Artificial
Intelligence

SEVIE Artificial Intelligence 125 (2001) 19-91

www.elsevier.com/locate/artint

Formalizing sensing actions—
A transition function based approach

Tran Cao So@*, Chitta Baral

@ Knowledge Systems Laboratory, Computer Science Department,
Stanford University, Stanford, CA 94305, USA
b Department of Computer Science Engineering, Arizona State University, Tempe, AZ 85287, USA

Received 21 April 1998; received in revised form 1 December 1999

Abstract

In presence of incomplete information about the world we need to distinguish between the state
of the world and the state of the agent’s knowledge about the world. In such a case the agent may
need to have at its disposal sensing actions that change its state of knowledge about the world and
may need to construct more general plans consisting of sensing actions and conditional statements
to achieve its goal. In this paper we first develop a high-level action description language that allows
specification of sensing actions and their effects in its domain description and allows queries with
conditional plans. We give provably correct translations of domain description in our language to
axioms in first-order logic, and relate our formulation to several earlier formulations in the literature.
We then analyze the state space of our formulation and develop several sound approximations that
have much smaller state spaces. Finally we define regression of knowledge formulas over conditional
plans.0 2001 Elsevier Science B.V. All rights reserved.

Keywords:Sensing actions; Action description languages; Conditional plans; Regression of knowledge
formulas; Incomplete information; Approximate reasoning

1. Introduction and motivation

Unlike actions that change the world, sensing or knowledge producing actions change
what the agent knows about the world. Consider the following example of a high security
door. The action of pushing the dogrush door)—when executed in a world where the
(lock of the) door is initially unlocked and not jammed—uwill change the world so that

* Corresponding author.
E-mail addressesson@ksl.stanford.edu (T.C. Son), chitta@asu.edu (C. Baral).

0004-3702/01/$ — see front mattér 2001 Elsevier Science B.V. All rights reserved.
Pll: S0004-3702(00)00080-1

20 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

after the action is performed the door is open. The same action if executed when the door
is locked will jam the door. Similarly, the action of flipping the lodk_lock) will unlock
alocked door and lock an unlocked door. On the other hansiehsing actiomf checking

the lock of the doorgheckiif _locked will resultin the agent knowing if the door is locked

or not.

Sensing actions play an important role when an agent needs to plan in presence of
incomplete information. Consider the case when our agent initially (i.e., in the initial
situation) does not know if the door is locked or not, but knows that the door is not jammed
and is not open and its goal is to open the door. We will assume that the only actions it
can perform are the ones described eartibeck if _locked flip_lock andpush door. We
now argue that the agent cannot just construct a classical plan—consisting of a sequence
of actions—that will always (i.e., regardless of what the real state of the world is) succeed
in reaching the agent’s goal.

Let us first consider the pla®; consisting ofpush door. This plan will not work
if the door is initially locked. In fact it will jam the door, and no subsequent action
sequence will result in the door being open. Let us now consider thelaonsisting
of flip_lock; push door. This plan will not work if the door is initially unlocked. In fact
it will also jam the door, and no subsequent action sequence will result in the door being
open. Therefore, neithdty, nor P2, and nor any plan that starts with and P, will work
in both cases. This, together with the fact that the aatlweck if lockeddoes not change
the world and a sequenceftip_locks is equivalent to zero or a sindglg_lock, is enough
to conclude that there does not exist a classical plan that will work for all possible initial
situations.

The following simple conditional plais,

IF —door_lockedTHEN push door ELSE flip_lock; push door

is not appropriate either. That is because the agent not knowing witethiefockedis true
or not cannot execute this plan. A correct conditional pfg that will always achieve the
goal uses the sensing actiohneck if locked and is as follows:

checkif locked
IF —door_lockedTHEN push door ELSE flip_lock; push door.

Thus sensing actions are very important for planning in presence of incomplete informa-
tion. In the past, sensing actions have been formalized in [24,38,40,41,49] and planning
in presence of incomplete information has been studied in [11,15,16,18,23,28,31,44,46,
50,54]. To motivate our work we now briefly review the earlier formalizations of sensing
actions.

1.1. Moore’s formalization

To the best of our knowledge sensing actions were first formalized by Moore in his
dissertation [40] and in some of his later papers; for example, [41]. Moore uses possible

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 21

world semantics to represent knowledge and treats the accessibility relation between
worlds as a fluent when reasoning about sensing and non-sensing actions.

e He describes how the knowledge of an agent may change after executing a non-
sensing actiom, by defining the accessibility relation between the worlds that may
be reached after executing the action
According to him, for any two possible worlde; andw; such thatws is the result
of the execution of in w1, the worlds that are compatible with what the agent knows
in wy are exactly the worlds that are the result of executirig some world that is
compatible with what the agent knowsun . This can be formally written as follows:

Ywi, w2.(w2 = do(a, w1) D
Ywsz.(acQwz, wa) =
Jwg.acqw1, wa) A w3z = do(a, wa))). (1.1

The above formula (and the next formula) is a simplified version of Moore’s original
formula. Here we use the functiaio from situation calculus, useacaw, w’) to
denote thaty’ is accessible from (or is compatible witts) and assume a single agent
world.

e He also describes how the knowledge of an agent may change after executing a
sensing actiosense, by defining accessibility relation between the worlds that may
be reached after executisgnse.

Supposesense is an action that the agent can perform to knovy ifs true or not.
Then for any world represented by, andwz such thatw; is the result ofsense
happening inwy, the world that is compatible with what the agent knowsvinare
exactly those worlds that are the resultsginsg happening in some world that is
compatible with what the agent knowsun, and in whichf has the same truth value
as inwy. This can be formally written as follows:

Ywy, wz.(wz = do(senseg, wi) D
Yw3.((acqwz, wz) =
Jwg. acqw1, wa) A
w3 = do(sense, wa) A f(w2) = f(w3))). (1.2)

1.2. Scherl and Levesque’s formalization

Scherl and Levesque [49] adapted Moore’s formulation to situation calculus and proved
several important results about their formulation such as: knowledge-producing actions
do not affect fluents other than the knowledge fluent; and that actions that are not
knowledge-producing only affect the knowledge fluent as appropriate. They also showed
how regression can be applied to knowledge-producing actions.

Their slight simplification of Moore’s formulation is given by the following two
formulas: (Note that in their use of the relatién which we will follow in the rest of the

1do(a, w) denotes the world reached after executing the actionthe worldw.

22 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

paper, the arguments are reversed from their normal modal logic us& (s2.s) is read
as “the situatiors’ is accessible from the situatieh. Also, situationis a term constructed
by repeated application afo to the initial situatiors.)

K(s",do(a,s)) = (3s'.K(s/,s) As” =do(a,), (1.3)
K (s",do(sensg, s)) = (3s'.K (s, s) As” =do(sensg,s") A f(s') = f(s)). (1.4)

1.3. Our simplification

One of our goalsn this paper is to make it easy to visualize the state space we have
to deal with when searching for plans in presence of sensing actions and incomplete
information. Many formulations of planning (for example, most research on decision
theoretic planning) often assume the existence of a transition function defining a transition
between states—a collection of fluents—due to actions, and do not necessarily depend on
a logical formulation defining this functiolhe questions that we would like to answer
are: What is a‘staté¢ when we need to distinguish between the state of the world and the
state of the knowledge of an agent? How are state transitions due to actions—both sensing
and non-sensing—defined?

To answer the first question we introduce the notion efstate (or combined state)
which is a pair consisting of:

(i) the real state of the world, and

(i) the state of the agent’s knowledge about the world given by the set of Satdmt

the agent thinks it may be in.

The transition between c-states due to actions—denotebl(by(s, X))—can then be
defined in terms of the original transition between states (defined using the fuRetfon
in the following way:

e If a is a non-sensing action then for any c-state (s, '), @ (a, o) is defined as the

pair (Resa, s), {s' | s' = Rega, s”) for somes” € X}).
e If sense is a sensing action that senses the flugtihen for any c-state = (s, X'),
@ (sensg, o) is defined as the pais, {s’ | s’ € X such thatf e s iff f es'}).
Consider our example in the beginning of this section. The two possible initial c-states—
with explicit representation of negative fluents—for this example are:

o1 = ({locked, {{locked, #}) and o2 = (@, {{locked, #}).

In Fig. 1 we give a fragment of the state space diagram of this example illustrating how
transitions take place between one c-state to another because of actions.

For a logical formalization of the above we simplify Moore’s and Scherl and Levesque’s
formulation by assuming that we only need to proceed fronkthielation about the initial
situation to possible future situations. The formulas (1.3) and (1.4) can then be modified as
follows:

K (do(a, "), do(a, s)) = K (s, s), (1.5)
K (do(sensg, s'), do(sensg, s)) = (K (s, s) A f(s) = f(s)). (1.6)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 23

{locke djammed}
open

Fig. 1. Transition between c-states in the door opening example.

Using the above two formulas, successor state axioms about actions [47], and information
about the initial situation, we can then reason about what is known to be true in a future
situation. We discuss this formulation in further detail in Section 2.3.

1.4. Our goals

Our first goalin this paper is to augment the high-level languag€20,21] to allow
specifications and reasoning about sensing actions. We will call the new langlyage
The semantics of domain descriptionsdr will be defined using the transition functions
introduced in the previous subsection. The motivation behind doing this is the simplicity
of high-level languages and the fact that no knowledge about particular logics is necessary
to understand the concept. But we pay the price of being less general than when the
formalization is done in a standard logical language (classical logic possibly augmented
with circumscription, logic programming, default logic, etc.). But then later we give
formalizations in logicand prove the correctness of our logical formalizatieith respect

24 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

to our original formalization. Thus our initial formalization using a high-level language—
which is simpler to follow—can play the role of a benchmark for formalizations in standard
logical languages.

Our second goal, and perhaps the most important aspect of this paptr develop
approximations of the languagéx . The motivation behind that is the possible state space
explosion inAk. In presence of: fluents, we will have 2 possible states and®2”
possiblec-states We develop several approximations with much smaller state spége (3
but with varying complexity in computing transitions. We then show the soundness of these
approximations.

Finally, we relate our formulations with earlier formulations of sensing actions—in
particular with Scherl and Levesque’s [49] formulation and Lobo et al.’s [38] formulation—
and show that:

(i) when we translate domain descriptions in our language to Scherl and Levesque’s

formulation we obtain similar conclusions, and

(i) when we make certain assumptions about our knowledge about the initial state

then domain descriptions in our language have the same semantics as that of the
semantics defined by Lobo et al. [38].
We also discuss some of the earlier work on planning with sensing actions [15,16,22,23],
compare the formulations there with that of ours, and briefly describe earlier work on
regression and adapt a simplified version of regression from [49] to define regression with
respect to conditional plans.

2. The languagedx

In this section we introducd ¢ —an extension of the languagein [21]—which allows
reasoning about sensing actions. (Strictly speakihg,is a variation of4 instead of an
extension, as unlike id, we do not allow observations or hypothesis about non-initial
situations in our domain descriptions. Moreover, our language has two components [4,34]:
one which defines domain descriptions and another which defines queries.)

2.1. Syntax ofdg

We begin with two disjoint nonempty sets of symbols, cafleént namegor fluent3
andaction namegor actiong. A fluent literalis either a fluent name or a fluent name
preceded by-. For a fluentf, by — f we meanf, and by f we mean-f.

2.1.1. Domain descriptions id g
A v-proposition(value proposition) is an expression of the form

initially f 2.1)

where f is a fluent literal. Intuitively, the above v-proposition means that the fluent literal

f is initially known to be true(In .4, where v-propositions describe the initial state of
the world instead of what the agent knows about the initial state of the world, the above
proposition has a slightly different meaning. There, the above proposition means that the
fluent literal f is true in the initial state of the world.)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 25

Two v-propositionsnitially f andinitially g are said to beontradictoryif f =7g.
An ef-proposition(effect proposition) is an expression of the form

a causey if p1,..., pn (2.2)

wherea is an action, and each ¢f p1, ..., p, (n > 0) is a fluent literal. The set of fluent
literals{p1, ..., p,}isreferredto as thereconditiorof the ef-proposition and is referred
to as theeffectof this ef-proposition. Intuitively this proposition conveys the meaning that
f is guaranteed to be true after the execution of an aetiorany state of the world where
p1,--., pp are true. lfn = 0, we will drop theif part and simply writex causey .

Two ef-propositions with preconditions, ..., p, andqsz, ..., ¢, respectively are said
to becontradictoryif they describe the effect of the same actipan complementary’s,
and{p1,....,putN{q1,....qm} = 9.

An ex-proposition(executability proposition) is an expression of the form

executablea if p1,..., py (2.3)

wherea is an action, and each fy, ..., p, (n > 0) is a fluent literal. Intuitively, this
proposition conveys the meaning that the actiois executable in any state of the world
whereps, ..., p, are true. Ifn = 0, we will drop theif part and simply writexecutablea.

A k-proposition(knowledge proposition) is an expression of the form

a determinesp (2.4)

wherea is an action andp is a fluent. Intuitively, the above proposition conveys the
meaning that ifz is executed in a situation, then in the resulting situation the truth value
of p becomes known.

A propositionis a v-proposition, ef-proposition, ex-proposition or a k-proposition.

A domain descriptiolis a set of propositions, which does not contain

(i) contradictory v-propositions; or

(ii) contradictory ef-propositions.
Actions occurring in ef-propositions and k-propositions are called non-sensing actions and
sensing actions, respectively. In this paper—to avoid distraction from the main points—
we make the further assumption that the set of sensing actions and the set of non-sensing
actions are disjoint. Following is an example of a domain description in our language.

Example 1. Let us consider an agent who hasdisarm a bomb which can only be
done safely—i.e., withouexploding—if a special lock on the bomb has been switched
off (locked; otherwise it explodes. The agent can determine if the lock is locked or not by
looking at the lock. He can alsturn the lock from thelocked position to theunlocked
position and vice versa. He can only execute the above actions if the bomb has not
exploded. Initially, the agent knows that the bomb is not disarmed and is not exploded.
We can describe the above story by the following domain description.

26 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

initially —disarmed

initially —exploded
disarmcausesxplodedf —locked
disarmcausedisarmedif locked
turn causes-lockedif locked

turn causedockedif —locked
look determineslocked
executablelookif —exploded
executableturn if —exploded
executabledisarmif —exploded

2.1.2. Queries indg

As discussed in Section 1, in the presence of incomplete information and knowledge
producing actions, we need to extend the notion of a plan from a sequence of actions so
as to allow conditional statements. In the following definition we formalize the notion of a
conditional plan.

Definition 1 (Conditional plar).
(1) An empty sequence of action, denoted Ryis a conditional plan.
(2) If a is an action them is a conditional plan.
) If c1,...,¢y (n > 1) are conditional plans angh, .. ., ¢, are conjunction of fluent
literals, (which are mutually exclusive but not necessarily exhaustive) then the
following is a conditional plan. (We refer to such a plan asae plai.

Case

@1 —> C1

$n —> Cn

Endcase

(4) If c1, c2 are conditional plans then; ¢z is a conditional plan.
(5) Nothing else is a conditional plan.

Intuitively, the case plan is a case statement where the agent evaluates the various
@;i's with respect to its knowledge. If it knows that is true for some it executes the
corresponding;. If none of they;’s are true then the case plan fails and the execution of
the conditional plan which contains this case plan also fails.

There are two kind of queries that we can ask our domain descriptions. They are of the
form:

Knows ¢ after ¢ (2.5)
Kwhether ¢ after ¢ (2.6)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 27

wherec is a conditional plan and is a fluent formula. Intuitively, the first query is about
asking if a domain description entails that the fluent formubaill be known to be true
after executing the conditional plarin the initial situation, and the second query is about
asking if a domain description entails that the fluent formulaill be known to be true or
known to be false after executing the conditional ptan the initial situation.

2.2. Semantics oflx

In Ak, we have three kinds of states: a world state (often referred to staté
representing the state of the worldkmowledge statéor a k-state), representing the state
of the knowledge of the agent, andembined stat€or a c-state) that is a pair consisting
of a world state, and a k-state. As mentioned earlier, the semantics of domain descriptions
in Ax are defined in terms of models which are pairs consisting of an initial c-state and a
transition function that maps pairs of actions and c-states into c-states.

In the following we will use small letters beginning frosm(possibly with indexes) to
denote world states, uppercase Greek letters dikgossibly with indexes) to denote k-
states, and lowercase Greek letters liké (possibly with indexes) to denote c-states. The
letter ¢ (possibly with indexes) will be used exclusively to denote conditional plans while
a (possibly with indexes) will be used to denote a sequence of actions.

A states is a set of fluents andlastateis a set of states. Bombined stat¢or c-statg
of an agent is a paifs, X') wheres is a state and’ is a k-state. Intuitively, the statein a
c-state(s, X) is the real state of the world where&sis the set of possible states which an
agent believes it might be in. We say a c-state (s, ') is groundedf s € X. Intuitively,
grounded c-states correspond to the assumption that the world state belongs to the set of
states that the agent believes it may be in.

Given a fluentf and a state, we say thatf holds ins (f is true ins) if f es; —=f

holds ins (f is false ins) if f ¢ s. The truth of a propositional fluent formula with respect
to s is defined as usual. We say two statemds’ agree on a flueny if (f € s iff f €s').
Given a c-state = (s, X'), we say that a fluenf is known to be truérespectivelyjknown
to be falsgin (s, X) if f is true (respectively false) in every state= X'; and f is known
n (s, X), if fis known to be true or known to be false {n X'). Given a fluent formula
¢, we say thaty is known to be true (respectively false) in a c-statey’) if ¢ is true
(respectively false) in every state X.

An actiona is executable in a stateif there exists an ex-propositi@xecutablez if p1,

.., ppin D suchthatpy, ..., p, holdins.
For an actioru and a state, if a is executable in, we define

Ef(s)=1{f | fis afluent and there exists an ef-proposition
“a causey if p1,..., p," € D such thatpy, ..., p, hold ins},
E_, (s)={f| f is afluent and there exists an ef-proposition
“a causes—~f if p1,..., p,” € D suchthatpy,..., p, holdins},
and

Resa,s)=sU E;“(s) \ E, (s).

28 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

If a is not executable in, we say thaRega, s) is undefined.

Intuitively, Rega, s) is the state resulting from executingn s. Since we do not allow
contradictory ef-propositions in our domain description, for any pair of an aatiamd a
states, E; (s) andE, (s) are disjoint and uniquely determined. THRissis a deterministic
function.

We are now ready to defing, the transition function between c-states.

Definition 2. A function @ from actions and c-states into c-states is callddhasition
functionof D if for all c-states = (s, X) and actior,

(1) if a is not executable in then® (a, o) is undefined, denoted By (a, o) = L;

(2) if a is executable in anda is a non-sensing action, then

®(a,0) =(Resa, s),{s" | s' = Resa, s") for somes” € ¥ such that
a is executable in"});

and
(3) if a is executable ins and a is a sensing action whose k-propositions are
a determines f1, . .., a determines f,,, then

®(a,0) =(s,{s' | s’ € ¥ such that ands'agree on each, (i <m), and
a is executable in'}).

SinceResis a deterministic function, it is easy to show the following:
Proposition 1. Every domain descriptio® possesses a unique transition functibn

Notice that our definition of the transition functiah does not stipulate any special
requirement on how thResfunction is defined. Thus, any action description language [3,
26,53] with a semantics depending on a state transition functiorRidsean be extended
to allow sensing actions. Therefore, several of the other features of action description
languages such as multi-valued fluents [19], ramification [26,36], causality [1,35,43],
concurrentactions [2,3,37], can be directly added to our framework. For example, to extend
our formulation to multi-valued fluents, we have to:

(i) extend our propositions to be able to denote different values of the fluents, and

(i) extend our notion of states to be interpretations of the fluents.

The definition of transition function will remain the same, except that the notiemotls’
agreeing on a fluent would now mean that ands’ have the same value ¢f To keep our

focus on the main issue of formalizing sensing actions, we do not include these features in
our formulation, as they can be directly added when desired.

Definition 3.

(1) A states is called aninitial state of a domain descriptiorD if for every value
proposition of the form thitially p” (respectively ‘nitially —p”) in D, p is true
(respectively false) in.

(2) A c-state(sg, Xo) is aninitial c-stateof D if sg is an initial state andy is a set of
initial states ofD.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 29

We say an initial c-stateg = (sg, Xo) is completeif X is the set of all initial states.
Intuitively, the completeness of initial c-states express the assumption that our agent has
complete knowledge about what it knows and does not know about the initial state. We
will refer to this as thecomplete awareness assumpt®iEven though, we believe that
this assumption should not be used indiscriminatghge it reduces the number of initial
c-states, we will use it in most of our examples.

Definition 4. A model of a domain descriptio® is a pair (o9, @) such thatog is a
grounded initial c-state oD and @ is a transition function ofD. A model (og, @) is
calledrational if og is complete.

Since the transition functio@ as defined so far can only tell us which c-state is reached
after executingan actionin a given c-state, we need to extend the function to be able
to reason—beyond action sequences—about conditional plans. We call it the extended
function of @ and define it as follows.

Definition 5. Let D be a domain description amd@ be its transition function. The extended
transition function ofD, denoted byf, which maps pairs of conditional plans and c-states
into c-states, is defined as follows.

1) @(l.o)=0. _

(2) For an action, ®(a,o) = ®(a,o).

(3) For

¢ =Case

Y1 —>C1

On —> Cp

Endcase
~ D (ci,o) if ¢; isknown to be true ino,
D(c,0)= .) .
1 if none of ¢1, ..., ¢, is known to be true ino.

(4) Forc = c1: ca, wherecy, ¢z are conditional plansp (c, o) = ® (co, D (c1, 0)).
(5) @(c, L) =1 for every conditional pla. R
We say that a conditional planis executable in a c-stateif @ (c, o) # 1.3

We are now ready to define the entailment relation for domainxaf

Definition 6. Let D be a domain descriptiomr, be a conditional plan, and be a fluent
formula. We say,

2 Turner [52] used a similar assumption called “complete initial situation assumption” according to which each
model of his logic programming formulation of actions would have complete information about the initial state.

Sltis easy to see that for every pair of a c-statand a conditional plan, @(c, o) =L or there exists a unique
c-stateo’ such tha@® (c, o) = o’.

30 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

() D a4, Knows ¢ after c if ¢ is executable inrg andg is known to be true in
@ (c, op) for every modelog, @) of D;
(i) D =4, Kwhether ¢ after « if ¢ is executable ig andg is known to be true or
known to be false imd (e, o) for every modelog, @) of D.
Rational entailmentf queries with respect tb—denoted by:;‘K—is defined similarly
by only considering rational models &f.

The following examples elucidates the above definitions.

Example 2. Let D, be the domain description consisting of the following propositions.
initially f
a causes—f
senseg determinesg ¢ = D2
executablea
executablesensg
Letsy={f. g}, s2=1{f}, s3={g}, sa=0.
There are two possible complete initial c-statesinf o1 = (s1, {s1, s2}) and o =
(s2, {51, s2}). Let @ be the transition function ab,. We then have:
®(lal, 01) = P(a, 01) = (53, {53, 5a}),
®(la; sensgl, o1) = @ ([sensg], (s3, {s3, 5a})) = (s3, {s3}),

®([a], 02) = (4, {s3. 54}),
@ ([a; sensgl, 02) = P ([sensel, (sa, {53, 54})) = (s4, {s4}).

Sinceg is known to be true ins3, {s3}) and known to be false iy4, {s4}), we can conclude
that D» |=j4K Kwhether g after [a, sensg].

However,D» béféll(Kwhether g after [a], becausg is not known to be true or known
to be false in(ss, {s3, s4}). Furthermore,

D> I;é'-;‘ll(Knows g after [a, sensg], and
Dy béfélk Knows —g after [a, sensg].
In the following example we consider conditional plans.

Example 3. Let us consider the domain description from Example 1. The states @f;
are:

s1=90, s5 = {disarmed,
so = {locked, se = {disarmed exploded,
s3 = {exploded, s7 = {disarmed locked,

s4 = {locked exploded, sg = {disarmed locked exploded.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 31

The set of initial states ab1 is X = {s1, s2} and the two complete initial c-states Df
areo1 = (s1, Xo) andoz = (s2, Xo). Let @ be the transition function ob4. Thus, by
Definition 4, D1 has two rational modelss1, @) and(o2, @). We have:

@ ([looK], o1) = (s1, {s1}),
@ ([look: disarm, o1) = (s3, {s3}),
& ([look: turn], o1) = (s2, {s2}),

@ ([look: turn; disarm, o1) = (57, {s7}),
@2.7)

@ ([look], 02) = (s2, {s2}).

® ([look; disarm, o2) = (s7. {s7}).

@ ([look: turn], o2) = (s1, {s1}).

@ ([look; turn; disarm, o2) = (s3, {s3}).

Based on the above computation we have the following:

D1 %41(Knows disarmedafter [look; disarm] and

D1 I;é'-;‘ll(Knows disarmedafter [look; turn; disarn.

In Proposition A.1 (Appendix A) we show that there exists no sequence of aatioh®1
such thatDy |:Z4K Knows disarmedA —explodedafter «.
Let us now consider the conditional plan:

look;
Case
—locked— turn
locked— []
Endcase
disarm

:Cl =C

We will show thatD; |:Z4K Knows disarmedA —explodedafter c.
From the definition ofs and the computation ab in (2.7), we have the following:

D(c,01) = D (c1: disarm @ (look, o1)) = @ (c1; disarm @ (look, o1))
= @ (cy; disarm (s1, {s1})) = @ (disarm @ (c1. (s1. {s1})))
= @ (disarm @ (turn, (s, {s1})))

(because-lockedis known to be true irfsy, {s1}))
= @ (disarm @ (turn, (s1, {s1})))
= @(disarm (s, {s2}))) = ®(disarm (s, {s2})))
= (s7, {s7})

32 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

and

@ (c,00) = P (c1; disarm @ (Iook, 02)) = @ (c1; disarm @ (Iook, o))
= @ (c1; disarm (sz, {s2})) = @ (disarm @ (c1, (s2, {s2})))
= & (disarm & ([, (s2, {s2})))

(becauséockedis known to be true iffs2, {s2}))
= @ (disarm (sz, {s2}))) = @ (disarm (s2, {s2})))
= (s7, {s7}).

So, ®(c,01) = (s7,{s7}) and @ (c,o2) = (s7, {s7}). Since disarmedA —explodedis
known to be true in the c-statgz, {s7}), by Definition 6, D1 |=C4K Knows disarmeda
—explodedafter c.

2.3. Translating domain descriptions to first-order theories

In this section we give a translation of domain descriptioR} ih Ak to theories in
first-order logic R(D)), and then show that the translation is sound and complete with
respect tadx when answering queries in the languagedgf. Our translation fronD into
R(D) isinspired by the translation of Kartha [25], and uses axioms and notations from [49]
and [47]. In this section we use the standard notation of having variables start with small
letters and constants start with capital letters. To be consistent we use the same notation for
domain descriptions.

Let us consider a domain descriptidn Assume thaD contains

(1) n sensing actionX1, ..., K, with the k-propositionX; determinesF; for (1 <

i <n),and

(2) m value-propositiongitially G; for (1 <i < m).

For simplicity, we also assume that each actibim D occurs in at least one executability
condition and each sensing acti&n occurs in only one k-proposition. Then, the domain
descriptionD can be translated into a many-sorted theR(y) as follows.

Objects of R(D) are of the sortsaction, fluent and situation To distinguish with
states—which are often denoted b{possibly with subscripts)—in the previous sections,
we uses or S (possibly with subscripts) to denote situations. The vocabulary (signature)
of R(D) consists of the following:

e a constangg of type situation;

e constantsA of type “action” which correspond to different actions fro (one

constant for each action);

e constantsF of type “fluent” which correspond to different fluents from (one

constant for each fluent);

e afunction symboto of the type(actionx situation— situatior;

e a predicate symbdtioldsof the type(fluent situation;

e a predicate symbadk of the type(situation situatior;

We will need the following notations.
e For afluentF, Holds(—F, s) stands fo—Holdg(F, s).
e Foraconjunction of literalg = P A- - - A P,, Holds(o, s) denotes/\[_; Holds(P;, s).

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 33

e For each fluenf and actionA,

def
Vi (A,s) = \/ Holds(e, s),
“A causesF if p"eD
def
Vi (A.s) = \/ Holds(o.s). and

“A causes—F if p"eD

def
PosgA, s) = \/
“executableA if o"eD
The axioms ofR(D) are described below.

(1) The successor state axiom—using Reiter’'s formulation in [47]—for an ordinary
fluent F and an actiom is given by:

Holdgp, s).

PosgA,s) D

[HoldS(F, do(A, s)) = v/ (A,s) v (HOldS(F, s) A =y (A, s))]. (2.8)
(2) The successor state axiom f&r(borrowed from [49]) and an actioA is given by:

PosgA, s) D |:K(s”, do(4,s)) =

3s’ (K(s',s) AP0osgA,s') A (s” =do(A,s))) A

((Ares). oo
j=1

(\/ (A =K, AHoldS(F;,s) = Holds(F;, s/))>>},
j=1

where, recall that,Kq,
F1, ..., F, respectively.
(3) Fori=1,...,m, R(D) contains

..., K, are the sensing actions i that determine

Holds(G;, So) (2.10)
where, recall thatG1, ..., G, are the only fluent literals known to be true in the
initial state.

(4) The following axioms are for the accessibility relation in the initial situation:

K(s,So) > /\ Holds(G;, s) (2.11)
i=1

and

K (So, So).

(2.12)
(5) The domain closure assumption (DCA) for fluents:

\/ f=F.

FeF

34 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

(6) The domain closure assumption (DCA) for actions:

\/a:A.

AcA
(7) The unique name assumption (UNA) for fluents:

N\ FR#P
F1,F>eF
F1, F> distinct

(8) The unique name assumption (UNA) for actions:

N\ Ar# A
A1,A2eA
A1,A> distinct
We now relate the entailment i and the entailment iR (D), for queries regarding fluent
values after a sequence of actions. We use the following notation:

e Holdgg, s) is a shorthand for a corresponding formulaktdlds with only fluents
as its first argument. For exampléjolds f1 v f2,s) denotesHolds f1,s) Vv
Holds(f2, s). Similarly, Holds(f1 A f2,s) denotesHolds(f1, s) A HoldY(f2, s), and
as we mentioned befoidolds(— f, s) denotes-Holdg f, s).

e Knows(¢p, S) denotes the formulais’ (K (s’, S) D Hold(p, s)).

e For a sequence of actions= [ay; .. .; ai]

do([], s) denotes,
do(«, s) denotegio(ay, do(ay_1, ..., do(a, s))),

Posg[],s) =true, and
k
Possa, S) denotes/\ Possa;, do([a1; . ..; ai—1],).
i=1

Proposition 2. Let D be a domain descriptior be a fluent formula, and be a sequence
of actions ofD. Then,

D =4, Knows ¢ after o« iff R(D) = Knowse, do(e, Sp)) A Possa, So).
Proof. In Appendix B. O

Our next step is to related and R(D) for queries with conditional plans. For
that we introduce a three-sorted predicéteply(c,s,s’), whose intuitive meaning is
that the conditional plan: executed in situatiors takes us to the situatiog’. For
example, letc be the conditional plan in Example 3, ardbe a situation where
—lockedholds in the real world. TheApply(c, s, do(disarm do(turn, do(look, s)))) will
be true. Intuitively, this means that whenis executed ins, we reach the situation
do(disarm do(turn, do(look, s))), or if ¢ were to be executed &) then the action sequence
that would be executed from left to rightlsok; turn; disarm

The definition of Apply is similar to the formula ‘Rdo’ in [31]. In our formulation,
we will represent a case plan as a list of pairs of conditions and conditional plans using

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 35

three constructor functions: one that constructs a list, another that constructs a pair, and
one that constructs a case plan. Any conditional plan can be represented as a list of
actions and case plans. For example, the conditional pianExample 3 is represented

by [look; case&[([—locked, [turn]), ([locked, [])]); disarm]. We now defineApply as a
nested abnormality theory (NAT) [33] block.

Bppply =

{min Apply:
AppIA(l, s, s)
Posga, s) A Apply(a, do(a, s), s") D Appiy[ala], s, s’)
—Posga, s) D AppI[ala],s, L)
Apply([case[])[c], s, L)
Applyc, L, 1)
Knows(g, s) A Apply(c, s, s’) A Applyc”,s’,s") D
Apply([cas€[(¢, c)|r'])|c"].s,s")
—Knows, s) A Apply([case&r’)|c],s,s)) D
Apply([casé[(¢, c)|r'DIc"],s,s")

/

}

In the above nested abnormality theergndc” are conditional plans whilg’ is a list of
pairs of conditions and conditional plans. (Note taaser’) will denote a conditional
plan.) The above NAT defines the predicapply using circumscription and can be
equivalently written a<Circ(T'; Apply), whereT is the set of seven axioms following
“min Apply:” in Bapply. That is, we consider only models @f in which the predicate
Apply is minimized. This guarantees that every situation is the result of execution of a
conditional plan from the initial situation. For more on nested abnormal theories, please
see Appendix E.
The NAT Bapply can be defined in words as follows:
e Apply(],s, s) is true, for alls.
o Foralla,a,s,s’, Apply[alal,s,) is true if Applya, do(a, s),s’) A Posga, s) is
true.
e Foralla,a,s,s’, Apply[alal,s, L) is true if AppIfa, do(a, s), s') A —=Posga, s) is
true.
e Apply[cas€[])|c],s, L) is true for allc ands.
e Applyc, L, 1) is true for allc.
o Forallg,s,s',s",c,r’,c”, Apply[case&[(¢p, c)|r'])|c"],s,s”) is true
if Knowsp, s) A Apply(c, s, s’) A Applyc”, s, s”) is true.
e Forallg,s,s',c,r',c”, Apply[case&[(¢, c)|r'])|c"],s,s') is true if =Knowgg, s) A
Apply([casér’)|c"],s,s')) is true.
o If none of the above rules is applicable thepply(c, s, s) is false.
We now explain how the above definition enta#gply[az; az; azl, s, do(as, do(az,
do(ai, s)))), assuming thaPosg[a1; az; az], s) is true. We have that

36 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

e Apply[az; az; azl, s, do(ay, do(az, do(as, s)))) is true if Posgas, s) and
AppIY[az; as], do(az, s), do(az, do(az, do(az, s)))) is true (using the second rule).

e Apply([az; az], do(a1, s), do(a1, do(az, do(as, s)))) is true if Posgaz, do(ai, s)) and
AppIY[as], do(az, do(az, s)), do(as, do(az, do(as, s)))) is true (using the second
rule).

e Apply[asz], do(az, do(as, s)), do(az, do(az, do(as, s)))) is true if Posg[a1; az; azl, s)
and AppIy([], do(as, do(az, do(az, s))), do(as, do(az, do(a1, s)))) is true (using the
second rule).

e AppIu[], do(asz, do(az, do(as, s))), do(az, do(az, do(az, s)))) is true (using the first
rule).

Proposition 3. Let D be a domain description angl(D) be the corresponding first-order
theory. Letc be a conditional plan ang be a fluent formula. Then,

D = Knows ¢ after ¢ iff
R(D) U Bapply = Knowsp, s) A Apply(c, Sp,s) As# L.

Proof. In Appendix B. O

We would like to point out that the above proposition also holds for a slightly different
translationR1(D), where we use the following simpler successor state axiom—based on
the formulas (1.5) and (1.6) of Section 1.3—instead of the successor state axiom (2.9):

Posgx, s) A Posgx,s’) D

|:K(d0(x, s), do(x, s)) =

(K(s/, S) A

((/\X 7&[(]) Vv ((x :Kj /\HO|d§Fj,S) EHOIdgFj’ 5/)))>>:|
j=1 j=1

(2.13)
2.4. State space analysis

In this section we analyze the size of the state space, when reasotdig in

e Itis easy to see that when we hav@luents, we will have 2t c-states and2+"—1
grounded c-states.

e Now suppose out of the fluents, in the initial situation we do not know the truth
value of p (p < n) fluents. l.e., we know the truth value of- p fluents. Then in all
initial c-stateg(s, X), the size of will be less than 2. It follows from the definition
of the transition function and the fact that we do not have any knowledge loosing
actions that any c-state that can be reached by executing a sequence of actions in the

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 37

initial c-state will also have the size of ifS less than 2. Taking this into account the
size of the reachable (from the initial c-states) state space will be:

2" 2" 2"
P
<1>+2x<2>+ + 2 x<2p>

which is larger than?Z .

e If we consider the formulations in [41,49] the ‘states’ will be Kripke models. In
that case fom fluents, we will have at least"2different possible worlds, and the
accessibility relation will be a subset df 2 2" = 22" elements. Thus the total number
of different Kripke models will be 2 x 22” = 22”41,

e Recently complexity results about planning in presence of incomplete information
have been developed in [8]. One of the results is that the polynomial plan existence
problem is Ezp-complete in presence of incomplete knowledge about the initial
situation and the restriction that sensing actions are executed a limited number
(bounded by a constant) of times, when looking for feasible (polynomial length)
plans. Without the restrictions the complexity is higher.

The tremendously large size of the state space4grand also for the formulations

in [38,49], and the above mentioned complexity results necessitates search for (provably
sound) approximations that have a more manageable state space and a lower complexity.
This is our focus in the next section.

3. Approximating Ax

In this section we define several approximations of the semanticd gof In our
approximations we will use 3-valued states, which we will eafitates(or approximate
states), to represent the state of knowledge of an agent. An a-state will be normally
represented by a paif’, F), whereT and F are disjoint sets of fluents. Intuitively;
(respectivelyF) is the set of fluents which are true (respectively false) in the $7atée’).

An a-state(T, F) is said to becompletaf T U F is the set of all the fluents in the domain
description. Often we will abuse notation to represent a complete a¢#tafe, by justT.
Leto1 = (T1, F1) andoo = (T», F2) be two a-states. We say that an a-stdte F1) extends
the a-statdT», F»), denoted byrs < o1, if T C Ty andF» C Fi. If o1 extendsss, we also
say thatr is an extension of». o1 N o2 Will denote the paiKTy N T2, F1 N F>) ando1 \ o2
denotes the sty \ T2) U (F1 \ F2). For a set of fluentX we write X \ (T, F) to denote
X\ (TUF).

Given a fluentf and an a-state = (T, F), we say thatf is true (respectivelyfalse in
o if f €T (respectivelyf € F); andf is known(respectivelyjunknownino if f e TUF
(respectivelyf ¢ T U F). A positive (respectively negative) fluent literAlis said to hold
in (T, F)if feT (respectivelyf e F).

We are now ready to define several approximationsdgr The difference between the
approximations is based on how much case analysis is done to reason about actions when
the agent has incomplete knowledge about the world. We start with the 0-Approximation
where no case analysis is done.

38 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91
3.1. O-Approximation

Let D be a domain description,T, F) be an a-state, ang be a fluent inD. f
(respectively-f) is said topossibly holdn (T, F) if f ¢ F (respectivelyf ¢ T). A set of
fluent literals{ f1, ..., f,} is said topossibly holdn (7, F) if for all i, f; possibly holds
n (T, F). An actiona is said to be (Gexecutablan an a-statg7, F) if there exists an
ex-propositionexecutablea if p1, ..., p,, such thatps, ..., p, hold in (T, F). We now
introduce several notations.
e ¢ ((T,F))={f| fisafluent and there exista ‘tausey if p1,..., p,"in D such
thatp1, ..., p, hold in(T, F)}.

e ¢, (T, F)) = {f | fisafluentand there exista tauses-f if p1,...,p,"in D
such thatpy, ..., p, holdin(T, F)}.

e FF((T,F))={f|fisafluentand there exista tausey if p1,..., p,”in D such
that p1, ..., p, possibly hold in(T', F)}.

o F ((T,F)) = {f | fisafluentand there exista tauses-f if p1,...,p,"in D
such thatps, ..., p, possibly hold in(T, F)}.

e K(a,(T,F))={f| fisafluentandd determinesf”in D}.

Intuitively, e (T, F)) (respectivelye, ((T, F))) is the set of fluents thanust be true
(respectivelyfalse after executing: in (T, F); F,F (T, F)) (respectivelyF, (T, F))) is
the set of fluents thanay be true(respectivelyfalse) after executing: in (T, F); and
K(a, (T, F)) is the set of fluents which become known after executing the aation
(T, F).

We define the result function @ in the 0-Approximation, denoted byes, as follows.

Res(a, (T, F)) =(T Uey (T, F)\ F, (T, F)), F Ue, (T, F)) \ F (T, F))).

We illustrate these definitions in the next example.

Example 4. For the domain descriptio; from Example 1, the initial a-state g =
(¥, {disarmed explodedl).
Since neitheftockednor —lockedholds inog, we have that

Chisarm(@0) =0, €gisarni00) =¥,

etim(00) =9, ewurn(00) = 9.
Sincelockedand—lockedpossibly hold inog, we have that

Fgsarm(00) = {explodeddisarmed, Fisarm(00) =9,

Fyfin(00) = {locked, Fiyn(00) = {locked
and

K (look, og) = {locked.

Since there is no ef-proposition whose actiofoisk, we have that,! |, (00) = €5, (00) =
Fl(00) = Fijo(00) = 9. Hence,

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 39

Reg(disarm og) = (4, ¥),
Reg(turn, opg) = (¥, {disarmed exploded),
Reg(look, og) = (¥, {disarmed exploded).

In the above example, even thoudisarmedand explodedwere false in o9, after
executingdisarmthey become unknown. On the face of it this is counter to the intuition
behind the frame problem, where the values of fluents remain unchanged from one situation
to another, unless the action in between changes them. In this case thedésdionhas
two effect propositions, neither of which is applicable as their preconditieleskedand
lockedrespectively) do not hold. So a naive application of the frame axiom would lead us to
conclude thatlisarmedandexplodedremainfalsein the situation after executingjsarm
in op. But such a conclusion igot sound as it is possible that in the real worldcked
wastrue and thus after executirdgjsarm disarmedbecamerue. Based on this possibility,
we can not just havdisarmedto be true in the resultant situation either, as this would be
unsound if—lockedwas true in the real world instead. Thus taking into account the two
possibilities, we can reason that the agent will not know whedissrmedis true or false
after executinglisarm Thus, the resultant a-state should hdisarmedas unknownOur
not so straightforward definition of Rgsencodes this skeptical reasoniniye now use
Reg to define the transition functio®g. Again, executing an action might result in an
undefined a-state, denoted ky

Definition 7. Given a domain descriptioP, the O-transition functio®q of D is defined
as follows:
e If a is not 0-executable ia, then®g(a, o) = {1};
e If a is O-executable i anda is a non-sensing action th@m(a, o) = {Reg(a, 0)};
and
o If a is 0-executable im anda is a sensing action thedg(a,o0) = {0’ |0 <o’ and
K(a,0)\o =0"\0o}.

In the above definition, the transition due to a sensing action results in a set of a-states,
each corresponding to a particular set of sensing results. The condition that all elements
of ¢’ \ o are fromK (a, o) makes sure that only fluents that are sensed are the ones for
which we have a k-proposition and the condition that all elements(af o) are ino’ \ o
makes sure that all fluents mentioned in the k-propositions for that action hawve ar
falsevalue ino’. If we were to allow actions to be able to both sense and change the world,
then®g(a, o) for such an action can be succinctly defined®@gia, o) = {0’ | o’ extends
Reg(a,o0) ando’ \ Reg(a,0) = K(a,o) \ Reg(a, o)}.

Let &g be a O-transition function oD. The 0-extended transition functio’ﬁo which
maps pairs of conditional plans and a-states into set of a-states is defined next.

Definitign 8.
(1) ®o((l,0)={o}.
(2) ®@o(a, o) = Po(a, o).
(3) For acase plan

40 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

c = Case
Y1 — p1
$n —> DPn
Endcase
. Po(pj, o) if ¢; holdsino,
doc.o)=1 O &

(L} if none of¢y, ..., ¢, holdsinc.

(4) For two conditional plans; andca, @o([c1: 21, 0) = Uy ey (cr.0) Polc2.).
(5) @o(c, L)={L}.

A conditional planc is 0-executablén an a-stater if L ¢ $o(c, o). An a-stateog is
called aninitial a-stateof D if for any fluent literal £, f holds inog iff “ initially f” is in
D. ltis easy to see that for each domain description, the initial a-state is unique.

Definition 9. Given a domain descriptioP, a 0-model is a paifog, ®o) Whereoyg is the
initial a-state ofD and@®g is a O-transition function oD.

Similarly to Proposition 1, we can prove that the O-transition funcfigof D is unique.
In the next definition, we define our first approximate entailment relation, the 0-entailment
(=0), based on the 0-model.

Definition 10. Let D be a domain descriptiop,be a fluent formula, anebe a conditional
planinD. We say
e D o Knows ¢ after ¢ if ¢ is 0-executable irog and ¢ holds in every a-state
belonging t@o(c, op) for every 0-modelog, ®o) of D; and
e D =0 Kwhether ¢ after ¢ if ¢ is 0-executableg and ¢ is known in every a-state
belonging to$0(c, op) for every 0-modelog, @) of D.

Example 5. For the domain descriptioP; we have that

Do(disarm og) = {(4, 1)},

Do(turn, op) = {(@, {disarmed exploded))},

®o(look, og) = {({locked, {disarmed exploded),
(

@, {locked disarmed exploded))}.

Thus D; o Kwhether locked after look but D1 f~o Knows locked after look and
D1 =0 Knows —lockedafter look.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 41

In the next example we show that the conditional plan for disarming the bomb in
Example 3 can also be analyzed using the 0-Approximation.

Example 6. Let us reconsider the domalpy and the conditional plan of Example 3.

look;
Case
—locked— turn
locked— []
Endcase
disarm

=Cl ¢ =c¢

We have that the initial a-state &f is og = (¢, {disarmed explodedl).

To prove thatD1 =¢ Knows disarmeda —explodedafter ¢, we compute@o(c, op) as
follows.

First, sincekK (look, og) = {locked we have thag(look, og) = {01, 02} whereo =
({locked, {disarmed exploded) ando> = (¢, {disarmed explodedlocked).

Hence,

50(0, 00) = U 5o(c1; disarm o)
o’edp(look ap)
— @p(c1; disarm o1) U ®o(cr; disarm o).

§jnce locked holds /I[l o1 and —locked holds in o>, Wejave thatPo(cq; disarm oq) =
Po(disarm o1) and@g(c; disarm 02) = U, ey turn.o,) Poldisarmo’).

Furthermore@o(disarm o1) = {({disarmedlocked, {exploded)} and 50(turn, 02) =
Po(turn, o2) = {({locked, {disarmedexploded)} = {o1}.

Thus,®g(c1; disarm o2) = dp(disarm o1) = {{{disarmedlocked, {explodedl)}.

o~

In summary, we have thaty(c, og) = {{{disarmedlocked, {explodedl)} which implies
that D1 =0 Knows disarmeda —explodedafter c.

Although 0-Approximation can correctly analyze the above example, it has weaknesses
and it cannot entail many queries entailed by the semantics. The following example
illustrates this.

Example 7. Let us consider the domaiRg with the following causal rules;

a causey if g

a causey if —g ¢ = D3

executablea
The initial a-state oDz is oo = (4,). Intuitively, we would expect thanows f after a
is entailed byD3 and this entailment holds th;lK. However,@q(a, og) = $o(a, og) =

{(#,9)} becauser] (o0) = e, (00) = F, (00) = ¥ and F, (o0) = {f}. This means that
D3 =0 Knows f after a.

42 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

In the above example, by doing case analysis we can intuitively concludg gtaduld
be true after executing in the initial situation. l.e., we analyze that in the initial situation
g could be either true or false, and in both cases we can concludefthall be true
after executing:. The reasoning mechanism in the 0-Approximation lacks any such case
analysis. In the next section we introduce the notion of 1-Approximation that does some
case analysis and is able to make the intuitive conclusion in the above example.

3.2. 1-Approximation

The 1-Approximation improves on 0-Approximation by defining a new result function
which given an incomplete a-stateand an actiom, considers all complete extensions of
o, and applies to these extensions and then considers what is true and what is false in all
the resulting states. Such a transition function does intuitive reasoning with respect to the
Example 7. We now formally define the new result function. For an a-std&t Compo)
be the set of all the complete a-states that exterithe result functionReg, which maps
a pair of an actiom and an a-state into an a-stat&keg(a, o) is defined as follows.

Res(a,o0) = m Reg(a, o).

o’eCompo)

The notion of executability changes slightly. Now, an actiois said to be lexecutable
in an a-state if it is 0-executable in all a-states fbomgo). The 1-transition function is
defined next.

Definition 11. Given a domain descriptioR, the 1-transition functio1 of D is defined
as follows:
e If a is not 1-executable ir then®4(a, o) = {L}.
e If a is 1-executable ir anda is a non-sensing action th& (a, o) = {Reg(a, 0)}.
e If a is 1-executable im anda is a sensing action thedy(a,0) ={c¢’ |0 <o’ and
K(a,0)\o=0"\o}.

A 1-model of D is then defined as a paipo, 1) whereog is the initial a-state
of D and @1 is the 1-transition function oD. The notion of 1-extended function and
1l-entailment is then defined as in Definitions 8 and 10 using 1-transition function and 1-
model, respectively.

In the next example we show that the 1-Approximation allows us to reason by cases.

Example 8. Let us consider again the domdn from Example 7. The initial a-state @f3
is oo = (@, ¥). The set of complete extensionsaf, Comgoop), is the set of all complete
a-states ofD3. More preciselyCompog) = {01, 02, 03, 04} Whereo1 = ({ f, g}, ¥), 02 =
({f}. {gh, o3 =1(0,{f. g}), andoa = ({g}, { f})-

Since Reg(a,01) = ({f, g}, ¥), Res(a,02) = ({f},{g}), Res(a,03) = ({f}.{g}),
and Reg(a,04) = {{f, g}, ¥) we have thatRes(a, o) = ({f},¥). Thus, for any 1-
model (g, 1) of D3, ®1(a,o00) = {{{f},¥)}. Hence, we can conclude thdlz =1
Knows f after a.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 43

We now state the relation between the 0-Approximation and the 1-Approximation of
domain descriptions oflg .

Proposition 4 (Soundness of=g with respect td=1). Let D be a domain descriptiory
be a fluent formula oD, andc be a conditional plan. Then,

if D =0 Knows ¢ after ¢ thenD =1 Knows ¢ after c.

Proof. (SketcH). Similar to Proposition 1 we can prove that for every domain description
D, the 0-model and 1-model db are uniquely determined. Furthermore, the initial a-
state in the O-Approximationis also the initial a-state in the 1-Approximation. Let us denote
the 0-model and 1-model db by (o9, @) and(og, ®1) respectively. Let andé be two
a-states oD such that < §. Then, for every action of D, we can prove that

(i) foreacho’ € ®p(a, o) there exists &’ € @1(a, §) such thav’ < §';

(i) for eachd’ € ®1(a, §) there exists @’ € Pg(a, o) such thab’ < §'.
Using (i) and (ii) we can then prove that for any conditional plesuch thatl ¢ Do(c, o),

(i) L¢ 1(c.s);

(iv) for eacho’ € @o(c, o) there exists @’ € @1(c, §) such thav’ < §'; and

(v) for eachs’ € @1(c, §) there exists @’ € Po(c, o) such thab’ < 8.

(iii) proves that ifc is 0-executable iag thenc is 1-executable ing. This, together with
(iv) and (v), and the fact thaiy < o9, proves the proposition.

The next example shows that the 1-Approximationis also not able to make some intuitive
conclusion§ that can be made using théx semantics.

Example 9. Consider the domain description:

a causesp if r
a causegyy if —r
b causesf if p
b causesf if ¢
executablea
executableb

The initial a-state i3¢, @), wherep, g, r, and f are unknown. Although intuitively and
also according to the rational semantics.4f, after executing: followed by 4 in the
initial a-state,f should be true, our 1-Approximation is not able to capture this. This is
because the 1-Approximation reasons by cases only up to 1 level. Since after reasoning by
cases for 1 level, it summarizes its reasoning to a (fairF), it is not able to capture the
fact that after executing in the initial a-statep Vv ¢ is true.

To overcome the limitation of 1-Approximation as illustrated by the above example, we
can define 2-Approximation which will reason by cases up to 2 levels. But it will break

4The full proof can be found in [51].
5Recall that we do not allow contradictory v-propositions or contradictory ef-propositiobs in
6 We thank the anonymous AAAI-97 reviewer who pointed this out.

44 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

down when reasoning by cases up to 3 levels is necessary, and so on. In the next section,
we definew-Approximation which allows reasoning by cases for multiple levels without
setting a limit on the number of levels.

3.3. w-Approximation

Our intention inw-Approximation is to reason by cases to as many levels as possible.
But this number is limited by the structure of the plan. We can only reason by cases
through sequences of non-sensing actions. For that reason, given a sequence of actions
o =ai;...;a,, we now define the longest prefix of consisting of only non-sensing
actions or a single sensing action, denotegi®f«), as follows:

e if a1 is a sensing action there(«) = ag; or

e if @ does not contain a sensing action thee(a) = «; or

e if a; is the first sensing action i, 1 < j <n, thenpre(a) =as, ..., a;_1.

The sequence of actions obtained franafter removing its prefiyre(«) is called the
remainderof « and is denoted byem(«).

Given a sequence of non-sensing actiens ay, .. ., a,, we now definedRes, («, o) by
considering all complete extensionssafapplyinge to each of them and then determining
their intersection. This corresponds to doing case by case reasoningéduels. More
formally,

Res(@,0)= (] Res(a,, Res(a, 1,...,Res(a, o).

o’eComgo)

An actiona is w-executablén o if a is 0-executable in all complete extensiongofAnd, a
sequence of non-sensing actiens w-executable i if « is 0-executablén all complete
extensions of .

The w-Approximation of D is defined by a functio,,, calledw-transition function,
which maps a pair of a sequence of actiarend an a-state into a set of a-states, denoted
by @, («, o), as follows.

{L} if pre(a) is notw-executable i ;
{Res,(«,0)} if @ does not contain a sensing action and
is w-executable i ;
@, (a,0) =1 {0’ | o’ extendsr, ando’ \ 0 = K(a,o) \ o}
if @ =a, ais asensing actign
anda is w-executable ir; and
Usca, (pre().0) Po(teMa), o”), otherwise

A sequence of actions is w-executable i if L¢ &, («, 0).

An w-model for a domain descriptiopP is then defined as the paiso, @), whereog
is the initial a-state oD and®,, is anw-transition function ofD.

To extend the functiord,, over pairs of conditional plans and a-states we need the
following observation.

Observation 3.1. Every conditional plai can be represented as a sequence of conditional
plansci;...; ¢, where

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 45

(a) ¢; is either a sequence of actions or a case plan; and
(b) foreveryi < n, if ¢; is a sequence of actions then 1 is a case plan.

From now on, we will often write a conditional planas a sequence= c1;...; ¢,
wherec;’s satisfy the conditions (a) and (b) of Observation 3.1.

The extended transition function é%,, denoted by@,, is defined next.

For a conditional pla and an a-state, we define

(1) forc = c1, wherec; is a sequence of action@w(c, 0)=®,(c1,0);

(2) for

¢ = Case
@1 —> C1
QL — C
Endcase
-~ @y (ci,o) if ¢ holdsin o,
@ , — w 1 . 1 .
w(€;0) {{L} if none of ¢1,...,¢ holdsino;
(3) forc=c1;¢2;...5¢p,n>1,
(a) if c1 is a sequence of actions,
Dyc,o)= |) Pulcai...icn0)),
d/eaw(cl,d)
(b) if
c1 = Case
$1— p1
Pm —> Pm
Endcase
Us'cd,(pr.o) Por(C2i - €nr0”)
Dy(c,0) = if ; holds ino,

{L} ifnoneofgy,..., ¢, holdsino;

(4) @,(c, L) ={L} for every conditional plam.

The notion ofw-entailment is then defined as in Definition 10 usingdhmodel.

The next example shows that this generalization indeed overcomes the problem of 1-
Approximation in Example 9, through reasoning by cases for multiple levels.

Example 10. Let us consider the domain descripti@al from Example 9. Let be a
complete extension @fy. Sinceo is complete, either or —r holds ino. Thus, eithep or
g holds inReg(a, o). This implies thatz;(Re@(a, o)) ={f}. SinceD4 does not contain
an ef-proposition, whose effectsf, we have tha¥, (Resg(a, o)) =¢. Hence,f holds
in Reg(b, Reg(a, o)) for every complete a-state. Thus f holds in Res,([a; b], 00).

46 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

By definition of @,, we have thatf holds in Py (la; b], og) whereoyg is the initial a-
state of D4. Sincea; b is a sequence of action®,,([a; b], og) = D@, ([a; b], o). Thus,
D4 =, Knows f after [a; b].

We prove the soundness lef; with respect td=,, in the next proposition.

Proposition 5 (Soundness of=1 with respect td=,,). Let D be a domain descriptiory
be a fluent formula, and be a conditional plan. Then,

if D =1 Knows ¢ after ¢ thenD =, Knows ¢ after c.

Proof. The proof is similar to the proof of Proposition 4. The proof can be found
in[51]. O

3.4. Soundness of 0-, 1- andApproximations with respect td x -semantics

In the previous subsections we discussed three different approximatioag.o©ur
next goal is to show that these approximations are sound with respglt t&ince we
have already shown in Propositions 4 and 5 thaatis sound with respect tg=1 and =1
is sound with respect tg=,,, we will now show that thes-Approximation is sound with
respect todg.

Proposition 6 (Soundness g, with respect td= 4,). Let D be a domain description,
¢ be a fluent formula, and be a conditional plan. Then,

if D =, Knows ¢ after ¢ thenD = 4, Knows ¢ after c.
Proof. In AppendixC. O

Even thoughw-Approximation can reason more than the 1-Approximation, it still cannot
match thedx semantics. The following example illustrates this.

Example 11. Let D5 be the following domain description.

a causes—p if r
b determinesr

c causesp if r

initially p = Ds
executablea
executableb
executablec

We have thatg = ({p},) is the initial a-state oDs.

Leta =[a; b; c].

There are two complete extensionsaf o1 = ({p}, {r}) and oz = {{p,r},). This
implies thatRes,(a, og) = Reg(a, o1) N Reg(a, 02) = {p}, {r}) N {r}, {p}) = (9, D).

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 47
Furthermore®,, (b, (4, 9)) = {{{r}, ?), (4, {r})}, and @, (c, ({r},?)) = {{{p.r},¥)} and
Do (c, (B, {r}) ={(4, {r})}.

Since

@, (a, 00) = Py (at, 00)

U ®ullb:cl o) =Bu(1b; cl, (9,0)

0 €Dy (a,op)

= U @ulco)=uc {r},0) U dy(c, (,{r})
0P, (b,(0,9))

= {{{p.r}.9). (@, {rh)},

we have thaiDs £+, Knows p after [a; b; ¢] and Ds 4, Knows —p after [a; b; c].
Now, we will show thatDsg |:f4K Knows p after [a; b; c]. Lets1 = {p}, so = {p, r}, and
s3 = {r}. Ds has two initial c-stategs1, {s1, s2}) and(s2, {s1, s2}). We have that

@ ([a; b; cl, (s1, {51, 52))) = D([b; cl, (1, {51, 53})) = D (c, {51, {51})) = (51, {51))

and

o~

@ ([a; b; c], (52, {51, 52))) = P([b; cl, (53, {51, 53)) = D(c, (53, {s3})) = (52, {52}).

It is easy to check thatp is known to be true incﬁ([a;b;c],m, {s1,s2})) and
@D ([a; b; cl, {s2, {51, s2})). ThusDs |:Z4K Knows p after [a; b; c].

3.5. Complexity of progression

In this subsection we will compare the complexity of progression in the various
approximations. Suppose the number of fluents we haveaisdd is the size of the domain
description. Given an a-stat&, F'), such that the size df U F' is m, the complexity of
computingRes Reg, Reg, andRes, in the different approximations are as follows:
e O-Approximation: The complexity of computinge$(a, o) is m x number of ef-
propositions in the domain description. This is of the orderof d.

e 1-Approximation: Here we need to compuiRes. This is of the order of 27" x m x
d.

e w-Approximation: Here we also need to comp&es,. This is also of the order of
2" xm x d.

It is easy to see that if a sensing actiometermines fluents ands is a-state where
none of these fluents are known, théga, o), ®1(a, o), D, (a, o) will have 2 a-states.

From the above analysis, it is clear that progression can be done much faster in the 0-
Approximation than in the other two. On the other hand there is no significant difference
in doing progression between 1-Approximation and\pproximation. (A more formal
result was recently given in [8], where it was shown that while computing the next state
Reg(a, o) is a polynomial time procedure, computiRgs (a, o) is coNP-complete.)

48 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91
4. Related research

In this section we first discuss the expressiveness and limitations of our formulations
in this paper as compared to other formulations in the literature and then do detailed
comparisons with works that are closest to ours.

4.1. Expressiveness and limitations4f

Since our main goal in this paper has been to formalize sensing actions, to avoid
distractions we have on purpose limited the expressiveness of the rest of the language. For
example, we do not allow multi-valued fluents [19], static causal laws [1,35,43], concurrent
actions [2,3,37], narratives [5,42], etc. In Section 2.2 we briefly discuss how most of these
restrictions can be lifted. Besides these, we also make some additional assumptions that
limit the expressiveness of our language. We now briefly discuss these assumptions and
why we make them.

e \We follow the approach in [21] in not having a full first-order language. This allows

us to avoid the additional induction axioms described in [47,48]. Although, we do not
have full first-order language we do allow variables, and propositions with variables
such as:

moveéX, Y) causesat(Y)

Here, the proposition is viewed as a ‘schema’ representing a set of propositions where
X andY are bound. Also, we assume our domain to be finite. I.e, we assume that we
have a finite set of actions, and fluents.

e We assume that there is a single agent who is planning and acting and our interestis in
formalizing his knowledge about the world vis-a-vis the real state of the world. Unlike
in [49] we make the assumptions of the modal logic S5 and hard code it into our
semantics. This allows us to use the simpler c-states instead of using Kripke models.
Moreover, as we show in Section 2.4, this leads to a smaller state space. A similar
approach is followed in most of the chapters in [14].

e We assume the sensing actions (i.e., the operation of the sensors) to be perfect.
Bacchus, Halpern, and Levesque [7] extend the situation calculus approach in [49]
to allow for noisy sensors. In the future, we plan to extend our approach to this case.
Also, in the Operations Research literature POMDPs (partially observable Markov
decision processes) are used in formulating noisy observations. We plan to formulate
sensing actions using POMDPs and compatre it with our current formulation.

e We follow the high-level language doctrine in [34] and the approach in databases
and use a limited query language. This allows us to have a simpler formulation. Our
query language can be easily extended to allow for knowledge and temporal operators
as in [23], but it is not straightforward and nor we favor the generality of allowing
quantifiers (as in [47,48]).

e In most of the paper our interest is in progression and verification of conditional
plans. In other words, given the description (possibly partial) of an initial state, a
conditional plan and a goal, we would like to verify if the given plan executed in
the initial state will take us to the goal. Because of this limited interest, we can use

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 49

the simpler formulation in (1.5) and (1.6) instead of (1.3) and (1.4). When using the
simpler formulation we can not add an observation of the f@gKnowsg f, S) to

find out whats is. This is a limitation only when we use the logical formulation, and
not at the semantic level.

4.2. Relationship with Scherl and Levesque’s formulation

In Section 2.3 we gave a translation of domain description®ito a first-order
theory that used Scherl and Levesque’s [49] successor-state axiom (which is based on
Moore’s [41] formulation) and showed the equivalence with respect to queries in the
language ofdk . Since Scherl and Levesque directly formalize in first-order logic, their
formulation is more general than ours;

() interms of allowing more general descriptions about the domain such as being able
to choose which modal logic to use, and observations about non-initial situations;
and

(i) in terms of allowing more general queries.

On the other hand our goal in this paper has been to have a simpler formulation, perhaps
at the cost of generality. For example, the ‘state’ of the agent’s knowledge in Scherl and
Levesque’s formulation (and also in Moore’s formulation) would be a Kripke model. Since
planning in a state space where a ‘state’ is a Kripke model is more difficult, we have a
simpler notion of a ‘state’ which we call a c-state. (For instance, if we hafleents
then the number of different Kripke models ar’eZ"Z", while the number of different c-
states are21".) As mentioned earlier, our c-state has two components, the real state of
the world and the set of possible states that the agent thinks it may be in. Our c-state is
actually equivalent to a Kripke model when we consider the logic S5. Thus with a goal to
make things simpler we sacrifice generality and make an a-priori decision on which logic
of knowledge to use.

Also, since we develop a high-level languadg, with an independent semantics—that
does not depend on standard logics, it can serve the role of a benchmark for languages
with sensing actions, at least for the restricted class of queridgirMoreover, this high-
level language makes it easier for us to prove the soundness of approximations that have a
much less and more manageable state space. By having sound and complete translations of
domain descriptions itdx to theories in first-order logic that use Scherl and Levesque’s
axioms, our sound approximations are also in a way sound approximations of Scherl and
Levesque’s formalism.

Finally, we would like to mention that loop-free robot programs of [31] are special cases
of our conditional plans. In particular, the statemes@ga, r) andbranch(a, r1, r2) of [31]
can be recursively translated to conditional plans and

a

Case
f—r
—f—>r

Endcase

50 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

respectively. In this paper we do not allow loops in our conditional plans. But the ideas
in [31,38] can be used to extend our conditional plans to allow loops.

4.3. Relationship with Lobo et al’s semantics

Lobo et al. in [38] have a goal similar to ours, in terms of developing a high-level
language that allows sensing actions and giving translations of it to theories in a standard
logical language. We now list some of the major differences between both approaches:

e They representthe state of an agent’s knowledge by a set of states (which they refer to
as a situation), and the transition functiénin their model is defined such that for a
sensing actiom and a situatior®’, @ (a, X) is a subset of’ that consists of all states
which agree on the fluent values determined by the sensing actidmrawback of
this approach is that domain descriptions have a lot of models. But more importantly,
it is possible that when a domain description has two sensing acti@ms » that
determine the same fluerft there are model®, such that® (a, X) # @ (b, X) for
someX’s. In other words, whilef may be true in all states i®(a, %), it may be
false in all states i@ (b, X'). We find such models unintuitive.

e The semantics oflx is more general than the semantics of Lobo et al. in the sense
that in their formulation the assumption about models being rational is hard wired into
the semantics.

e On the other hand the high-level language used by Lobo et al. is more general
than the one we are using. They allow conditional sensing through preconditions
in k-propositions. We do not allow preconditions in k-propositions but we allow
executability conditions.

e Lobo et al. give translations of their domain descriptions to theories in epistemic
logic programs [17]. We have translations to disjunctive logic programs [9,51], which
are simpler than epistemic logic programs. We also give translations to first-order
theories.

e Finally, we consider sound approximations of our language. In the later part of this
section we show our semantics to be equivalent (sometimes) to theirs. Thus our
approximations are also sound approximations of their formulation.

We now give a quick overview of the formulation in [38], restricted to the common syntax
of Ag and their language. We then show that our rational semantics is equivalent to the
semantics in [38] for this restricted case. The semantics of [38] is defined through transition
functions that map pairs of actions and situations into situations where a situation is a
set of states. A situation is consistent if it is not empty. Given a domain description

the situation consisting of all the initial states Bf denoted byXy, is called thenitial
situationof D. A fluent f is said to betrue in a situationX if f € s for everys € X.

A fluent formulag is said to beruein a situationX’ if ¢ is true in every state belonging

to 2. We will need the following definition.

Definition 12. Let X be a consistent situation arfda fluent. A consistent situatioh’ is
“ f-compatiblé with X iff

(1) ¥'={ceX|f¢o}or

2 XY={ceX|feco}

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 51

For a domain descriptioD, a function® from pairs of actions and situations into
situations is called an interpretation bf

Definition 13. An interpretation® of a domain descriptio® is amodelof D if and only
if
(1) for any consistent situatiol
(a) for any non-sensing actian

®(a. ¥) = | J{Resa,)}

seXx
(b) for each sensing actian let

a determines f1

a determines f;

be the k-propositions in whict occurs. Then,
e ®(a, X)) must be a consistent situation; and
e P(a,X)=2X1N3XN---N X, whereX; is a f;-compatible situation with
Yfori=1,...,n
(2) for any actionz, @ (a,) = 0.

Lobo et al. extend the functio@ to a plan evaluation functiofig (¢,) which allows
conditional plans. The definition dfy (¢, X) given in [38] is very similar to the definition
of @ and we omit it here for brevity. In the following example, we show the difference
between our models and the models of Lobo et al.

Example 12. Let us consider the domain descriptidn from Example 1. The states of
D are:

s1=40, s5 = {disarmed,
so = {locked, se = {disarmed exploded,
s3 = {exploded, s7 = {disarmedlocked,

s4 = {locked exploded, sg = {disarmedlocked exploded.

The initial situation ofDq is Yo = {s1, s2}. There are twdockedcompatible situations with

Xo: X1 ={s1} and X2 = {s2}. Thus, if® is a model ofD1, then eithe (look, Xo) = {s1}

or @ (look, Xp) = {s2}, i.e., in the approach of Lobo et al. there are (at least) two different
models which differ from each other by the transition functions. On the other hand, in our
approach we have two rational models which differ only by the initial c-states.

The entailment relation with respect to Lobo et al.'s semantics is defined next.

Definition 14. D =tm Knows ¢ after ¢ iff for every model @ of D, ¢ is true in
I'p(c, X).

52 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91
The following proposition relates Lobo et al.'s semantics with ours.

Proposition 7 (Equivalence betweejg’, ~andl=_tw). Let D be a domain descriptiom
be a fluent formula irD, andc be a conditional planinD. Then,

D |:Z4K Knows ¢ after ¢ iff D = 1m Knows ¢ after c.

Proof. In[9,51]. O
4.4, Past research on planning with sensing

In the past several planners have been developed that can plan (to some extent) in
presence of incompleteness, and some of these planners use sensing actions. In this section
we briefly describe a few of these planners, the semantics they use and compare it with our
semantics.

4.4.1. Golden and Weld’s work

Golden, Weld and their colleagues in [11,22,23] have developed planning languages
and planners that can plan in presence of incompleteness, use sensing actions, and plan for
‘knowledge’ goals. Two of these languages are UWL [11] and SADL [23]. We now list
some of their main contributions and compare their formulation with that of ours.

e As evident from the title ‘Representing sensing actions—the middle ground revisited’
of [23], their goal is to develop a middle ground in formulating sensing actions.
After reading Golden’s thesis [22] and communicating with him it seems that their
formulation is close to our 0-Approximation, and like 0-Approximation it does not
do the case-by-case reasoning necessary to make the desired concluBigiofin
Example 7. But, while they do not have a soundness result, they have implemented
and incorporated their planner into Softbot agents.

e One of their main contributions is their notion of LCW (local closed world) and
reasoning with (making inferences and updates) LCW. We do not have a similar
notion in this paper.

e They introduce a minimal but extremely useful set of knowledge-temporal goal. In
UWL, they have the annotations ‘satisfy’, ‘hands-off’ and ‘findout’ and in SADL,
they have ‘satisfy’, ‘hands-off’ and ‘initially’. Intuitively, the annotatiaatisfy(p)
means to reach a state whepeis true and the agent knows thatis true; the
annotatiorhands-off p) means that during the execution of the plan, the truth value
of p does not change; and the annotatinitially (p) is used to specify the goal of
sensing the truth value gf at the time the goal is given, the idea being that after
the agent has finished executing his plan, he will know the truth valyevaien he
started. They also formulate regression with respect to goals formulated using such
annotations.

We have one small reservation about their annotation ‘initially’. In [22], Golden says
that

initially (p) is not achievable by an action that changes the flpesibce such an
action only obscures the initial valye However, changing after determining
its initial value is fine.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 53

We think the above condition is restrictive because sometimes we can determine the
initial value of p, even though we change its value. Consider the case where we do
not know the value op, and we have an actianand an actiorsensg whose effects

can be described as follows:

a causes if p

a causes—g if —p

a causesp if —p

a causes—p if p
sensg determinesg

Now, even though the actianchanges the value ¢f, we can find the initial value of

p by executing the plan; sense.

We believe these annotations are an important contribution, and additional research
is necessary in developing a general knowledge-temporal language for representing
more expressive queries over trajectories of c-states. For example, we may want to
maintainknowswhethe(p), i.e., during the execution of the plan, we do not want to

be in a state where we do not know the valug ot his is different fromhandsoff (p),

where we are not allowed to change the valugpbut we don’t have to know the
value of p all through the trajectory.

e An important difference between their approach and ours is that their focus is on
combining planning with execution, while our focus is more close to the classical
planning paradigm where we would like to generate a complete plan (possibly with
conditional statements and sensing actions) before starting execution. This difference
in our focus shows up in the difference in our characterization of sensing actions.

4.4.2. Goldman and Boddy'’s work

In their KR-94 paper [15], Goldman and Boddy use a single model of the world
representing the planners state of the knowledge. They then first consider actions with
executability conditions (but no conditional effects) and with explicit effects that may make
fluents unknown. They define progression (the knowledge state reached after executing an
action), and regression with respect to such actions.

Next they extend their action definition to include conditional actions which have a set
of mutually exclusive and exhaustive possible outcomes (i.e., exactly one of the outcomes
will be the result of the action). They suggest that such conditional actions can be used to
describe observation operators by requiring that if such an action is supposed to observe
the fluentf, thenunknowrt /) must be in the executability condition of that action.

They argue about the difficulty of adding conditional effects to their model, which does
not have representations of both the state of the world and the planner’s state of knowledge.

The following points compare and contrast their approach to that of ours:

e Since they use a single model to represent both the world and the planners knowledge
about the world, their formulation is perhaps similar to our approximations, where we
also have a single model. But, their formulation has not been shown to be sound with
respect a full formulation.

54 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

e Their formulation of sensing actions (or observation operators as they call it) can
wrongly consider the tossing of a coin action to be a sensing action if the state of the
coin (whether ‘heads’ or ‘tails’) is unknown before the coin was tossed. Because of
this we do not believe that their formulation (restricted to a common subset with our
language) will be sound with respect to our formulation.

e They allow actions—even in the absence of conditional effects—to explicitly make
fluents unknown. We do not have such actions, but because of conditional effects, our
actions can also make fluents unknown.

In a later paper [16], they extend classical planning to allow conditional plans, context-
dependent actions, and non-deterministic outcomes and argue the necessity of separately
modeling the planner’s information state and the world state. They use propositional
dynamic logic to express conditional plans, and reason about information-gathering
(sensing) and the agent’s information state. We like their idea of using propositional
dynamic logic and results about it and appreciate their goal to explore a middle ground
between having a full formulation of sensing actions, and not allowing incompleteness at
all. That coincides with our motivation for exploring approximation. But, after carefully
reading the paper several times, we believe that more details about their formulation are
necessary to fairly and more comprehensively compare their approach to ours.

4.5. Regression

Our focus in this paper so far has been on progression and plan verification. Considering
the recent success of model-based planning using propositional satisfiability [27,29,30]
our formulation is geared towards such an approach. Nevertheless, we would like to briefly
comment on the notion of regression and its role in conditional planning with sensing
actions.

Regression with respect to simple actions has been studied in [45,48]. Scherl and
Levsque [49] study regression with respect to sensing actions. The intuition behind
regression of a formula with respect to an actioa, is to find a formulays such that
¥ holds in a situatiors if and only if ¢ will hold in the situationdo(a, s). Regression can
be used to verify the correctness of a plan by regressing the goal to the initial situation
and verifying if the regressed formula holds in the initial situation. Regression can be also
used in the least commitment approach to planning [6,55]. We now present the regression
rules for regressing knowledge formulas with respect to conditional plans. The first four
rules are adapted from [49] and further simplified. The simplification is due to the use
of S5 modal logic where only one level of knowledge is sufficient. The regression over
conditional plans is our original contribution.

(1) Forafluentf and an actioma with the ef-propositions cause¥ if o1, ..., a causes

fif 0n,acauses~fif o....,a causes-f if g,

Regressio(f, a) = \/Qi \ (f A= /\ Q})-
j=1

i=1
(2) For afluent formul@ and a non-sensing action

RegressioKnows(¢), a) = Knows(Regressiofy, a)).

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 55

(3) For a fluentf and a sensing action which senses the fluentf, ..., f,, let
I(a, f1,..., f») be the set of conjunctions of literals representing the interpretations
ofthe set{f1, ..., f,}. Lety be a fluent formula. Then,

Regressio(Knows(¢), a) = /\ y—Knows(y —¢).
vel(a, fi..... fn)

(4) Regression over c-formulés
e Regressiofw1 A @2, a) = Regressiofps, a) A Regressiofyz, a);
e Regressiofy1 Vv ¢2, a) = Regressiofps, a) v Regressiofyz, a);
e Regressiot¢, a) = —Regressiofy, a).
(5) Regression over conditional plans and c-formulas. (In the equations hetoare
c-formulas, an@;’s are fluents formulas.)
e Regressiofy, []) = ¢;
e Regressiofp, «; a) = Regressio(Regressiofy, a), «) wherea is a sequence of
actions;
o Regressiofy, Casep1— p1, ..., gn— pn Endcasg=\/7_; (Knows(¢;) A
Regressiofy, p;));
e Regressioy, c1; c2; . ..; ¢,) = RegressiofRegressiofy, ¢;,), c1; .. .; ¢u—1) Whe-
rec;’s are conditional plans satisfying the conditions of Observation 3.1.
The next proposition proves the soundness and completeness of the regression formula.

Proposition 8. Given a domain descriptioD, let¢ be a c-formula, and1, ..., o, be the
set of grounded initial c-states @, andc be a conditional plan that is executable in all
the grounded initial c-states dd. Then,

Vi,1<i <n, o; =Regressioty,c) iff Vj,1<j<n, ®(c, o)) E=¢.

Proof. In AppendixD. O

5. Conclusion and future work

In this paper we presented a high-level action description language that takes into
account sensing actions and distinguishes between the state of the world and the state
of the knowledge of an agent about the world. We gave sound and complete translation
of domain descriptions in our language to theories in first-order logic and have similar
translations [9,51] to disjunctive logic programming. We compared our formulation with
others and analyze the state space of our formulation and that of the others. We then gave
sound approximations of our formulation with a much smaller state space. We believe the
approximations in this paper will be very important in developing practical planners.

7 For example, itz sensesf andg thenl(a, f,g) ={—f A—g,—~fAg, fA—g fAgl

SA knowledge formula (k-formula) is a formula of the forknows(¢), whereg is a fluent formula, and we
sayKnows(g) holds in a c-state = (s, X'), if ¢ holds in all states o&. A combined formula (c-formula) is a
formula constructed using fluent formulas, k-formulas and the propositional connectives, and when a c-formula
holds in a c-state is defined in a straightforward way.

56 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

Some of our future plans are:

e We would like to analyze existing plannérshat construct conditional plans and
use sensing actions and develop more efficient planners based on the approximations
described in this paper. We have made a head start in this direction by implementing
a simple generate and test planner in Prolog.

e We would like to further explore the notions of 1-Approximation asé\pproxima-
tion.

e We would like to follow satisfiability planning [27,29,30] and SMODELS based plan-
ning [10,12,13] by adapting our classical logic and logic programming formulations
to plan with sensing actions.

e We would like to adapt our formulation of sensing to other action description
languages—particularly the action description language for narratives [4,5]—to
develop notions of diagnosis and diagnostic and repair planning with respect to
a narrative. Intuitively, the latter means to develop a plan—possibly with sensing
actions—that leads to a unique diagnosis of a system.

Acknowledgement

We would like to thank the anonymous reviewer for his/her valuable comments that help
us to improve the paper in many ways. This work was carried out while the first author was
a doctoral student at the University of Texas at El Paso.

Appendix A

Proposition A.1. For every sequence of actioasof D1,

D1 b&;l;(Knows disarmedA —explodedafter «.

Proof. Lets; =@ ands» = {locked. The two initial c-states oD areo; = (s1, {51, 52})
and o2 = (s2, {s1, s2}). Let @ be an arbitrary sequence of actions Bf and 8 be its
longest prefix which does not contain the actaisarm Since no action in8 changes
the value of the fluenéxploded we can conclude that is executable i1 ando?. Let
@ (B, 01) = (s15, Z1p) and B (B, 02) = (s25, 25). We first prove by induction over the
length of 8, denoted byj|, the following:

{s1,52) = {518,528}, s18€ X1 and szp € Jog. (A.1)

Base case|8| = 0, i.e., 8 = []. By definition of &, we have that (8, o1) = o1 and
@ (B, 02) = 2. Thus (A.1) holds.

Inductive stepAssume that we have proved (A.1) fg#| < n. We need to prove (A.1)
for |8| =n. Let B = B’; a. Sincea # disarm a is eitherturn or look. If a = turn, we have

9 From the following quote in [23]: “In UWL (and in SADL) individual literals have truth values expressed in
three valued logic: T, F, U (unknown)”. it seems that they are using an approximation. We would like to analyze
this planner to figure out what kind of approximation they are using and if it is sound with respect to one of the
formulations discussed in this paper.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 57

that {s15, s25} = {Rega, s15), Resa, sop)} = (Resga, s1), Resa, s2)} = {s1, s2}. And, if
a = look, we have thafsig, sog} = {s1p', 528’} = {51, s2}. Furthermore, by definition of
@, fromsi1g € X1 we can conclude thaResga, s1p) = s15 € X15. Similarly, we have
s28 € Xog. The inductive hypothesis is proven.

We now use (A.1) to prove the proposition. Recall thathas two modelgos, @) and
(02, D).

From the construction 8, there are three cases:

(1) p=«,

(2) B;disarm=«, and

(3) B; disarmis a proper prefix of.

Casel: 8 = «. Sincedisarmeds not true ins; ands», disarmedis not known to be true
in @ (B, o1) and® (B, 02). Thus, by definition 61 ", Knows disarmedatfter o;

Case2: B;disarm= «. It follows from (A.1) thatRegdisarm s1) = s3 belongs to
Y14 Or X2, where 5(;3; disarmo1) = (514, X1¢) and 5(;3; disarm o2) = (s24, X24).
Since —explodeddoes not holds ins3, we conclude that-explodedis not known
to be true in@(ﬂ; disarm o) or 5(;3; disarm o2). Again, by Definition 6,D1 béjélk
Knows —explodedafter .

Case3: g; disarmis a proper prefix ok. Sincesy € {s1g, s25}, eithersig = 51 or
s2p = s1. SinceRegdisarm s1) = s3 and none of the actions @, is executable in3 we
can conclude tha@(a, o) =Llor 5(0:, 02) =1. This means that is not executable in all
c-initial states ofD1. By Definition 6, D1 b&;\K Knows disarmedA —explodedafter o

The above three cases show tlﬁatb&;\K Knows disarmedA —explodedafter «. This
proves the proposition. O

Appendix B. Soundness and completeness of the translatianto R(D)

We now prove the Propositions 2 and 3. Recall that we assumelthata domain
description withm v-propositionsinitially G1, ..., initially G,, andr sensing actions
K1, ..., K, with the k-proposition&K'; determinesFy, ..., K, determines F,,. And, we
also assume that for each actidan D contains at least one executability condition whose
action isA and each sensing action occurs only in one k-proposition.

In the following, we writes.1 ando.2 to denote the first and second component of
a c-stateo, respectively. In other words, # = (s, X'), theno.1 ando.2 denotes and
X respectively. For a stateand an action sequenee= [a1; . ..; ax], where[] denotes
the empty sequence of actions,difis executable irs then Resw, s) denotes the state
Resay, Resa—1, ..., Resay, s))); otherwise,Resc, s) = L (or undefined). Asituation
interpretationin D is defined by a sequence of actian$ollowed by a state, such that
« is executable iy, and is denoted bj]s. For an interpretatiord of the theoryR (D),
we write I[[p]] to denote the set of tuples belonging to the extent of the predicate .

I f1(¥) denotes the object which functighmapsx into in 7. When £ is a 0-ary function
symbol, we simplifyI [f11() to I[[f1].

Definition B.1. Let D be a domain description and = (o9, @) be a model ofD. The
M-interpretationof R(D), denoted by, is defined as follows.

58 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

The universes oM:

(U.1) The universe of actions, denoted [3fr|action, IS the set of actiond of D, i.e.,
MR |action=A.

(U.2) The universe of fluents, denoted ¥ r|fuens IS the set of fluent# of D, i.e.,
IMR|fluent= F.

(U.3) The universe of situations, denoted Yy |situation IS defined by the set of
situation interpretations, i.d Mg |situation= {[¢]s | s € F, « iS an action sequence
executable in} U {1} whereL denotes the “impossible” situation.

The interpretations of/z:

(1.1) Fluent constants and action constants are interpreted as themselves.

(1.2) Each situatiors is interpreted as a situation interpretation. In particutég,[Soll

=[]oo.1.

(1.3) The interpretation of the predicatmldsis defined by F, [«]S) € Mr[[Holdg]] iff

Resa, S) is defined and” holds inRega, S).
(1.4) The interpretation of the predicakeis defined inductively as follows:
o ([15,11S) € MR[[K] if S=00.1andS’ €0¢.2; and
o ([a; A1, [a; A]S) € MR[K] if the following conditions are satisfied
— ([«]S', [«]S) € MRIKT;
— A is executable irResw, S) andRes«, S'); and
— eitherA is a non-sensing action ar is a sensing action that senses the fluent
F andRes{a S) andResa, S) agree onF.
o ([a']8, [«]S) ¢ MR[[KT otherwise.
(1.5) The interpretation of the functiaho is defined byMg[[do]|(A, [@]S) = [«; A]S if
A is executable ifRRega, S); otherwiseMz[dO](A, [«]S) =

The interpretationM is then extended to the predicates introduced in Section 2.3 such
aSy;f, Y » Poss etc. For example, for a situation interpretat{ans,
o (p,[a]S) € MR[[HoIds]] iff ¢ holds inRegqa, S); or
o (A, [x]S) e MR[[)/F]] iff there exists an ef-propositiord’ causesrF if p” € D such
that(p, [@]S) € Mg[[Holdg]; or
e (A, [«]S) € Mg[[Posq iff there exists an ex-propositioreXecutableA if p” € D
such that{p, [«]S) € Mgr[[Holdg];
e etc.
We next prove some lemmas about the relationship between a wodeD and theM -
interpretationV g which will be used in proving the Propositions 2 and 3. For convenience,
for a formulag in the language oR(D), if ¢ is true inMz we write Mg = ¢.

Lemma B.1. For each modelM = (og, @) of a domain descriptiorD, a fluentF, an
actionA and a situation interpretatio[tx]

(i) () € Mglly 1 iff F € E} (Rega, S)); and

(i) «)€ Mpllyp 1 iff F € E, (Resa, S)).

Proof. [«¢]S is a situation interpretation implies that is executable inS. Therefore,
Resga, S) is defined. We have that

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 59

(A, [@]S) € Mglly; 1l
iff there exists an ef-propositiord’ causesrF if o” € D

such that, [«]S) € Mg[Holds] (Definition of /1)
iff there exists an ef-propositiord’ causesrF if ¢” € D
such thap holds in Rege, S) (by item (1.3) of Definition B.1)

iff FeE}(Resa,S)).

Thus (i) is proved.
Similarly, we can prove (ii). O

Lemma B.2. For each modeM = (og, @) of a domain descriptioD, an actionA, and
a situation interpretationa]S,

(i) (A,[a]S) € Mgr[[Posql iff A is executable in Rés, S); and

(i) if (A, [«]S) € Mg[[Posg] thenMg[[do]l(A, [«]S) = [a; A]S.

Proof. Again, since[«]S is a situation interpretation, we have thats executable irs.
ThusResq, S) is defined. From the definition ¢foss we have that

(A, []S) € Mg[[Posdl
iff there exists an ex-propositiorekecutableA if p” € D
such thatp, [@]S) € Mg[[Holdg]
iff there exists an ex-propositiorekecutableA if p” € D
such thap holds in Rege, S) (by item (1.3) of Definition B.3
iff A is executable irResc, S). (@B}

The second item follows immediately from (1) and item (1.5) of Definition B.f

Lemma B.3. For each modelM = (og, @) of a domain descriptionD, My satisfies
axiom(2.8).

Proof. Consider an actiod, a situationS, and a positive fluent literal’. Let Mg[[S] =
[@]S. The axiom (2.8) is true iMg if (A, [«]S) ¢ Mr[[Posq]. Thus we need to prove that
itis also true inMg when(A, [«]S) € M[[Posq].

From(A, [«]S) € Mg[[Posg] and Lemma B.2, we have thatis executable ilReg, S).
Hence, by (1.5) of Definition B.1,

Mg[[do]l(A, [«]S) = [a; A]S. 1)
We have that

Mpg = Holds(F, do(A, S))

iff (F, Mg[doll(A, [«]S)) € Mg[[Holds]

iff (F,[a:; AlS) € Mg[Holds] because/x[[do]|(A, [«]S) = [«; A]S, by (1)
iff F holdsinReg[w; A], S) (by item (1.3) of Definition B.1)
iff FeRegA,Resq,S))

iff FeE}(Resa,S))

60 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

or ' e Resa, S) A F ¢ E, (Rega, S)) (by definition ofRe9
iff (A, [«]S) € Mglly/1l (by Lemma B.1)
or ((F, [«]S) € Mg[[Holds|| A (A, [«]S) ¢ Mgy, 1) (by LemmaB.1and (I.3)

of Definition B.1)

iff Mg =y (A, S)V (HOIS(F, S) A —yy (A, S)) (2)

Similarly, we can prove (2) for negative fluent literal. Thug satisfies (2.8). O

Lemma B.4. For each modeM = (og, @) of a domain descriptiorD, My satisfies the
axioms(2.10)—(2.12)

Proof. Consider a situatio81 such thatM = K (S1, So).

This means thatMg[[S1]], Mr[[Soll) € Mr[[K 1. Hence, by item (1.4) of Definition B.1
and from the fact thad z [Sol] = [loo.1, we can conclude thatg[[S1]] = []S for some
S € 0p.2. SinceM is a model ofD, S is an initial state ofD. Therefore,G; holds inS
for everyi =1,..., m. Becausd] is executable ir, by item (1.3) of Definition B.1, we
conclude that A\, G, [1S) € Mg[[Holds], i.e., Mg = AJ~;HoldS(G;, S1). Since this
holds for everys; such thatMg = K (S1, So), we can conclude that

My, satisfies (2.11) 1)

SinceM is a model ofD, we have that.1 € 09.2. Thus, by item (1.4) of Definition B.1,
we have thaMr = K (So, Sg). Hence,

Mp, satisfies (2.12). (2)
Sinceoy.1 is also an initial state ab, from (1) and (2), we can conclude that
Mp, satisfies (2.10). 3)

The lemma follows from (1)—(3). O

Lemma B.5. For each modelM = (og, @) of a domain descriptionD, My satisfies
axiom(2.9).

Proof. Consider an actiod and a situatiors. Let Mg[[S]] = [«]S. Similar to Lemma B.3,
it suffices to prove thatMy satisfies axiom (2.9) wherA, [@]S) € Mg[[Posg. By
Lemma B.2, this implies that
Resa, S) is defined A is executable irResq, S), and
MRg[[doll(A, [«]S) = [a; A]S. 1)
There are two cases:
Casel: My = K(S2,do(A, S)) for some situatiorss. Let Mr[[S2]] = [a2]S2. We will
prove that the following formula is also true Mg:

Js1. [(K(sl, S) A PosgA,s1) ASy=do(A, s1)) A

((/\A # Ki) v \/ (A = K; A Holds(F;, s1)) = Holds(F;, S))]. (B.2)

i=1 i=1

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 61

Mpg = K(S2,d0o(A, S)) implies that([a2]S2, Mg[[dO[|(A, [«]S)) € Mg[[K]], and hence,
([a2]S2, [a; A]S) € MR[[K]]. By item (I.4) of Definition B.1 we have that, = «; A, and

([]S2, [«]S) € MRIKT; (2)
A is executable irResa, S») and Resa, S); 3)
A is a non-sensing action or if is sensing action, sa¥;,

then Regw, S2) and Rega, S) agree onF;; 4)

Let S1 be a situation such thatfz[[S1]] = [«]S2. It follows from (3) and Lemma B.2
that(A, [«]S2) € Mg[[Posg]. Furthermore, from (3) and (4), we can conclude that

Mg = ((/\A # Ki) v \/(A = K; A Holds(F;, S»)) = Holds(F;, S)).
i=1 i=1
Together with (2), we have th& satisfies (B.2).

Case2: Assume that the formula (B.2) is true for so®ewith Mg[[S1]] = [«@1]S1. We
want to show that

Mg = K (Sp, do(A, S)) (B.6)

whereS, = do(A, S1). Similar to the above case, froMy = K (S1, S) and(A, [a1]S1) €
Mg [[Posg|, we can conclude that; = «, andA is executable ilResa, S1). Thus,

Mglldoll(A, [«]S1) = [a; A]S1. (5)

It follows from (B.2) thatMz = (A1 A # K;) vV \/_1(A = K; AHolds(F;, S1) =
Holds(F;, S)). This implies that

eitherA is a non-sensing action ar is a sensing actign
sayK;, and Resu, S1) and Resa, S) agree on;. (6)

It follows from (1) and (5)—(6) and (1.4) of Definition B.1 thdfi; A]S1, [or; A]S) €
MR[[K]. This, together with (1) and (5), implies tha¥g[[do]|(A, [«]S1), Mg[[dO]|(A,
[@]S)) € MR[[K] which proves that (B.6) is true i g.

It follows from the above two cases thifly satisfies (2.9). O

Lemma B.6. For each modeM = (og, @) of a domain descriptioD, the M-interpreta-
tion of R(D), Mg, is a model ofR(D).

Proof. It follows from Lemmas B.3-B.5 tha/y satisfies the axioms (2.8)—(2.12). It is
easy to see that the closure assumptions and unique name assumptions for fluents and
actions are satisfied bz too. Thus,My is a model ofR(D). O

Lemma B.7. For each situation interpretation«]S, the following statements are
equivalent

(i) ([e]S,[a]oo.1) € MR[[K]]; and

(i) « is executable ir§ andog.1, and Regy, S) € 65(;/, 00).2 for every prefixy of «.

Proof. Induction over«]|.

62 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

Base casg|a| =0, i.e.,a = []. By item (1.4) of Definition B.1,([]S, [loo.1) € Mg[[K]|
iff Seo00.2=®(,o00).2. Together with the fact thdi is executable in§ andog.1, we
conclude the base case.

Inductive stepAssume that we have proved the lemmaltor< k. We need to show it
for || = k. Leta = [B; A]. Then,|B| < k. We consider two cases:

(i) = (ii) From item (1.4) of Definition B.1 and (i) fox = [8; A], we have that

([B1S. [Bloo.1) € MRIIKT; 1)
A is executable irRegs, S) and Reg, 0p.1); and (2)
if A sensed’; thenRegpg, S) and Regg, 0g.1) agree orF;. 3)

By inductive hypothesis, from (1), we conclude that

B is executable irf andog.1, andRegy, S) € 5(;/, 00).2 for every prefixy of .
(4)

From (2) and the fact that is executable ir§ andop.1, we have that

[B; Alis executable irf andog.1. (5)
From (3) and the fact th&egs, S) € 65(/3, 00).2, we conclude that

Res[; Al, $) € @((B; Al, 00).2. 6)

The inductive step for this direction follows from (4)—(6).

(i) = (i) o is executable inS andop.1 implies thatg is executable inS andop.1.
Furthermore, every prefix ¢f is a prefix ofa. Hence, by inductive hypothesis, we have
that

([B1S, [Bloo.1) € MR K] (7)
a is executable irf andog.1 also implies that

A is executable irRegs, S) and Regp, 0p.1). (8)
Resp, S) € @ (B, 00).2 andReg[B; Al, S) € D ([B; Al, 00).2 implies that

if A is asensing action, s&;,
thenRegp, S) and Regp, 0p.1) must agree orf;. (9)

It follows from (7)—(9) and item (1.4) of Definition B.1 tha{g; Als, [8; Aloo.1) €
MR[[K1]. This concludes the inductive step for this direction.

The inductive step is proved. Hence, by mathematical induction, we conclude the
lemma. O

Lemma B.8. For every stateS and action sequence, « is executable ir§ iff («, []S) €
Mpg[[Posq].

Proof. By induction over|.
Base casexa = []. The lemma is trivial becaudg is executable in every state and
([1, [18) € Mg[[Posg| for every states.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 63

Inductive stepAssume that we have proved the lemmaltor< k. We need to show it
for |a| = k. Leta = [B; A]. We have thatB| < k and

B; A is executable ir§
iff B is executable ir§ andA is executable irResg, S)
iff (8,[1S) € Mgl[Posdl (by inductive hypothesis)
and(A, Mg[[do]|(B, []S)) € Mg[[Posg (by Lemma B.2)
iff ([8; A],[1S) € Mr[[Posq]. O

Lemma B.9. Let D be a domain description an#f = (og, @) be a model ofD. Then,
there exists a modeMyi of R(D) such that for any fluent formula and sequence
of actionsa of D, o is executable inog and ¢ is known to be true ind (o, og) iff
Mg = Knowgg, do(«, Sg)) A Possa, Sp).

Proof. Let M be the M-interpretation oR(D). By Lemma B.6 we have that/y is a
model of R(D). We will prove thatMy satisfies the conclusion of the lemma.
We have that

« is executable img
iff o is executable iwg.1
iff («, [log.1) € Mp[[Posd| (by Lemma B.8)
iff Mg |=Possa, Sp). (1)

¢ is known to be true i («, 0p)
iff for every S € @ (a, 00).2, ¢ holds inS (by definition)
iff for every S € 0p.2 such that
« is executable ir§ and Regy, S) € @ (y, 00).2
for every prefixy of «, ¢ holds in Rege, S)

iff for every [«]S such that[«]S, [a]oo.1) € MR[[K]| (by Lemma B.7)
and (g, [@]S) € Mg[[Holdg] (by item (1.3) of Definition B.1)
iff Mg =Knowgg, do(x, Sp)) (by definition ofKnows (2)

The lemma follows from (1) and (2).0

We now prove the counterpart of Lemma B.9. lztbe a domain description andg
be a model ofR(D). Since R(D) contains the DCA and UNA axioms for actions and
fluents we can assume that the domains of actions and fluents anel F respectively,
i.e.,|MR|action= A and|Mg|fuent= F. In what follows, whenever we say a situati®nve
mean a ground situation term. We define

Definition B.2. Let D be a domain description andg be a model ofR(D). For each
ground situation terns in Mg, let s* = {F | Hold¥(F, s) is true in Mg, F is a positive
fluent litera}. 1% The Mg-initial c-state ofD, denoted by, is defined as follows.

(M.1) o5.1=S5§;

(M.2) o5.2={s"| K(s, Sp) is true inMg}.

10Recall thatHolds(— F, s) stands for-Holds(F, s).

64 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

We callM = (o, @), whereoy is the Mg-initial c-state andp is the transition function
of D (defined in Definition 2), thé/z-based model ob.

Lemma B.10. For a domain descriptionD and a modelMz of R(D), the Mg-based
model ofD. is a model ofD.

Proof. Consider an arbitrary v-propositiomitially G;” of D. There are two cases:
e G; is a positive literal. SinceM is a model ofR(D), from (2.10) we have that
Holds(G;, So) is true inMg. By (M.1) of Definition B.2, we have that

Gi€o04.1, i.e,,G; holdsinogg.1. Q)

e G; is a negative literal, say;; = —G. Again, sinceMg is a model of R(D),
from (2.10) we have thatolds(—G, Sp) is true in Mg, or HoldS(G, Sp) is false in
Mpg. Thus, by (M.1) of Definition B.2, we have that

G ¢0y.1, i.e.,G; holdsinog.1. (2)
It follows from (1) and (2) that
og.1is aninitial state oD. 3)

ConsiderS € o;.2. By (M.2) of Definition B.2, we conclude that there exiStsuch that
§=S*andK (S, So) is true inMg. Hence, by axiom (2.11)\/~; Holds(G;, S) is true in
M. Similar to (1) and (2) we can prove that

S is an initial state ofD. 4)

From (3) and (4) we have thaty is an initial c-state. Furthermore, axiom (2.12)
and (M.2) of Definition B.2 indicate thaty.1 € 03.2, i.e.,04 is a grounded initial c-state.
Since@ is the transition function oD andoy is an initial ground c-stateyl = (o, @) is
amodel ofD. O

The next corollary follows immediately from Definition B.2.

Corollary B.1. For each modeMy of R(D), a fluent formulap, and a situatiors,
Holds(p, S) holds in My, iff ¢ holds inS*.
Lemma B.11. For each modeMy of R(D), a fluentF, a situationS, and an actionA
(i) y7(A,s)istrue inMg iff F € Ef(S*); and
(i) yp(A,S)istrue inMy iff F € E, (S*).
Proof. We have that
yi (A, S) is true inMg

iff \/« 4 causesr if o»epHOIdS(0, S) is true inMg (Definition of y;f (A, S))
iff there exists an ef-propositiond’ causesrF if o” € D
such thap holds ins* (by Corollary B.1)

iff FeE}(SY).

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 65

Thus (i) is proved.
Similarly, we can prove (ii). O

Lemma B.12. For each modeMg of R(D), a situationS, and an action4,
() PosgA,S) istrueinMp iff A is executable irs*; and
(i) if PosgA, S) is true in Mg then(S")* = RegA, S*) whereS' =do(A, S).

Proof.

PosgA, S) is true inMp
iff there exists an ex-propositiorekecutableA if p” € D
such thatHoldsp, S) is true inMp
iff there exists an ex-propositiorekecutableA if p” € D
such thatp holds ins*

iff A is executable irs*. Q)
We have that iPosg A, S) is true inMg then, for a fluent,
Fe(sH*
iff Holds(F,do(A, S)) is true inMg
iff ¥,;£ (A, S) v (HoldS(F, S) A =y (A, S)) is true inMg (by axiom (2.8))
iff FeE}(S*) or(FeS*andF ¢ E;(SY) (by Lemma B.11)
F € RegA, S*). 2)

The lemma follows from (1) and (2).0

Lemma B.13. For each modeMy of R(D), a situationS, and a sequence of actions
(i) Possga, S) is true in My iff o is executable irs*; and
(ii) if Posg«, S) is true in M then[do(a, S)]* = Resa, S*).

Proof. By induction over]|.

Base case|a| = 0. (i) is trivial becausePosg[], S) is true (by definition) and] is
executable in every state. (ii) follows immediately from (M.1) of Definition B.2. The case
|| =1 is proven by Lemma B.12.

Inductive stepAssume that we have proved the lemmaj|tar< k. We need to show it
for |a| = k. Leta = [B; A]. We have thatg| < k. We have that

Possa, S) is true inMg
iff Posgp, S) is true inMyg andPossA, do(8, S)) is true inMg (by definition)
iff PosgpB, S) is true inMp and
there exists an ex-propositiorxXecutableA if p” € D
such thatHolds(p, do(8, S)) is true inMy

iff B is executable irs* (by inductive hypothesis, item (i))
and there exists an ex-propositioeXecutableA if p” € D
such thap holds in Reg8, S*) (by inductive hypothesis, item (ii))

[B; Alis executable i1s*. (1)

66 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

Let S' =do(B,S). By Lemma B.12, we have thdtlo(A, S')]* = RegA, (S))*). By
inductive hypothesis, we have th&)* = Regp, S*). Hence,

[do((B; A], S)I" = [do(A, do(B, $))]" = RegA, (S))
= RegA, Resp, S¥)) = Reg[B; A, S7).)

The inductive step follows from (1) and (2).0

Lemma B.14. Let D be a domain description antfz be a model ofR(D). Then, there
exists a modelog, @) of D such that for any fluent formuka and sequence of actions
of D, My = Knowsg, do(a, Sp)) A Possa, Sp) iff « is executable irg and ¢ is known
to be true in® («, og).

Proof. We will prove that the Mg-based model ofD, M = (o, @), satisfies the
conclusion of the lemma. By Lemma B.10{ is a model ofD. By Lemma B.13, we
have that

Possa, So) is true inMg
iff o is executable inSp)* = oy.1
iff o is executable i . (1)

We now prove by induction over the length efthat M satisfies the lemma and the
following properties.

(i) K(s,do(e, So)) is true inMp iff s* € @ («, a).2.

Base case|a| = 0. The conclusion of the lemma is trivial because of the definition of
M. (i) is equivalent to

K(s,So)istrueinMy iff s*eog.2

which follows immediately from item (M.2) of Definition B.2 and the fact th&¢So, So)
is true inMg. This proves the base case.

Inductive stepAssume that we have proved the lemmaltor< /. We need to prove it
for |a| =1. Leta =[B; Al.

It follows from the construction oR (D) that

K (s,do([B; A], Sp)) is true inMg
iff 3s1.[(K (s1,do(B, So)) A PoS$A, s1) As=do(A, s1)
and(A\j_1(A# Kj) A

Vici(A=K;A
(Holds(F;, s1) = Holds(F;, do(, Sp)))))]
is true inMg (by (2.9))
iff s7 e ®(B,0¢).2 (by inductive hypothesjs
ands* =ResA, s]) (bys=do(A, s3) and(M.1) of Definition B.2

andifA; = K thenF; e s} iff Fj € @(B,08).1
iff s* € ®(B, 0).2 2)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 67

Consider a fluent formula, we have that

Mpg &= Knowsgg, do(«, Sp)) A Possa, Sp)
iff Possa, So) is true inMg and
Vs.[K (s, do(a, Sg)) D Holds(F, s)] is true inMg
iff o is executable i
andvs* € ®(a, 03).2, ¢ holds ins* (by (1) and (i)
iff o is executable i andg is known to be true i (a, 05)- 3)

(2) and (3) prove the inductive step for (i) and the lemma’s conclusion. The lemma is
proved. O

We now prove Proposition 2.

Proposition 2. Let D be a domain descriptior be a fluent formula, and be a sequence
of actions ofD. Then,

D =4, Knows ¢ after o iff R(D) = Knowsg, do(e, Sp)) A Possa, So).

Proof. (a) Assume thatD =4, Knows ¢ after . We will prove that R(D) =
Knowgp, do(a, Sp)) A Posga, Sg). Assume the contrar®g (D) = KnowS g, do(a, Sp)) A
Possa, Sp). By definition, there exists a mod&fz of R(D) such thatMg b= Knows,
do(a, Sp)) or Mg [~ Possa, Sp). Then, by Lemma B.14, there exists a motlebf D such
thatM (= Knows ¢ after «. This implies thatD [~ 4, Knows ¢ after o which contradicts
with the assumption thab |= 4, Knows ¢ after «. Hence, our assumption is incorrect,
i.e., we have proved tha&(D) = Knowsgp, do(a, So)) A Possa, Sp). Therefore, we can
conclude that

if D=4, Knows ¢ after « thenR (D) = Knowsgg, do(e, Sp)) A Possa, Sg). (1)

(b) Assume thatR(D) = Knowgg, do(«, Sg)) A Possa, Sg). We will prove that
D =4, Knows ¢ after «. Assume the contraryp = 4, Knows ¢ after «. This means
that there exists a modé&f of D such thatM (= Knows ¢ after «. Then, by Lemma B.9,
there exists a modeWg of R(D) such thatMz = Knowsg, do(a, Sp)) A Possa, So).
This implies thatR(D) ¥ Knowsg, do(a, Sg)) A Possa, Sg) which contradicts our
assumption. Hence, we have tHat= 4, Knows ¢ after «. So,

if R(D) = Knowsgg, do(w, Sp)) A Possa, Sp) thenD = 4, Knows ¢ after oo. (2)
From (1) and (2), we can conclude that
D [=4, Knows ¢ after @ iff R(D) =KnowgF, do(a, Sp)) A Posgw, Sg). O
We will now extend the Lemmas B.9 and B.14 to conditional plans. We need the
following notation and lemmas.

Letc be a conditional plan, we define the number of case plansdgnoted byountc),
inductively as follows.

68 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

(1) If ¢ =11, thencounic) = 0.

(2) If ¢ =a, ais an action, thegountc) =0.

(3) If ¢1 andcy are conditional plans, thezasécs; ¢2) = counic1) + counicy).
(4) If ¢ is a case plan of the form

Case
Y1 —C1

©On —> Cn
Endcase

thencounic) =1+ Y_!_; countc;).
It follows directly from the definition oBappiy the following lemma.

Lemma B.15. Lets, s’ be situations and be a conditional plan. The following formulas
are entailed byBapply:
() Apply(l,s,s') Ds=5¢;
(i) Apply([cas€[])|c],s,s) Ds'=1;and
(iii) Apply(c, L,s)Ds' =1.

Proof. Assume that (i) is not entailed biyappy. Then, there exists a mod#f of Bapply
such thatApply([], s,) is true inM buts #£s'. It is easy to see thal \ AppIy([], s, s') is
also model ofBappiy. This violates the minimality oM. Thus, (i) is true in every model of
Bapply- Similarly, we can prove (ii) and (iii). O

Lemma B.16. Lets, s/, s” be situationsa be an actiony be a fluent formulag be a
sequence of actions, ardc’, ¢” be conditional plans. The following formulas are entailed
by Bapply:
() Apply[alal,s,s)As#ALD
((Possa, s) D Apply(a, do(a, s),s")) A (—Posga,s) Ds' =1));
(i) Apply(casé[(g,c)lr'Dlc"],s,8) As# LD
((knowsgp, s) D 3s”.Applyc, s, s”) A Applyc”,s”,s)) A
(—knowsg, s) D Apply([cas€r’)|c"],s,s))); and
(iii) Apply(c,s,s’) A Applyc,s,s”’) Ds' =s".

Proof. Assume that (i) is not entailed bBapply. It means that there exists a model
of Bapply, an actiona, a sequence of actions, and two situations ands’ such that
App[alal,s,s’) As =L is true in M and (PosSa, s) D Apply[a|a], do(a, s),s')) A
(—Posga,s) D s’ =1) is not true in M. By definition of Bappy, the modelM’ =
M\ {Apply([ala],s,s’)} is a model of Bapply. This contradicts the assumption thift
is a minimal model oBappiy. Hence, our assumption that (i) is not truedihis incorrect,
i.e., we have proved that (i) is a valid sentenceBafply.

Similarly, we can prove item (ii). The proof of item (iii) is based on induction over
counfc) and is omitted here. O

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 69

LemmaB.17. Letcy, ..., ¢, ben arbitrary conditional plans(n > 1). Then, the following
formula is entailed byBapply:
Apply[c; ... cnl, 1. Sn41) =
3(s2, ..., n).[APPIVc1, s1,52) A -+ - AAPPIY(Cy, Sn, Snt1)]
Proof. We prove the lemma by induction over

Base casen = 1. Then, we have that the right hand sidedss.Apply(c1, s1, s2) and
the left hand side iApply(c1, s1,s2). It follows from item (iii) of Lemma B.16 that
Apply(c1, s1, s2) = 3(s2).Applyc1, s1, s2). This proves the base case.

Inductive stepAssume that we have proved the lemmaroiVe need to prove it for
n+ 1. Sincec, andc, 11 are conditional plans, by definition, we have that ¢,;; ¢,41is a
conditional plan. Hence, by inductive hypothesisidglanscy, ..., ¢,—1, ¢, we have that

Applyc; .. .5 en-1; €, 81, Sp42) =
3(s2, ..., sn).[APPIYc1, 51, 52) A -+ AAPPIYC, Sy, Snt2)]- 1)
By inductive hypothesis for 2 plang andc,+1, we have that

App')(C, Sn, sn+2) = 3(5n+1)'[Appl)(Cn7 Sn, 5n+1) A Applwcn+l, Sn+4-1, 5n+2)]- (2)
The inductive step follows from (1) and (2). I.e., the lemma is proved.

Lemma B.18. Letc be a case plan of the form

Case
¢1— p1

@1 — pi
Endcase

ands # L. Then, the following formula is entailed Bappy:

Knowsg;,s) A Apply(c, s, s') = Knowsg;, s) A Apply(p;, s, s).

Proof. Let M be a model oBapply. Obviously, ifKnowsy;, s) is false inM for 1 < j </,
the formulais true inv. So, we need to prove it for the case there exists spreg j </,
Knowsg;, s) is true inM. We consider two cases:

(a) Left to Right Assume thatknowsg;,s) A Apply(c,s,s’) is true in M. Then,
sincegp;’s are mutual exclusive, we can conclude thd€nowsy;, s) is true in M, for
i #j, 1<i <I.Hence, by item (ii) of LemmaB.16 (far’ =[], ¢ = ¢;,c = p;) we have
that

3s".Apply(p;,s.s”) A Apply[],s”,s") is true inM. (1)
From item (i) of Lemma B.15, we have theit=s'. Hence, (1) is equivalent to,

Apply(pj,s,s’) is true inM. (2)

70 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

It follows from the assumption th#&nowse;, s) is true inM and (2) thaknowsg;, s) A
Apply(p;,s,s’) is true inM, which proves (a).

(b) Right to Left Assume thatknowsy;,s) A Apply(p;,s,s’) holds in M. Similar
argument as above concludes th&nowsy;,s) is true in M, fori # j, 1 <i <.
Hence, by definition ofApply (case 6, forc” =[], r’ is the sequencé(p1, p1), ...,
(@j-1, Pj-1), (@j+1, Pj+1)s - -+ (@1, p]), we have that

Knowsg;,s) A Apply(p;,s,s) A Apply(],s’,s") D
Apply([case[(¢;j, pj)Ir'l,s,s”) holdsinM.

Furthermore, from (i) of Lemma B.15, we have thdt=s’. Hence, we conclude that
Apply(c, s, s") AKnowsgy;, s) holds inM. This proves (b).
The lemma follows from (a) and (b).O

Lemma B.19. Assume that = c¢1,...,¢, is a conditional plan wheres,...,¢, is a
sequence of conditional plans satisfying the conditions of Observatibriet ¢; be a
case plan of the form

Case
Y1 — p1

@1 — pi
Endcase

and s be a situation term. Lef/ be a model ofBapply such thatM = Knowsg;, s)
for somej, 1< j <I. Then,M U Bapply = Apply(c, s, s') = Appiyc’, s, s') wherec’ =
Dj;C2; ... Cy.

Proof. By Lemma B.17, there existg, ..., s,—1 such that

Applyc, s, s’) = Applyct, s, s1) A --- AAPPIc,, Sn_1,9)
is true inM U Bapply. (1)

SinceM = Knowsg;, s), by Lemma B.18 and from (1), we have that

Knowsg;,s) A Applyci, s, s1) = Knowsg;,s) A Apply(p;, s, s1)
is true inM U Bapply- 2)

It follows from (1) and (2) that

M U Bapply = Knowsg;., s) A Apply(c, s, s') =
Knowsg;,s) A AppIY(p;, s, s1) A ApPIYc2, s1,53) A -+ AAPPIYcy, Su—1,),
which implies that
M U Bapply = Applyc, s,8) = Applyc’, s, 8). (by Lemma B.17) (3)

The lemma follows from (3). O

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 71

Lemma B.20. Assume that = c¢1,...,¢, is a conditional plan wherey,...,¢c, is a
sequence of conditional plans satisfying the conditions of Observatibriet ¢; be a
sequence of actions arng be a case plan of the form

Case
Y1 — p1

@1 — Pi
Endcase
ands be a situation term. Le¥/ be a model oBappiy such thatV = Knowsg;, do(cy, s))
for somej, 1 < j <. Then,M U Bapply = Apply(c, s, s') = Applyc’, s, s') wherec’ =
C1; Pji - Cn.

Proof. Since M = Knowsg;, do(c, s)), we conclude thaPosgcs, s) is true in M. By
Lemma B.17, there exists, ..., s,—1 such thatApply(c, s, s’) = Apply(c1,s,51) A--- A
Apply(c,, sp—1.5") holds inM U Bapply. (1)

Sincec; is a sequence of actions, we have that= do(ci, s). Therefore, fromM =
Knowsgg;, do(c1, s)), s1 = do(c1, s), and by Lemma B.18, we have that

M U Bapply = Apply(c2, s1, 52) = ApplY(p;, s1.52). (2
It follows from (1) and (2) that

M U Bapply = Apply(c, s, s) = Apply(ci, s, s1) A ApplY(p;, s1,52) A
Apply(cs, s2,83) A -+ - A APPIYcy, Sp—1,),
which implies that
M U Bapply = Apply(c, s, s') = Apply(c’, s,). (by Lemma B.17) (3)
The lemma follows from (3). O

Lemma B.21. Let D be a domain description anf = (o9, @) be a model ofD. Then,
there exists a modaéllz of R(D) such that for any fluent formulaand conditional plar,
e ¢ is executable inog and ¢ is known to be true irfﬁ(c,ao) iff Mg U Bapply =
Knowsgg, s) A ApplY(c, So,s) As#L;
o @(c,00) =L iff Mg U Bappiy = Apply(c, So, L).

Proof. From Observation 3.1, we can assume thatcs; ...; ¢, wherec; is a sequence
of actions or a case plan and for everyl <i <n — 1, if ¢; is a sequence of actions then
ci+1 IS a case plan.

Let Mg be theM-interpretation ofD. By Lemma B.2 My is model of R(D). We will
prove by induction ovecounic) that M satisfies the lemma.

Base casecountc) = 0. Using items (i) and (iii) of Lemma B.16, we can prove that

MR U BApp|y ': Appl)(c, SO, S) D)
(Possgc, Sg) D s =do(c, Sp)) A (—Posgc, Sg) Ds=1). Q)

72 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

By Lemma B.9, we have thatis executable irrg andg is known to be true imd (c, 00)
iff

Mpg &= Knowgg, do(c, Sp)) A Possc, So). (2)

It follows from (1) and (2) that is executable iag andg is known to be true i (c, op)
iff

MR U Bapply = Knowgg, s) A Apply(c, So,s) As# L. 3

(3) proves the first item of the lemma. To complete the base case, we need to prove the
second item. Sinceis a sequence of actions, we have that

D(c,00) =L
iff ¢ is not executable iag
iff Mg =—Possc, So) (Lemma B.9)
iff Mr U Bapply = Applyc, So, 1) (by (D).

So, the second item of the lemma is proved. The base case is proved.

Inductive stepAssume that we have proved the lemmadountc) < k. We need to
prove the lemma focountc) =k + 1.

Casel: ¢ is executable img andg is known to be true ir65(c, 00). We will show that
Knowsgg, s) A Apply(c, So, s) As #L is true inMg U Bapply.

We consider two cases:

Casel.l:c; is a case plan. Assume thatis the following case plan

Case
¢1—> p1

@Y1 — Pl
Endcase

Sincec is executable img andy is known to be true i (¢, o) we have thatl #+ @ (c, 00).
It implies that

there existg, 1< j <!, such that; is known to be true imy. 4)

_Letc’= pjicai...; ¢, Then, by definition ofp and from (4) we have thab (c, o) =
@ (c’, 0p). Hencep is known to be true irb (¢’, op). Sincecounic’) < counic) — 1, we
have thatoun{c’) < k. Thus, by inductive hypothesis, we can conclude that

Knowsg, s) A AppIY(c’, So,s) As# L is true inMg U Bapply. (5)
It follows from Lemma B.19 that
MR U BAppIy '= Applxcv SO? S) = Applxc/a SO? S). (6)

From (5) and (6) we have thadr U Bapply = Knowse, s) A Apply(c, S, s) As# L.
Casel.2: c1 is a sequence of actions. Thesn,is a case plan. Let us assume thats
the case plan.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 73

Case
Y1 —> p1

@Y1 — Pl
Endcase

Sincec is executable irogp and ¢ is known to be true i@(c,ao) we have thatl #
@ (c, 0p). This implies that

there existg, 1< j <!, such tha; is known to be true i (c1, 00). @)

Let ¢’ = c1: pj: c3i ... cp. From (7) and the definition ob, we have tha® (c, og) =
@ (c', 0p). This implies that

¢ is known to be true i (¢, 60). (8)

Since counic’) < countc) — 1, we have thatoun{c’) < k. Thus, by inductive hypothesis
and (8), we conclude that

MR U Bppply = Knowsp, s) A Apply(c’, Sp, s) As# L. 9
From Lemma B.20, we have that
MR U Bapply = AppIY(c, So, s) = AppIy(c’, So, s). (10)

(9) and (10) prove tha¥f g U Bapply = Knowse, s) A Apply(c, Sp, s) As# L.

The above two cases prove thatiis executable g and g is known to be true in
@ (c, 00) thenMg U Bapply = Knows(g, s) A Apply(c, So,s) As# L.

Case2: Mg U Bapply = Knowse, s) A Apply(c, So, s) A s # L. We will prove thatc is
executable i andg is known to be true imd (¢, o). We consider two cases:

Case2.1:c; is a case plan. Assume thatis the following case plan

Case
Y1 — p1

@1 — pi
Endcase

SinceM g U Bapply = ApplY(c, So, s) As # L, by items (ii) of Lemma B.16, we conclude
that

there existy, 1< j </, suchthatMg = Knowsgg;, Sp). (1)

Letc¢’ = pj;c2;...;cp. By Lemma B.19 we have thatfg U Bapply = Apply(c, So, s) =
Apply(c’, So, s). This implies that

Mg U Bapply = Knowsg, s) A Apply(c’, So, s) As# L. (12)

Furthermore, from the definition o#/z and (11), we have that; is known to be true in
oo. This implies that

5(0, op) = 5(0’, 00). (13)

74 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

Sincecounic’) < counic) — 1, we have thatounic’) < k. Thus, by inductive hypothesis
and (12), we can conclude thats executable img andy is known to be true i (¢, 00),
and from (13), we have thatis executable i and¢ is known to be true i (c, 00).

Case2.2: ¢1 is a sequence of actions. Thesn,is a case plan. Let us assume thats
the case plan.

Case
¢1—> p1

@1 — pi
Endcase

Similar to case 2.1, we conclude that there exjsts< j </, such that
MR U Bppply = Knowspj, s") A Apply(c1, So,) As # L. (14)
Letc’=c1: pj;c3;...; ¢p. From (14) and Lemma B.20, we have that
MR U Bapply = AppIY(c, So, s) = AppIy(c’, So, s). (15)
By inductive hypothesis, we have thatis executable irg andg; is known to be true
in @ (c1, 0g). Hence,
®(c,00) = @(c', 00). (16)

Sincecount¢’) < countc) — 1, we have thatoun{c’) < k. Thus, by inductive hypothesis,
we can conclude that is known to be true imd (¢, 00). This, together with (16), proves
thatc is executable img andg is known to be true imf(c, 00).

The two cases 2.1 and 2.2 prove thaufig U Bapply = Knowse, s) A Apply(c, So, s) A
s # 1 thenc is executable ig andg is known to be true imf(c, 00).

The two cases 1 and 2 prove thats executable irvg and¢ is known to be true in
5(c, op) iff

MR U Bapply = Knowgg, s) A Apply(c, So,s) As# L. a7

The proof of the inductive step for the last item of the Iemnfdp, op) =L iff
Applyc, So, L) is true inMg U Bapply has also four cases similar to the cases (1.1)—(1.2)
and (2.1)—(2.2). We will show next the first case. The other cases are similar and are omitted

here.
Assume tha@(c, o0p) =1L wherec =c1, ..., ¢, andcy is the following case plan

Case
Y1 — p1

@1 — pi
Endcase

We will show thatApply(c, S, L) is true inMz U Bapply. We consider two cases:

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 75

(a) There exists ng such thatp; is known to be true img. By Lemma B.9, we have that
—Knowsy;, Sp) is true inMp for 1 < j < I. Applies the last definition oApply! times,
we have that

Apply(c, So, S") D Apply([cas€[])|c'], So, S') is true inBappiywherec’ = ¢z, ..., c,. By
the third item in the definition, we can then conclude thpply(c, So, S') D Apply(c, So,
1) istrue inMg U Bapply, i.€., the inductive step is proved.

(b) There exists somgsuch thatp; is known to be true img. Again, by Lemma B.9, we
have thaKnowsp;, Sp) is true inMg andKnowsy;, So) is false inMg for 1L <i # j <.
Then, by Lemma B.19, we have that

Mg U Bapply = Apply(c, So, s) = Apply(c’, So, s),

wherec’ = p;; c; ...; cu. This, together with the fact thak(c, og) = ®(c’, o) = L and
the inductive hypothesis implies thapply(c, So, L) is true inMg U Bapply.-

The above two cases prove the inductive step for the second item of the lemma.

(18)
The lemma follows from (17) and (18).0

Lemma B.22. Let D be a domain description antfz be a model ofR (D). Then, there
exists a modeM = (og, @) of D such that for any fluent formula and any conditional
planc,
e Mg U Bapply = Knowsgg, s) A Applyc, So, s)) As # L iff ¢ is executable ig and
@\is known to be true i (c, 0p);
o @(c,00) =L iff Mg U Bapply = Applyc, So, L).

Proof. From Observation 3.1, we can assume thatcs; ...; ¢, wherec; is a sequence
of actions or a case plan and for everyl <i <n — 1, if ¢; is a sequence of actions then
ci+1 IS a case plan.

Let M = (0g, @) be theMg-based model oD. By Lemma B.10,M is a model ofD.
We will prove by induction over the number of case plarrjrtounic), that M satisfies
the lemma.

Base casecountc) = 0. Using item (i) of the Lemma B.16, we can prove that

MR U BApp|y ': Appl)(c, SO, S) D)
(Posgc, Sp) D s =do(c, Sp)) A (—Possgc, Sg) Ds=1). (1)

By Lemma B.14, we have that
Mg = Knowsp, do(c, So)) A Posgc, Sp) iff ¢ is executable irrg and g is known to be
true in®(c, op). This, together with (1), proves that

Mg U Bapply = Knowsg, s) A Apply(c, So,s) As# L
iff ¢ is executable i andg is known to be true i (c, o). (2)

Furthermore, since is a sequence of actions, from (g U Bapply = Applyc, So, L)
iff —=Posgc, Sp) is true in Mz. Again, by Lemma B.14, this is equivalent tois not
executable .

The base case for the third item of the lemma is proved. 3)

76 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

The base case of the lemma follows from (2)—(3).

Inductive stepAssume that we have proved the lemma dounic) < k. We need to
prove the lemma focountc) =k + 1.

Casel: ¢ is executable irg andg is known to be true imd (¢, o0). We will show that
Mg U Bapply = Knowsgg, s) A Applyc, So, s) A's # L. We consider two cases:

Casel.l:c1 is a case plan. Assume thatis the following case plan

Case

Y1—> Pl

@Y1 —> Pl
Endcase

Sincec is executable ip andy is known to be true i® (¢, og) we have thatl # @ (c, o).
This implies that

there existg, 1< j <!, such thatp; is known to be true imy. 4)

Let ¢ = pj: cz; ...; ¢y Then, by definition o> and from (4) we have thab (c. o0) =
@ (c', 0p). This implies that

¢ is known to be true i@ (¢, o0). (5)
From (4) and Lemma B.19, we have that
MR) BAppIy '= Applxcv SO? S) = Applxc/a SO? S). (6)

Sincecounic’) < counic) — 1, we have thatounic’) < k. Thus, by inductive hypothesis
and (5), we can conclude thazr U Bappiy = Knowsp, s) AApply(¢’, So, s) As # L. This,
together with (6), proves thal g U Bapply = Knowse, s) A Apply(c, So,s) As# L.

Casel.2:c1 is a sequence of actions. Then,is a case plan. Again, let us assume that
¢ is the case plan.

Case
¢1— p1

@Y1 — Pl
Endcase

Sirlgec is executable inogp and ¢ is known to be true ind (c, o) we have that
1 #£d(c,o0p). Itimplies that

there existg, 1< j <!, such that; is known to be true i (c1, 00). @)
Letc’ =c1; pjicai...; ¢p. From (7), we have that

®(c, 00) = (', 00). 8
It follows from (8) and Lemma B.20 that

MR U Bapply = ApplY(c, So, s) = Apply(c’, So, s).)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 77

Sincecounic’) < counic) — 1, we have thatounic’) < k. Thus, by inductive hypothesis
and (8), we can conclude thatzr U Bappiy = Knowsp, s) AApply(¢’, So, s) As # L. This,
together with (9), proves thal g U Bapply = Knowse, s) A Apply(c, So,s) As# L.
From the two cases 1.1 and 1.2, we can conclude thaisifexecutable ig andg is
known to be true ind (¢, og) thenMg U Bapply = Knowsp, s) A Apply(c, So,s) As# L.
Case2: Mr U Bapply = Knowgg, s) A Apply(c, So, s) A s # L. We will prove thatc is
executable i andg is known to be true imd (¢, o). We consider two cases:
Case2.1:c; is a case plan. Assume thatis the following case plan

Case
Y1 —> p1

@1 — pi
Endcase

Since Mg U Bapply = Knowsg, s) A Apply(c, So, s) A's # L, using of Lemma (B.16),
we can conclude that

there existy, 1< j </, suchthatMg = Knowsgg;, Sp). (20)

Let ¢’ = pj;c2;...; ca. Then, by Lemma B.19 and (10), we conclude th&t U Bapply
= Apply(c, So, s) = AppIYc’, So, s). Together with the assumption thaz U Bapply =
Knowsgp, s) A Apply(c, So, s) As # L, we have that

MR U Bapply = Knowsp, s) A Apply(c’, So, s) As# L. (11)

Furthermore, from the definition d# and (10), we have that; is known to be true irr.
This implies that

D (c, 00) = D(c, 00). (12)

Sincecounic’) < counic) — 1, we have thatounic’) < k. Thus, by inductive hypothesis
and (11), we can conclude thdtis executable img andg is known to be true i (¢, o),
and from (12), we can conclude thais executable g and¢ is known to be true in
a(c, 00).

Case2.2:c1 is a sequence of actions. Thes,is a case plan. Again, let us assume that
c2 is the case plan.

Case
¢1—> p1

Q1L — pi
Endcase
Similar to case 2.1, we conclude that there exjsts< j </, such that

MR) BAppIy '= Knowi(pja S/) A Applxc:b SOa S/)' (13)

78 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

Letc’ =c1; pj;cs; ... cp. From (13) and Lemmas B.20, we have thég U Bapply =
Apply(c, Sp, s) = Apply(c’, So, s). Hence

MR U Bppply = Knowsp, s) A Apply(c’, Sp, s) As# L. (14)
Sincec; is a sequence of actions, we have ipats known to be true i (c1, 00). Hence,
D (c,00) = D(c', 00). (15)

Since coun{c’) < countc) — 1, we have thatcountc’) < k. Thus, by inductive
hypothesis and (14), we conclude thatis executable irrg and¢ is known to be true
in ®(c’, 00). This, together with (15), proves thais executable irg andg is known to
be true in® (c, o).

From the two cases 2.1 and 2.2, we conclude thatl i U Bapply = Knowgg, s) A
Apply(c, So, s) A s # L thenc is executable ig andg is known to be true irﬁ(c, 00).
AThe two cases 1 and 2 show thats executable irog and ¢ is known to be true in
D (c, op) Iff

Mg U Bapply = Knowsp, s) A Apply(c, So, s) As# L. (16)

The proof of the third item of the lemma, i.ecf)(c, o0) =L iff Mg U Bapply =
Apply(c, Sg, L) is similar to the proof of the second item of Lemma B.21 and is omitted
here. This, together with (16), proves the inductive step of the lemma, and hence, proves
the lemma. O

Proposition 3. Let D be a domain description an&l(D) be the corresponding first-order
theory. Letc be a conditional plan ang be a fluent formula. Then,

D =4, Knows ¢ after ¢ iff
R(D) U Bapply = Apply(c, So, s) AKnowsg,s) As# L.

Proof.
e Assume thatD =4, Knows ¢ after ¢. We will prove thatR(D) U Bapply =
Knowsgg, s) AAppIY(c, So, s) As # L. Assume the contrarR (D) U Bapply = Knowsg, s)
A Apply(c, So, s) A s # L. By definition, there exists a modéfg of R(D) such that
MR U Bapply = Knowsg, s) A Apply(c, So, s) A's # L. There are two possibilities
— Mg U Bapply = Apply(c, So, 1L). Hence, by Lemma B.22, there exists a motie=
(00, @) of D such that®(c, og) =L. This implies thatD p~ 4, Knows ¢ after c.
Hence, this case cannot happen. 1)
— MR U Bapply = Apply(c, So, s) A's # L and Mg U Bapply = Knowsg, s). Then, by
Lemma B.22, there exists a modeél of D such thatM = Knows ¢ after ¢. This
implies thatD [~ 4, Knows ¢ after ¢. This contradicts with the assumption that
D =4, Knows ¢ after ¢. Hence, this case cannot happen too. (2)
From (1) and (2), we conclude that our assumption is incorrect, i.e., we have proved that
R(D) U Bapply = Knowsp, s) A Apply(c, So, s) A's # L. Therefore, we have that

if D =4, Knows ¢ after ¢ then
R(D) U Bapply = Knowsp, s) A Apply(c, So,s) As# L. 3)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 79

e Assume thaiR(D) U Bapply = Knowse, s) A Apply(c, So, s) A's # L. We will prove
thatD = 4, Knows ¢ after c. Assume the contrary) (- 4, Knows ¢ after ¢. This means
that there exists a mod&¥ = (og, @) of D such thatM j= Knows ¢ after ¢. There are
two subcases:

— 55(c, op) =_L. Then, by Lemma B.21, there exists a modgt of R(D) such that
Mg U Bapply = ApplY(c, So, L). This implies thatMg U Bapply = Knowse, s) A
Apply(c, Sg, s) A s # L, which contradicts with our assumption. Therefore, this case
cannot happen. 4)

— @(c,00) # L. Then, F is not known to be true i@ (c, op). Then, by Lemma B.21,
there exists a modeMr of R(D) such thatMgr U Bapply = Knowse,s) A
Applyc, So, s) A's# L. This implies thatR(D) U Bapply i~ Knowse, s) A Apply(c,

So,) As # L, which contradicts our assumption. Hence, this case cannot happen too.

(5)
From (4) and (5), we have tha@ = 4, Knows ¢ after c. Hence, we have that
if R(D) =Knowsgp,s) A Applyc, Sp,s) As# L
thenD =4, Knows ¢ after c. (6)

From (3) and (6), we can conclude that

D =4, Knows ¢ after ¢ iff
R(D) U Bapply = Knowsp, s) A Apply(c, Sp,s) As# L. O

Appendix C. Soundness ofv-Approximation

In this section we prove the soundness of th@\pproximation with respect to the
semantics ofdx. Throughout the section, b we denote an arbitrary but fixed domain
description. We will need the following notations and lemmas.

Leto = (T, F) be an a-state antl= (u, X') be a c-state. We say agrees withs if for
everystata € X, T CsandFNs=47.

For an a-states = (T, F), by true(oc) and falsgo) we denote the sef’ and F
respectively.

For a sequence of actiong = aj,...,a, (n > 1) and a states, by Resq,s)
we denote the stat®esay,...,Resa1,s)). Similarly Reg(a, o) denotes the state
Resg(a,, ..., Reg(ar, o)) whereo is an a-state and = ay, ..., a,.

The following observations are trivial and will be used in the proofs in this section.

Observation C.1. Leto = (T, F) be an a-state anfl= («, X') be a grounded c-state such
thato agrees withs, then
(1) if g is a fluent formula an@ holds ino (o = ¢), then for every € X', ¢ holds in
s,
(2) for every actioru, ®(a, §) is a grounded c-state
(3) X C{true(o’) | o’ € Compo)};
(4) if a is a sequence of non-sensing actions and complete, truReg (o, o)) =
Resa, true(o));

80 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

(5) If a sequence of non-sensing actioas|s w-executable i thena is executable
ins.

The proof of Proposition 6 is based on the following lemmas.
Lemma C.1. Let D be a domain descriptiow; be an a-state, andl be a grounded c-state
of D such thato agreesAwithS. Then, for every sequence of non-sensing actons D,
Res («, o) agrees withd (a, §).
Proof. Assume that = (T, F), § = (s, X), and® («, §) = (5, 2. Let

f etrue(Reg (o, 0)).

=fe () tueRes@). (by definition ofRes,)
o’eCompo)

= VYo' e Compo) f etrue(Reg(w,c’)).

= Vo' eComfo) f €Resa,truec’)). (by item (4), Observation C)1

=Vs'eX f € Rega, 5). (by item (3), Observation C)1

=Vs*eX fes* (1)

Let
f € falsgRes, («, 0)).

= fe m falsgReg(w, o). (by definition ofRes,)
o’eCompo)

=Vo' eComfo) f efalsgReg(a,).

=Vo' eComfo) f ¢ Resa,truec’)). (by item (4), Observation C)1

=>Vse X f ¢ Resa, s). (by item (3), Observation C)1

=Vs*e X fés*. 2

The lemma follows from (1) and (2).0

Lemma C.2. Let D be a domain descriptiom, be an a-state, anél be a grounded c-state
of D such thatr agrees withs. Then, for every sensing actiarof D that isw-executable
in o, there existg’ € @, (a, o) such thats’ agrees with® (a, §).

Proof. Assume that occurs in the k-propositions:determinesfi, .. ., a determinesf,
By definition, we have thak (a, o) = {f1, ..., fu}.
Assume that = (T, F) ands = (s, X). Let K1 =s N K(a,o0) andK> = K(a, o) \ s.
Sinces is a grounded c-state, we have that X'. From the assumption that agrees
with 8, we have thaf’ C s andF Ns = @. This, together with the definitions &f; andK 2,
implies thatk1 N F =@ andK>NT = . Therefore, we have that = (T UK, FUK?) €
@, (a, o). We will prove thato’ agrees withd (a, §).
Let ®(a,8) = (s, X’) = &'. Consider an arbitrary € X’. By definition of @ (a, §), we
have that' N {f1,..., fu}=sN{f1,.... i} =K1 and{f1, ..., fui} \s' ={f1, ..., [u}\

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 81

s = K2. Thus,K1 C s’ ands’ N K2 = . Sinceos agrees with we have thaf” C s’ and
FNs’ =@. Therefore,

TUK,Cs and(FUK2) Ns =0. (1)

Since (1) holds for every stateé € X’, we have that7 U K1, F U K») agrees with
(s, X'). This proves the lemma.Q

The next lemma is the generalization of the Lemmas C.1 and C.2 to a sequence actions
consisting of both sensing and non-sensing actions.

Lemma C.3. Let D be a domain descriptiow; be an a-state, andl be a grounded c-state
of D such thatr agrees withs. Then, for every sequence of actienthat isw-executable
ino,

() «isexecutableid; and

(i) there exists an a-state’ € @, («a, o) such thats’ agrees with® (a, §).

Proof. Letn(«) be the number of sensing actions occurring itWe prove the lemma by
induction ovenm ().

Base casens(a) = 0, i.e., @ is a sequence of non-sensing actions. Item (5) of
Observation C.1 proves thatis executable ir§. Furthermore, by Lemma C.1, we have
thatRes, («, o) agrees withd («, §). Sincea = pre(a), by definition of®,,, we have that
@,(a, o) =d,(a,0) ={Res(«, 0)}. This proves the base case.

Inductive stepAssume that the first sensing action occurringiis a, i.e.,a = ;a; y
wherep does not contain a sensing action. ld’ia(tﬂ 8) =81 andRes, (B8, 0) = 01. Then,
by Lemma C.1g1 agrees with;.

Sinces is a grounded c-state arfdis a sequence of non-sensing actions, using item (2)
of Observation C.1, we can easily prove thats a grounded c-state. is w-executable in
o implies thata; y is w-executable irr;. Hence, by Lemma C.2, is executable id; and
dos € &, (a, o1) such thab, agrees withd (a, 81) = 2.

Again, from the assumption that is w-executable ino we conclude thay is w-
executable in. Sinceng(y) = ny(a) — 1, by the induction hypothesis, we conclude that
y is executable idy and3os € P, (v, 02) such thabs agrees withd (v, 82) = 8.

FromRes,(8,0) = 01, 02 € &, (a,01), 03 € @,(y, 02), and by definition of®,,, we
have that

03 € q?w(a, o). 1)
From® (8, 8) = 81, P (a, 1) = 82, D (y, 82) = 83, and by definition ofp, we have that
D (, §) = 8. 2)

Sinceos agrees withsz, from (1) and (2), we can conclude the induction step. Hence,
the lemma is proved. O

In the next lemma we extend the result of Lemma C.3 to an arbitrary conditional plan.

82 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

Lemma C.4. Let D be a domain descriptiow; be an a-state, andl be a grounded c-state
of D such thatr agrees withs. Then, for every conditional plansuch that is executable
ino,

() cis executableid; and

(ii) there exists an a-stat€’ € @, (c, o) such thats’ agrees with® (c, §).

Proof. By Observation 3.1, we know thatan be represented as a sequence of conditional
plansci; .. .; ¢, wherec; is either a sequence of actions or a case plan and for évery
if ¢; is a sequence of actions then 1 is a case plan. We prove the lemma by induction
overcounic), the number of case plansdn

The base casepunic) =0, is proved by Lemma C.3.

We now prove the inductive step, i.e., assume that the lemma is showouotc) < k,
we prove the lemma fazounic) = k + 1. We consider two cases:

(a) c1 is a case plan. Assume thatis the following plan

Case
Y1 — p1

@Y1 — Pl
Endcase

From the assumption that¢ @, (c, o) we can conclude that there existsl < j <,
such thatp; holdsino. Letc’ = pj; c2...; cu. Then, by definition ofp,, we have that

D,(c,0) = Dy(c, o). (1)

Hence, 1 ¢ ®,(c’, o). Sincecountc) > countc’) + 1, we have thatountc’) < k. By
inductive hypothesis, we have that

cis executablgir(i and there exists a staté € @,,(c’, o) such that
o’ agrees withd (', 8). (2)

Sinceo agrees witl$ andy; holds ino, we can conclude that; holds ing, which implies
thatc is executable id and

D(c,8) =d(,9). (3)

From (3), (2), and (1), we have that € @,,(c, o) ando’ agrees with® (c, §). This proves
the lemma for the case (a).

(b) c1 is a sequence of actions. L&t= co; ... c,. Then, by definitions o6 and&,,,
we have thatb (¢, §) = & (¢’, D (c1, 8)) and

é)\w(cva) = U 5w(c/va/)- (4)

0/ePy(c1,0)

Sinceo agrees withs andé is a grounded c-state, by Lemma C.3, we know that there
exists a stater € 5w(c1, o) such thaby agrees withfﬁ(cl, 8). Sincec is w-executable in

o we have that’ is w-executable inr1. Furthermore, since’ starts with a case plan and
counic’) =k + 1, from the first case, we can conclude that

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 83
cl is executable is andc’ is executable mD(cl, §) and there exists a state
o' € ®,(c’, o1) such thav’ agrees withd (¢’, ® (c1,)). (5)

From (4) and (5), we have thatis executable irs, o' € ®,(c,0) ando’ agrees with
D (', P(c1,8)) = ®(c, §). Hence the inductive step is proved for case (b).
The inductive step follows from the above two cases.

We are now ready to prove the Proposition 6.
Proposition 6 (Soundness ab-Approximation with respect tp= 4,). Let D be a domain
description be a fluent formula, and be a conditional plan. Then,
if D =, Knows ¢ after ¢ thenD = 4, Knows ¢ after c.
Proof. Let op be the initial a-state oD and§p be a grounded initial c-state db. By
definition ofog andésg, we have that
o0 agrees withsy. 1)
From D =, Knows ¢ after ¢, by definition ofl=,,, we have that

1l¢ D, (c,00), and (2)
for everys’ € @, (c, 00), ¢ holds inc”. (3)
By Lemma C.4, (1)—(3), we have that

c is executable i, and (4)
there exists a state’ € ®,,(c. 00), such that’ agrees withd (c, 5o).
This, together with (4), implies thatis known to be true irb (c, 8o). (5)

(4) and (5) hold for every modebg, @) of D. This implies thatD = 4, Knows ¢ after c.
The proposition is proved. O

Appendix D. Proof of the regression proposition

In this section, we prove the regression proposition. For shorter notation, weswite
(respectively (= ¢) to denote thap holds ino (respectivelyy does not hold irr). We
first prove several lemmas that we will use in the proof.

Lemma D.1. Let f be a fluent literala be an action, and be a state. Assume thatis
executable in. Then,f holds in Reéu, s) iff Regressioff, «) holds ins.

Proof. Consider the case thatis a non-sensing action anflis a fluent. Assume that
a causesf if o1, ...,a causesf if ¢,, anda causes~f if ¢}, ...,a causes~f if g;, are
the ef-propositions irD whose action i&. Then, we have that

Regressio(lf, a) = \/j_10i V (f A A\jZ1—0}) holds ins
iff there exists an ef-propositiancausesf if o in D such thap holds ins or

84 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

f holds ins and there exists no ef-propositiercauses—f if o’ in D
such thap’ holds ins
iff feE (s)or(fesandf¢E,(s))
iff fesUEN(s)\E, (s)
iff f holdsinRega,s). (1)
Similarly, we can prove that (1) also holds whgns a negative fluent literal. (2)

Consider the case thatis a sensing action. Then, we have tRaa, s) = s (recall that
we assume that the set of sensing actions and non-sensing actions are disjoint) and,

Regressio(f, a) = f. Thus, the lemma is trivial for this case. 3)

The lemma follows from (1)—(3). O

The next corollary follows immediately from Lemma D.1 and the fact that
n n
Regressioé/\fi, a) = /\ Regressioff;. a).
i i

Corollary D.1. For a conjunction of fluent literalg, an actiona, a states such thata is
executable i, ¢ holds in Re&, s) iff Regressiofy, a) holds ins.

Lemma D.2. Let ¢ be a fluent formulag be an action, and be a state such that is
executable in. Then,p holds in Re&u, s) iff Regressiofy, a) holds ins.

Proof. Since every Boolean expression can be represented by a CNF formula, we assume
thaty = \/; ¢; where eacly; is a conjunction of fluent literals. Thus the lemma follows
directly from Corollary D.1 and the fact that

n n
Regressio(\/ @i a) =\/Regressiop;.a). O
1 i

1

Lemma D.3. Let ¢ be a fluent formulag be an action, and = (s, >') be a grounded
c-state. Assume thatis executable in every state belongingfo!! Then,
e if RegressiotKnows(¢), a) holds ine thenKnows(¢) holds in® (a, o); and
e if RegressioftKnows(¢), a) does not hold ino then Knows(¢) does not hold in
D(a,o).

Proof. Consider the case is a non-sensing action. Then, we have tRagression
(Knows(gp), a) = Knows(Regressiotp, a)).
e Regressio(Knows(¢), @) holds ino implies thatRegressiofy, a) holds in every
states’ € X. This implies thaty holds inRega, s") for every state’ € X such thatz
is executable in’ (Lemma D.1). Thereforé&Knows(¢) holds in® (a, X).

11This implies that: is executable i sinces is a grounded c-state.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 85

e RegressioKnows(¢), a) does not hold inr means that there existse X such that
Regressioyp, a) does not hold in’. Sincea is executable in’, by Lemma D.1, we
conclude thap does not hold ifRega, s'). This implies thaknows(¢) does not hold
in®(a,o).

Consider the case is a sensing action that senses a flugnt?> we have that
Regressiofy, a) = ¢ and®(a, o) = (s, X¥’) whereX’ C ¥ and each stat€ in X’ agrees
with s ong.

e RegressioKnows(¢), a) = (g—Knows(g—¢)) A (—g—Knows(—g—¢)) holds
in o implies thatg € s (respectivelyg ¢ s) implies thatknows(g— ¢) (respectively
Knows(—g—¢)) holds ino. So, ifg € s (respectivelyg ¢ s) theng € s’ (respectively
g ¢ s') implies thaty holds ins’ for everys’ € X. In other words, for every’ € %, if
s ands’ agree org theng holds ins’. Hence g is known to be true ifd (a, o), i.e.,
Knows(g) holds in® (a, o).

e RegressioKnows(p), a) = (g—Knows(g—¢)) A (—g—Knows(—g—¢)) does
not hold ino implies that either (iXg—Knows(g— ¢)) does not hold i or (ii)
(—g—Knows(—g—¢)) does not hold irs. Let us assume that—Knows(g— ¢)
does not hold ino, i.e., (i) holds. This means thgtholds ino but Knows (g— ¢)
does not. So, there exists a statén X such thatg € s’ and¢ does not hold irs’
or for everys’ in X, g ¢ 5. The first case implies tha&nows (¢) does not hold in
@ (a,o). The second case is impossible because a grounded c-state. Thus if (i)
holds therKnows(¢) does not hold ir? (a, o). Similarly, if (i) holds, we can show
thatKnows (¢) does not hold i (a, o).

The lemma follows from the above two casesi

Lemma D.4. For a c-formulag*, an actiona, and a grounded c-state = (s, X') such
thata is executable in every state belongingo

e if 0 =Regressiow*, a) thend(a, o) = ¢*; and

e if o £ Regressiotw™, a) thend (a, o) [~ ¢*.

Proof. Follows from Lemmas D.2 and D.3 and the fact that each c-formiilaan be
represented by a disjunctioyf;_, ¢ whereg? is a conjunction of fluent literals and k-
formulas of the forrKnows (o) for some fluent formula. O

Lemma D.5. Lety be a c-formula and be a conditional plan. Then, Regressignc) is
a c-formula.

Proof. The proof is done inductively overountc), the number of case plans in The

base case; is a sequence of actions, follows immediately from items (1)—(4) and the first
two sub-items of item (5) of the definition of the regression formulas. The inductive step
follows from inductive hypothesis and the last two sub-items of item (5) of the definition
of the regression formulas.O

12The proof for the case whensenses more than one fluent .. ., g, is similar and is omitted here.

86 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

Lemma D.6. For a c-formulagp, an action sequenag, and a grounded c-state such that
a is executable in every grounded c-state= (s’, X') whereX’ C ¥,

e if o = Regressiofy, o) then® (e, o) = ¢; and

e if o = Regressiofy, o) then® (a, o) 1= ¢.

Proof. Induction over«/|, the length ofx.

Base casga| =0, i.e.,a =[]. Then, we have th&egressiotp, []) = ¢ andfﬁ([], o) =
o.The lemmais trivial. (Notice that fgee| = 1, the lemma follows from LemmaD.4.) The
base case is proved.

Inductive stepAssume that we have proved the lemma [tof= n. We need to prove
the lemma fofa| =n + 1. Leta = B; a. Then, we have tha| = n.

We have thatRegressioy, B; a) = Regressiofy, 8; a) = (Regressiofy, a),). By
inductive hypothesis we have that:

o If 0 ERegressio(tp,a) Lhen 55(;3,0) = Regressio(p, a). Thus, by Lemma D.4,

P(a,?(B.0) E¢, e, P(a,0)Ep.

o If o £ Regressm(w a) then® (B, 0) N Regressio(p, a). Again, by Lemma D.4,

we have thatb (a, (8, 0)) ¢, i.e.,®(a, 0) ¢.

Lemma D.7. For a c-formulag, a grounded c-state = (s, '), and a conditional plar
such thaic is executable in every c-staté = (s’, X’) whereX’ C ¥,

e if o = Regressiofy, ¢) thend (¢, o) = ¢; and

e if o = Regressiofy, ¢) thend (¢, o) b~ ¢.

Proof. As in previous proofs related to conditional plans, we assumertisad sequence
of conditional plang1; ...; ¢, wherec; is either a sequence of actions or a case plan and
for everyi < n if ¢; is a sequence of actions then ; is a case plan. We prove the lemma
by induction overcountc), the number of case plansdn

Base casecounic) = 0. Then,c is a sequence of actions. The base case follows from
Lemma D.6.

Inductive stepAssume that we have proved the lemmadountc) < k. We need to
prove the lemma focounic) = k + 1. By construction of, we have two cases:

Casel: ¢, is a case plan of the form

Case
Y1 — p1

@1 — pi
Endcase

Letc’ =c1;...; cp—1. We have that
Regressiofy, ¢’; ¢,) = RegressiofRegressioty, c,), ¢).

Sincecoun{c) = countc’) + coun{c,) andcounic,) > 1, we have thatoun{c’) < k
Furthermore, by Lemma D.5, we have tiRggressioy, ¢,) is a c-formula. Consider two
cases:

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 87

Casel.l:o = Regressiofy, ¢). By inductive hypothesis (fdRegressioty, ¢,), o, and
¢), we have thatb (¢, o) = Regressioy, cy).

Let § = $(c/, o). Sincec is executable in0 we conclude that there exists sonje
(1< j <) such thats = Knows (¢;) andé = Knows (g;) for i # j. This, together
with the fact thatRegressioty, ¢;,) = szl(Knows (¢i) N Regressiofy, p;)), implies
thats = Knows (¢;) A Regressioy, p;). Hence,s = Regressiofy, p;). Applying the
inductive hypothesis one more time (fprs, andp;), we can conclude thM(pJ, 3) Eo.
Slncecb(cn, cb(c o)) = cb(pj,a) we have that

@(c,,, @(c ,0)) Eo, I.e.,@(c, o) =g Q)

Casel.2:o [~ Regressiofy, ¢). Again, by inductive hypothesis (fétegressioty, c,,),
o, andc’), we have tha® (¢, o) = Regressiofy, ¢,).

Let § = ®(c/, o). Sincec is executable inr we conclude that there exists sonje
(1< j <) such thats = Knows (¢;) and$ = Knows (¢;) for i # j. This, together
with the fact thatRegressioty, ¢;) = \/,zl(Knows (¢i) N Regressiofy, p;)), implies
thaté = Knows (¢;) A Regressiofy, p;). Hence,s - Regressioﬁo p;). Applying the
inductive hypothesis one more time (fpr §, andp;), we have thatb(pj,a) = . Since
D (cn, D(c, 0)) —cb(pj,a) we have that

D (cn, (', 0)) K @, i.e.,®(c,o) W . (2)

The inductive step for case 1 follows from (1) and (2).
Case2: ¢, is a sequence of actions. Lé&ét=c1; ...; ¢,_1. We have that

Regressiofy, ¢’; ¢,) = RegressiofRegressioty, c,), ¢).

It follows from Observation 3.1 that,_1 is a case plan. By case 1 and the inductive
hypothesis, (foRegressioy, c,,), o, andc’), we have that:
e If 0 = Regressiofy, ¢) then 5(c’,a) = Regressiofy, ¢;). Then, by Lemma D.6
(for ¢, @(c’, o), andc,), we can conclude tha@ (c,, @ (¢, o)) E ¢, i.e.,®(c,0)
.
o If 0}~ Regressm(}a c) thencb(c o) b& Regressiop, ¢,). Again, by Lemma D.6,
we have thatb(cn, cD(c 0)) e, le. cD(c o) ¥ o.
This proves the inductive step and hence, the lemma is proved.

We now prove Proposition 8.

Proposition 8. Given a domain descriptioP, lety be a c-formula, and1, .. ., o, be the
set of grounded initial c-states @, andc be a conditional plan that is executable in all
the grounded initial c-states db. Then,

Vi,1<i<n, o; =Regressiofp,c) iff Vj,1<j<n, ®(c,0)) ¢
Proof. Let o; = (s, X) be a grounded initial c-state db. It is easy to see that each

grounded c-statés’, X’) where X’ C X is also a grounded initial c-state @. Thus,
by the first item of Lemma D.7, we have that

if o; = Regressioy, ¢) thend (c, o) = . Q)

88 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

Using the second item of Lemma D.7, we can prove that
if @(c,0;) =g theno; = Regressiofy, c). 2)

The conclusion of the lemma follows from the fact that (1) and (2) hold for every
1<i<n. O

Appendix E. Overview of nested circumscription

Nested Abnormality Theories (NATS) is a novel circumscription [32,39] technique
introduced by Lifschitz [33]. With NATs it is possible to circumscribe several predicates
each with respect to only parts of the theory of interest, as opposed to previous techniques
such as parallelized and circumscription theories where the circumscription must be
done with respect to all of the axioms in the underlying theory. Furthermore, all the
complications arising from the interaction of multiple circumscription axioms in a theory
are avoided in NATs with the introduction of blocks.bdockis characterized by a set of
axiomsAy, ..., A,—possibly containing the abnormality predicate—which ‘describe’

a set of predicate/function constauts, . .., C,,. The notation for such a theory is

{C1,....,Cp:Aq, ..., Ay}, (E.1)

where eachd; may itself be a block of form (E.1). The ‘description’ 6%, ..., C,, by a
block may depend on other descriptions in embedded blocks.

Interference between circumscription in different blocks is prevented by replacing a
predicatedb with an existentially quantified variable. Lifschitz's idea is to malte‘local’
to the block where it is used, since abnormality predicates play only an auxiliary role, i.e.
the interesting consequences of the theory are those which do not camtairhe next
section contains the formal definitions of this concepts.

The following definitions are from [33]. Lekt be a second-order language which does
not includeAb. For every natural number let L be the language obtained by adding the
k-ary predicate constawth to L. {C1,...,Cy : A1, ..., A} is ablockif eachCy, ..., Cy,
is a predicate or a function constant bf and eachdy, ..., A, is a formula ofL; or a
block.

A Nested Abnormality Theory a set of blocks. The semantics of NATs is characterized
by a mappingy from blocks into sentences df. If A is a formula of languagé, ¢ A
stands for the universal closure &f otherwise

o{C1,...,Cp:A1,..., Ay} = (Fab)F(ab),
where
F(Ab) =CIRC[pA1 A ---AN@pAy; Ab; Cq, ..., Cyl.

Recall that CIRCT'; P; Q], means circumscription of the theofly, by minimizing the
predicates inP, and varying the objects i®.

For any NAT T, ¢T stands for{pA | A € T}. A modelof T is a model ofpT in the
sense of classical logic. Bonsequencef T is a sentence of languagel that is true in
all models ofT. In this paper, as suggested in [33], we use the abbreviation

{C1,...,Cpp,minP:Aq,..., Ap}

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 89

to denote blocks of the form
{C1,...,Cp, P:P(x) D Ab(x), A1, ..., An}.

As the notation suggests, this type of block is used when it is necessary to circumscribe a
particular predicaté in a block. In [33] it is shown that

o{C1,...,Cpy,minP:Aq,..., Ay}
is equivalent to the formula
CIRC[A1A---ANAy; P;Ca,y ..., Chl,

when eachd; is a sentence.

References

[1] C. Baral, Reasoning about actions: Non-deterministic effects, constraints and qualification, in: Proc. IJCAI-
95, Montreal, Quebec, 1995, pp. 2017-2023.

[2] C. Baral, M. Gelfond, Representing concurrent actions in extended logic programming, in: Proc. IJCAI-93,
Chambéry, France, 1993, pp. 866-871.

[3] C. Baral, M. Gelfond, Reasoning about effects of concurrent actions, J. Logic Programming 31 (1-3) (1997)
85-117.

[4] C. Baral, M. Gelfond, A. Provetti, Representing actions: Laws, observations and hypothesis, J. Logic
Programming 31 (1-3) (1997) 201-243.

[5] C. Baral, A. Gabaldon, A. Provetti, Formalizing narratives using nested circumscription, Artificial
Intelligence 104 (1-2) (1998) 107-164.

[6] A. Barrett, K. Golden, J. Penberthy, D. Weld, UCPOP User’s Manual, Version 2.0, Technical Report 93-09-
06, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 1993.

[7] F. Bacchus, J. Halpern, H. Levesque, Reasoning about noisy sensors in the situation calculus, in: Proc.
IJCAI-95, Montreal, Quebec, 1995, pp. 1933-1940.

[8] C. Baral, V. Kreinovich, R. Trejo, Planning and approximate planning in presence of incompleteness, in:
Proc. IJCAI-99, Stockholm, Sweden, 1999, pp. 948-953.

[9] C. Baral, T. Son, Formalizing sensing actions: A transition function based approach, Technical Re-
port, Department of Computer Science, University of Texas at El Paso, TX, 1998, http://cs.utep.edu/
chitta/chitta.html.

[10] Y. Dimopoulos, B. Nebel, J. Koehler, Encoding planning problems in non-monotonic logic programs, in:
Proc. European Conference on Planning, 1997, pp. 169-181.

[11] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, M. Williamson, An approach to planning with incomplete
information, in: Proc. Internat. Conference on the Principles of Knowledge Representation and Reasoning
(KR-92), Cambridge, MA, 1992, pp. 115-125.

[12] E. Erdem, V. Lifschitz, Transformations of logic programs related to causality and planning, in: Proc. 5th
International Conference on Logic Programming and Non-monotonic Reasoning, 1999.

[13] E. Erdem, Application of logic programming to planning: Computational experiments; draft (http://www.
cs.utexas.edu/tag).

[14] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press, Cambridge, MA, 1995.
[15] R. Goldman, M. Boddy, Representing uncertainity in simple planners, in: Proc. Internat. Conference on the
Principles of Knowledge Representation and Reasoning (KR-94), Bonn, Germany, 1994, pp. 238-245.

[16] R. Goldman, M. Boddy, Expressive planning and explicit knowledge, in: Proc. AIPS-96, 1996, pp. 110-117.

[17] M. Gelfond, Strong introspection, in: Proc. AAAI-91, Anaheim, CA, 1991, pp. 386-391.

[18] K. Golden, O. Etzioni, D. Weld, Planning with execution and incomplete informations, Technical Report,
TR96-01-09, Department of Computer Science, University of Washington, Seattle, WA, February 1996.

[19] E. Giunchiglia, G. Kartha, V. Lifschitz, Representing action: Indeterminacy and ramifications, Atrtificial
Intelligence 95 (1997) 409-443.

90 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91

[20] M. Gelfond, V. Lifschitz, Representing actions in extended logic programs, in: Proc. Joint International
Conference and Symposium on Logic Programming, 1992, pp. 559-573.

[21] M. Gelfond, V. Lifschitz, Representing actions and change by logic programs, J. Logic Programming 17 (2—
4) (1993) 301-323.

[22] K. Golden, Planning and knowledge representation for softbots, Ph.D. Thesis, University of Washington,
Seattle, WA, November 1997.

[23] K. Golden, D. Weld, Representing sensing actions: The middle ground revisited, in: Proc. Internat.
Conference on the Principles of Knowledge Representation and Reasoning (KR-96), Cambridge, MA, 1996,
pp. 174-185.

[24] L. Haas, A syntactic theory of belief and action, Atrtificial Intelligence 28 (1986) 245-292.

[25] G. Kartha, Soundness and completeness theorems for three formalizations of action, in: Proc. IJCAI-93,
Chambéry, France, 1993, pp. 724-729.

[26] G. Kartha, V. Lifschitz, Actions with indirect effects: Preliminary report, in: Proc. Internat. Conference on
the Principles of Knowledge Representation and Reasoning (KR-94), Bonn, Germany, 1994, pp. 341-350.

[27] H. Kautz, D. McAllester, B. Selman, Encoding plans in propositional logic, in: Proc. Internat. Conference on
the Principles of Knowledge Representation and Reasoning (KR-96), Cambridge, MA, 1996, pp. 374-384.

[28] K. Krebsbach, D. Olawsky, M. Gini, An empirical study of sensing and defaulting in planning, in: Proc. 1st
Conference of Al Planning Systems, 1992, pp. 136-144.

[29] H. Kautz, B. Selman, Planning as satisfiability, in: Proc. ECAI-92, Vienna, Austria, 1992, pp. 359-363.

[30] H.Kautz, B. Selman, Unifying sat-based and graph-based planning, in: Proc. IJCAI-99, Stockholm, Sweden,
1999, pp. 318-325.

[31] H. Levesque, What is planning in the presence of sensing?, in: Proc. AAAI-96, Portland, OR, 1996,
pp. 1139-1146.

[32] V. Lifschitz, Circumscription, in: D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), The Handbook of Logic
in Al and Logic Programming, Vol. 3, Oxford University Press, Oxford, 1994, pp. 298-352.

[33] V. Lifschitz, Nested abnormality theories, Artificial Intelligence 74 (1995) 351-365.

[34] V. Lifschitz, Two components of an action language, Ann. Math. Atrtificial Intelligence 21 (2—4) (1997)
305-320.

[35] F. Lin, Embracing causality in specifying the indirect effects of actions, in: Proc. IJCAI-95, Montreal,
Quebec, 1995, pp. 1985-1993.

[36] F.Lin, R. Reiter, State constraints revisited, J. Logic Comput. 4 (5) (1994) 655-678.

[37] F. Lin, Y. Shoham, Concurrent actions in the situation calculus, in: Proc. AAAI-92, San Jose, CA, 1992,
pp. 590-595.

[38] J. Lobo, S. Taylor, G. Mendez, Adding knowledge to the action description langdigige Proc. AAAI-97,
Providence, RI, 1997, pp. 454-459.

[39] J. McCarthy, Applications of circumscription to formalizing common sense knowledge, Artificial Intelli-
gence 26 (3) (1986) 89-116.

[40] R. Moore, Reasoning about knowledge and action, Ph.D. Thesis, MIT, Cambridge, MA, 1979.

[41] R. Moore, A formal theory of knowledge and action, in: J. Hobbs, R. Moore (Eds.), Formal Theories of the
Commonsense World, Ablex, Norwood, NJ, 1985.

[42] R. Miller, M. Shanahan, Narratives in the situation calculus, J. Logic Comput. 4 (5) (1994) 513-530.

[43] N. McCain, H. Turner, A causal theory of ramifications and qualifications, in: Proc. IJCAI-95, Montreal,
Quebec, 1995, pp. 1978-1984.

[44] L. Pryor, G. Collins, Planning for contingencies: A decision-based approach, J. Al Res. 4 (1996) 287-339.

[45] E. Pednault, ADL and the state-transition model of actions, J. Logic Comput. 4 (5) (1994) 467-513.

[46] M. Peot, D. Smith, Conditional non-linear planning, in: Proc. 1st Conference of Al Planning Systems, 1992,
pp. 189-197.

[47] R. Reiter, The frame problem in the situation calculus: A simple solution (sometimes) and a completeness
result for goal regression, in: V. Lifschitz (Ed.), Artificial Intelligence and Mathematical Theory of
Computation, Academic Press, New York, 1991, pp. 359-380.

[48] R. Reiter, Knowledge in Action: Logical Foundation for Describing and Implementing Dynamical Systems,
MIT Press, Cambridge, MA, 1998, Manuscript.

[49] R. Scherl, H. Levesque, The frame problem and knowledge producing actions, in: Proc. AAAI-93,
Washington, DC, 1993, pp. 689—-695.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19-91 91

[50] D. Smith, D. Weld, Conformant graphplan, in: Proc. AAAI-98, Madison, WI, 1998.

[51] T.C. Son, Reasoning about sensing actions and its application to diagnostic problem solving, Ph.D. Thesis,
University of Texas at El Paso, TX, 2000.

[52] H. Turner, Signed logic programs, in: Proc. 1994 International Symposium on Logic Programming, 1994,
pp. 61-75.

[53] H. Turner, Representing actions in logic programs and default theories, J. Logic Programming 31 (1-3)
(1997) 245-298.

[54] D. Weld, C. Anderson, D. Smith, Extending graphplan to handle uncertainity and sensing actions, in: Proc.
AAAI-98, Madison, WI, 1998, pp. 897-904.

[55] D. Weld, An introduction to least commitment planning, Al Magazine 15 (4) (1994) 27-61.

