
Conformant Planning for Domains with Constraints — A New Approach

Tran Cao Son and Phan Huy Tu
Computer Science Department
New Mexico State University
Las Cruces, NM 88003, USA

{tson,tphan }@cs.nmsu.edu

Michael Gelfond and A. Ricardo Morales
Computer Science Department

Texas Tech University
Lubbock, TX 79409 USA

{mgelfond,ricardo }@cs.ttu.edu

Abstract

The paper presents a pair of new conformant planners,CPApc

andCPAph, based on recent developments in theory of action
and change. As an input the planners take a domain descrip-
tionD in action languageAL which allows state constraints
(non-stratified axioms), together with a set of CNF formulae
describing the initial state, and a set of literals representing
the goal. We propose two approximations of the transition
diagramT defined byD. Both approximations are deter-
ministic transition functions and can be computed efficiently.
Moreover they are sound (and sometimes complete) with re-
spect toT . In its search for a plan, an approximation based
planner analyses paths of an approximation instead of that
of T . CPApc andCPAph are forward, best first search plan-
ners based on this idea. We compare them with two state-
of-the-art conformant planners, KACMBP and Conformant-
FF (CFF), over benchmarks in the literature, and over two
new domains. One has large number of state constraints and
another has a high degree of incompleteness. Our planners
perform reasonably well in benchmark domains and outper-
form KACMBP and CFF in the first domain while still work-
ing well with the second one. Our experimental result shows
that having an integral part of a conformant planner to deal
with state constraintsdirectly can significantly improve its
performance, extending a similar claim for classical planners
in (Thiebaux, Hoffmann, & Nebel 2003).
Keywords: Planning, Knowledge Representation, Reasoning
about action and change

Introduction and Motivation
In recent years, several conformant planners have been de-
veloped for solving planning problems in the presence of
incomplete information about the initial state. These plan-
ners can be divided into two groups. In the first group, the
planning problem is translated into an equivalent problem
in a more general setting which can be solved by off-the-
shelf software systems. Belonging to this group are the SAT-
based plannerC-PLAN (Castellini, Giunchiglia, & Tacchella
2003), QBF planner (Rintanen 2000), the model checking
planner CMBP (Cimatti & Roveri 2000) (or its newer ver-
sion KACMBP (Cimatti, Roveri, & Bertoli 2004)), and an-
swer set programming based planners (Eiteret al. 2003;

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Son, Tu, & Baral 2004). In the second group, the fo-
cus has been on developing efficient search strategies, good
heuristics, or new search algorithms (Brafman & Hoffmann
2004; Bryce & Kambhampati 2004; Bonet & Geffner 2001;
Kurien, Nayak, & Smith 2002; Petrick & Bacchus 2002;
Smith & Weld 1998). While the majority of planners in the
first group allow state constraints1 to be part of the planning
problem specification, other planners, including the most re-
cent additions to the set of conformant planners (Brafman &
Hoffmann 2004; Bryce & Kambhampati 2004), do not.

Most of the planners in the second group deal with con-
straints by compiling them away, i.e., planning problems
with constraints are compiled into planning problems with-
out constraints. This practice has several disadvantages
(Thiebaux, Hoffmann, & Nebel 2003): (i) the problem rep-
resentation can become unnatural and unreadable due to the
extra actions and fluents; (ii) allowing state constraints sig-
nificantly increases the expressive power of the represen-
tation language. The authors in (Thiebaux, Hoffmann, &
Nebel 2003) also suggested a compilation schema that com-
piles away state constraints and produces a new problem
whose size is linear to the size of the original domain. Un-
fortunately, this may not be enough. The following simple
example illustrates this point.

Example 1 (Dominos Domain)Suppose that we haven
dominos standing on a line in such a way that if one domino
falls then the domino on its right also falls. There is also
a ball hanging close to the leftmost domino. Touching the
ball will cause the leftmost domino to fall. Initially, the ball
stays still and whether or not the dominos are standing is
unknown. The goal is to have the rightmost domino to fall.
Obviously, swinging the ball is the only plan to achieve this
goal, no matter how bign is.

The problem can be easily expressed by a theory with a set
of objects1, . . . , n denoting the dominos from left to right
and a single actionswing that causesdown1 (the leftmost
domino falls) to be true, andn−1 state constraintsdowni ⇒
downi+1 representing the fact thatdowni+1 is true ifdowni

is true. The goal is to havedownn become true.
According to the compilation suggested in (Thiebaux,

Hoffmann, & Nebel 2003), for each axiomdowni ⇒
1We use the term state constraints (or constraints) to refer to

PDDL axioms or static causal laws in action languages.

downi+1, we introduce a new actionei whose effect is
downi+1 and whose precondition isdowni. Clearly, under
this compilation, the plan to achieve the goal is the sequence
of actions[swing, e1, . . . , en−1].

The main problem with this compilation is that the plan
length increases with the number of objects. Even when it
is only linear to the size of the original problem, it proves
to be challenging for planners following this approach. We
tested this simple problem with some of the state-of-the-art
planners that do not support state constraints. Most returned
no solution after 30 minutes whenn>500. 2

In this paper we present a pair of new conformant plan-
ners based on recent developments in theory of action and
change. As an input such planners take a domain descrip-
tionD in action languageALwhich allows state constraints,
together with a set of CNF formulae describing the initial
situation, and a set of literals representing the goal. In our
implementation, the latter two are translated into a set of
initial partial states and a goal partial state correspondingly.
The planners’ search spaces are defined by two transition di-
agrams whose nodes are sets of partial states, called approx-
imations of the transition diagramT of D. These proposed
approximations have two important properties: (i) they are
deterministic and their transition functions can be computed
efficiently, (ii) conformant plans can be found by analyz-
ing paths of the corresponding approximation. Futhermore,
if the set of initial partial states is singleton then this re-
duces the complexity of the conformant planning problem
to NP-complete, comparing toΣ2

P -complete (Turner 2002).
Although approximation based planners are in general in-
complete, our planners are powerful enough to solve all lit-
erature benchmarks used in our experiment. Given that the
underlying heuristic functions do sometime stumble in cer-
tain domains, we view the theoretical incompleteness as a
reasonable price for gaining efficiency.

To summarize, the main contributions of the paper are:
• two sound approximations for reasoning about actions

and their effects in the presence of axioms and incom-
plete information about the initial situation. To the best
of our knowledge, such approximations have been devel-
oped only for theories with incomplete information about
the initial state and sensing actions that do not contain
axioms (Son & Baral 2001). In a recent paper, an approx-
imation has been developed but only for very limited class
of theories (Gelfond & Morales 2004).

• two conformant planners whose performance is compa-
rable with state-of-the-art conformant planners in several
domains. The key component of the planner is the module
for computing the approximations.

• two new domains for testing conformant planners; the
domino domain(Exp. 1) is rich with constraints and the
cleaner domain(later) has a high degree of incomplete-
ness in the initial state; these domains seem to be difficult
for current state-of-the-art conformant planners.

Background
We begin with a short review of the basic definitions of the
languageAL from (Baral & Gelfond 2000) and a fixpoint

characterization for domains with state constraints. The al-
phabet of a domain consists of a set of action namesA and
a set of fluent namesF. A (fluent) literal is either a fluent
f ∈ F or its negation¬f . A domain description(or a do-
main)D is a set of laws of the following forms:

a causes l if ψ (1)

l if ψ (2)

impossiblea if ψ (3)

wherea ∈ A is an action,l is a fluent literal, andψ is a set
of literals. (1) is called adynamic causal law, describing the
explicit effect of actiona. It says that ifa is performed in
a state whereinψ holds thenl will hold in every successor
state. (2), called astate constraint, says that in any state in
whichψ holds, then so doesl. (3) is called an impossibility
law which states thata cannot be executed whenψ holds.
Given a domainD,Dd (resp.Ds) denotes the set of dynamic
causal laws (resp. state constraints inD). Observe that there
is no syntactical restriction on state constraints.

Example 2 The domino domain in Example 1, denoted by
D1, can be represented by a domain with the dynamic causal
law swing causesdown1 and the set of constraints
{downi+1 if downi | 1 ≤ i ≤ n− 1}. 2

We now introduce notations that will be used throughout the
paper. For a fluentf ,¬¬f = f . For a set of literalsσ,¬σ =
{¬l | l ∈ σ}. A literal l (resp. set of literalsγ) holds in a
set of literalsσ if l ∈ σ (resp.γ ⊆ σ); l (resp.γ) possibly
holds inσ if ¬l 6∈ σ (resp.¬γ ∩ σ = ∅). A set of literals
σ satisfies a constraint (2) if it holds thatψ ⊆ σ implies
l ∈ σ. σ is closedunderDs if it satisfies everyr ∈ Ds. By
ClD(σ), we denote the smallest set of literals that contains
σ and is closed underDs. An interpretationI of F is a set
of literals such that for everyf ∈ F, {f,¬f} ∩ I 6= ∅ and
{f,¬f}\I 6= ∅. A stateofD is an interpretation ofF closed
underDs. An actiona is executablein s if there exists no
dynamic causal law (3) such thatψ holds ins.

Given a domainD, for an actiona and a states such that
a is executable ins, let e(a, s) = {l | a causesl if ψ ∈
Dd, ψ ⊆ s}. In essence,e(a, s) denotes the direct effects
of a. We define the set of possible successor states after
executinga in s, denoted byResc

D(a, s), as follows.

Definition 1 ((McCain & Turner 95)) LetD be a domain
description anda be an action that is executable in a state
s. A states′ is called apossible successorof s after the
execution ofa if s′ = ClD(e(a, s) ∪ (s ∩ s′)).
The set of possible successors ofs after the execution ofa
is denoted byResc

D(a, s).
As an example, the states0 = {¬downi | 1 ≤ i ≤ n}

represents the fact that all dominos are standing. Further-
more,e(swing, s0) = {down1} andResc

D1
(swing, s0) =

{{downi | 1 ≤ i ≤ n}}.
We say that a domain isinconsistentif Resc

D(a, s) = ∅
for some actiona and states such thata is executable ins.
In the rest of the paper, we are only interested in consistent
domains. Intuitively, Definition 1 says that if the agent is
currently in states then after executinga it will reach one of

the states inResc
D(a, s). In the presence of incomplete in-

formation, the agent does not always know what exact state
it is currently in. It might need to consider a setW of pos-
sible states rather than a single one. In this case, the set of
possible successor states,Resc

D(a,W), is defined as
• Resc

D(a,W) = ∅ if Resc
D(a, s) = ∅ for somes ∈ W;

• Resc
D(a,W) =

⋃
s∈W Resc

D(a, s), otherwise.
The set of states reached after executing an action sequence
α = 〈a1; . . . ; an〉 from a set of statesW is defined next.

Resc
D(α,W) =

{
W if n = 0
Resc

D(a2; . . . ; an, Resc
D(a1,W)) if n ≥ 1

We say that a literall holds after the execution ofα in W,
denoted by(D,W) |= l after α, if Resc

D(α,W) 6= ∅ and
l ∈ s for every states ∈ Resc

D(α,W).
By a partial stateof D we mean a consistent collection

of fluent literals closed underDs. Partial states are denoted
by (possibly indexed) Greek letters. A states containing a
partial stateδ is called acompletionof δ. By ext(δ) we
denote the set of all completions ofδ. For a set of partial
states∆, let ext(∆) = ∪δ∈∆ext(δ).

Let D be a domain description,∆0 be a set of partial
states, andδf be a partial state. We say that a sequence
of actionsα is a conformant planachievingδf from ∆0 if
(D, ext(∆0)) |= l after α for everyl ∈ δf . We define:

Definition 2 Given a domain descriptionD, a set of partial
states∆0, a parial stateδf . Theconformant planning prob-
lemis the problem of computing a tractable conformant plan
achieving the goalδf from ∆0.

The 1-conformant planning problemis the conformant
planning problem restricted to the case where|∆0| = 1.

Abusing the notation, we often refer to〈D,∆0, δf 〉 as a
planning problem whenever there is no confusion possible.

Two Approximations of Resc
D

Given a conformant planning problem, most of search-based
planners look for solutions by exploring the belief state2

space whose size is double exponential in the number of
fluents. Adding to this, determining what is true/false after
one action is executed in the presence of incomplete infor-
mation is a co-NP complete problem even when state con-
straints are not present (Baral, Kreinovich, & Trejo 2000).
As such, we begin our quest for building a conformant plan-
ner by looking for ways to reduce the complexity of the task.
We achieve this goal by developing two sound (but incom-
plete) approximations of the functionResc

D which we de-
note byResph

D andRespc
D (ph and pc stand for “possibly

holds” and “possibly changes”, respectively). We sometime
writeResa

D whenever we would like to refer to eitherResph
D

and/orRespc
D . Each approximation is a function that maps

pairs of partial states and actions into partial states. Both are
deterministic and can be computed efficiently. Moreover,
both reduce the size of the state space to single exponential
to the number of fluents.

Given an actiona and a partial stateδ, we will now define
Resa

D(a, δ), an approximation of what will hold after the

2A belief state is a set of states.

execution ofa in δ. Before presenting the formulae defin-
ing Resa

D, let us observe that each possible successor state
s′ in Definition 1 can be divided into three parts: (i)e(a, s)
contains the direct effects ofa; (ii) s ∩ s′ contains what re-
mains unchanged (because of the inertial law); and (iii) the
set of the indirect effects ofa. Any formulation of theResa

D
should account for these three components.

To specify the direct effects of an action we take the view
of a skeptical reasoner. Given a partial stateδ and an action
a, we definee(a, δ) = {l | a causesl if ψ ∈ Dd, andψ ⊆
δ} andmc(a, δ) = {l | a causesl if ψ ∈ Dd, and¬ψ∩ δ =
∅}. Intuitively, e(a, δ) (resp.mc(a, δ)) consists of the direct
effects (reps. possible direct effects) ofawhen it is executed
in a state in whichδ holds. As an example, for the action
swing in D1, we have thate(swing, δ) = mc(swing, δ) =
{down1} for everyδ.

The main difficulty in characterizingResa
D, however, lies

in specifying the second component, i.e., what remains un-
changed by the inertial law. Different ways of defining this
set lead to different approximations ofResc

D. We next in-
troduce two possibilities.

Approximation Based on What Possibly Holds

We will now defineResph
D which approximatesResc

D based
on what possibly holds. Here, we view the inertial part as a
set of literals whose negations cannot possibly hold. Given
an actiona and a partial stateδ such thata is executable in
δ, a literall possibly holds in a successor state, sayδ′, if one
of the following happens.
• a might causel to hold, i.e.,l ∈ mc(a, δ);
• ¬l does not hold inδ and there exists no dynamic causal

law (1) s.t.ψ holds inδ, i.e.,¬l 6∈ (δ ∪ e(a, δ));
• there exists a constraint (2) s.t.ψ possibly holds inδ′.
Resph

D (a, δ) conservatively defines the second com-
ponent as the set of all literals whose negations
cannot possibly hold. Formally, letph(a, δ) =
ClD(mc(a, δ) ∪ {l | ¬l 6∈ (δ ∪ e(a, δ))}), we define

Resph
D (a, δ) = ClD(e(a, δ) ∪ {l | l 6∈ ¬ph(a, δ)})

if ClD(e(a, δ) ∪ {l | l 6∈ ¬ph(a, δ)}) is consistent; other-
wise,Resph

D (a, δ) = ⊥. We will discuss some properties of
Resph

D after the definition of the second approximation.

Approximation Based on What Possibly Changes

While Resph
D approximates the inertial part by looking at

what might hold in the successor partial state,Respc
D looks at

what might change. It resemblesResc
D by assuming that the

result is known, sayδ′. That is, assume thatRespc
D (a, δ) =

δ′. We say that a literall is possibly changedafter the ex-
ecution ofa in δ if it does not belong toδ but possibly
holds inδ′. We denote the set of possibly changed literals
by pc(a, δ, δ′). Observe that a literall possibly changes its
value if l 6∈ δ and
• a might directly causel, i.e.,l ∈ mc(a, δ); or
• there exists a constraint (2) s.t.ψ possibly holds inδ′ and

contains at least one literal that possibly changes.
This leads us to definepc(a, δ, δ′) = ∪∞i=0pc

i(a, δ, δ′) where
pc0(a, δ, δ′) = mc(a, δ) \ δ,
pci+1(a, δ, δ′) = (pci(a, δ, δ′) ∪ Ωi) \ δ for i ≥ 0 with

Ωi={l | l if ψ ∈ Ds,¬ψ ∩ δ′=∅, andψ ∩ pci(a, δ, δ′)6=∅}.
The definition ofRespc

D rests on the following observa-
tions: (i) δ′ must containClD(e(a, δ)); (ii) ClD(δ′ ∪
(δ \ ¬pc(a, δ, δ′))) holds in every succesor state re-
sulting from executinga in a state satisfyingδ; and
(iii) for the sequence of partial statesδ1, δ2, . . . where
δ1=ClD(e(a, δ)), andδi+1=ClD(δi ∪ (δ \ ¬pc(a, δ, δi)))
for i≥1, it holds that (a)δi ⊆ δi+1; and (b) δi holds
in every successor state resulting from executinga in
a state satisfyingδ; and (c) this sequence converges to
a partial stateδ∗. We therefore defineRespc(a, δ) as

Respc
D (a, δ) = δ∗

if δ∗ is consistent; andRespc
D (a, δ) = ⊥ otherwise. We will

now discuss some properties of the approximations.

Properties of the Approximations

Notice that in the definitions ofResa
D, we take into account

the three components mentioned earlier: (i) the direct effect
of a: e(a, δ); (ii) the inertial part: {l | l 6∈ ¬ph(a, δ)} or
δ \¬pc(a, δ, δ′) (iii) the indirect effect ofa: those generated
by the operatorClD. It is easy to see thatResa

D(a, δ) is
uniquely defined, i.e., the functionsResa are deterministic.

The definitions ofResc
D(a,W) and |= are extended to

defineResa
D(a,∆) and |=a in a straightforward way. We

omit them here to save space.

Example 3 Consider the following domain descriptionD2

defined over the set of fluents{f, g, h, k, p, q}.
a causesf a causesg if k g if f, h
g if f,¬h k if f p if g, q

Suppose that we performa in ∆ = {δ}, whereδ = {¬f ,
¬g,¬p,¬q}. Intuitively, we would expect that afterwardf
should be true (as a direct effect ofa); k andg should be true
(because of “k if f ”, and “g if f, h” and “g if f,¬h”
respectively); andp, q should be false (because of inertia).

We have thate(a, δ) = {f} andmc(a, δ) = {f, g}.
X = δ ∪ e(a, δ) = {¬f,¬g,¬p,¬q, f}
Y = {l | ¬l 6∈X} = {¬g,¬p,¬q, h,¬h, k,¬k}
Z = mc(a, δ)∪Y = {f, g,¬g,¬p,¬q, h,¬h, k,¬k}
ph(a, δ)=ClD2(Z)={f, g,¬g,¬p,¬q, h,¬h, k,¬k}

Hence,Resph
D2

(a, δ) = {f,¬p,¬q, k}.
ForRespc, δ1 = ClD2(e(a, δ)) = {f, k} and
pc0(a, δ, δ1) = {f, g}, Ω0 = {k, g, p}
pci(a, δ, δ1) = {f, g, k, p}, Ωi = {k, g, p} for i ≥ 1.

This leads toδ2 = {f, k,¬q}. Repeating this computation
with δ2, we getδ3=δ2. So,Respc

D2
(a, δ)={f, k,¬q}.

As a result, we haveRespc(a,∆) = {{f, k,¬q}} and
Resph

D2
(a,∆) = {{f,¬p,¬q, k}}.

Observe that bothResph
D2

(a,∆) andRespc
D2

(a,∆) draw
f, k,¬q as expected; furthermore, the former can draw¬p,
whereas the latter cannot. But none of them could drawg.
Nevertheless, if∆ was{δ∪{h}, δ∪{¬h}}, then both could
draw g. Some other entailments w.r.t. the approximation
semantics are:(D2,∆)|=af after a; (D2,∆) 6|=ag after a;
(D2,∆)6|=a¬g after a. 2

We now show some properties of the approximations. The
next theorem shows that|=a is sound w.r.t.|=.

Theorem 1 (Soundness w.r.t.|=) LetD be a consistent do-
main description,α be a sequence of actions,∆ be a set of
partial states, andl be a literal. Then,

(D, ∆) |=a l after α implies that(D, ext(∆)) |= l after α.

Example 3 shows that the approximations are not complete
w.r.t. Resc

D. Apart from this,Respc(a, δ) ⊆ Resph(a, δ).
Our conjecture is that this relationship holds. However, we
have not yet found a formal proof for this property. We also
show that

Theorem 2 Given a domain descriptionD, for any partial
stateδ and actiona, Resa

D(a, δ) can be computed in poly-
nomial time in the size of the domain.

This allows us to prove the following result.

Theorem 3 The 1-conformant planning problem w.r.t. the
approximation semantics isNP-complete.

We have, among other things, extended both approxima-
tions to consider concurrent actions and non-deterministic
actions. We also identified a large class of domains in which
|=a is equivalent to|=. These result will be presented in the
complete version of this paper. In the next section, we de-
scribe our initial experiments with these approximations in
the development of conformant planners.

Conformant Planning using Approximations
We first implemented an answer set programming based
conformant planner usingResph, which we will refer to
asCPASP. In this sense,CPASP is similar to DLVk (Eiter
et al. 2003), CMBP (Cimatti & Roveri 2000),C-PLAN
(Castellini, Giunchiglia, & Tacchella 2003), QBF (Rintanen
2000). CPASP allows parallel actions. We testedCPASP
against DLVk, CMBP, andC-PLAN because these planners
do allow state constraints and are similar in spirit ofCPASP.
Our results show thatCPASP is competitive with these plan-
ners in most of the domains from the literature. Due to space
limit, we omit here the detailed encoding ofCPASP and the
experimental result. The main weakness ofCPASP is that it
does not solve problems with disjunctive information about
the initial state. In other words,CPASP can handle only 1-
conformant planning problems (i.e., for|∆0| = 1).

To overcome this weakness, we implemented a pair of
planners, calledCPApc and CPAph, based onRespc

D and
Resph

D respectively, in C++. By convention, we will write
CPA whenever we want to refer to both planners or one of
them when the distinction between them is not important.
CPA employs the best first search strategy with repeated
state avoidance and the number of fulfilled subgoals as the
heuristic function. The main module ofCPA is for comput-
ing theResa

D function.
CPA accepts problems encoded using the rules of the

forms (1)-(3). The initial state is specified by statements
of the form initially φ (whereφ is in the CNF form).
As mentioned ealier, in our implementation, these CNFs
will be translated into a set of initial partial states, e.g.,
the set{initiallyf ∨ g, initially p ∨ q} results in∆0 =
{ClD({f, p}), ClD({f, q}), ClD({g, p}), ClD({g, q})}.
The goal is encoded using statements of the formgoal φ
whereφ is a set of literals.

We compareCPA with three planners CFF, KACMBP,
and POND. These planners were selected for the follow-
ing reasons. First, CFF and KACMBP are — to the best
of our knowledge — the current fastest conformant planners
in most of the benchmark domains in the literature. Second,
CFF is superior to other state-of-the-art conformant planners
like GPT (Bonet & Geffner 2001), MBP (Cimatti & Roveri
2000) (see (Brafman & Hoffmann 2004)). Third, KACMBP,
a heuristic guided, symbolic model checking based confor-
mant planner supporting state constraints, is known to out-
perform DLVk andC-PLAN in many domains in the litera-
ture (see (Cimatti, Roveri, & Bertoli 2004)); Finally, POND
is a new addition to the set of conformant planners that im-
plemented several interesting heuristics.

We prepare two test-suites. The first one consists of typ-
ical conformant planning domains including the Bomb-in-
the-toilet (Bomb), the Ring, and Logistics domains. The
first domain was chosen because both CFF and KACMBP
work well with it (e.g. CFF can scale up the Bomb domain
with multiple toilets to 100 packages and 100 toilets within
a minute). The latter two were chosen because the exper-
iments in (Brafman & Hoffmann 2004) showed that CFF
is good at the Logistics problem but not the Ring, while
KACMBP is good at Ring but has poor performance with
Logistics.

In the Bomb domain, we experimented with
10, 20, 50, 100 packages andt = 1, 5, 10 toilets.

The Logistics domain used in our tests is described in
(Brafman & Hoffmann 2004) and distributed together with
the CFF distribution. We did experiments with 5 problems,
corresponding tol = 2, 3, 4 andc = p = 2, 3, wherel, c,
andp are the numbers of locations per city, cities, and pack-
ages respectively (only Logistics(4,2,2) is not available).

In the Ring domain, one can move in a cyclic fashion (ei-
ther forward or backward) around an-room building to lock
windows. Each room has a window and the window can be
locked only if it is closed. The uncertainty is that the initial
state of windows is unknown. The goal is to have all win-
dows locked. A possible conformant plan is to perform a
sequence of actionsforward, close, lockrepeatedly. In this
domain, we tested withn =2,5,10, and 20.

Three domains in the first test suite, however, do not
contain many state constraints. Most of the constraints in
our encodings are aimed at expressing multivalued vari-
ables as boolean fluents3. To see how good these plan-
ners are in dealing with domains rich in constraints, in the
second test suite, we include the Domino domain. We
tested the domain with eight problems corresponding to
n = 10, 50, 200, 100, 500, 1000, 2000, 5000, wheren is the
number of dominos. Note that we encoded these problems
for POND and CFF following the compilation procedure in
(Thiebaux, Hoffmann, & Nebel 2003).

The second domain included in the second test suite is the

3Unlike POND, CPA, and CFF, an advantage of KACMBP
is that it allows multivalued fluents. Thus, it seems to perform
well with numeric domains like Ring, Cube, and Square, etc.
(see (Cimatti, Roveri, & Bertoli 2004) for the performance of
KACMBP over these domains)

Cleaner domain. It is a modified version of the Ring domain.
The difference is that the robot is moving in a linear fashion
rather than in a cyclic fashion and instead of locking the win-
dow, the robot has to cleanp objects in each room. Initially,
the robot is in the first room and does not know whether
or not objects are cleaned. The goal is to have all objects
cleaned. While the Domino domain exposes a richness in
constraints, the Cleaner domain provides a high degree of
uncertainty in the initial state. We tested the domain with 6
problems corresponding ton = 2, 5 andp = 10, 50, 100.

All experiments were made on a 2.4 GHz CPU, 768MB
RAM machine, running Slackware 10.0 operating system.
Time limit is set to half an hour. The testing results4 for
two test suites are shown in Tables 1–2. Times are shown in
seconds; ‘TO”, “AB”, and “NA” indicate that time limit is
exceeded, that the planner stopped abnormally, and that the
domain is not applicable, respectively.

Domains KACMBP CFF POND CPApc CPAph

Bomb(10,1) 19 / 0.01 19 / 0.05 19/2.61 19 / 0.01 19 / 0.02
Bomb(20,1) 39 / 0.05 39 / 0.17 /AB 39 / 0.06 39 / 0.13
Bomb(50,1) 99 / 0.51 99 / 5.33 /AB 99 / 0.87 99 / 1.83
Bomb(100,1) 199 / 3.89 199 / 121.80 /AB 199 / 7.63 199 / 14.8
Bomb(10,5) 15 / 0.09 15 / 0.07 /AB 15 / 0.03 15 / 0.07
Bomb(20,5) 35 / 0.30 35 / 0.16 /AB 35 / 0.17 35 / 0.37
Bomb(50,5) 95 / 1.66 95 / 4.70 /AB 95 / 2.74 95 / 4.82
Bomb(100,5) 195 / 6.92 195 / 113.95 /AB 195 / 24.17 195 / 36.90
Bomb(10,10) 10 / 0.30 10 / 0.05 /AB 10 / 0.05 10 / 0.13
Bomb(20,10) 30 / 0.97 30 / 0.13 /AB 30 / 0.35 30 / 0.81
Bomb(50,10) 90 / 5.39 90 / 4.04 /AB 90 / 5.34 90 / 9.470
Bomb(100,10) 190 / 35.83 190 / 102.56 /AB 190 / 43.79 190 / 65.43

Ring(2) 5 / 0.00 7 / 0.06 5/0.16 5 / 0.00 5 / 0.00
Ring(5) 14 / 0.00 45 / 63.67 15/39.37 15 / 0.15 15 / 0.21
Ring(10) 29 / 0.02 / TO /TO 30 / 3.25 30 / 5.03
Ring(15) 44 / 0.04 / TO /TO 45 / 21.40 45 / 34.94
Ring(20) 59 / 0.15 / TO /TO 60 / 84.02 60 / 141.33
Ring(25) 74 / 0.32 / TO /TO 75 / 244.02 75 / 420.20

Logistic(2,2,2) 14 / 0.19 16 / 0.03 /NA 12 / 0.75 12 / 1.16
Logistic(2,3,3) 34 / 355.96 24 / 0.06 /NA 106 / 120.86 106 / 181.95
Logistic(3,2,2) 17 / 2.10 20 / 0.06 /NA 96 / 48.15 96 / 74.16
Logistic(3,3,3) 40 / 29.80 34 / 0.12 /NA / TO / TO
Logistic(4,3,3) / TO 37 / 0.14 /NA / TO / TO

Table 1: Conformant Planning Benchmarks

As can be seen in Table 1, in the Bomb domain, KACMBP is
the best in general.CPA is competitive with CFF in most of
problems and outperforms CFF in some others. For exam-
ple,CPApc took 7.63 seconds to solve BMTC(100,1), while
CFF took 121.80 seconds. However, CFF seems to have no
problem when the number of toilets increases, while there is
a significant increase in the amount of time for KACMBP.
The change in the amount of time forCPA is more reason-
able than that for KACMBP. For example, with a fixed num-
ber of packages 100, when the number of toilets increase
from 5 to 10, the amount of solving time for CFF even de-
creases, while that for KACMBP about 5 times increases and
CPA’s is just doubled. POND can solve Bomb(10,1) only.

The Ring domain is really problematic for CFF. As ex-
plained in (Brafman & Hoffmann 2004), it is because of the
lack of informativity of the heuristic function in the presence
of non-unary effect conditions and the problem with check-
ing repeated states. CFF can solve only the first two prob-
lems within the time limit. Again, KACMBP is the best.
CPA is much better than CFF and POND but is not compet-
itive with KACMBP.

4In each cell, the first number is the length of the solution. The
second number is the time taken by the planner to find the solution.

In the Logistic domain, both KACMBP andCPA had dif-
ficulty in finding plans. Although KACMBP is better than
CPA, its performance is far from that of CFF which solved
each problem in less than one second. We believe that the
poor performance ofCPA lies in the not-so-good heuristic
function (which is reflected in the plan’s length).

Table 2 shows the testing results for the second test-suite.
As expected, using the mentioned compilation procedure,
CFF has poor performance in the Domino domain. Within
the time limit, KACMBP can only solve problems with
n < 500 but CPA has no problem withn = 5000.

Domains KACMBP CFF POND CPApc CPAph

Domino(10) 23 / 0.01 10 / 0.05 10/1.72 1 / 0.00 1 / 0.00
Domino(50) 163 / 0.27 50 / 4.44 /TO 1 / 0.00 1 / 0.01
Domino(100) 376 / 2.56 / AB /TO 1 / 0.02 1 / 0.03
Domino(200) 852 / 29.10 / AB /TO 1 / 0.06 1 / 0.09
Domino(500) / TO / AB /TO 1 / 0.35 1 / 0.59
Domino(1000) / TO / AB /TO 1 / 1.38 1 / 2.48
Domino(2000) / TO / AB /TO 1 / 5.38 1 / 10.74
Domino(5000) / TO / AB /TO 1 / 36.48 1 / 62.68

Cleaner(2,10) 21 / 0.08 21 / 0.07 /AB 21 / 0.03 21 / 0.06
Cleaner(2,20) 41 / 0.62 41 / 0.15 /AB 41 / 0.13 41 / 0.38
Cleaner(2,50) 101 / 13.55 101 / 0.80 /AB 101 / 1.71 101 / 5.39
Cleaner(2,100) 201 / 185.39 201 / 5.72 /AB 201 / 13.97 201 / 44.09
Cleaner(5,10) 56 / 0.10 54 / 0.24 /AB 54 / 0.41 54 / 0.86
Cleaner(5,20) 106 / 7.82 104 / 0.85 /AB 104 / 2.32 104 / 5.52
Cleaner(5,50) 256 / 227.82 254 / 14.36 /AB 254 / 30.83 254 / 85.20
Cleaner(5,100) / TO / AB /AB 504 / 239.08 504 / 688.39

Table 2: Domains with Constraints and High Degree of Incompleteness

CPA has a relatively good performance in the Cleaner do-
main. It can solveCleaner(5, 100) within the time limit.
The returned plan has 504 actions. CFF is very good at this
domain and outperformsCPA and KACMBP (POND can-
not solve any problems of these). Unfortunately, it cannot
solve the last problem since the maximum length of a plan
is exceeded.CPA outperforms KACMBP in most problems
in this domain.

As stated, our planner is sound but not complete, i.e., the-
oretically speaking,CPA cannot solve some planning prob-
lems, even when the initial state is complete. To make sure
our approach can cover a broader spectrum of practical plan-
ning problems, we also testedCPA with classical planning
problems. The first domain considered is the Block World
with five problems described in (Eiteret al. 2003). We
then tested with problems in the Rovers domain5. Five prob-
lems, different from each other in the numbers of way points,
rovers, cameras, rock and soil samples, and objectives, were
experimented with. It turns out thatCPA can solve all those
problems but did not perform well in the Blocks World do-
main. We suspect that our heuristic is not good enough to
guide the planner in this domain.

Discussion and Conclusion
We have presented a pair of new conformant planners,
CPApc and CPAph, which deal directly with state con-
straints. Their performance is comparable with state-of-the-
art conformant planners over typical benchmark domains as
well as over newly invented domains. Due to the simple
heuristic used in the implementation ofCPA, we believe that
the good performance ofCPA lies in the use of the approx-
imations. The development ofCPA demonstrates that re-
search in reasoning about action and change can positively

5
http://planning.cis.strath.ac.uk/competition/

impact the development of practical planners. Although
CPA yields good performance, there are a number of issues
that need to be investigated. On the implementation side, we
would like to improveCPA’s performance by testing it with
different heuristics used in other planners. We would also
like to find plans with parallel actions and/or minimal plans.
Theoretically, we would like to investigate the relationship
betweenResph andRespc and to find a better approxima-
tion that allows for limited reasoning by cases for use with
CPA. We also would like to strengthen characteristics of do-
mains in which the approximations are complete6.
Acknowledgement: The first two authors were partially
supported by NSF grants EIA-0220590 and HRD-0420407.

References
Baral, C.; and Gelfond, M. 2000. Reasoning agents in dynamic
domains. In Minker, J,. ed., LBAI, 257–279.
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computational
complexity of planning and approximate planning in the presence
of incompleteness.AIJ 122:241–267.
Bonet, B., and Geffner, H. 2001. GPT: a tool for planning with
uncertainty and partial information. IJCAI-01 Workshop on Plan-
ning with Uncertainty and Partial Information, 82–87.
Brafman, R., and Hoffmann, J. 2004. Conformant planning via
heuristic forward search: A new approach. ICAPS-04, 355–364.
Bryce, D., and Kambhampati, S. 2004. Heuristic Guidance Mea-
sures for Conformant Planning. ICAPS-04, 365–375.
Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003. SAT-
based Planning in Complex Domains: Concurrency, Constraints
and Nondeterminism.AIJ 147:85–117.
Cimatti, A., and Roveri, M. 2000. Conformant Planning via
Symbolic Model Checking.JAIR13:305–338.
Cimatti, A. et al. 2004. Conformant Planning via Symbolic Model
Checking and Heuristic Search.AIJ 159:127–206.
Eiter, T. et al. 2003. A Logic Programming Approach to Knowl-
edge State Planning, II: The DLVK System. AIJ 144, 157–211.
Gelfond, M., and Morales, R. 2004. Encoding conformant plan-
ning in a-prolog. InProceedings of DRT’04, LNCS.
Kurien, J.; Nayak, P. P.; and Smith, D. E. 2002. Fragment-based
conformant planning. InAIPS, 153–162.
McCain, N., and Turner, H. 95. A causal theory of ramifications
and qualifications. IJCAI, 1978–1984.
Petrick, R., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. AIPS-02,
212–222.
Rintanen, J. 2000. Constructing conditional plans by a theorem
prover.JAIR10:323–352.
Smith, D. & Weld, D. 1998. Conformant Graphplan.AAAI.
Son, T., and Baral, C. 2001. Formalizing sensing actions - a
transition function based approach.AIJ 125(1-2):19–91.
Son, T. et al. 2004. Planning with Sensing Actions and Incom-
plete Information using Logic Programming. LPNMR, 261–274.
Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2003. In Defense of
PDDL Axioms. IJCAI’03.
Turner, H. 2002. Polynomial-length planning spans the polyno-
mial hierarchy. JELIA’02, 111–124.

6It is worth noting that the current characteristics seem to cover
most problems found in the literature. This result will be available
in the complete version of this paper.

