Conformant Planning for Domains with Constraints — A New Approach

Tran Cao Son and Phan Huy Tu
Computer Science Department
New Mexico State University
Las Cruces, NM 88003, USA
{tson,tphan }@cs.nmsu.edu

Abstract

The paper presents a pair of new conformant plani@rarc
andCpPAP", based on recent developments in theory of action
and change. As an input the planners take a domain descrip-
tion D in action languaged £ which allows state constraints
(non-stratified axioms), together with a set of CNF formulae
describing the initial state, and a set of literals representing
the goal. We propose two approximations of the transition
diagramT defined byD. Both approximations are deter-
ministic transition functions and can be computed efficiently.
Moreover they are sound (and sometimes complete) with re-
spect toT'. In its search for a plan, an approximation based
planner analyses paths of an approximation instead of that
of T. CPAP® andCPAP" are forward, best first search plan-
ners based on this idea. We compare them with two state-
of-the-art conformant planners, KACMBP and Conformant-
FF (CFF), over benchmarks in the literature, and over two
new domains. One has large number of state constraints and
another has a high degree of incompleteness. Our planners
perform reasonably well in benchmark domains and outper-
form KACMBP and CFF in the first domain while still work-

ing well with the second one. Our experimental result shows
that having an integral part of a conformant planner to deal
with state constraintslirectly can significantly improve its
performance, extending a similar claim for classical planners
in (Thiebaux, Hoffmann, & Nebel 2003).

Keywords: Planning, Knowledge Representation, Reasoning
about action and change

Introduction and Motivation

Michael Gelfond and A. Ricardo Morales

Computer Science Department
Texas Tech University
Lubbock, TX 79409 USA
{mgelfond,ricardo }@cs.ttu.edu

Son, Tu, & Baral 2004). In the second group, the fo-
cus has been on developing efficient search strategies, good
heuristics, or new search algorithms (Brafman & Hoffmann
2004; Bryce & Kambhampati 2004; Bonet & Geffner 2001;
Kurien, Nayak, & Smith 2002; Petrick & Bacchus 2002;
Smith & Weld 1998). While the majority of planners in the
first group allow state constraidt® be part of the planning
problem specification, other planners, including the most re-
cent additions to the set of conformant planners (Brafman &
Hoffmann 2004; Bryce & Kambhampati 2004), do not.

Most of the planners in the second group deal with con-
straints by compiling them away, i.e., planning problems
with constraints are compiled into planning problems with-
out constraints. This practice has several disadvantages
(Thiebaux, Hoffmann, & Nebel 2003): (i) the problem rep-
resentation can become unnatural and unreadable due to the
extra actions and fluents; (ii) allowing state constraints sig-
nificantly increases the expressive power of the represen-
tation language. The authors in (Thiebaux, Hoffmann, &
Nebel 2003) also suggested a compilation schema that com-
piles away state constraints and produces a new problem
whose size is linear to the size of the original domain. Un-
fortunately, this may not be enough. The following simple
example illustrates this point.

Example 1 (Dominos Domain) Suppose that we have
dominos standing on a line in such a way that if one domino
falls then the domino on its right also falls. There is also
a ball hanging close to the leftmost domino. Touching the
ball will cause the leftmost domino to fall. Initially, the ball

In recent years, several conformant planners have been de-stays still and whether or not the dominos are standing is

veloped for solving planning problems in the presence of
incomplete information about the initial state. These plan-
ners can be divided into two groups. In the first group, the
planning problem is translated into an equivalent problem
in a more general setting which can be solved by off-the-
shelf software systems. Belonging to this group are the SAT-
based plannef-PLAN (Castellini, Giunchiglia, & Tacchella
2003), QBF planner (Rintanen 2000), the model checking
planner CMBP (Cimatti & Roveri 2000) (or its newer ver-
sion KACMBP (Cimatti, Roveri, & Bertoli 2004)), and an-
swer set programming based planners (Egeal. 2003;

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

unknown. The goal is to have the rightmost domino to fall.
Obviously, swinging the ball is the only plan to achieve this
goal, no matter how big is.

The problem can be easily expressed by a theory with a set
of objectsl, ..., n denoting the dominos from left to right
and a single actiorwing that causedown, (the leftmost
domino falls) to be true, and—1 state constraintéown,; =
down;1 representing the fact thdbwn; 1 is true if down;
is true. The goal is to hawéwn,, become true.

According to the compilation suggested in (Thiebaux,
Hoffmann, & Nebel 2003), for each axiombown; =

lWe use the term state constraints (or constraints) to refer to
PDDL axioms or static causal laws in action languages.

down;y1, we introduce a new actiop; whose effect is
down;+1 and whose precondition igown;. Clearly, under
this compilation, the plan to achieve the goal is the sequence
of actions[swing, ey, ..., en_1].

The main problem with this compilation is that the plan
length increases with the number of objects. Even when it
is only linear to the size of the original problem, it proves
to be challenging for planners following this approach. We
tested this simple problem with some of the state-of-the-art
planners that do not support state constraints. Most returned
no solution after 30 minutes whei>500. a

In this paper we present a pair of new conformant plan-
ners based on recent developments in theory of action and
change. As an input such planners take a domain descrip-
tion D in action languagel £ which allows state constraints,
together with a set of CNF formulae describing the initial
situation, and a set of literals representing the goal. In our
implementation, the latter two are translated into a set of
initial partial states and a goal partial state correspondingly.
The planners’ search spaces are defined by two transition di-

characterization for domains with state constraints. The al-
phabet of a domain consists of a set of action nafesd

a set of fluent nameB. A (fluent) literal is either a fluent

f € F or its negation—f. A domain descriptior{or a do-
main)D is a set of laws of the following forms:

a causesl if ¥ Q)
Lif 4 2
impossiblea if ¥ 3)

wherea € A is an action] is a fluent literal, and) is a set
of literals. (1) is called @ynamic causal landescribing the
explicit effect of actiona. It says that ifa is performed in
a state whereiny holds theri will hold in every successor
state. (2), called atate constraintsays that in any state in
which) holds, then so dods (3) is called an impossibility
law which states that cannot be executed whef holds.
Given a domairD, D¢ (resp.D?) denotes the set of dynamic
causal laws (resp. state constraint®in Observe that there
is no syntactical restriction on state constraints.

agrams whose nodes are sets of partial states, called approx-Example 2 The domino domain in Example 1, denoted by

imations of the transition diagraffi of D. These proposed
approximations have two important properties: (i) they are
deterministic and their transition functions can be computed
efficiently, (i) conformant plans can be found by analyz-
ing paths of the corresponding approximation. Futhermore,
if the set of initial partial states is singleton then this re-
duces the complexity of the conformant planning problem
to NP-complete, comparing tB%-complete (Turner 2002).
Although approximation based planners are in general in-
complete, our planners are powerful enough to solve all lit-
erature benchmarks used in our experiment. Given that the
underlying heuristic functions do sometime stumble in cer-
tain domains, we view the theoretical incompleteness as a
reasonable price for gaining efficiency.

To summarize, the main contributions of the paper are:
two sound approximations for reasoning about actions
and their effects in the presence of axioms and incom-
plete information about the initial situation. To the best
of our knowledge, such approximations have been devel-
oped only for theories with incomplete information about
the initial state and sensing actions that do not contain
axioms (Son & Baral 2001). In a recent paper, an approx-
imation has been developed but only for very limited class
of theories (Gelfond & Morales 2004).

two conformant planners whose performance is compa-
rable with state-of-the-art conformant planners in several
domains. The key component of the planner is the module
for computing the approximations.

two new domains for testing conformant planners; the
domino domair(Exp. 1) is rich with constraints and the
cleaner domair(later) has a high degree of incomplete-
ness in the initial state; these domains seem to be difficult
for current state-of-the-art conformant planners.

Background

We begin with a short review of the basic definitions of the
languageAL from (Baral & Gelfond 2000) and a fixpoint

D1, can be represented by a domain with the dynamic causal
law swing causesdown; and the set of constraints
{down; 1 If down; |1 <i<n-—1}. O

We now introduce notations that will be used throughout the
paper. For a fluent, ——f = f. For a set of literalg, =0 =
{1 |1 € o}. Aliteral [(resp. set of literals) holds in a
set of literalso if [€ o (resp.y C o); [(resp.~) possibly
holds inc if =l & o (resp.—y N o = 0). A set of literals
o satisfies a constraint (2) if it holds that C o implies
l € 0. o isclosedunderDs if it satisfies every € D*. By
Clp(c), we denote the smallest set of literals that contains
o and is closed undeP*. An interpretation/ of F is a set
of literals such that for every € F, {f,~f} NI # () and
{f,~f}\I # 0. A stateof D is an interpretation of closed
underD?. An actiona is executablan s if there exists no
dynamic causal law (3) such thatholds ins.

Given a domairD, for an actiornz and a state such that
a is executable irs, lete(a,s) = {l | a causesl if ¢ €
D44 C s}. In essenceg(a, s) denotes the direct effects
of a. We define the set of possible successor states after
executinga in s, denoted byRes,(a, s), as follows.

Definition 1 ((McCain & Turner 95)) Let D be a domain
description andz be an action that is executable in a state
s. A states’ is called apossible successaf s after the
execution ot if s = Clp(e(a,s) U (sNs’)).

The set of possible successorssddfter the execution od
is denoted byRes$, (a, s).

As an example, the statd = {~down; | 1 < i < n}
represents the fact that all dominos are standing. Further-
more,e(swing, s°) = {down,} and Res§, (swing, s°) =
{{down; | 1 <i<n}}.

We say that a domain isiconsistenif Res$(a,s) = 0
for some actioru and states such that is executable irs.

In the rest of the paper, we are only interested in consistent
domains. Intuitively, Definition 1 says that if the agent is
currently in states then after executing it will reach one of

the states irRes$ (a, s). In the presence of incomplete in-

execution ofa in 6. Before presenting the formulae defin-

formation, the agent does not always know what exact state ing Res%,, let us observe that each possible successor state

it is currently in. It might need to consider a 3ét of pos-

s" in Definition 1 can be divided into three parts: €iu, s)

sible states rather than a single one. In this case, the set ofcontains the direct effects af (ii) s N s’ contains what re-

possible successor staté&:ss, (a, W), is defined as
e Res(a, W) = 0if Resh(a,s) =0 for somes € W;
o Resh(a, W) = U, ey Resp(a, s), otherwise.

mains unchanged (because of the inertial law); and (jii) the
set of the indirect effects @f. Any formulation of theRes$,
should account for these three components.

The set of states reached after executing an action sequence To specify the direct effects of an action we take the view

a = {ay;...;ay,) from a set of state®V is defined next.

Wiftn=0
Resp(az;. ..

Resp (o, W) = { i Gn, Resp(a, W))ifn>1
We say that a literal holds after the execution ef in W,
denoted by(D, W) = [after «, if Res%(a, W) # 0 and
[€ s for every states € Res$ (o, W).

By a partial stateof D we mean a consistent collection
of fluent literals closed unddps. Partial states are denoted
by (possibly indexed) Greek letters. A stateontaining a
partial states is called acompletionof 6. By ext(d) we
denote the set of all completions &f For a set of partial
statesA, letext(A) = Useaext(9).

Let D be a domain descriptionA" be a set of partial
states, and/ be a partial state. We say that a sequence
of actionsa is aconformant plarachievings’/ from A if
(D, ext(A%)) k= 1 after « for everyl € 6. We define:

Definition 2 Given a domain descriptiof, a set of partial
statesA?, a parial staté/. Theconformant planning prob-
lemis the problem of computing a tractable conformant plan
achieving the goal’ from A°.

The 1-conformant planning problens the conformant
planning problem restricted to the case whe¥&| = 1.

Abusing the notation, we often refer (@, A°,§/) as a
planning problem whenever there is no confusion possible.

Two Approximations of Res$,

Given a conformant planning problem, most of search-based
planners look for solutions by exploring the belief state
space whose size is double exponential in the number of
fluents. Adding to this, determining what is true/false after
one action is executed in the presence of incomplete infor-
mation is a cdNP complete problem even when state con-
straints are not present (Baral, Kreinovich, & Trejo 2000).
As such, we begin our quest for building a conformant plan-
ner by looking for ways to reduce the complexity of the task.
We achieve this goal by developing two sound (but incom-
plete) approximations of the functiaRes$, which we de-

note by Res?' and Res? (ph and pc stand for “possibly

holds” and “possibly changes”, respectively). We sometime

write Res% whenever we would like to refer to eith&es?"

and/orRes’y. Each approximation is a function that maps

of a skeptical reasoner. Given a partial stasnd an action
a, we definee(a, §) = {I | a caused if 1) € D¢, andy C
§} andme(a,d) = {l | a caused if 1 € D¢, and—y) N6 =
@}. Intuitively, e(a, d) (resp.mc(a, d)) consists of the direct
effects (reps. possible direct effectsyofvhen it is executed
in a state in whichy holds. As an example, for the action
swing in D1, we have that(swing, 0) = mc(swing, d)
{down } for everyd.

The main difficulty in characterizinges$,, however, lies
in specifying the second component, i.e., what remains un-
changed by the inertial law. Different ways of defining this
set lead to different approximations &s%,. We next in-
troduce two possibilities.

Approximation Based on What Possibly Holds

We will now defineRes%h which approximate®es$, based

on what possibly holds. Here, we view the inertial part as a

set of literals whose negations cannot possibly hold. Given

an actiona and a partial staté such that: is executable in

0, a literall possibly holds in a successor state, §ayf one

of the following happens.

e a might causé to hold, i.e.l € mc(a,d);

e —[does not hold i and there exists no dynamic causal
law (1) s.t.¢p holds ind, i.e.,—l & (6 U e(a, 9));

e there exists a constraint (2) syt.possibly holds ir’.

Res%h(a, d) conservatively defines the second com-

ponent as the set of all literals whose negations

cannot possibly hold. Formally, leph(a,?)

Clp(me(a,0) U{l | -l & (dUe(a,d))}), we define

Resh'(a,8) = Clp(e(a,8) U{l |l & —ph(a,d)})

if Clp(e(a,d)U{l |1l & —ph(a,d)}) is consistent; other-

Wise,Res%h(a, 9) = L. We will discuss some properties of

Res%h after the definition of the second approximation.

Approximation Based on What Possibly Changes

While Res%h approximates the inertial part by looking at
what might hold in the successor partial stdtes’, looks at
what might change. It resembl&®sS, by assuming that the
result is known, say’. That is, assume thates} (a,d) =

0’. We say that a literal is possibly changedfter the ex-
ecution ofa in ¢ if it does not belong ta but possibly
holds ind’. We denote the set of possibly changed literals

pairs of partial states and actions into partial states. Both are PY pc(a, 6,6"). Observe that a literdl possibly changes its

deterministic and can be computed efficiently. Moreover,

value ifl ¢ 6 and

both reduce the size of the state space to single exponential® @ Might directly causé, i.e.,l € mc(a, 6); or

to the number of fluents.
Given an actiom and a partial staté, we will now define
Res$(a,d), an approximation of what will hold after the

2A belief state is a set of states.

e there exists a constraint (2) syt.possibly holds i’ and
contains at least one literal that possibly changes.
This leads us to define(a, §,8") = U pci(a, §,8') where

pc®(a,d,6") = me(a,d) \ d,
pct™(a,8,8") = (pct(a,§,8") UQ;) \ & fori > 0 with

Q={l|lif ¢ € D, ~p N &'=0, andy) N pci(a, s, 8")#£D}.
The definition of Res?) rests on the following observa-
tions: (i) 6’ must containClp(e(a,d)); (i) Cip(d" U
(6 \ —pc(a,d,6")) holds in every succesor state re-
sulting from executinga in a state satisfyingd; and
(i) for the sequence of partial stateg,d»,... where
51:Clp(e(a,§)), andéiH:ClD(éi U (6 \ ﬁpc(aﬁ, 5%)))
for ¢>1, it holds that (a)s; C d;+1; and (b)d; holds
in every successor state resulting from executingn
a state satisfyingd; and (c) this sequence converges to
a partial stated*. We therefore defineResP“(a,d) as
Resly (a,) = 6*
if 6* is consistent; an@®es’ (a,d) = L otherwise. We will
now discuss some properties of the approximations.

Properties of the Approximations

Notice that in the definitions aRes$,, we take into account
the three components mentioned earlier: (i) the direct effect
of a: e(a,d); (ii) the inertial part: {l | | & —ph(a,d)} or
d\ —pe(a, 8, ") (iii) the indirect effect ofa: those generated
by the operatolClp. It is easy to see thaRes$(a,d) is
uniquely defined, i.e., the functiordges® are deterministic.
The definitions ofRes%, (a, W) and = are extended to
define Res$ (a, A) and |=* in a straightforward way. We
omit them here to save space.

Example 3 Consider the following domain descriptidp,
defined over the set of fluentd, ¢, h, k, p, ¢}.

a causesf a causesg if k g if f,h
g if f,-h Kk if f p if g,q

Suppose that we performin A = {6}, whereé = {—f,
—g, —p, ~q}. Intuitively, we would expect that afterwargl
should be true (as a direct effect@)f £ andg should be true
(because of# if f”,and“g if f,h”and“g if f,—h"
respectively); ang, ¢ should be false (because of inertia).

We have that(a, d) = {f} andmc(a,d) = {f, g}

X = 5U6(a75) = {_‘fa_'ga_‘pv_‘qaf}

Y ={l|-lgX} = {~g,~p,~q,h,~h,k, -k}

Z = mc(a,d)UY = {fvga_‘g7_'p7 _'Q7ha _‘hakv_'k}

ph(a, 6):CID2 (Z):{fa 9,79, 7P, 4, hv _‘hv ka _'k}
Hence,Res%Z (a,8) = {f,—p,q,k}.

For Resr¢, §; = Clp,(e(a,d)) = {f, k} and

p(a,0,01) = {f, g}, = {k,9,p}

pCZ(a, 5a 61) = {faga kvp}! Qi = {kag7p} fori Z 1.

This leads tod2 = {f, k, ~q}. Repeating this computation
with d, we getdz=d,. So,Res’, (a,0)={f,k, —q}.

As a result, we haveRes’(a,A) = {{f, k,~q}} and
Resh, (a,A) = {{f,~p, ~a, k}}.

Observe that bottRes?, (a, A) and Resby, (a, A) draw
1, k, —q as expected; furthermore, the former can draw
whereas the latter cannot. But none of them could dyaw
Nevertheless, i was{dU{h},d U{-h}}, then both could
draw g. Some other entailments w.r.t. the approximation
semantics are(D», A) =2 f after a; (Ds, A)~%g after a;
(Da, A) g after a. a

We now show some properties of the approximations. The
next theorem shows that® is sound w.r.t/=.

Theorem 1 (Soundness w.r.tE=) LetD be a consistent do-
main descriptiong be a sequence of action4, be a set of
partial states, and be a literal. Then,

(D,A) E* 1 after «implies that(D, ext(A)) = [after «.

Example 3 shows that the approximations are not complete
W.r.t. Res%. Apart from this,ResP®(a,§) C ResP"(a,?).

Our conjecture is that this relationship holds. However, we
have not yet found a formal proof for this property. We also

show that

Theorem 2 Given a domain descriptio, for any partial
stated and actiona, Res% (a,d) can be computed in poly-
nomial time in the size of the domain.

This allows us to prove the following result.

Theorem 3 The 1-conformant planning problem w.r.t. the
approximation semantics [$P-complete.

We have, among other things, extended both approxima-
tions to consider concurrent actions and non-deterministic
actions. We also identified a large class of domains in which
=2 is equivalent td=. These result will be presented in the
complete version of this paper. In the next section, we de-
scribe our initial experiments with these approximations in
the development of conformant planners.

Conformant Planning using Approximations

We first implemented an answer set programming based
conformant planner usingees?”, which we will refer to
asCPasP. In this senseCPASP is similar to DLV* (Eiter
et al. 2003), CMBP (Cimatti & Roveri 2000)C-PLAN
(Castellini, Giunchiglia, & Tacchella 2003), QBF (Rintanen
2000). CPasp allows parallel actions. We teste@iPasp
against DLV}, CMBP, andC-PLAN because these planners
do allow state constraints and are similar in spiriCdAsP.
Our results show thal PAspis competitive with these plan-
ners in most of the domains from the literature. Due to space
limit, we omit here the detailed encoding GPasP and the
experimental result. The main weaknes<CHasPis that it
does not solve problems with disjunctive information about
the initial state. In other word€<;Pasp can handle only 1-
conformant planning problems (i.e., fak°| = 1).

To overcome this weakness, we implemented a pair of
planners, calledCPAP and CPAP", based onResh; and

Res’{,h respectively, in C++. By convention, we will write
CPA whenever we want to refer to both planners or one of
them when the distinction between them is not important.
CPA employs the best first search strategy with repeated
state avoidance and the number of fulfilled subgoals as the
heuristic function. The main module @A is for comput-

ing the Res$, function.

CPA accepts problems encoded using the rules of the
forms (1)-(3). The initial state is specified by statements
of the form initially ¢ (where¢ is in the CNF form).

As mentioned ealier, in our implementation, these CNFs
will be translated into a set of initial partial states, e.g.,
the set{initially f V g, initially p Vv ¢} results inA°
The goal is encoded using statements of the fgoal ¢
whereg is a set of literals.

We compareCPA with three planners CFF, KACMBP,
and POND. These planners were selected for the follow-
ing reasons. First, CFF and KACMBP are — to the best
of our knowledge — the current fastest conformant planners
in most of the benchmark domains in the literature. Second,
CFF is superior to other state-of-the-art conformant planners
like GPT (Bonet & Geffner 2001), MBP (Cimatti & Roveri
2000) (see (Brafman & Hoffmann 2004)). Third, KACMBP,

a heuristic guided, symbolic model checking based confor-
mant planner supporting state constraints, is known to out-
perform DLV* andC-PLAN in many domains in the litera-
ture (see (Cimatti, Roveri, & Bertoli 2004)); Finally, POND
is a new addition to the set of conformant planners that im-
plemented several interesting heuristics.

We prepare two test-suites. The first one consists of typ-
ical conformant planning domains including the Bomb-in-
the-toilet (Bomb), the Ring, and Logistics domains. The
first domain was chosen because both CFF and KACMBP
work well with it (e.g. CFF can scale up the Bomb domain
with multiple toilets to 100 packages and 100 toilets within
a minute). The latter two were chosen because the exper-
iments in (Brafman & Hoffmann 2004) showed that CFF
is good at the Logistics problem but not the Ring, while
KACMBP is good at Ring but has poor performance with
Logistics.

In the Bomb domain, we experimented with
10, 20, 50, 100 packages antl= 1, 5, 10 toilets.

The Logistics domain used in our tests is described in
(Brafman & Hoffmann 2004) and distributed together with
the CFF distribution. We did experiments with 5 problems,
corresponding té = 2,3,4 andc = p = 2,3, wherel, c,
andp are the numbers of locations per city, cities, and pack-
ages respectively (only Logistics(4,2,2) is not available).

In the Ring domain, one can move in a cyclic fashion (ei-
ther forward or backward) aroundsaroom building to lock
windows. Each room has a window and the window can be
locked only if it is closed. The uncertainty is that the initial
state of windows is unknown. The goal is to have all win-
dows locked. A possible conformant plan is to perform a
sequence of actiorferward, close, lockepeatedly. In this
domain, we tested with =2,5,10, and 20.

Three domains in the first test suite, however, do not
contain many state constraints. Most of the constraints in
our encodings are aimed at expressing multivalued vari-
ables as boolean fluedts To see how good these plan-
ners are in dealing with domains rich in constraints, in the
second test suite, we include the Domino domain. We
tested the domain with eight problems corresponding to
n = 10, 50, 200, 100, 500, 1000, 2000, 5000, wheren is the
number of dominos. Note that we encoded these problems
for POND and CFF following the compilation procedure in
(Thiebaux, Hoffmann, & Nebel 2003).

The second domain included in the second test suite is the

3Unlike POND, CPA, and CFF, an advantage of KACMBP
is that it allows multivalued fluents. Thus, it seems to perform
well with numeric domains like Ring, Cube, and Square, etc.
(see (Cimatti, Roveri, & Bertoli 2004) for the performance of
KACMBP over these domains)

Cleaner domain. Itis a modified version of the Ring domain.
The difference is that the robot is moving in a linear fashion
rather than in a cyclic fashion and instead of locking the win-
dow, the robot has to clegnobjects in each room. Initially,
the robot is in the first room and does not know whether
or not objects are cleaned. The goal is to have all objects
cleaned. While the Domino domain exposes a richness in
constraints, the Cleaner domain provides a high degree of
uncertainty in the initial state. We tested the domain with 6
problems corresponding to= 2,5 andp = 10, 50, 100.

All experiments were made on a 2.4 GHz CPU, 768MB
RAM machine, running Slackware 10.0 operating system.
Time limit is set to half an hour. The testing restilfsr
two test suites are shown in Tables 1-2. Times are shown in
seconds; ‘TO”, “AB”, and “NA’ indicate that time limit is
exceeded, that the planner stopped abnormally, and that the
domain is not applicable, respectively.

[Domains [kKacvBP [CFF [POND [cpAP® ceAPh

Bomb(10,1) 1970.01 1970.05 197261 1970.01 1970.02
Bomb(20,1) 39/0.05 39/0.17 IAB 39/0.06 39/0.13
Bomb(50,1) 99/0.51 99/5.33 IAB 99/0.87 99/1.83
Bomb(100,1) | 199/3.89 | 199/121.80 | /AB 199/7.63 199/14.8
Bomb(10,5) 15/0.09 15/0.07 IAB 15/0.03 15/0.07
Bomb(20,5) 35/0.30 35/0.16 IAB 35/0.17 35/0.37
Bomb(50,5) 95/1.66 95/4.70 IAB 95/2.74 95/4.82
Bomb(100,5) | 195/6.92 | 195/113.95| /AB 195/24.17 | 195/36.90
Bomb(10,10) 10/0.30 10/0.05 IAB 10/0.05 10/0.13
Bomb(20,10) 30/0.97 30/0.13 IAB 30/0.35 30/0.81
Bomb(50,10) 90/5.39 90/4.04 IAB 90/5.34 90/9.470
Bomb(100,10) | 190/35.83 | 190/102.56 | /AB 190/43.79 | 190/65.43
RINg(2) 570.00 770.06 5/0.16 570.00 570.00
Ring(5) 14/0.00 45/63.67 | 15/39.37 | 15/0.15 15/0.21
Ring(10) 29/0.02 /TO o 30/3.25 30/5.03
Ring(15) 44/0.04 /TO To 45/21.40 45/34.94
Ring(20) 59/0.15 /TO To 60/84.02 | 60/141.33
Ring(25) 7410.32 /TO ITO 751244.02 | 75/420.20
Cogistic(2,2,2) | 1470.19 1670.03 TNA 1270.75 1271.16
Logistic(2,3,3) | 34/355.96 | 24/0.06 INA 106/120.86 | 106/181.95
Logistic(3,2,2) | 17/2.10 20/0.06 INA 96/48.15 96/74.16
Logistic(3,3,3) | 40/29.80 34/0.12 INA /TO /TO
Logistic(4,3,3) /TO 37/0.14 INA /TO /TO

Table 1: Conformant Planning Benchmarks

As can be seenin Table 1, in the Bomb domain, KACMBP is
the best in generalCPA is competitive with CFF in most of
problems and outperforms CFF in some others. For exam-
ple, CPAP¢ took 7.63 seconds to solve BMTC(100,1), while
CFF took 121.80 seconds. However, CFF seems to have no
problem when the number of toilets increases, while there is
a significant increase in the amount of time for KACMBP.
The change in the amount of time f@PA is more reason-
able than that for KACMBP. For example, with a fixed num-
ber of packages 100, when the number of toilets increase
from 5 to 10, the amount of solving time for CFF even de-
creases, while that for KACMBP about 5 times increases and
CPA’s is just doubled. POND can solve Bomb(10,1) only.

The Ring domain is really problematic for CFF. As ex-
plained in (Brafman & Hoffmann 2004), it is because of the
lack of informativity of the heuristic function in the presence
of non-unary effect conditions and the problem with check-
ing repeated states. CFF can solve only the first two prob-
lems within the time limit. Again, KACMBP is the best.
CPA is much better than CFF and POND but is not compet-
itive with KACMBP.

“In each cell, the first number is the length of the solution. The
second number is the time taken by the planner to find the solution.

In the Logistic domain, both KACMBP an@rA had dif- impact the development of practical planners. Although
ficulty in finding plans. Although KACMBP is better than CPA yields good performance, there are a number of issues
CPA, its performance is far from that of CFF which solved that need to be investigated. On the implementation side, we
each problem in less than one second. We believe that the Would like to improveCpPA'’s performance by testing it with
poor performance ofEPA lies in the not-so-good heuristic different heuristics used in other planners. We would also
function (which is reflected in the plan’s length) like to find plans with parallel actions and/or minimal plans.

Table 2 shows the testing results for the second test-suite. Theoretically, we would like to investigate the relationship

ph pc i ima-
As expected, using the mentioned compilation procedure, CEtWeeN£es™ and Res™ and to find a better approxima

h : in th ino d) ithi ' tion that allows for limited reasoning by cases for use with
CFF has poor performance in the Domino domain. Within - cpa \we also would like to strengthen characteristics of do-
the time limit, KACMBP can only solve problems with

, mains in which the approximations are compfete
n < 500 but CPA has no problem with, = 5000. Acknowledgement: The first two authors were partially
supported by NSF grants EIA-0220590 and HRD-0420407.

[Domains [kacMBP [CFF__ [POND [ceaP® [ceaPh]

Domino(10) 23/0.01 10/0.05 10/1.72 1/0.00 1/0.00
Domino(50) 163/0.27 50/4.44 ITO 1/0.00 1/0.01
Domino(100) 376/2.56 / AB ITO 1/0.02 1/0.03
Domino(200) 852/29.10 / AB ITO 1/0.06 1/0.09
Domino(500) /TO / AB ITO 1/0.35 1/0.59
Domino(1000) /TO / AB ITO 1/1.38 1/2.48
Domino(2000) /TO / AB ITO 1/5.38 1/10.74
Domino(5000) /TO / AB ITO 1/36.48 1/62.68
Cleaner(2,10) 21/0.08 21/0.07 IAB 21/0.03 21/0.06
Cleaner(2,20) 411/0.62 41/0.15 IAB 41/0.13 41/0.38
Cleaner(2,50) 101/13.55 101/0.80 IAB 101/171 101/5.39
Cleaner(2,100) | 201/185.39 | 201/5.72 IAB 201/13.97 201/44.09
Cleaner(5,10) 56/0.10 541/0.24 IAB 54/0.41 541/0.86
Cleaner(5,20) 106/7.82 104/0.85 /AB 104/2.32 104/5.52
Cleaner(5,50) 256/227.82 | 254/14.36 IAB 254/30.83 254/85.20
Cleaner(5,100) /TO / AB /AB 504/239.08 | 504 /688.39

Table 2: Domains with Constraints and High Degree of Incompleteness

CPA has a relatively good performance in the Cleaner do-
main. It can solve&Cleaner(5,100) within the time limit.

The returned plan has 504 actions. CFF is very good at this
domain and outperform€rA and KACMBP (POND can-
not solve any problems of these). Unfortunately, it cannot
solve the last problem since the maximum length of a plan
is exceededCPA outperforms KACMBP in most problems

in this domain.

As stated, our planner is sound but not complete, i.e., the-
oretically speakingCPA cannot solve some planning prob-
lems, even when the initial state is complete. To make sure
our approach can cover a broader spectrum of practical plan-
ning problems, we also testétbA with classical planning
problems. The first domain considered is the Block World
with five problems described in (Eitest al. 2003). We
then tested with problems in the Rovers doraffive prob-
lems, different from each other in the numbers of way points,
rovers, cameras, rock and soil samples, and objectives, were
experimented with. It turns out th&pPA can solve all those
problems but did not perform well in the Blocks World do-
main. We suspect that our heuristic is not good enough to
guide the planner in this domain.

Discussion and Conclusion

We have presented a pair of new conformant planners,
CPAP® and CPAP", which deal directly with state con-
straints. Their performance is comparable with state-of-the-
art conformant planners over typical benchmark domains as
well as over newly invented domains. Due to the simple
heuristic used in the implementation©PA, we believe that

the good performance @PA lies in the use of the approx-
imations. The development @PA demonstrates that re-
search in reasoning about action and change can positively

Shttp://planning.cis.strath.ac.uk/competition/

References

Baral, C.; and Gelfond, M. 2000. Reasoning agents in dynamic
domains. In Minker, J,. ed., LBAI, 257-279.

Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computational
complexity of planning and approximate planning in the presence
of incompletenessAl) 122:241-267.

Bonet, B., and Geffner, H. 2001. GPT: a tool for planning with
uncertainty and partial information. IJCAI-01 Workshop on Plan-
ning with Uncertainty and Partial Information, 82—87.

Brafman, R., and Hoffmann, J. 2004. Conformant planning via
heuristic forward search: A new approach. ICAPS-04, 355-364.
Bryce, D., and Kambhampati, S. 2004. Heuristic Guidance Mea-
sures for Conformant Planning. ICAPS-04, 365-375.

Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003. SAT-
based Planning in Complex Domains: Concurrency, Constraints
and NondeterminismAlJ 147:85-117.

Cimatti, A., and Roveri, M. 2000. Conformant Planning via
Symbolic Model CheckingJAIR13:305-338.

Cimatti, A. et al. 2004. Conformant Planning via Symbolic Model
Checking and Heuristic SearchlJ 159:127-206.

Eiter, T. et al. 2003. A Logic Programming Approach to Knowl-
edge State Planning, Il: The DIVSystem. AlJ 144, 157-211.
Gelfond, M., and Morales, R. 2004. Encoding conformant plan-
ning in a-prolog. INProceedings of DRT'Q4-NCS.

Kurien, J.; Nayak, P. P.; and Smith, D. E. 2002. Fragment-based
conformant planning. IAIPS 153-162.

McCain, N., and Turner, H. 95. A causal theory of ramifications
and qualifications. 1JCAI, 1978-1984.

Petrick, R., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. AIPS-02,
212-222.

Rintanen, J. 2000. Constructing conditional plans by a theorem
prover.JAIR10:323-352.

Smith, D. & Weld, D. 1998. Conformant GraphplafAAl.

Son, T., and Baral, C. 2001. Formalizing sensing actions - a
transition function based approachl] 125(1-2):19-91.

Son, T. et al. 2004. Planning with Sensing Actions and Incom-
plete Information using Logic Programming. LPNMR, 261-274.
Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2003. In Defense of
PDDL Axioms. IJCAI'03.

Turner, H. 2002. Polynomial-length planning spans the polyno-
mial hierarchy. JELIA02, 111-124.

81t is worth noting that the current characteristics seem to cover
most problems found in the literature. This result will be available
in the complete version of this paper.

