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Abstract

The paper presents a calculus based on resolution for cred-
ulous reasoning in Answer Set Programming. The new ap-
proach allows a top-down and goal directed resolution, in the
same spirit as traditional SLD-resolution. The proposed cred-
ulous resolution can be used in query-answering with non-
ground queries and with non-ground, and possibly infinite,
programs. Soundness and completeness results for the resolu-
tion procedure are proved for large classes of logic programs.
The resolution procedure is also extended to handle some tra-
ditional syntactic extensions used in Answer Set Program-
ming, such as choice rules and constraints. The paper also
describes an initial implementation of a system for credulous
reasoning in Answer Set Programming.

Introduction
Answer Set Programming (ASP) (Niemelä 1999; Marek &
Truszczyński 1999) emerges from research in logic pro-
gramming and non-monotonic reasoning. Using ASP, one
can solve a problem by (i) encoding the problem as a logic
program P ; (ii) computing an answer set of P using an an-
swer set solver, such as SMODELS (Simons et al. 2002) and
DLV (Eiter et al. 2003a)); and (iii) extracting the solution
from the answer set. The key idea is to ensure that the an-
swer sets of the program developed in step (i) correspond
one-to-one to solutions of the original problem.

An important observation is that, frequently, an arbitrary
solution to the problem is required—or just the knowledge
that a solution exists. For example, one coloring in a graph
coloring problem or one assignment of variables satisfying a
SAT instance might be enough. In ASP, this translates to the
interest in performing credulous reasoning, i.e., exploring
entailment w.r.t. an arbitrary answer set of a program.

ASP has been applied to several important areas—e.g., di-
agnosis for the space shuttle (Balduccini et al. 2001); LTL
model checking (Heljanko & Niemelä 2003); security pro-
tocols verification (Carlucci et al. 2001). The improvements
of ASP solvers with respect to the representation languages
and implementation techniques enable ASP to be competi-
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tive to other state-of-the-art technologies in several domains
(e.g., (Dovier et al. 2008)).

One of the main difficulties in applying ASP to real-world
applications lies in the requirement that the input program
provided to the solver is propositional (i.e., ground). Pro-
grams with variables need to be grounded before their an-
swer sets can be computed, and their grounding has to result
in a finite collection of rules. This limits our ability to use
ASP in several practical domains and/or makes the develop-
ment of ASP programs cumbersome. For example:
• We are prevented from directly using popular recursive

predicate definitions, such as the various list predicates
(member, append, length, etc.) available in Prolog.

• We cannot deal with many ASP programs which have
a finitely representable answer set or a partial answer
set containing sufficient information to address the user’s
query. For example, the program {P (A)← ; P (F (x))←
Q(x)} has a unique answer set {P (A)}; the program
{P (A) ← ; P (F (x)) ← P (x)} has a partial answer
set {P (A), P (F (A))} that allows one to conclude that
P (F (A)) is credulously entailed by the program. Both
programs cannot be handled by current answer set solvers.

• We cannot deal with programs whose ground versions are
very large; for example, the encoding of a typical plan-
ning problem in ASP often contains several hundreds of
actions and may require a large number of steps to reach
the goal, leading to ground instances with several hun-
dreds of thousands of rules (Son & Pontelli 2007).

Extensive research has been conducted to address the above
limitations. For example, the work in (Eiter et al. 1997) in-
vestigates a compact representation of answer sets for non-
ground programs. Recently, a direct definition of answer
sets for non-ground logic programs has been proposed (Fer-
raris et al. 2007). However, implementation following these
definitions has yet to be developed. The work of (Bonatti
2001) addresses the issue of reasoning with non-ground and
possibly infinite programs. It presents a sound and com-
plete algorithm for skeptical reasoning (skeptical resolution)
that works for a large class of non-ground ASP programs,
called finitary programs. A skeptical derivation allows goal-
directed reasoning; at each step, a pair of a goal and a set
of hypotheses is transformed into a new pair of a new goal
and hypotheses according to some inference rules. The pro-
cess can either fail or succeed. When a derivation suc-



ceeds, its initial goal is considered a skeptical consequence
of the program given the initial set of hypotheses.1 While
applicable to several domains (e.g., security protocol ver-
ification (Bonatti 2001)), skeptical reasoning is not suited
for applications favoring credulous reasoning, e.g., combi-
natorial problems and planning. Moreover, skeptical res-
olution in (Bonatti 2001) allows for reasoning by contra-
diction, which admits the answer ‘yes’ when the program
is inconsistent. This is not appropriate for those ASP ap-
plications where a negative answer should be given if the
program is inconsistent. Other calculi (based on tableaux)
have been presented in the literature (e.g., (Fitting 1994;
Gebser & Schaub 2006)).

The goal of this paper is to develop a calculus for cred-
ulous resolution for non-ground and/or infinite logic pro-
grams. The calculus should not use the contradiction rule
and should be sound and complete for large useful classes
of infinite and/or non-ground ASP programs. Proofs of the
results can be found in (Bonatti et al. 2008).

Preliminaries
Let L be a first order language. A positive literal is an atom
in L. A negative literal is of the form notA, where A is an
atom. A literal is a positive or a negative literal. A normal
logic program is a set of rules of the form A← L1, . . . , Ln

where A is an atom and each Li is a literal. A is called
the head and L1, . . . , Ln the body of the rule. We use the
notation head(r) = {A} and body(r) = {L1, . . . , Ln}.
Given a set of literals S, let pos(S) be the set of positive
literals in S, and neg(S) be the set of atoms A such that
notA ∈ S. These functions are extended to rules as fol-
lows: pos(r) = pos(body(r)) and neg(r) = neg(body(r)).
A set of ground atoms M satisfies a ground atom A (resp.
a ground negative literal notA) if A ∈ M (resp. A 6∈ M ).
This is denoted by M |= A (resp. M |= notA). M |= S
for a set of ground literals S iff M |= A for every A ∈ S.

A ground rule is a ground instantiation of some rule.
Ground(P ) denotes the set of all ground rules of the pro-
gram P . The Gelfond-Lifschitz transformation P I of a pro-
gram P w.r.t. an Herbrand interpretation I is obtained by
removing from Ground(P ) all the rules containing a nega-
tive literal notB such that B ∈ I , and by removing from the
remaining rules all negative literals. An interpretation M is
an answer set of P if M is the minimal Herbrand model of
PM (Gelfond & Lifschitz 1988).

The atom dependency graph of a program P is a la-
beled directed graph DG(P ) whose vertices are the ground
atoms from the language of P . DG(P ) contains an edge
labeled ’+’ (a positive edge) from A to B iff there is a rule
r ∈ Ground(P ) such that A ∈ head(r) and B ∈ pos(r).
DG(P ) contains an edge labeled ’-’ (a negative edge) from
A to B iff there is r ∈ Ground(P ) such that A ∈ head(r)
and notB ∈ neg(r).

An atom A depends positively (resp. negatively) on B if
there is a path from A to B in DG(P ) with an even (resp.

1When the initial set of hypotheses is empty, the goal is a con-
sequence of the program.

odd) number of negative edges. Moreover, each atom de-
pends positively on itself. If A depends positively (resp.
negatively) on B we write A ≥+ B (resp. A ≥− B). We
write A ≥ B to denote that A depends positively or nega-
tively on B. If both A ≥+ B and A ≥− B hold then we
write A ≥± B. A program is order consistent if there are
no infinite chains A1 ≥± A2 ≥± . . . Order consistent pro-
grams always have an answer set. An odd-cycle is a cycle in
DG(P ) containing an odd number of negative edges. Note
that order consistency implies that there are no odd-cycles.

A program is finitely recursive iff each ground atom de-
pends on finitely many ground atoms. A program is finitary
if it is finitely recursive and has finitely many odd-cycles.

SLD derivations are defined as in (Lloyd 1987), assuming
that a computation rule that does not select negative literals
is used. The following definitions are from (Bonatti 2001).

Definition 1. A support for a ground atom A (from P ) is a
set of ground negative literals {L1, . . . , Ln} such that there
exists an SLD derivation of A from Ground(P ) whose last
resolvent is L1, . . . , Ln.

Definition 2. A ground countersupport for a ground atom A
(from P ) is a set of atoms C such that: (1) For each support
S of A there exists B ∈ C such that notB ∈ S; (2) For each
B ∈ C there exists a support S of A such that notB ∈ S.

Example 1. The Yale Shooting Problem can be represented
by the following program (in all the rules, t ≥ 0 represents
a time step; H and O mean Holds and Occurs):

H(¬Loaded, 0)← (1)
H(Alive, 0)← (2)

H(¬Alive, t + 1)← O(Shoot, t),H(Loaded, t) (3)
H(¬Loaded, t + 1)← O(Shoot, t) (4)
H(Loaded, t + 1)← O(Load, t) (5)

H(f, t + 1)← H(f, t), notH(¬f, t + 1) (6)
H(¬f, t + 1)← H(¬f, t), notH(f, t + 1) (7)

where the last two rules encode the frame axiom for every
fluent f ∈ {Loaded, Alive}. This program can be used for
hypothetical reasoning. For planning, we will add the rules:2

O(Shoot, t)← notO(Load, t) (8)
O(Load, t)← notO(Shoot, t) (9)

Let us denote with PYST the above program. It is easy to
see that {notO(Load, t)} is a support for O(Shoot, t) and
{O(Load, t)} is a countersupport for O(Shoot, t). 4

The following theorem (Bonatti 2001) relates the notions
of support and countersupport to answer sets of a program.

Theorem 1. If M is an answer set and A is a ground atom,
then: (1) A ∈ M iff A has a support S s.t. M |= S; (2)
A 6∈M iff A has a ground countersupport C s.t. M |= C.

Example 2. The program PYST has an answer set A which
contains {O(Load, 0), O(Shoot, 1),H(¬Alive, 2)} and
does not contain {O(Shoot, 0), O(Load, 1)}. In this answer

2We have simplified the action generation rules in the examples.



set, O(Load, 0) ∈ A and A |= {notO(Shoot, 0)}, a sup-
port for O(Load, 0). Likewise, O(Shoot, 0) 6∈ A and A |=
{O(Load, 0)}, a countersupport of O(Shoot, 0). A support
for H(¬Alive, 2) is {notO(Shoot, 0), notO(Load, 1)}.
Thus, H(¬Alive, 2) is credulously entailed by PYST .

The program admits another answer set which contains
{O(Load, 0), O(Load, 1),H(Alive, 2)} and does not con-
tain H(¬Alive, 2). In other words, PYST credulously en-
tails H(¬Alive, 2) but it does not skeptically entail it. 4

Credulous Resolution
In this section, we define a calculus for credulous reason-
ing in ASP. Like the skeptical resolution of (Bonatti 2001),
credulous resolution also works with goals with hypotheses
(or h-goals). Each h-goal is a pair (G | H), where G is a
standard goal, i.e., a finite set of literals, and H is a set of
negative literals. Intuitively, a h-goal (G | H) asks whether
G is true if H were assumed to be true—i.e., whether there
is an answer set M which satisfies both G and H . We use 2

to denote an empty goal, satisfied by any answer set.
Example 3. The pair ({H(¬Alive, 2)} | 2) is a h-goal
for the program PYST , which asks whether there exists an
answer set of the program containing H(¬Alive, 2).

We will also need the notion of a derivation which is a
sequence of h-goals ∆ = (G0 | H0) (G1 | H1) . . . (Gn |
Hn) . . . (or ∆ = 〈(Gi | Hi)〉ki=0, for short). We will next
present the rules for credulous reasoning. Since these rules
are complex in the general case (non-ground programs), we
will specialize them for different classes of logic programs.
We start with the case of ground normal programs.

Ground Normal Programs
Let P be a program and (G | H) be a h-goal. Theorem 1
indicates that if P has an answer set M which satisfies both
G and H then we can create a new h-goal (G′ | H ′), which
is also satisfied by M , by replacing elements in G and H by
one of their supports or countersupports. This process can
be repeated and creates a ground credulous derivation.
Definition 3. A ground credulous derivation (c-derivation)
of a ground h-goal (G | H) from P is a (possibly infinite)
derivation ∆ = 〈(Gi | Hi)〉ki=0 with G0 = G, H0 = H ,
and some of the following conditions hold for every i:
(R) (Resolution rule) for some positive literal A in Gi and

some rule r ∈ Ground(P ) such that head(r) = A we
have that Gi+1 = (Gi \ {A})∪ body(r) and Hi+1 = Hi

(H) (Resolution with hypothesis) for some negative literal
notA ∈ Gi∩Hi we have that Gi+1 = Gi \{notA} and
Hi+1 = Hi

(F) (Failure rule) for some negative literal notA in Gi \
Hi and some ground countersupport CA for A (from P ),
we have that Gi+1 = (Gi \ {notA}) ∪ CA and Hi+1 =
Hi ∪ {notA}

Intuitively, a c-derivation represents a top-down computa-
tion, starting with a goal (G | H). The first element of the
derivation is the h-goal (G | H) which needs to be solved,
as in other proof procedures (e.g., traditional SLD resolu-
tion). At each step of the derivation, one of the three rules

(R), (H), or (F), is used to transform the h-goal into a new
h-goal. We illustrate some computations in the Table 1.

(Gi | Hi) Rule applied
({(H(¬Alive, 2)} | 2) (R), rule (3), t = 1
({O(Shoot, 1), H(Loaded, 1)} | 2) (R), rule (8), t = 1
({notO(Load, 1), H(Loaded, 1)} | 2) (F), notO(Load, 1)
({O(Shoot, 1), H(Loaded, 1)} | (R), rule (8), t = 1

{notO(Load, 1)})
({notO(Load, 1), H(Loaded, 1)} | (H)

{notO(Load, 1)})
({H(Loaded, 1)} | {notO(Load, 1)})

Table 1: Computation steps w.r.t. PYST

A c-derivation is consistent iff for all pair of h-goals (Gi |
Hi) and (Gj | Hj) in the sequence, pos(Gi)∩neg(Gj) = ∅.
A c-derivation is successful if it is consistent, finite, and the
last h-goal has the form (2 | H), for some set of negative
literals H . The following theorem shows that credulous res-
olution is sound for order-consistent programs while com-
pleteness is guaranteed for finitely recursive programs.
Theorem 2 (Ground Soundness and Completeness).
◦ Let P be a ground, order consistent program. If (G | 2)

has a successful c-derivation from P , then G is a credu-
lous consequence of P .
◦ Let P be a ground finitely recursive program. If G is a
credulous consequence of P , then (G | 2) has a success-
ful c-derivation from P .
Observe that finitely recursive, odd-cycle free programs

are order consistent but not vice versa. It is also worth men-
tioning that the class of finitely recursive, odd-cycle free pro-
grams is large enough to cover many interesting predicates
often used in ASP (Bonatti 2004).

Continuing with the derivation in Table 1, we have:

(Gi | Hi) Rule applied
({H(Loaded, 1)} | {notO(Load, 1)}) (R), (5), t = 0
({O(Load, 0)} | {notO(Load, 1)}) (R), (9), t = 0
({notO(Shoot, 0)} | {notO(Load, 1)}) (F)
({O(Load, 0)} | repeat 2nd step

{notO(Shoot, 0), notO(Load, 1)}) then apply (H)
(2 | {notO(Shoot, 0), notO(Load, 1)})

Table 2: A successful c-derivation for ({(H(¬Alive, 2)} | 2)

Non-Ground Programs
Credulous resolution can be naturally extended to non-
ground programs and goals, similarly to the case of skepti-
cal resolution. Rule (R) (resolution) is extended classically:
positive literals are unified with rule heads, and the result-
ing most general unifier is applied to the new h-goal. Nega-
tion as failure is based on a non-ground version of counter-
support. A non-ground countersupport for a (possibly non-
ground) atom A from a program P is a pair (θ, C), where
θ is a substitution and C a set of atoms such that, for all
grounding substitutions γ of Aθ, Cθγ is a ground counter-
support for Aθγ from P .

A non-ground derivation from P is a sequence Γ =
〈(Gi | Hi | θi)〉ki=0 where Gi,Hi are (possibly non-ground)



sets of literals, and θi is a substitution. We call a triple
(Gi | Hi | θi) an extended h-goal.

A non-ground credulous derivation (ngc-derivation) of a
(possibly non-ground) h-goal (G | H) from P is a non-
ground derivation ∆ = 〈(Gi | Hi | θi)〉ki=0 with G = G0,
H = H0, θ0 = ε, and for all extended h-goals (Gi | Hi | θi)
in ∆ some of the following conditions hold:
(R) (Resolution rule) for some positive literal A in Gi and

a new variant r of some rule in P , µ is the most general
unifier (mgu) of head(r) and Aθi, Gi+1 = (Gi \ {A}) ∪
body(r), Hi+1 = Hi ∪ {A}, and θi+1 = θiµ.3

(H) (Resolution with hypothesis) for some negative literal
notA in Gi and some notB in Hi such that µ is the
mgu of notAθi and notBθi, then Gi+1 = Gi \{notA},
Hi+1 = Hi, and θi+1 = θiµ.

(F) (Failure) for a literal notA in Gi and some non-ground
countersupport (σ,CA) for Aθi, we have Gi+1 = Gi \
{notA} ∪ CA, Hi+1 = Hi ∪ {notA}, and θi+1 = θiσ.

A derivation is finite if, after k steps, it reaches an extended
h-goal (2 | Hk | θk). In this case, σ is a computed answer
substitution if there exists a substitution γ such that σ = θiγ
and Ground(Hkσ) is a consistent set of ground literals.

A ngc-derivation ∆ = 〈Gi | Hi | θi〉ki=0, is successful if
it is finite and admits at least one computed answer substitu-
tion. Theorem 2 can be extended to the non-ground case:
Theorem 3 (Non-ground Soundness and Completeness).
◦ Let P be a (possibly non-ground) program such that
Ground(P ) is order consistent, and let ∆ be a success-
ful ngc-derivation of (G | 2) from P , where θ is a corre-
sponding computed answer substitution. Then there exists
an answer set M of Ground(P ) such that M |= ∀(Gθ).
◦ Let P be a finitely recursive, odd-cycle-free program. If
G is a ground credulous consequences of P and G′ is
such that G = G′γ for some substitution γ, then there
is a successful ngc-derivation of (G′ | 2) from P and a
corresponding computed answer substitution θ such that
G = G′θσ for some substitution σ.

Specializations of Credulous Resolution
The class of finitely recursive, odd-cycle-free programs is
large enough for us to consider several programs. How-
ever, odd-cycles often appear in ASP programs when choice
atoms and/or constraints (Simons et al. 2002) are used. E.g.,
if the theory in Example 1 has an additional action, say
Wait, then the group of rules for action generation (8)-(9)
should be changed to the two rules

O(a, t)← notNo(a, t) No(a, t)← notO(a, t)

and the set of constraints

← notNo(Shoot, t), notNo(Load, t), notNo(Wait, t)(10)
← a 6= b, O(a, t), O(b, t) (11)

where a is an action variable and No means “not occurs.”
However, each constraint represents an odd-cycle. As dis-
cussed in (Bonatti 2004), odd-cycles caused by constraints

3For two substitutions σ, θ, the composition σθ is such that for
every term/atom t, σθ(t) = θ(σ(t)).

can be dealt with by introducing new atoms. E.g., we can
introduce a new predicate Bad(t) and rewrite (10) as

Bad(t) ← notNo(Shoot, t), notNo(Load, t),
notNo(Wait, t) (12)

together with the rule: Bad(t + 1)← Bad(t).
The program with the predicate Bad does not have odd-

cycles if the set of rules without constraints creates a pro-
gram without odd-cycles. Furthermore, answer sets of the
original programs are exactly those which do not contain
any atom of the form Bad(t). Thus, to discover whether
G is a credulous consequence of the original program,
we need to find a successful credulous derivation of the
goal G, notBad(K) where K is an appropriate constant,
which can be determined given G; for example, if G =
H(¬Alive, 2) then K = 2.

This shows that credulous resolution can be applied to
programs with constraints. The disadvantage of this method
is the exponential number of countersupports for Bad(T )
as T grows. This is not desirable for an implementation of
credulous resolution. In this section, we will present two
specializations of the credulous resolution for programs with
choice atoms and constraints. For simplicity of the presen-
tation, we will focus on ground (possibly infinite) programs.

Programs with Choice Atoms
Choice atoms have been introduced in (Simons et al. 2002)
and have proved to be very useful in knowledge representa-
tion. In our example, we can replace the rules for selecting
an action with the single choice atom (T is a time point)

1{O(a, T ) : Action(a)}1←
Formally, a choice atom is of the form L{A1, . . . , An}U
where each Ai is a ground atom4, n ≥ 1, and L and U are
non-negative integers, L ≤ U . An atom A is called a choice-
literal if there exists a choice atom L{A1, . . . , An}U and
A ∈ {A1, . . . , An}. A choice rule is of the form

L{A1, . . . , An}U ← L1, . . . , Lm (m ≥ 0) (13)
where L{A1, . . . , An}U is a choice atom and each Li is a
literal. For simplicity, in the rest of the discussion we will
assume L = U = 1. The techniques used in this paper can
be easily adapted to the general case.

A program with choice rules (or c-program) is a set
containing both standard and choice rules. The notion of
Ground(P ) is extended to program with choice rules in the
usual way. The atom dependency graph DGc(P ) is defined
as follows. The set of nodes of DGc(P ) is the set of atoms
occurring in P . There is a positive edge from A to B if there
is a ground rule r in Ground(P ) such that B ∈ pos(r) and A
occurs in head(r). There is a negative edge from A to B if
there is a ground rule r in Ground(P ) such that B ∈ neg(R)
and A occurs in head(R).
Definition 4. A c-program P is finitary if (1) P is finitely
recursive w.r.t. DGc(P ), (2) DGc(P ) is odd-cycle free, (3)
there is no cycle in DGc(P ) which contains some choice-
literal, and (4) each choice-literal occurs in the head of at
most one rule.

4The discussion in this section can be easily extended to literals.



Theorem 4. Every finitary c-program is consistent.
Let P be a finitary c-program. Let RP be the program

obtained from P by replacing each rule r of the form (13) in
P by the set of rules {r1, . . . , rn} where head(ri) = Ai and
body(ri) = body(r) ∪ {notAj | j 6= i}.

Let P be a finitary c-program and A be a ground atom in
the language of P . In the following we define supports and
countersupports of A in P as the corresponding supports and
countersupports of A in RP . Thus, atom A depends on a fi-
nite and finitary program whose odd-cycles are disjoint. In
fact, each odd-cycle of RP involves a set of specific atoms
which do not appear in other odd-cycles. This property al-
lows us to extend the notion of a ground credulous deriva-
tion to programs with choice rules. The only modification to
Definition 3 is the introduction of the resolution rule:
(RC) (Resolution with choice rule) there is a positive
literal A in Gi, and there is a rule in Ground(P )
1{A1, . . . , An}1 ← L1, . . . , Lm where A = Ak ∈
head(R), then Gi+1 = (Gi \ {A}) ∪ body(r) and Hi+1 =
Hi ∪ {notA1, . . . , notAn} \ {notAk}.

The notions of consistent and successful derivations are
unchanged. We can extend Theorem 2 to program with
choice rules as follows.
Theorem 5. Let P be an finitary c-program and G be a
ground goal. G is a credulous consequence of P iff (G | 2)
has a successful credulous derivation from P .

Programs with Constraints
We will now extend the credulous resolution to deal with
constraints. A constraint is a clause of the form

← L1, . . . , Ln

where Li are literals. Intuitively, a constraint is used to re-
ject all answer sets M such that M |= L1, . . . , Ln. For
simplicity, we will denote a constraint by the set of literals
{L1, . . . , Ln}. Let us write P = P+ ∪ P c, where P c are
the constraints in P and P+ = P \P c. Since answer sets of
a program P are answer sets of P+ which satisfy the con-
straints in P c, one way to deal directly with constraints in
resolution is to manage the constraints at each step of the
derivation.

For a literal L, L̄ denotes its complementary literal; i.e.,
if L is an atom, then L̄ = notL, if L is notA then L̄ = A.
The notation can be extended to set of literals—S̄ = {L̄|L ∈
S}. Given a set of constraints C and a literal L, let

relev(C,L) = {c | c is a constraint in C and L ∈ c}
antirel(C,L) = {c | c is a constraint in C and L̄ ∈ c}

In order to include constraints in the computation, let us re-
place the concept of h-goal with the notion of constraint h-
goal (ch-goal). A ch-goal has the form (G | H | C), where
(G | H) is a h-goal while C is a collection of constraints.
Intuitively, C are the constraints that have not been satisfied
by the derivation yet. The notion of derivation presented
next will drop from C those constraints that are satisfied by
the current selected literal (i.e., if L is the selected literal, we
drop each constraint X s.t. L̄ ∈ X); it will force the deriva-
tion to take into consideration additional literals to satisfy
those constraints that are in danger of being violated.

A ground constraint credulous derivation of a ground h-
goal (G | H) from P is a (possibly infinite) sequence of
ch-goals

(G0 | H0 | C0) (G1 | H1 | C1) . . . (Gk | Hk | Ck) . . .

where G0 = G, H0 = H , C0 = P c, and such that for all
ch-goals (Gi | Hi | Ci) in the sequence (but the last one, if
any) some of the following conditions hold:
(R) (Resolution rule) for a positive literal A in Gi, a rule r ∈

Ground(P ) such that head(r) = A, and a finite collection
of literals S ⊆

⋃
c∈relev(Ci,A)(c \ {A}) such that ∀c ∈

relev(Ci, A). c ∩ S 6= ∅, we have that

Gi+1 = (Gi \ {A}) ∪ body(r) ∪ S̄
Hi+1 = Hi

Ci+1 = Ci \ antirel(Ci, A)

(H) (Resolution with hypothesis) for a negative literal
notA ∈ Gi ∩ Hi we have that Gi+1 = Gi \ {notA},
Ci+1 = Ci and Hi+1 = Hi

(F) (Failure rule) for a literal notA in Gi \ Hi, a ground
countersupport CA for A (from P ), and a finite set of
literals S ⊆

⋃
c∈relev(Ci,notA)(c \ {notA}) such that

∀c ∈ relev(Ci, notA). c ∩ S 6= ∅, we have that

Gi+1 = (Gi \ {notA}) ∪ CA ∪ S̄
Hi+1 = Hi ∪ {notA}
Ci+1 = Ci \ antirel(Ci, notA)

A computation is consistent if pos(Gi) ∩ neg(Gj) = ∅ for
each i, j. A computation is strongly successful if it is finite,
consistent, and the last ch-goal is of the form (2 | H | ∅).
A computation is weakly successful if it is finite, consistent,
and the last ch-goal is of the form (2 | H | S).

Observe that constraints encode odd cycles in DG(P ).
We say that P is an order consistent constraint program if
P+ is order consistent.
Theorem 6 (Strong Soundness and Completeness). Let P
be a ground order consistent constraint program; if (G | 2)
has a strongly successful derivation, then G is a credulous
consequence of P .
Let P be a ground finitary program with constraints. If G is
a credulous consequence of P , then there is a set of literals
G′ such that G ∪G′ has a strongly successful derivation.

The intuition is that we may need to prove some addi-
tional literals in order to ensure that all constraints in P c

are reached and satisfied by the derivation. In an alternative
perspective, more in-line with a “CLP-style” view of deriva-
tion, Ci can be viewed as a constraint store, and the removal
of constraints as a specialized form of propagation and con-
straint consistency. A weak computation terminating in the
ch-goal (2 | H | C) provides an “implicit” representation
of a solution—where a solution is an answer set that is com-
patible with the assumptions H and satisfies the constraints
C. Work is in progress to revisit the notion of derivation
from this perspective.

A Preliminary Implementation
We developed a first (unoptimized) implementation to con-
duct some preliminary experiments. Non-ground credulous



Yale Shooting n=4 n=9 n=10 n=100 n=200
c-resolution 0.01 0.01 0.01 0.21 0.67
smodels 0.03 0.07 0.09 0.48 1.01
Towers of Hanoi n=3 n=4 n=5 n=6 n=7
c-resolution 0.059 0.311 2.229 28.433 t.o.
smodels 8.355 t.o. t.o. t.o. t.o.
Bomb in the Toilet p=4, t=4
c-resolution 0.10
smodels 90.402
Block World no. of blocks=3
c-resolution 1.055
smodels 0.521
Synth Planning time steps=30
c-resolution 0.425
smodels 1.244

Table 3: Execution time in seconds
resolution is implemented in XSB Prolog, a Prolog sys-
tem capable of memoization of goals. Memoization is used
to guarantee termination in the presence of positive cycles.
Termination in the presence of negative cycles is guaranteed
by giving rule (H) higher priority than (F). In this implemen-
tation, non-ground countersupport computation is complete
only for safe programs (i.e., each variable should occur in at
least one positive literal in the body of a rule). We also intro-
duced treatment of constraints, as in the scheme described in
this paper. Tabulation is also needed to factorize common
subproofs, thereby leading to significant speedups. XSB
supports two tabulation strategies, called local and batched.
The latter was used as it significantly outperformed the for-
mer, both in terms of time and memory requirements.

We tested our prototype on a selection of benchmarks.
These include the Yale Shooting Problem with varying num-
ber of time points (i.e., the initial goal is H(¬alive,n)), the
Towers of Hanoi with 3 poles and a varying number n of
disks (the number of actions required to solve the Towers
of Hanoi with n disks is 2n − 1), the Bomb in the Toilet
planning problem (4 packets, 4 toilets), in its conformant
version without any initial knowledge, a block world plan-
ning problem and a synthetic planning problem with a very
large search space. The experiments have been run on a dual
core with a 2.6 GHz clock and 4GB RAM, running Windows
Vista and cygwin. Response times are reported in Table 3
(time in seconds, t.o. denotes timeout after 200sec.). We
also report, for comparison, the corresponding time to de-
tect an answer set satisfying the goal using SMODELS.5

Conclusion and Future Work
In this paper, we presented a goal-oriented top-down notion
of derivation that captures the concept of credulous conse-
quence under answer set semantics. The notion of derivation
enables a goal-oriented view of answer set semantics, dif-
ferently from the bottom-up approach traditionally used in
most existing ASP systems. This approach does not require
grounding of programs and it allows us to handle computa-
tions with infinite and/or non-ground programs. We have
proved correctness and completeness for large classes of

5Observe that SMODELS relies on a radically different compu-
tation model and it is not goal-oriented.

programs and extended the derivation to allow the presence
of constraints and choice rules. A preliminary implementa-
tion in XSB Prolog has also been developed.

This work represents the first step in this promising di-
rection. We are currently investigating more effective im-
plementation schemes. We are also interested in revisiting
the concept of derivation as an instance of a CLP frame-
work, which is expected to allow a more effective handling
of ASP constraints and the ability to elegantly extend ASP
with other forms of reasoning (e.g., numerical constraints).
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