
SMODELSA — A System for Computing Answer Sets of
Logic Programs with Aggregates

Islam Elkabani, Enrico Pontelli, and Tran Cao Son

New Mexico State University, Las Cruces, NM 88003, USA
{tson, epontell, ielkaban}@cs.nmsu.edu

1 Introduction

In [2], we presented a system called ASP-CLP for computing answer sets of logic
programs with aggregates. The implementation of ASP-CLP relies on the use of an
external constraint solver (ECLiPSe) to deal with aggregate literals and requires some
modifications to the answer set solver used in the experiment (SMODELS). In general,
the system is capable of computing answer sets of arbitrary programs with aggregates,
i.e., there is no syntactical restrictions imposed on the inputs to the system. This makes
ASP-CLP different from DLVA (built BEN/5/23/04) [1], which deals with stratified pro-
grams only. ASP-CLP, however, is based on a semantics that does not guarantee min-
imality of answer sets. Furthermore, our experiments with ASP-CLP indicate that the
cost of communication between the constraint solver and the answer set solver proves
to be significant in large instances.

In this work, we explore an alternative to ASP-CLP and develop a new system
for computing answer sets of logic programs with aggregates. We begin with the
definition of a new semantics for programs with aggregates that has the following
characteristics:

• It applies to arbitrary programs with aggregates, e.g., no syntactic restrictions on
the use of aggregates, and it is as intuitive as the traditional answer set semantics.
• It does not explicitly require the satisfaction of desirable properties of answer sets

(such as being closed, supported, or minimal), but the answer sets resulting from
the new definition naturally satisfy such properties.
• It can handle aggregates as head of rules (not supported yet in our implementation).
• It can be implemented by integrating the definition directly in state-of-the-art an-

swer set solvers. In particular, it requires only the addition of a module to determine
the “solutions” of an aggregate, without any modifications to the mechanisms to
computer answer sets.

The syntax of the language is similar to ASP-CLP—where a new type of literals (aggre-
gate literals) is used; an aggregate literal has the form F ({X | p(X1, . . . , Xn)})opV al
where F is an aggregate function (e.g., SUM), and op is a relational operator (e.g., =,
≤). A similar literal with multisets is also available. The semantics and comparison with
other approaches can be found in [3]. Its main features are:

• it defines the concept of solution of an aggregate � as a pair 〈X, Y 〉 such that every
model M of the program satisfying X ⊆M and Y ∩M = ∅ also satisfies �;
• it defines the unfolding of a program based on the notion of solution.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 427–431, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

428 I. Elkabani, E. Pontelli, and T.C. Son

The unfolding of a program with aggregates is a normal logic program whose answer
sets can be computed using off-the-shelf systems. A set of atoms M is an answer set of
a program with aggregates P iff it is an answer set of unfolding(P). We illustrate the
semantics through the following examples.

Example 1. Let P1 be the program
p(1). p(2). p(3)← q. q ← sum({X | p(X)}) > 5.

The only aggregate solution of sum({X | p(X)}) > 5 is 〈{p(1), p(2), p(3)}, ∅〉 and
unfolding(P1) contains:

p(1). p(2). p(3) ← q. q ← p(1), p(2), p(3).
which has M1 = {p(1), p(2)} as its only answer set. M1 is the only answer set of P1.

Example 2. Consider the program P2:
p(2). p(1)← min({X | p(X)}) ≥ 2.

The aggregate literal min({X | p(X)}) ≥ 2 has a unique solution 〈{p(2)}, {p(1)}〉.
unfolding(P2) = {p(2). p(1)← p(2), not p(1).}

unfolding(P2) does not have answer sets, i.e., P2 does not have answer sets.

We will now describe SMODELSA that implements the new semantics. Source code of
the system can be found at www.cs.nmsu.edu/∼ielkaban/asp-aggr.html.

2 The SMODELSA System

Our main goal in developing SMODELSA is to test the feasibility of a new approach to
computing the answer sets of programs with aggregates by (i) computing the solutions
of aggregate literals; (ii) computing the unfolding; and (iii) using standard answer set
solvers to compute the answer sets. For this reason, we add to LPARSE and SMODELS

two new modules. One for the preprocessing and another for the computation of the
unfolding program. The overall structure of our system is shown in Fig. 1. The current
implementation is built using SMODELS v.2.28 and LPARSE v.1.0.13.

pipe pipe pipe pipe

Preprocessor Lparse LparseTransformer Smodels

ASP
Program

A ground
program
with

aggregates

unfolded
ground

normal logic
program

simplified
ground normal
logic program

Answer
Sets

Fig. 1. Overall System Structure

Similar to the SMODELS system, the computation of answer sets of a program with
aggregates is piped through several stages. In the 2nd and 4th stage, LPARSE is used. In
the last stage, SMODELS is used. Let us detail the modules used in the other stages.

2.1 The Preprocessor

The Preprocessor is used to perform a number of simple syntactic transformations of
the input program. These transformations are mostly aimed at rewriting the aggregate

www.cs.nmsu.edu/~ielkaban/asp-aggr.html

429

literals in a format acceptable by LPARSE. An aggregate literal of the form f({X |
p(X, Y)}) opR is transformed into an atom, t-aggregate atom, of the form

‘‘$agg’’(f, ‘‘$x’’, p(‘‘$x’’, Y), R, op)
and a choice rule
{‘‘$agg’’(f, ‘‘$x’’, p(‘‘$x’’, Y), R, op)} ← type(Y)

where type(Y) is the domain predicate specifying the possible values of Y . For ex-
ample, the rule

q ← sum({X | p(X)}) > 3.
is transformed to:

q ← ‘‘$agg’’(sum,‘‘$x’’,p(‘‘$x’’),3,greater).
{‘‘$agg’’(sum,‘‘$x’’,p(‘‘$x’’),3,greater)}.

The resulting program is processed by LPARSE and by the Transformer Module.

2.2 The Transformer Module

The Transformer Module is the major component of SMODELSA. It is responsible for
the computing of the unfolding of the input programs and has four components: Reader,
Dependencies Analyzer, Aggregate Solver, and Rules Expander. The overall organiza-
tion of the Transformer Module is shown in Fig. 2. The Transformer is completely
written in Prolog.

Reader. The Reader gets the out-
put of the first LPARSE process-
ing and constructs three tables:
the Atoms Table, the Rules Table,
and the Aggregates Table. These
tables store the ground atoms,
the ground rules, and the ground
t-aggregate atoms (called aggre-
gate atoms hereafter). For each
aggregate atom, the Reader also
stores other information, such
as its aggregate function (e.g.,
SUM, COUNT, etc.), its rela
tional operator (e.g., >, <, etc.),
the com

Fig. 2. Transformer Module
pared value, the grouped

variable, and the dependent atoms skeleton (e.g., p(X) where X is the grouped vari-
able). For example, the values for these attributes are SUM, >, 3, “$x”, p(“$x”), respec-
tively, for the aggregate atom “$agg”(sum, “$x”,p(“$x”),3,greater).

Dependencies Analyzer (DA). The DA is responsible for the identification of the depen-
dencies between aggregate atoms and atoms contributing to such aggregates. For each
aggregate literal, the DA searches the Atoms Table for its atom dependencies, constructs
a set (implemented as a list) of pointers to these atoms, and stores it as a part of the ag-
gregate information in the Aggregates Table. These dependencies represent the domain
from which the solutions of an aggregate constraint are built. For example, the set of

-

SMODELSA — A System for Computing Answer Sets of Logic Programs

430 I. Elkabani, E. Pontelli, and T.C. Son

dependencies of the atom “$agg”(sum, “$x”,p(“$x”),3,greater) consists of all the atoms
of the form p(X) and is {p(1), p(2), p(3)} in the previous example.

Aggregate Solver (AS). The main task of the AS is to compute a minimal solution set for
each aggregate atom in the program. It contains several constraint solving procedures,
one for each aggregate function. Presently, it supports SUM, AVG, MIN, MAX, and
COUNT and the basics relational operators >, <,≥,≤, =, 	=. For every aggregate atom
in the Aggregates Table, AS identifies its aggregate function and sends it, together with
its set of dependencies, to the appropriate constraint solving procedure which produces
either (i) a minimal set of solutions needed for the unfolding of the atom, if the aggre-
gate literal has some solutions; or (ii) false otherwise. This information is then stored
in the Aggregates Table. If we consider the previous example, AS will return the set
{〈{p(1), p(2), p(3)}, ∅〉} for the aggregate atom “$agg”(sum, “$x”,p(“$x”),3,greater)
with the set of dependencies {p(1), p(2), p(3)}. If the constant 3 in the aggregate literal
is changed to 7, the AS will returns false.

Rules Expander (RE). The RE module completes the job of the Transformer Module, by
computing the unfolding of the program. For each rule r in the Rules Table, it generates
unfolding(r), the set of rules obtained from r by simultaneously replacing each aggre-
gate literal in r by the unfolding of one of its solutions (stored in the Aggregate Table).
The RE also simplifies the code to remove the temporary choice rules introduced by
the Reader. RE also performs some optimizations, such as removing rules whose body
contains an unsatisfiable aggregate literal. For the program P1, the result of this step is
the following program:

p(1). p(2). p(3) ← q. q ← p(1),p(2),p(3).

Table 1. Benchmarks with Aggregates (times in sec.)

Program Sample Size SMODELSA Time Transformer Time DLVA Time

Company Control 20 0.010 0.080 N/A
Company Control 40 0.020 0.340 N/A
Company Control 80 0.030 2.850 N/A
Company Control 120 0.040 12.100 N/A
Shortest Path 20 0.220 0.740 N/A
Shortest Path 30 0.790 2.640 N/A
Shortest Path 50 3.510 13.400 N/A
Shortest Path (All Pairs) 20 6.020 35.400 N/A
Party Invitations 40 0.010 0.010 N/A
Party Invitations 80 0.020 0.030 N/A
Party Invitations 160 0.050 0.050 N/A
Seating 16/4/4 11.40 0.330 4.337
Employee Raise 15/5 0.57 0.140 2.750
Employee Raise 21/15 2.88 1.770 6.235
Employee Raise 24/20 3.13 2.420 26.50
NM1 125 0.11 0.10 N/A
NM1 150 0.16 0.13 N/A
NM2 125 1.44 0.80 N/A
NM2 150 2.08 1.28 N/A

431

3 Experiments and Benchmarks

We have experimented SMODELSA with various benchmarks (some from the literature
and some newly created) and compared it with DLVA whenever possible (Table 1).
The experiments have been performed on a Linux P4 (3.06GHz, 512MB). The column
SMODELSA reports the time for computing answer sets of the unfolded program, while
Transformer Time reports the unfolding time. The performance results are acceptable
in most cases; on stratified programs, our system is occasionally faster than DLV, and
occasionally slower, depending on the type of aggregate (some have many solutions,
that we precompute, and that are not required during answer set computation).

4 Discussion

We presented a new system for computing answer sets of logic programs with aggre-
gates. The new system differs from our previous system in two ways: (i) it implements
a different, intuitive, semantics, which leads only to minimal models; and (ii) it does
not modify LPARSE and SMODELS. The result of our initial experimentation shows that
this direction is promising. The system has not been optimized for performance and this
will be our focus in the near future. In particular, we plan to

1. Improve the preprocessor, e.g., by using more sophisticated data structures (e.g., to
speedup search of atoms during the DA phase) and to eliminate redundant aggregate
atoms in the Aggregate Table.

2. Improve the aggregate solver to allow more than one grouping variable and ad-
ditional aggregate functions (presently, it handles only one grouping variable and
allows only basic aggregate functions);

3. Improve the rule expander to reduce the size of the unfolding program.

A more important work, that is in progress, is to extend our system to support a sec-
ond characterization of our aggregate semantics, equivalent to the one mentioned here,
which relies on unfolding w.r.t. a specific answer set; this is expected to reduce the size
of the unfolding for many aggregates and simplifies the handling of aggregates in the
head of the rules. Furthermore, from our experiments, it is obvious that there are ag-
gregates that are better handled with the approach described in this paper (as they lead
to a small unfolding), and others that would benefit from additional knowledge about
the answer set we are building (i.e., delay the unfolding until the actual answer set
computation). We plan to develop classification methods that will select the appropriate
unfolding approach.

References

1. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, G. Pfeifer. Aggregate Functions in Disjunctive
Logic Programming: Semantics,Complexity,and Implementation in DLV. IJCAI, 2003.

2. I. Elkabani, E. Pontelli, and T.C. Son. Smodels with clp and its applications: A simple and
effective approach to aggregates in asp. Int. Conference Logic Programming, pp. 73–89, 2004.

3. T.C. Son, E. Pontelli, and I. Elkabani. A Translational Semantics for Aggregates in Logic
Programming. Technical Report NMSU-CS-2005-005, New Mexico State University, 2005.

SMODELSA — A System for Computing Answer Sets of Logic Programs

	Introduction
	The SmodelsA System
	The Preprocessor
	The Transformer Module

	Experiments and Benchmarks
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

