
Integrating an Answer Set Solver into Prolog:

ASP − PROLOG

Omar Elkhatib, Enrico Pontelli, and Tran Cao Son

Department of Computer Science,
New Mexico State University

{okhatib, epontell, tson}@cs.nmsu.edu

1 Introduction

A number of answer set solvers have been proposed in recent years, such as
Smodels, DLV, Cmodels, and ASSAT. Most existing ASP solvers have been ex-
tended to provide front-ends that are suitable to encode specialized forms of
knowledge—e.g., weight-constraints, restricted forms of optimization, front-ends
for planning and diagnosis. These features allow declarative solutions in specific
application domains. However, this is not completely satisfactory:

• The development of an ASP program is viewed as a “monolithic” process.
Most ASP systems offer only a batch approach to execution of programs—
programs are completely developed, “compiled”, executed, and finally answer
sets are proposed to the user. The process lacks any levels of interaction with
the user. In particular, it does not directly support an interactive development
of programs (as in Prolog), where one can immediately explore the results of
simply adding/removing rules.

• ASP programmers can control the computation of answer sets through the
rules that they include in the logic program. Nevertheless, ASP systems of-
fer very limited capabilities for reasoning on the whole class of answer sets
associated to a program—e.g., to perform selection of models according to
user-defined criteria or to compare models. These activities are important in
many application domains—e.g., to express soft constraints, to support pref-
erences when using ASP to perform planning.

• ASP solvers are independent systems; interaction with other languages can be
performed only through complex, low level APIs; this prevents programmers
from writing programs that manipulate ASP programs and answer sets as
first-class citizens. E.g., we wish to write programs in a high-level language
(Prolog in this case), which are capable to access ASP programs, modify their
structure (by adding or removing rules), and access and reason with answer
sets. This type of features is essential in many domains—e.g., automatically
modify the plan length in a planning problem.

We address these problems by developing a system, ASP − PROLOG. The
system provides a tight integration of ASP in Prolog. The language is developed
using the module and class capabilities of CIAO Prolog. ASP − PROLOG allows

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 399–404, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

400 O. Elkhatib, E. Pontelli, and T.C. Son

programmers to assemble a variety of different modules to create a program;
along with the traditional types of modules supported by CIAO Prolog (e.g.,
standard Prolog, constraint logic programming, active deductive databases), it
allows the presence of various ASP modules, each being a logic program conform-
ing to the syntax of lparse. Each Prolog module can access any ASP modules
(using the traditional module qualification of Prolog), read its content, access its
models, and modify it (e.g., adding/removing rules).

2 System Capabilities and Possible Areas of Application

User Interface: Prolog modules are required to declare their intention to access
any ASP modules; this is accomplished through the declarations

:− use asp(module name, file name, parameters)
where module name is the name of the ASP module, file name is the file con-
taining the ASP code, while parameters control the ASP solver (command line
and compute arguments of Smodels). ASP − PROLOG provides predicates that
allow Prolog to interact with ASP modules:

• model(ModelName,ModelObject) retrieves one answer set of an ASP module;
ModelName is an atom uniquely identifying one answer set, while
ModelObject is a CIAO Prolog object containing the answer set (as Pro-
log facts). For example, plan:model(1, Q) retrieves the answer set named
1 of ASP module plan and stores it as an object in Q; if we want to check
whether the atom p is true in such answer set, we simply execute the Prolog
goal Q:p.

• total stable model/2 determines the number of answer sets of an ASP
module, and returns a list of the names given to the answer sets.

• assert/1 and retract/1: the argument of these predicates is a list of ASP
rules, that are either added or removed from an ASP module. For example,
the goal plan:assert([p:-q]) adds the rule p:-q to the ASP module plan.
Modifications are undone during backtracking.

• assert nb/1 and retract nb/1 have the same effect as assert/retract,
with the exception that the modifications are not undone upon backtracking.

• change parm/1 allows to set/modify the parameters for the ASP execution
(e.g., values of constants, components of the compute statement of Smod-
els).

• clause/2: this predicate is used to allow a Prolog module to access the rules
of an ASP module—in the same spirit as the clause predicate is employed in
Prolog to access the Prolog rules present in the program. The two arguments
represent respectively the head and the body of the rule.

If α is a CIAO object representing an answer set, then the Prolog goal α : p cor-
responds to testing truth of p (possibly non-ground) in the answer set α. Observe
that, due to the fact that the syntax of Smodels is not ISO Prolog-compliant, cer-
tain Smodels constructs (e.g., cardinality and weight constraints) have a slightly
different syntactic representation when used within Prolog modules.

Integrating an Answer Set Solver into Prolog: ASP − PROLOG 401

Possible Application Areas: ASP − PROLOG allows users to
• manipulate answer sets of a program; this includes (i) the computation of

the entailment relation of a logic program (e.g., different modes of reasoning,
such as skeptical or credulous reasoning can be done), and (ii) comparing an-
swer sets of an ASP program, and select those that satisfy certain properties
(e.g., individual preferences).
Since ASP has frequently been used as a knowledge representation lan-
guage, the ability to compute the entailment relation of a logic program
makes ASP − PROLOG an attractive candidate for the implementation of
query-answering systems based on answer set semantics. Furthermore, be-
cause computing preferred answer sets has found its application in planning
with preferences, diagnosis, and common-sense reasoning, ASP − PROLOG

can be used as an interactive environment for such systems.
• modify programs and recompute their answer sets on the fly (e.g., adding or

removing rules); this feature provides a simple way to modify the values of
constants occurring in a program and/or to delay the grounding process of a
program with variables until the instantiated rules are needed. Furthermore,
ASP − PROLOG provides different ways for users to test and debug an ASP
program interactively. For example, ’suspected rules’ can be removed for
testing the consistency of a program; adding ’known-to-be-true’ atoms into
a program is another way for detecting errors in the program; etc.

• work with several logic programs simultaneously (e.g., reasoning about the
common knowledge of multiple-agents); since ASP − PROLOG allows users
to work with several modules at the same time, it can be used as an environ-
ment for implementing/testing various formalisms for modeling multi-agents.
For example, when each agent’s knowledge is represented by a logic program,
computing common knowledge among them is equivalent to computing the
intersection of all possible answer sets.

• use logic programs with answer set semantics to control the query-answering
process of a Prolog program (e.g., avoiding infinite loops); this is possible,
since ASP − PROLOG programs are Prolog programs extended with a new
type of atoms, whose truth value is determined by the ASP solver.

We are not aware of any systems with the same capabilities as ASP − PROLOG.
Smodels provides a very low level API [5] that allows C++ programs to use
Smodels as a library. DLV does not document any external API, although a
Java wrapper has been recently announced [1]. XASP [2] proposes an interface
from XSB to the API of Smodels. It provides a subset of the functionalities
of ASP − PROLOG, with a deeper integration with the capabilities of XSB of
handling normal logic programs.

3 System Implementation

The syntax and semantics of ASP − PROLOG programs are described in [3]. It
suffices to notice that a ASP − PROLOG program is a pair (Pr, As), where Pr
is a set of ASP − PROLOG rules and As is a logic program which conforms to

402 O. Elkhatib, E. Pontelli, and T.C. Son

the syntax of lparse. Each ASP − PROLOG rule is a Prolog rule whose body
can contain atoms occurring in As. Furthermore, the above mentioned interface
predicates (e.g., assert, retract) can be used by ASP − PROLOG programs to
manipulate As. The overall structure of the implementation is depicted in Figure
1. The system is composed of two parts, a preprocessor and the actual CIAO
Prolog system. The system accepts the input composed of (i) the main Prolog
module (Pr); (ii) a collection of CIAO Prolog modules (m1, m2, . . . , mn); (iii)
a collection of ASP modules (e1, e2, . . . , em).

Prolog
Modules

ASP
Modules

ASP-Prolog
PreProcessor

CIAO
Prolog

ASP-Prolog
Goals

Answer
Substitutions

Updated
Prolog

Modules

Module Load

Interface
Modules

Model
Classes

Fig. 1. Overall Structure of ASP − PROLOG Implementation

Preprocessing: The input to the system is used as the input to the prepro-
cessor. The preprocessor transforms each Prolog module into a new module (Pr
is transformed to NPr and mi is transformed to nmi), and each ASP module
ei into a CIAO module imi and a class definition ci.1 The main purpose of
this step is to adapt the syntax of the interface predicates, make it compatible
with CIAO Prolog’s syntax, and prepare different objects (interface module and
model class) for the actual program execution. The preprocessor also invokes the
CIAO Prolog top-level and loads all the appropriate modules for execution. The
interaction with the user is the same as the standard Prolog top-level.

Interface Modules: For each ASP module ei, the preprocessor generates an
interface module ci by instantiating a generic module skeleton to the content
of ei. ci is a standard CIAO Prolog module and provides the client Prolog
modules with the predicates used
to access and manage the ASP
module ei. The overall structure
of the interface module is illus-
trated in Figure 2. The module
has an export list which includes
all the predicates used to manipu-
late ASP modules (e.g., assert,
retract, model) as well as all
the predicates that are defined
within the ASP module. The typ-
ical module declaration generated

Public Part
Export List

Private
Data

Module
Initialization

* access ASP file & parameters
* computation of initial models
* generation of model objects
* interface initialization

MODELS
* Internal ASP Program representation
* Model Objects
* Backtracking checkpoints
* Support Tables

* interface predicates
 - assert/1, assert_nb/1
 - retract/1, retract_nb/1
 - models/2, total_stable_models/1
 - compute/2, change_parm/1

Fig. 2. Structure of the Interface Module

for an interface module will look
like:

1 CIAO provides the ability to define classes and create class instances [4].

Integrating an Answer Set Solver into Prolog: ASP − PROLOG 403

:− module(’plan.lp’,[assert/1,retract/1,...,model/2,p/0,q/0,r/0]). The
definition of the various exported predicates (except for the predicates defined
in the ASP module) is derived by instantiating a generic definition of each pred-
icate. Each module has an initialization part, which is in charge of setting up
the internal data structures (e.g., the internal representation of the ASP module,
tables to store parameters and answer sets), and invoke the answer set solvers for
the first time on the ASP module—in the current prototype we are using Smod-
els as answer set solver. The result of the computation of the models will be
encoded as a collection of Model Objects (see below). The module will maintain
a number of internal data structures, including a representation of the ASP code,
a representation of the parameters to be used for the computation of the answer
sets (e.g., values of constants), a list of the objects representing the models of
the ASP module, and a count of the current number of answer sets.

Model Classes: For each ASP module ei, the preprocessor generates a CIAO
class definition ci. The objects obtained from the instantiation of such class will
be used to represent the individual models of the ASP module. Prolog modules
can obtain reference to these objects (e.g., using the model predicate supplied
by the interface module) and use them to directly query the content of one or
several models. The definition of the class is obtained through a straightforward
parsing of the ASP module, to collect the names of the predicates defined in it;
the class will provide a public method for each of the predicates present in the
ASP module. In addition, the class defines also a public method add/1 which is
employed by the interface module to initialize the content of the model.

Each model is stored in one instance of the class; the actual atoms rep-
resenting the model are stored internally in the objects as facts of the form
s(〈fact〉).

Implementation and System Details: The various interface predicates are
implemented in CIAO Prolog in a fairly straightforward way. For instance, the
implementation of assert (resp. retract) makes use of the module concat of CIAO
Prolog to introduce new (resp. remove) rules to (resp. from) the ASP module.

A number of tables are maintained by each interface module to support the
execution of ASP modules. Some of the relevant internal structures include:

• fn: maintains a (Prolog-based) representation of the rules of the ASP module;
• stable ref: a table (implemented as Prolog facts) that maintains references

to the current answer sets of the ASP module (as pairs model name/object
reference that maps name of models to objects representing the models);

• retract rule: a trail structure that caches the modifications performed by
assert and retract; this is required to allow undoing of the changes;

• prm: a table (encoded as Prolog facts) that stores the parameters to be used
during the computation of the models of the ASP module.

404 O. Elkhatib, E. Pontelli, and T.C. Son

Code and URL: The original idea and the semantics of ASP − PROLOG has
been presented in [3]. The first version of system is now complete and available
for download at www.cs.nmsu.edu/∼okhatib/asp prolog.html.

References

1. The DLV Wrapper Project. 160.97.47.246:8080/wrapper, 2003.
2. L. Castro. XASP: Answer Set Programming with XSB. SUNY Stony Brook, 2002.
3. O. Elkhatib et al. ASP-Prolog: A System for Reasoning about Answer Set Programs

in Prolog. In PADL-2004, pages 148–162. Springer, 2004.
4. M. Pineda et al. The O’Ciao Approach to Object Oriented Logic Programming. In

Colloquium on Implementation of Constraint Logic Programming Systems, 2002.
5. T. Syrjänen. Lparse User’s Manual. www.tcs.hut.fi/Software/smodels.

www.cs.nmsu.edu/~okhatib/asp_prolog.html
160.97.47.246:8080/wrapper
www.tcs.hut.fi/Software/smodels

	Introduction
	System Capabilities and Possible Areas of Application
	System Implementation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

