action executable
in S. Then,a is also executable inδ and furthermore

Res(a, δ) =
⋂

s′∈Resc(a,S)

s′

Sketch of Proof. We first show thata is executable inδ.
Suppose otherwise. Becausea is executable inS, for every
s ∈ S, D contains an executability condition (2) such that
ψ ⊆ s; furthermore, by our assumption,ψ 6⊆ δ. This means
that there exists a literall ∈ s \ δ such thata depends onl.
This violates the condition thatS is approximatable.

Next, we show that
⋂

s′∈Resc(a,S) s′ ⊆ Res(a, δ). Sup-
pose otherwise, that is, there existsl such that l ∈⋂

s′∈Resc(a,S) s′ but l 6∈ Res(a, δ). We can prove that for
everys ∈ S, there existsl1 ∈ s \ δ such thatl ¢ l1. This
violates the condition thatS is approximatable.

The above results together with the soundness of the 0-
approximation allow us to conclude the proposition. 2

The intuitive meaning of Proposition 1 is that ifext(δ) is
approximatable then the theory(D, {δ}) is “complete” af-
ter performinga single action. It, however, does not imply
that (D, {δ}) is complete after performingany sequence of
actionsbecause after an action is performed, one may think
that we could loose the approximatability property of the set
of possible states. Nevertheless, the following proposition
shows that this property is preserved along the course of ac-
tion execution.
Proposition 2 For every actiona executable inS, if S is
approximatable then so isResc(a, S).
Sketch of Proof. Let δ andδ′ be the intersections of all
states inS and Resc(a, S) respectively. Consider a state
s ∈ S. Let s′ be the successor state ofs aftera. Then, we
can prove the following result:

∀(l1∈s′\δ′)∃(l2∈s\δ).l1 ¢ l2

Then ifResc(a, S) is not approximatable thenS is also not
approximatable and thus, this cannot happen. 2

From Propositions 1 and 2, we have the following theo-
rem.
Theorem 1 An action theory(D, {δ}) is complete ifext(δ)
is approximatable.
Sketch of Proof. Let α be a sequence of actions. From
Propositions 1 and 2, we have that

Φ(α, δ) =
⋂

s∈ext(δ)

Φc(α, δ)

By Definition 1 and the definitions of|=A and |=P , this
means that(D, {δ}) is complete with itself. 2

This theorem serves as a sufficient condition for(D, {δ})
to be complete and provides an answer to Question 1.
As can be seen in Example 5, for the domainD1, the
setsext({armed}) and ext({¬armed}) are approximat-
able sets. Thus, the above theorem implies that the ac-
tion theories(D1, {{armed}}) and(D1, {{¬armed}}) are
complete.

Observe that the approximatability ofext(δ) is a suffi-
cient but not necessary condition for the completeness of
(D, δ). For example, it is easy to check that the theory
({a causesf if g, a causesf if g,¬f}, {{g}}) is com-
plete. However,ext({g}) is not an approximatable set of
states because it violates the first condition of Definition 3.

Theorem 1 suggests a way to address Question 2, i.e., we
can partition the set of possible initial statesext(δ) into sub-
sets such that each of them is approximatable. This can be
done by determining a decisive set of fluents for(D, {δ})
which is defined as follows.
Definition 4 A setF of fluents is called adecisiveset for
(D, {δ}), whereδ is a partial state, if the following condi-
tions are satisfied
• every fluentf ∈ F is unknown inδ, and
• for every interpretationI of F 6, ext(δ ∪ I) is an approx-

imatable set.
6An interpretation ofF is a consistent set of literalsσ such that

there exists a setG ⊆ F andσ = {f | f ∈ G} ∪ {¬f | f ∈
F \G}.

By this definition, F1 = {armed} and F2 =
{armed, clogged} are decisive sets for(D1, ∆1) whereas
F3 = {clogged} is not. The following theorem shows an
important property of a decisive set.

Theorem 2 Let (D, {δ}) be an action theory and letF be a
decisive set for(D, {δ}). Define

∆∗ = {δ ∪ I | I is an interpretation ofF}
Then,(D, ∆∗) is complete with(D, {δ}).
Sketch of Proof. Let δ∗ be a partial state in∆∗. By the
definition of F , ext(δ∗) is approximatable. From this and
by Theorem 1, for any sequenceα of actions, we have

Φ(α, δ∗) =
⋂

s∈ext(δ∗)

Φc(α, s)

On the other hand, notice that

ext(δ) =
⋃

δ∗∈∆∗
ext(δ∗)

Accordingly, we can conclude that(D, ∆∗) is complete
with (D, {δ}). 2

This theorem implies that Question 2 can be answered if
a decisive set for(D, {δ}) can be found. Trivially, for every
δ, the setUδ of all unknown fluents inδ is alwaysa decisive
set for (D, {δ}). It is, however, important to note that the
number of interpretations ofUδ is exponential in the size
of Uδ. Hence, given aδ, we wish to find a decisive set for
(D, {δ}) that is as small as possible (w.r.t. set inclusion⊆).
To do so, we develop an algorithm for computing a decisive
set (Figure 2). The algorithm is based on the concepts of
dependencies in Definition 2.

DECISIVE(D, δ)
INPUT: a domain descriptionD a partial stateδ
OUTPUT: a decisive set of fluents for(D, δ)
BEGIN

F = ∅
compute dependencies between literals
compute dependencies between actions and literals
for each fluentf unknown inδ do

if there existsl s.t. l depends on bothf and¬f or
an actiona s.t.a depends on bothf and¬f
then F = F ∪ {f}

return F ;
END

Figure 2: Computing a decisive set of fluents for(D, {δ})

The following proposition shows that the algorithm cor-
rectly computes a decisive set.

Proposition 3 The set of fluents returned byDECISIVE(D,
δ) is a decisive set for(D, {δ}).
Sketch of Proof.Let F be the set of fluents returned by the
algorithm. First, notice thatF contains only fluent unknown
in δ. Second, we can prove that for every interpretationI
of F , ext(δ∗) is an approximatable set, whereδ∗ = δ ∪ I.
Therefore, by Definition 4,F is a decisive set for(D, {δ}).
2

Example 6 Consider the action theory(D1, ∆1). Then,
the decisive set returned by the algorithm for(D1, ∆1) is
{armed}. Let ∆∗

1 be the partition of∆1 over {armed},
that is,∆∗

1 = {{armed}, {¬armed}}. Hence, by Theorem
2, (D1, ∆∗

1) is complete with(D1,∆1).
For the action theory(D2,∆2), the returned decisive set

is {h}. The partition of∆2 over{h} is ∆∗
2 = {{h}, {¬h}}.

Then, by Theorem 2,(D2,∆∗
2) is complete with(D2, ∆2).

2

Although simple and somewhat naive, the algorithm is worth
some discussion. According to the algorithm, an unknown
fluent f belongs to the returned setF if there exists a lit-
eral l or an actiona that depends on bothf and¬f . As can
be seen in the proof of Proposition 3, this guarantees that
F is a decisive set because for every interpretationI of F ,
ext(δ ∪ I) is approximatable. The main weakness of this
algorithm is that itdoes notguarantee the minimality ofF .
Observe that an implementation based on the definition of
an approximatable set (Definition 3) might return a smaller
decisive set. Nevertheless, we adopt the above algorithm in
the development of our planner (with a little change, to be
described in the next section) for two reasons. First, it is
computationally efficient (its run time is polynomial in the
size of the domain). Second, for a majority of the bench-
mark problems, we notice that the decisive set returned by
the algorithm is empty set which is already as small as pos-
sible.

Once a decisive setFδ for (D, {δ}) can be computed (i.e.,
Question 2 is answered), we can easily find a solution to
Question 3 as shown in the following theorem.

Theorem 3 Let (D,∆) be an action theory. For everyδ ∈
∆, let Fδ be a decisive set for(D, {δ}). Define

∆∗ =
⋃

δ∈∆

{δ ∪ I | I is an interpretation ofFδ}

Then,(D,∆∗) is complete with(D,∆).

Sketch of Proof. Let α be a sequence of actions andϕ be
an arbitrary formula.

Observe that(D, ∆) |=P ϕ after α iff for every δ ∈ ∆,
(D, {δ}) |=P ϕ after α; and (D, ∆∗) |=A ϕ after α
iff for every δ∗ ∈ ∆∗, (D, {δ∗}) |=P ϕ after α. Fur-
thermore, by the definition of decisive sets (Definition 4)
and by the definition of∆∗, we have that for eachδ ∈ ∆
there existsδ∗ ∈ ∆∗ such that(D, {δ}) |=P ϕ after α iff
(D, {δ∗}) |=A ϕ after α and vice versa.

The above observations imply that for any formulaϕ and
action sequenceα

(D, ∆) |=P ϕ after α iff (D,∆∗) |=A ϕ after α

2

Application to Conformant Planning

In this section, we will present a sound and complete confor-
mant planner that is based on the result in the previous sec-
tion. We first review the conformant planning problem and
then discuss how such a conformant planner can be built.

A conformant planning problem(or planning problem for
short)P is a tuple〈D,∆, δf 〉 where(D, ∆) is an action the-
ory andδf is a partial state representing the goal. Aso-
lution to P is an action sequenceα such that(D, ∆) |=P

δf after α. For instance,P1 = 〈D1, {∅}, {¬clogged}〉
andP2 = 〈D1, {∅}, {¬armed}〉 are planning problems and
α1 = [flush] andα2 = [flush; dunk] are their solution
respectively.

In our previous work (Sonet al. 2005b; 2005a), we
used the 0-approximation in the development of a suite
of conformant planners, namedCPA, for domains with
state constraints. The main weakness is that these plan-
ners are incomplete. As an example, for the problem
P2, CPA returns no solution. If we wish to make it re-
turn a solution, we would have tomanuallyencode∆ as
{{armed}, {¬armed}}. It follows from Theorem 3 that
we can indeedautomaticallyadd to∆ the necessary infor-
mation to makeCPA complete. We will now discuss this
idea in more details.

A straightforward way to achieve the completeness of
CPA is as follows. For eachδ ∈ ∆, (1) compute a decisive
setFδ for (D, {δ}) based on the algorithmDECISIVE(D,δ)
(Figure 2); (2) then generate∆∗ from∆ and the decisive sets
Fδ; and, finally, (3) use(D, ∆∗, δf) instead of(D,∆, δf) as
input toCPA. Although this method guarantees thatCPA is
complete, it does not take into consideration the information
about the goal. For this reason, instead of using the algo-
rithm DECISIVE(D,δ) in the second step, we use a modi-
fied version calledDECISIVE(D,δ,δf) (Figure 3). This al-
gorithm accepts a third parameter,δf , which represents the
goal, and generates a set of decisive fluents which provides
the planner enough information to solve the planning prob-
lem. The modification is fairly simple: in the body of the
algorithmDECISIVE(D,δ), we replace “... existsl s.t. ...”
with “... existsl ∈ δf s.t. ...”.

DECISIVE(D, δ, δf)
INPUT: a domain descriptionD, partial statesδ andδf

OUTPUT: a decisive set of fluents for〈D, {δ}, δf 〉
BEGIN

F = ∅
compute dependencies between literals
compute dependencies between actions and literals
for each fluentf unknown inδ do

if there existsl∈ δf s.t. l depends on bothf and¬f or
an actiona s.t.a depends on bothf and¬f
then F = F ∪ {f}

return F ;
END

Figure 3: DECISIVE(D, δ, δf) - Computing a decisive set
of fluents for〈D, {δ}, δf 〉

It is easy to see that the following theorem holds.

Theorem 4 Let (D, ∆, δf) be a planning problem. For ev-
ery δ ∈ ∆, let Fδ be DECISIVE(D, δ, δf). Then,α is
a solution toP iff (D,∆∗) |=A δf after α where∆∗ =⋃

δ∈∆{δ ∪ I | I is an interpretation ofFδ}.

The correctness of Theorem 4 shows that building a com-
plete conformant planner based on the 0-approximation is
feasible. We therefore develop a conformant planner, called
CPA+. The implementation ofCPA+ is based on the source
code ofCPA (Sonet al. 2005b), adding a module for com-
puting decisive sets for partial statesδ ∈ ∆ based on the al-
gorithm presented in Figure 3 and generating∆∗ from ∆. In
addition, everything related to static causal laws is removed.
Inherited fromCPA, CPA+ is a forward, best-first search
planner with the number of fulfilled subgoals as its heuristic
function.

We compareCPA+ with three planners Conformant-FF
(CFF) (Brafman & Hoffmann 2004), KACMBP(Cimatti,
Roveri, & Bertoli 2004), and POND (Cushing & Bryce
2005) because to the best of our knowledge they belong
to the fastest conformant planners in most of the bench-
mark domains in the literature. The domains used in our
experiments are the bomb-in-the-toilet (bomb), ring, logis-
tics, and cleaner. In the bomb domain, we experimented
with p = 10, 20, 50, 100 packages andt = 1, 5, 10 toilets.
In the logistics domain we did experiments with 5 problems,
corresponding tol = 2, 3, 4 andc = p = 2, 3, wherel, c,
andp are the numbers of locations per city, cities, and pack-
ages respectively, (only logistics(4,2,2) is not available). In
the ring domain, we tested withn =2,5,10, and 20, where
n is the number of rooms. In the cleaner domain (Sonet
al. 2005b), we tested with 6 problems corresponding to
n = 2, 5 andp = 10, 50, 100 respectively, wheren is the
number of rooms andp is the number of objects.

All experiments were run on a 2.4 GHz CPU, 768MB
RAM machine, running Slackware 10.0 operating system.
Time limit is set to half an hour. The testing results are
shown in Tables 1–4. In each table, columns 1–3 show the
characteristics of the problem: the number of initial partial
states (i.e., size of∆), the total number of fluents, and the
number of unknown fluents in each initial partial state. The
next columns report the length of the returned solution and
the running time of the planner. Times are shown in sec-
onds; ‘TO”, “AB”, and “NA” indicate that the correspond-
ing planner ran out of time without returning a solution, that
the planner stopped abnormally, and that the problem is not
applicable, respectively. We ran two versions of the plan-
ner, one of which uses the possible world semantics (CPA∗)
and the other uses the 0-approximation semantics embedded
with the module of computing decisive sets (CPA+).

As can be seen in Table 1, CFF is superior to KACMBP
andCPA+ over the logistics domain. It took only 0.14 sec-
onds to solve the hardest instancelogistics(4, 3, 3) while
both KACMBP andCPA+ reported a time out.CPA+ is
better than KACMBP over the first three instance but slower
on logistics(3, 3, 3). It should be noted here that one of
the characteristics of this domain is that all the partial states
in ∆ are complete, i.e., they are states indeed; hence, us-
ing the 0-approximation to implementCPA+ does not help
solve the problems more quickly than if it is implemented
using possible world semantics (CPA∗). Another factor that
may cause the slow performance ofCPA+ is because of its
simple heuristic function.

In the ring domain (Table 2), KACMP is the best. But

this domain is really problematic for CFF. As explained in
(Brafman & Hoffmann 2004), it is because of the lack of in-
formativity of the heuristic function in the presence of non-
unary effect conditions and the problem with checking re-
peated states. Both POND and CFF can solve only the first
problem within the time limit. CPA+ is much better than
CFF and POND but slower than KACMBP. In this domain,
and in all the other domains that follow as well, we can see
there is a big difference between the performance ofCPA∗
andCPA+. The reason for the good performance ofCPA+

over CPA∗ is because the uncertainty degree of the prob-
lems in these domains is high, thus, making the performance
of CPA∗ gets worse quickly because it has to consider all
possible initial states which is exponential in the number of
unknown fluents.

In the bomb domain (Table 3),CPA+ outperforms all the
other planners. It took only around 7 seconds to solve the
hardest problem, bomb(100,10), whereas that solving time
for KACMP and CFF are more than 35 seconds and 100 sec-
onds respectively; POND reported a time out. The reason for
this good result ofCPA+ is because this domain exposes a
very high degree of uncertainty (i.e., the number of unknown
fluents in the initial partial state is almost the same as the to-
tal number of fluents). In addition, the planner detects that
none of the unknown fluents is needed for its reasoning. As
a result, at any time during the search, the planner needs to
consider only one partial state and the size of search space
is rather small. Similarly to the bomb domain,CPA+ also
works well with the cleaner domain (Table 4). For the hard-
est problem, it took around 68 seconds, outputting a plan of
length 504. None of the other planners was able to solve
the last problem within the time limit7. Among the others,
CFF is the best. It outperforms both KACMBP and POND
on this domain. The reason for good performance ofCPA+

on this domain can be explained similarly as with the bomb
domain.

Finally, we would like to mention that, in this paper, we
concentrate on comparing our plannerCPA+ with other con-
formant planners with the same capability. Among other
things, the representation language employed in the dis-
cussed planners is, in one way or another, a propositional
language with limited expressive power. For this reason,
we do not compareCPA+ with the PKS system (Petrick
& Bacchus 2002) (improved in (Petrick & Bacchus 2004))
which employs a richer representation language and the
knowledge-based approach to reason about effects of actions
in the presence of incomplete information. In a near future,
we plan to investigate the relationship betweenCPA+ and
PKS and other conditional planners.

Discussion and Related Work

One of the main advantages of the 0-approximation is its
lower complexity in comparison with the possible world se-
mantics in planning and reasoning when the initial state (∆)

7CFF stopped because the maximum length of a plan is ex-
ceeded. We believe that it can be easily fixed by increasing this
constant in the source code

Problem |∆| |F| Unkwn. KACMBP POND CFF CPA∗ CPA+

logistics(2,2,2) 4 20 0 14/ 0.19 / NA 16 / 0.03 9 / 0.047 9 / 0.058
logistics(2,3,3) 8 39 0 34/ 355.96 / NA 24 / 0.06 48 / 2.24 48 / 2.217
logistics(3,2,2) 9 26 0 17/ 2.1 / NA 20 / 0.06 44 / 1.384 44 / 1.363
logistics(3,3,3) 27 51 0 40/ 29.8 / NA 34 / 0.12 350 / 93.905 350 / 93.173
logistics(4,3,3) 64 63 0 / TO / NA 37 / 0.14 / TO / TO

Table 1: Logistics Domain

Problem |∆| |F| Unkwn. KACMBP POND CFF CPA∗ CPA+

ring(2) 2 6 4 5/ 0.00 6 / 0.156 7 / 0.06 5 / 0.009 5 / 0.002
ring(3) 3 9 6 8/ 0.00 8 / 0.089 15 / 0.23 8 / 0.094 8 / 0.004
ring(4) 4 12 8 11/ 0.00 13 / 0.251 26 / 3.86 11 / 0.773 11 / 0.009
ring(5) 5 15 10 14/ 0.00 17 / 0.967 45 / 63.67 15 / 5.501 15 / 0.018
ring(10) 10 30 20 29/ 0.02 / TO / TO / TO 30 / 0.111
ring(15) 15 45 30 44/ 0.04 / TO / TO / TO 45 / 0.38
ring(20) 20 60 40 59/ 0.15 / TO / TO / TO 60 / 0.928
ring(25) 25 75 50 74/ 0.32 / TO / TO / TO 75 / 1.921

Table 2: Ring Domain

consists of a single partial state8 (Baral, Kreinovich, & Trejo
2000). The price one has to pay for this lower complexity
is the incompleteness of reasoning and planning tasks. It is
therefore natural to see this advantage (low complexity) to
disappear even when we deal with action theories with more
than one initial partial state (i.e.,| ∆ |> 1).

As can be seen, complete reasoning using 0-
approximation and decisive sets of fluents offers certain
advantages over reasoning based on possible world seman-
tics if (partial) states are represented explicitly. Given a
domainD with n fluents and an initial partial stateδ with
a decisive setFδ, the number of partial states that need
to be considered by the 0-approximation is2|Fδ| whereas
the number of states which need to be considered by the
possible world semantics is2n−|δ|. Because|Fδ| ≤ n− |δ|,
reasoning based on the 0-approximation will certainly
be more efficient than reasoning based on the possible
world semantics. It is interesting to note that in most
of the benchmarks for conformant planning, we found
that Fδ = ∅ or |Fδ| is much smaller thann − |δ|. This
explains whyCPA+, even built with a simple heuristic, can
achieve very good performance as shown in the previous
section. Nevertheless, due to the fact that it represents
partial states explicitly,CPA+ will not be able to work
with domains for whichFδ is large for some initial partial
stateδ because enumerating all the possible initial partial
states might already take exponential time in the size of
Fδ. We consider this as a disadvantage ofCPA+and are
investigating different representation framework to address
this issue.

We believe that our work can be applied not only to rea-
soners that represent (partial) states explicitly but also to
those that represent (partial) states implicitly. We did some
experiments with CFF, KACMBP, and POND by adding to

8We observe that most of the benchmarks in conformant plan-
ning satisfy this property.

the bomb domain several irrelevant fluents and specifying
them to be unknown in the initial state. We observed that for
the bomb domain, when the number of fluents added is the
same as the number of fluents of the original problem, these
planners ran on the modified problem around 2, 10 and 2
times, respectively, i.e., slower than on the original problem.
This suggests that if these planners can remove the unnec-
essary fluents from consideration, they would yield better
performance.

In the past, a number of researchers, e.g., (Haslum &
Jonsson 2000; Lifschitz & Ren 2004; Nebel, Dimopoulos,
& Koehler 1997), already realized that a planning problem
may contain much irrelevant information, including irrele-
vant fluents, irrelevant actions, etc. In most of these work, if
irrelevant information is found then it can be safely removed
from the problem. In our approach, on the contrary, if a flu-
ent does not belong to a decisive set, it does not mean that
we can safely remove it from the theory without affecting the
reasoning process. Rather, it only means that considering its
truth value separately in the beginning is not necessary. For
example, in the bomb domain, we cannot removeclogged
although it does not belong to the decisive set{armed}. In
the following, we briefly relate our work to others’ work.

In (Lifschitz & Ren 2004), the idea of relevant actions of
a planning problemP with the action domainD is made
precise by the notion of an isolated set. Basically, an iso-
lated setσ with respect toD could be viewed as a partition
of the original domain. If every fluent appearing in the goal
is contained in an isolated setσ, then solutions toP can be
found by usingσ instead ofD. An isolated set differs from
a decisive set of fluents in that(i) it contains not only fluents
but also actions and laws;(ii) it does not take into consider-
ation the knowledge about the initial state. We observe that
a problem might not have a non-trivial isolated set (the com-
plete domain is the trivial isolated set) but can still have a
decisive set of fluents. For example, for the planning prob-
lem P3 = 〈D1, {∅}, {¬armed, clogged}〉, no non-trivial

Problem |∆| |F| Unkwn. KACMBP POND CFF CPA∗ CPA+

bomb(5,1) 1 6 5 9/ 0 9 / 0.038 9 / 0.03 9 / 0.012 9 / 0.003
bomb(10,1) 1 11 10 19/ 0.01 19 / 0.078 19 / 0.05 19 / 1.038 19 / 0.007
bomb(20,1) 1 21 20 39/ 0.05 39 / 0.578 39 / 0.17 / TO 39 / 0.036
bomb(50,1) 1 51 50 99/ 0.51 99 / 28.695 99 / 5.33 / TO 99 / 0.312
bomb(100,1) 1 101 100 199/ 3.89 199 / 682.33 199 / 121.8 / TO 199 / 2.284
bomb(5,5) 1 10 5 5/ 0.04 5 / 0.1 5 / 0.04 5 / 0.147 5 / 0.006
bomb(10,5) 1 15 10 15/ 0.09 15 / 0.654 15 / 0.07 15 / 6.006 15 / 0.02
bomb(20,5) 1 25 20 35/ 0.3 35 / 7.284 35 / 0.16 / TO 35 / 0.076
bomb(50,5) 1 55 50 95/ 1.66 95 / 348.28 95 / 4.7 / TO 95 / 0.689
bomb(100,5) 1 105 100 195/ 6.92 / TO 195 / 113.95 / TO 195 / 4.507
bomb(5,10) 1 15 5 5/ 0.11 5 / 0.357 5 / 0.03 5 / 0.265 5 / 0.015
bomb(10,10) 1 20 10 10/ 0.3 10 / 2.504 10 / 0.05 10 / 15.003 10 / 0.055
bomb(20,10) 1 30 20 30/ 0.97 30 / 27.69 30 / 0.13 / TO 30 / 0.154
bomb(50,10) 1 50 50 90/ 5.39 90 / 960.004 90 / 4.04 / TO 90 / 1.262
bomb(100,10) 1 110 100 190/ 35.83 / TO 190 / 102.56 / TO 190 / 7.447

Table 3: Bomb Domain

Problem |∆| |F| Unkwn. KACMBP POND CFF CPA∗ CPA+

cleaner(2,5) 1 12 10 11/ 0.01 11 / 0.173 11 / 0.03 11 / 6.878 11 / 0.044
cleaner(2,10) 1 22 20 21/ 0.08 21 / 0.853 21 / 0.07 / TO 21 / 0.044
cleaner(2,20) 1 42 40 41/ 0.62 41 / 15.875 41 / 0.15 / TO 41 / 0.092
cleaner(2,50) 1 102 100 101/ 13.55 / TO 101 / 0.8 / TO 101 / 1.039
cleaner(2,100) 1 202 200 201/ 185.39 / TO 201 / 5.72 / TO 201 / 8.096
cleaner(5,5) 1 30 25 34/ 0.017 29 / 1.469 29 / 0.11 / TO 29 / 0.02
cleaner(5,10) 1 55 50 56/ 0.096 54 / 12.868 54 / 0.24 / TO 54 / 0.095
cleaner(5,20) 1 105 100 106/ 7.82 104 / 214.832 104 / 0.85 / TO 104 / 0.588
cleaner(5,50) 1 255 250 256/ 227.82 / TO 254 / 14.36 / TO 254 / 8.73
cleaner(5,100) 1 505 500 / TO / TO AB / / TO 504 / 68.023

Table 4: Cleaner Domain

isolated set can be found but{armed} is a decisive set for
(D, {∅}). We hypothesize that ifσ is an isolated set with
respect toD containing the goalδf then the set of fluents
in σ, which are unknown in an initial stateδ, constitutes a
decisive set for(D, {δ}, δf).

In (Haslum & Jonsson 2000), the notion of a reduced
operator set (of a planning problem) is defined and algo-
rithms for computing such sets are presented. Intuitively,
a reduced operator set consists of operators needed for solv-
ing the problem and does not contain any redundant oper-
ator (an operator is redundant if it can be replaced by a se-
quence of operators). They also implemented a preprocessor
for computing a reduced operator set of a planning problem
and demonstrated its usefulness in various planners. We note
that this work concentrates on domains with complete initial
state while we focus on domains with incomplete informa-
tion.

In (Nebel, Dimopoulos, & Koehler 1997), information
relevant to a planning problem is selected by backchain-
ing from the goals. This is done as follows. First, given
a planning problem, a fact-generation tree – an AND-OR-
tree where the AND-nodes are sets of ground facts and the
OR-nodes contains a single ground fact; the root is the set
of goals – is constructed. Then, based on the structure of
this tree, the set of sets of initial facts possibly needed for
the goals, called possibility set for the goals, is determined.

Based on this set, they propose several methods of selecting
“probably relevant” pieces of information. This approach
differs from ours in that(i) it is intended for planning with
complete initial state; and(ii) it may exclude information
that is indeed relevant, making the problem unsolvable even
if it is solvable.

Conclusions and Future Work

In this paper, we develop a method for complete reasoning
in the presence of incomplete information based on the 0-
approximation. Our idea is based on the notion of a decisive
set for a partial state. This decisive set can be used to group
the set of possible initial (complete) states into a smaller set
of partial states which guarantees the completeness of rea-
soning based on the 0-approximation w.r.t. reasoning using
the possible world approach. We present an algorithm for
computing a decisive set of fluents given an action theory.
We extend this idea to the conformant planning problem and
validate the usefulness of this idea by developing a sound
and complete conformant planner calledCPA+. The exper-
imental results show thatCPA+ is competitive with other
state-of-the-art conformant planners, validating the useful-
ness of the notion of decisive set. In this paper, we concen-
trate on the definition of a decisive set and its application in
conformant planning. Identifying and computingminimal

decisive setsare the topics that we plan to further our study
in the immediate future. To scale up the planner, we would
like to develop a new implementation that does not require
the enumeration of the set of initial partial states.

Acknowledgments: We would like to thank Michael Gel-
fond for the numerous discussions on the topic of the paper
which inspired us to carry out this research. The authors are
partially supported by NSF grants EIA-0220590 and CNS-
0454066.

References

Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness.Artificial Intelligence
122:241–267.
Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. In Koenig,
S.; Zilberstein, S.; and Koehler, J., eds.,Proceedings of
the 14th International Conference on Automated Planning
and Scheduling (ICAPS-04), 355–364. Whistler, Canada:
Morgan Kaufmann.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Confor-
mant Planning via Symbolic Model Checking and Heuris-
tic Search.Artificial Intelligence Journal159:127–206.
Cushing, W., and Bryce, D. 2005. State Agnostic Plan-
ning Graphs and the application to belief-space planning.
In Proceedings of the the Twentieth National Conference
on Artificial Intelligence.
Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.;
and Williamson, M. 1992. An approach to planning with
incomplete information. InKR 92, 115–125.
Gelfond, M., and Lifschitz, V. 1992. Representing actions
in extended logic programs. InJoint International Confer-
ence and Symposium on Logic Programming., 559–573.
Golden, K., and Weld, D. 1996. Representing sensing
actions: the middle ground revisited. InKR 96, 174–185.
Golden, K.; Etzioni, O.; and Weld, D. 1996. Planning
with execution and incomplete informations. Technical re-
port, Dept of Computer Science, University of Washington,
TR96-01-09.
Goldman, R., and Boddy, M. 1994. Representing uncer-
tainty in simple planners. InKR 94, 238–245.
Goldman, R., and Boddy, M. 1996. Expressive planning
and explicit knowledge. InAIPS 96, 110–117.
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. InAIPS, 150–158.
Levesque, H. 1996. What is planning in the presence of
sensing? InProceedings of the 14th Conference on Artifi-
cial Intelligence, 1139–1146. AAAI Press.
Lifschitz, V., and Ren, W. 2004. Irrelevant actions in
plan generation (extended abstract). InIX Ibero-American
Workshops on Artificial Intelligence, 71–78.
Moore, R. 1985. A formal theory of knowledge and action.
In Hobbs, J., and Moore, R., eds.,Formal theories of the
commonsense world. Ablex, Norwood, NJ.

Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ig-
noring irrelevant facts and operators in plan generation.
In Steel, S., and Alami, R., eds.,Recent Advances in AI
Planning, 4th European Conference on Planning, ECP’97,
Toulouse, France, September 24-26, 1997, Proceedings,
volume 1348 ofLecture Notes in Computer Science, 338–
350. Springer.
Peot, M., and Smith, D. 1992. Conditional non-linear plan-
ning. In First Conference of AI Planning Systems, 189–
197.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-
based approach to planning with incomplete information
and sensing. InProceedings of the Sixth International Con-
ference on Artificial Intelligence Planning Systems, April
23-27, 2002, Toulouse, France, 212–222. AAAI.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. InProceedings of the Sixth Interna-
tional Conference on Automated Planning and Scheduling,
2004, 2–11.
Pryor, L., and Collins, G. 1996. Planning for contingen-
cies: A decision-based approach.Journal of Artificial In-
telligence Research4:287–339.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Proceedings of AAAI 98.
Son, T., and Baral, C. 2001. Formalizing sensing actions -
a transition function based approach.Artificial Intelligence
125(1-2):19–91.
Son, T. C.; Tu, P. H.; Gelfond, M.; and Morales, R. 2005a.
An Approximation of Action Theories ofAL and its Ap-
plication to Conformant Planning. InProceedings of the
the 7th International Conference on Logic Programming
and NonMonotonic Reasoning, 172–184.
Son, T. C.; Tu, P. H.; Gelfond, M.; and Morales, R. 2005b.
Conformant Planning for Domains with Constraints — A
New Approach. InProceedings of the the Twentieth Na-
tional Conference on Artificial Intelligence, 1211–1216.
Son, T.; Tu, P.; and Baral, C. 2004. Planning with Sensing
Actions and Incomplete Information using Logic Program-
ming. In Lifschitz, V., and Niemelä, I., eds.,Proceedings
of the 7th International Conference on Logic Programming
and NonMonotonic Reasoning Conference (LPNMR’04),
volume 2923, 261–274. Springer Verlag, LNCS 2923.
Thielscher, M. 2002. Reasoning about actions with CHRs
and finite domain constraints. In Stuckey, P., ed.,Proceed-
ings of the International Conference on Logic Program-
ming (ICLP), volume 2401 ofLNCS, 70–84.
Tuan, L.; Baral, C.; Zhang, X.; and Son, T. 2004. Regres-
sion With Respect to Sensing Actions and Partial States.
In Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI’04), 556–561. AAAI Press.
Weld, D.; Anderson, C.; and Smith, D. 1998. Extending
graphplan to handle uncertainty and sensing actions. In
Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence. AAAI Press.

