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Abstract

In this paper we introduce the language Golog+HTNor
specifying control using procedural and HTN-based con-
structs together with deadlines and time restrictions. Our lan-
guage starts with features from GOLOG and HTN and ex-
tends them so that we can deal with actions with duration by
being able to specify time intervals between the start (or end)
of an action (or a program) and the start (or end) of another
action (or program). We then discuss an off-line interpreter
based on the answer set planning paradigm such that the an-
swer sets of the logic program have a one to one correspon-
dence with the traces of the Golog+HTNspecification.

Introduction and Motivation
GOLOG (Levesquet al. 1997) is an Algol-like logic pro-
gramming language for agent programming, control, and
execution. It is based on the situation calculus theory of
actions (Reiter 2000). GOLOG has been primarily used
as a programming language for high-level agent control in
dynamical environments (see e.g. (Burgatdal. 1998)).
Some of the ways GOLOG can be extended aagaflding
new program constructs (and providing the semantics for
these constructs thereafter); di) @dapting the language
to an extension of situation calculus; @) combining @)
and p). The first approach to extending GOLOG has been
taken by (De Giacomo, Leépance, & Levesque 2000;
Baral & Son 1999) where various new constructs such as
concurrency, interrupts, prioritized interrupts, or fEror-

Chitta Baral and Le-Chi Tuan
Computer Science and Engineering
Arizona State University
Tempe, AZ 85287, USA
chitta |lctuan@asu.edu

ior like “action a should start its execution within 3 units of
time after actiord starts its execution” because the language
forces actions to happen as soon as possible, which — given
that botha andb are executable at the time 0 — will not allow
us to considerd starts at 0 and starts at 1” as an acceptable
trajectory even though it satisfies the stated constraint.

In this paper, we investigate the introduction of actions
with duration into the framework proposed in (Son, Baral,
& Mcllraith 2001) in which not only GOLOG-constructs
such as sequence, while-loop, if-then-else, etc. but also
HTN-based constructs such as the partial ordering and tem-
poral constraints are allowed. This leads to a langliage
called Golog+HTN, that generalizes GOLOG-based and
HTN-based specifications with time intervals. Our language
differs from the extensions of GOLOG in (Reiter 2001,
Grosskreutz & Lakemeyer 2000; Boutiliet al. 2000) in
that it includes different HTN-based constructs such as par
tial ordering and temporal constraints. Like cc-Golog, it
does not require the explicit specification of time.

To characterize Golog+HTN we need an action theory
that allows actions to have durations. For that we chose a
simple extension of the languagé (Gelfond & Lifschitz
1998), which we will refer to aglD. We give the semantics
of AD using logic programming with answer sets semantics.
This (the semantics o D) allows us to define the notion of
a trajectory which we use to define the notion of a trace of a
Golog+HTN!7 specification. We will begin with a short re-
view of the answer set semantics of logic programs. We then

dering are added to GOLOG. The other approaches can present the languagdD and discuss answer set planning

be seen in (Reiter 2001; Grosskreutz & Lakemeyer 2000;
Boutilier et al. 2000) where continuous changes, durative
actions, or stochastic actions are considered. In thesa-ext
sions, time instances are introduced for specifying when an
action (or a program) should be executed; in (Grosskreutz
& Lakemeyer 2000), it is argued that the explicit specifica-
tion of time in GOLOG programs — similar to what is used
in (Reiter 2001) (also in (Boutilieet al. 2000)) — is not ad-
equate for specifying event-driven behaviors and cc-Golog

with AD domains. We define the language Golog+HTN
and develop a logic programming based interpreter for it. Fi
nally, we conclude with a brief discussion about future work

Logic Programs and Answer Set Semantics

A logic program is a collection of rules of the form:
aQ < A1y Gy, NOE Qi 1, - -+, NOE Gy or (1)
“— A1y U, NOE A1, - -, 00t Gy (2)

is proposed to address this problem. However, none of the where each of the;’s is a literal in the sense of classical

constructs in cc-Golog allows us to express a simple behav-
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logic. not is the negation-as-failureconnective. not a
is called a naf-literal. Intuitively, the first rule meansth
if a1,...,a,, are true andi,,+1,...,a, can be safely as-

sumed to be false themy must be true. The second rule is

The superscripT'I refers to time and intervals.



a constraint that requires that at least oneqf. .., a,, is

false or one ofi,;, 1, . .., a, IS true.

The body of a rule (1) or (2) is satisfied by a set of literals

X if {a1,...,an}CX and{am1,...,a, JNX=0. Arule

of the form (1) is satisfied byX if either its body is not

satisfied byX or apeX. A rule of the form (2) is satisfied

by X if its body is not satisfied by

For a set of literalsX and a progran®, the reduct ofP
with respect taX, denoted byPX, is the program obtained
from the set of all ground instances 6f by deleting (.)

each rule that has a naf-literabt [ in its body with! € X,

and @.) all naf-literals in the bodies of the remaining rules.

Answer sets of logic programs are first defined by Gelfond

and Lifschitz in (Gelfond & Lifschitz 1990)S is ananswer

setof P if it satisfies the following conditions.

1. If P does not contain any naf-literal (i.e. = n in every
rule of P) thenS is a minimal set of literals that satisfies
all the rules inP.

2. If the programP does contain some naf-literah( < n
in some rule ofP), then S is an answer set oP if S
is an answer set aP°. (Note thatP® does not contain
naf-literals, its answer set is defined in the first item.)

In what follows, we will refer to logic programming with

answer set semantics AssProlog Answer sets of propo-

sitional programs can be computed using answer set solvers

such assmodels(Simons, Nieméd, & Soininen 2002)dIv

(Eiter et al. 1998), cmodels (Lierler & Maratea 2003),

or ASSAT (Lin & Zhao 2002). Answer set planning

(ASP) (Subrahmanian & Zaniolo 1995; Lifschitz 2002) is

an approach to planning using AnsProlog, an application

of answer set programming (Marek & Truszézki 1999;

Niemeh 1999) to planning. In this approach, a planning

problem is translated into a logic program whose answer

where f andp,’s are fluent literals (dluent literalis ei-
ther a fluenty or its negation—g) anda is an action. (3) is
called adynamic causal lavand represents the effect of
while (4) states an executability condition @f Intuitively,

a proposition of the form (3) states thatis guaranteed to
be true after the execution af An executability condition

of a says thau is executable in a state in whigh, ..., p,
hold. Propositions of the form (5) are used to describe the
initial state. It states that holds in the initial state. Finally,

a proposition of the form (6) is used to say that duration of
actiona is v.

An action theory is a set of propositions of the form (3)-
(6). We will assume that each actianappears in one and
only one proposition of the form (6) andis a non-negative
integer expression. We will often conveniently writg:) to
denote the value if duration (a,v) € D and for a set of
actions4, d(A) = max{d(a) | a € A}.

Example 1 Consider an action theory with the set of fluents
{f,g,h}, the set of actionda, b, c,d}, and the following

propositions:
causesga, f) duration(a,3) executablda,{g,h})
causesb, h) duration(b,2) executabldb, {})
causesc, g) duration(c,2) executabléc, {})
causeg¢d, —g) duration(d,1) executabléd,{})
initially (—f) initially (—g) initially (—h)

The propositions about (the first three propositions on the
first line) say that: will cause the flueny to be true after 3
units of time and is executable onlygfandh are true. The
propositions for other actions have similar meaning.

Since the characterization ofD is not the aim of this pa-
per, we do not present an independent characterization of it
(Recall that our goal is to us4D to show how to plan using

a proposed domain constraint language Golog+HTNIn-

sets correspond one-to-one to the solutions of the original stead we give a AnsProlog encoding of prediction and plan-
problem. To make answer set programming easier, several ning usingAD. Moreover, a transition function based se-
new types of rules have been introduced. In this paper, we mantics forAD can be defined similarly to what has been

will often make use otardinality constraintsof the form:
Hby,....,bk}u — ai,...,Gm,n0t Qmit,...,n0t a,
wherea; andb; are literals and andu are two integers,
and! < w. Intuitively, such a rule enforces the constraint
that if the body is true then at lealsaind at most literals
from the head are also true. Answer sets of programs with
cardinality constraints are defined in (Simons, Nigmel
Soininen 2002).

Reasoning About Durative Actions Using LP
As we mentioned earlier, to characterize domain consgaint
we need to first describe an action description language. The
action description language that we plan to use is a simple
extension of the languagé (Gelfond & Lifschitz 1998). In
our extension, which we will refer to a4D, we will allow
actions to have duration and this will be sufficient to help us
to justify and illustrate our language for domain constisin
with new connectives.

Syntax of AD

An action theory consists of two finite, disjoint sets of name
A andF, calledactionsandfluents respectively, and a set of
propositions of the following form:
3) causesa, f)
(4) executablda, {p1,...

initially (f)
duration (a, v)

(5)
(6)

7p”7«})

done for the languagdDC in (Baral, Son, & Tuan 2002).

It is worth noticing that the definitions defined herein can be
easily adapted to more complex action description language
such asADC.

Semantics: Prediction inAD

Given a set of proposition® we construct a logic program

mp for reasoning about the effects of actiongin The main

predicates inrp are:

e h(f,t)—fluentliteralf holds at the time;

e cxec(a,t) (resp. in_exec(a,t)) — actiona is executable
(resp. in its execution) at

e init(a,t) (resp.ends(a,t)) — actiona starts (resp. ends)
its execution at;

The rules ofr, are given next.

e For each proposition (5) iv, 7 contains the following
rule:  h(f,1). @)
This describes the initial state (which fluents hold at time
point 1) as specified by propositions of the from (5Yin

e For each proposition (4) iV, 7p contains the rules:

exec(a,T) —  not not_exec(a,T).
not_exec(a,T) <« mnot h(p1,T). ®)
not_exec(a,T) <« not h(pn,T).



These rules define whenis executable at a time point

Definition 1 Given an action theoryp, a goalG, and a plan

T, based only on the truth of fluents. These rules establish size plan size we say that a sequence of sets of grounded

thata is executable if its executability condition holds.
e For each proposition (6) i, we add the following rules
tonp,
ends(a, T +v) «
in_exec(a,T) «—

init(a,T).

init(a, T'), T'<T<T+wv. ®)

These rules define when an action ends and when it is

under execution.
e For each actiom and an ef-proposition (3), the following
rules are added top,

h(f, T)
ab(f,T) «

ends(a,T).

in-exec(a,T). (10)

These rules are used to reason about truth value of fluents

at different time points.
Encoding the frame axiom. 7p contains the following
rules that encode the frame axiom. They are slightly dif-
ferent from the normal logic program encoding of the frame
axiom in (Gelfond & Lifschitz 1993). For each fluefit the
following rules belong torp:

B(f,T +1) — h(f,T), not ab(~f,T +1).
h(=f, T+ 1) < h(=f,T), not ab(f,T + 1).

If we now want to find out iff would be true at time point

t after starting the execution of actions at time pointt;,

as at time pointts, . . . anda,, at timet,, all we need to do is
to add the sefinit(a;,t;) | @ € {t1,...,t,}} and the con-
straints«—init(a;, t;), not exec(a;, t;) (fori =1,... n)to
7p, set the limits for the various variables, and ask if the
resulting program entails(f, t).

(11)

actionsAy, ..., A, is aplanachievingG if goal(plan_size)
is true in every answer set of the prograri¥¢” (D, G)?,
which consists of
e the rules ofrp and the rules representirdg (rules (7)-
(13)) in which the time variable is less than or equal
plansize
e the set of action occurrenceff., {init(a,i) | a € A;};
e the rules preventing actions with contradictory conclu-
sions to overlap (rules (15), below).

We say that a plap = A;,..., A, is aconcurrent plan
if there exists a paif andj and an actiorn € A; N A;
such thati + d(a) > 7, i.e., p contains an overlapping of
two instantiations of a same actiong.is said to benon-
concurrentif it is not a concurrent plan.
Generating Action Occurrences.The following rules enu-
merate action initiations. To decrease the number of an-
swer sets we have made the assumption that two action in-
stantiations corresponding to the same action can not over-
lap each other, i.e., we consider only non-concurrent plans
This need not be the case in general. Our point here is
that AnsProlog allows us to express such restrictions very
easily. For each action with the durationv, the rules:

act(a, T)—init(a,Th), T <T<T14v.

ninit(a, T)— not init(a,T).

init(a, T)«—ezec(a,T), not act(a,T), not ninit(a,T).
can be used to prevent two instantiations ¢6 overlap. The
1°* rule defines whea is active and the’3 rule allowsa to
occur only if it has not been initiated and is not active.

(14)

One assumption we made in our characterization is that g, every pair ofa and b such thatcauseéa, f) and

the effect of an action takes into account only after its ex-
ecution ends, and the fluents, whose value changes due to
an action execution, are in a unknown state during the ex-

causesb, —f) belong toD, the two rules:
overlap(a,b, T)—in_exec(a,T), in_exec(b,T).

—overlap(a,b, T). (15)

ecution. This of course can be changed by appropriately ¢an pe used to disallow actions with contradictory effeats t

modifying 7p, in particular the rules in (10).
Answer Set Planning with AD Action Theories

overlap. Letr”%e"(D, G) be the set of rules dfi( D) with
the goalG andplan_size=n and the rules (14)-(15). For an

We now show how the idea of answer set planning can be answer sefi/ of #”%"(D, G), lets;(M) = {f | h(f,i) €

extended to4AD action theories. Our AnsProlog planner for
an action theoryD, denoted bylI(D), will consist of the
program representing and reasoning about actiof afp,

the rules representing the goal, and the rules that generatetheorem 1 For a theoryD and a goal?, Bj, .

M} andA;(M) = {a | init(a,i) € M}. We can prove that
there is an one-to-one correspondence between answer sets
of #P’%en (D, @) and non-concurrent plans achieviag

..,B,isa

action occurrences. Besides, we will need to set the limit on non-concurrent plan that achievesiff there exists an an-

the maximal number of steps (the length) of the plan. We g er setis of 7PGen (D, G) s.t. Ay

will call it plan_size. From now on, whenever we refer to a
time pointt, we mean that < ¢ < plan_size.

Representing goal. Assume that we have a goal that is a
conjunction of fluent literalg; A ... A g,,. We represent
this by a set of atom§ finally(g;) | ¢ = 1,...,m}. The

M)=B,.

Golog+HTN”’: Using Durations in Procedural

and Hierarchical Domain Constraints
We begin with an informal discussion on the new construct

following rules encode when the goal — as described by the in Golog+HTN!. Consider the domain from Example 1. It

finally facts — is satisfied at a time point

not_goal(T) <« finally(X), not h(X,T).
goal(T') — not not_goal(T).

The following constraint eliminates otherwise possible an

12)

swer sets where the goal is not satisfied at the time point

plan_size.

— not goal(plan_size). (13)

We now define the notion of glan.

is easy to see that the program:; a is a program achieving

f from any state and the time needed to execute this plan is
the sum of the actions’s durations (Figure 1, Case (a)). Ob-
serve thab andc are two actions that achieve the condition
for a to be executable and can be executed in parallel. Hence
it should be obvious that any program that allawandc to
execute in parallel will have a shorter execution time. Rer t

2TheTVer stands foplan verification



moment, let us represent this by the program= {b, c}; a.

The execution of this program is depicted in Figure 1, Case

(b). Now consider a modification of the domain in Exam-
(a)

o—} —po—C—Ppo——a—p

—bH—>
—cC—p- @

o 1 2 3 4 5 6 7 8 9

(b)

10 © time

Figure 1: A pictorial view of program execution (the dot indicates

the construct 6 is a generalization of hierarchical task net
works (HTN) (Sacerdoti 1974). The main difference is
that some of them are attached to a time interval and/or
a directive *'/* ¢’ which are introduced for the specifica-
tion of time constraints between program components. In-
tuitively, ¢[t1, t2] says that if it is executed at the time mo-
mentt then the fluent formula must hold during the inter-
val [t+t1,t+t2]. The program(pl;ftl)tz]pg) states thap-
should start its execution at leastand at mosts units of

when an action starts and the arrow indicates when an action stops) time afterp; startswhereas(pl;[et1 2] p2) forcesp, to wait

ple 1, in which the executable propositionscofhanges to
executabléc, {—g}). A program achieving would be to ex-
ecuteb andd in parallel, thenc, and lastlya. We cannot
executeb, ¢, andd in parallel all the time becauseis not
executable untitg holds, and hence, it might need to wait
for d to finish. It is easy to see, however, that it is better if
starts whenevet finishes. To account for this, we introduce
a new construct that allows programs to start even if the pre-
ceding program has not finished. We writ, d};}, ;, ¢); a
to indicate thatc should start its execution 1 time unit af-
ter {b,d} and thena and denote this program by. The
execution of this program can be illustrated as follows.
:be:c—b-'_a_"
o 1 2 3 4 5 6 7 8 9

10 © time

Figure 2:Execution of({b, d};{, ; ¢); a

The above discussion provides a compelling argument for
the need o§pecifying time constraints in GOLOG programs
and its extensiondn the following, we extend the language
proposed in (Son, Baral, & Mcllraith 2001) with time con-
straints and define the language Golog+HTN

Definition 2 (Program) For an action theory),

1. an actioru is a program;

2. atemporal constraint[t,, t2], whereg is a fluent for-
mula (a formula constructed using fluent literals and the
propositional connectives), is a program;

3. if p; andp, are programs andl < ¢; < t, are two time
non-negative integers then so g |p2), (pl;[sthtz]pg),

and(pl;fthh] pQ)i

4. if p; andp, are programs and is a fluent formula then
so are ff ¢ then p, else py” and “while ¢ do p”;

5. if X is a variable andp(X) is a program then
pick (X, p(X)) is a prograr?;

6. if p1,...,p, are programs then a pdif, C) is a pro-
gram whereS = {p1,...,p,} andC is a set of con-

straints overS of the following form: (i) p; <[t ta] P2

(Orpl —<Ftlvt2] p2)1 (”) (p7 gb[th t2])1 (”I) (¢[t17 t2]ap)’ and
(IV) (pla (b[tla t2]7p2) Wherep7p17p2 are prOQrame/b is a
fluent formula and) < t; < t,.
The constructs 1-5 in the above definitions are generaliza-
tions of constructs in GOLOG (Levesqe¢al. 1997) and

3Roughly speaking, programs are allowed to contain variables
whose domains are pre-defined. A program with variables is con-
sidered as a shorthand for the set of its ground instantiations.

fort (t1 < t < t9) units of time afterp; finishes It is
easy to see tha(pl;fo 0 p2) requires thap; andp- be exe-

cuted in parallel wherea@l;[ﬁom p2) requires thap, starts
its execution at the time; finishes. Note tha@Pl%fo,o] p2)

corresponds to the original notatipp; ps.

The constraints in item 6 above are similar to truth con-
straints and ordering constraints over tasks in HTN. Intu-
itively, p; <[ty 1] P2 (resp. p: <[t o] p2) specifies the
order and the time constraint fpg to start its execution. It
states that ifp; begins (resp. ends) its execution at a time
momentt thenp, must start its execution during the interval
[t + t1,t + to]. Similarly, (p, [t1,t2]) (resp. (¢[t1, t2], p))
means thap must hold fromt; to ¢, immediately after (resp.
before)p’s execution. (p1, ¢[t1, t2], p2) States thap; must
start before, and¢ must holdt; units of time aftep; starts
until ¢5 units of time before, starts.

We note that there is a subtle difference between the con-
structs;p, 4,1 (resp.sp, ) and<j, . (resp. <, 1) in
that the former (inspired by GOLOG) represents a sequen-
tial order and the latter (inspired by HTN) represents a par-
tial order between programs. For example, during the execu-
tion of the progran(pl;ftlh] p2), ho other program should
start its execution. On the other harjg; <[ty 2] p2) only
requires thap, should start its execution between the inter-
val [t1,t2] afterp, starts its execution and does not prevent
another program to start during the executioppéndps.

Example 2 In our notationp; andp, (from the discussion
before Figure 1) are represented (c(yp;fo 0] 0)3[60,01 a) and

(30,0 )37y 1) ©)ifo,0) @) TESPECiveEly.

We will now define the notion dod trace of a programwhich
describes what actions are done when. But first we need to
define the notion of a trajectory. For an action thebrand

an integem, let 7¢¢"(D) be the set of rules (7)-(11) and
(14)-(15) whose time variable belongs{to, . .., n}.

Definition 3 (Trajectory) For an action theoryD and an
answer sef\/ of 7P%e"(D), lets; = {f | h(f,i) € M}
andA; = {a | init(a,i) € M}. We say that the sequence
a=s1A;...s, 4, is atrajectoryof D.

Intuitively, a trajectory is an alternating sequence ofesta
and action occurrences A4, ..., s, A,, wheres; is a state

at time pointi and 4; is the set of actions that are supposed
to have started at time point Observe that because of the
assumption that during the execution of an action, value of
fluents affected by the action is unknown, i.e., the states
might be incomplete. Howeves; will be complete if there



exists no action that is active atThe notion of a trace of a
program will be defined in the next four definitions.

Definition 4 (Trace—Primitive Cases) A trajectory «
s1A1...8, A, is atrace of a programif
e p=a, n=d(a) andA;={a} andA,=( for; > 1; or
o p=o|[t1,ta], n=ta, A;=0 for everyi, and¢ holds ins;
fort; <t <ts.

The next definition deals with programs that are constructed
using GOLOG-constructs ((Levesgatal. 1997)).

Definition 5 (Trace—Programs with GOLOG-Constructs)
A trajectorya = s1 Ay ... s, A, is atrace of a programif
one of the following is satisfied.

e p=p; | p2, isatrace op; or« is atrace opo,

e p=if ¢then p; else py, ais atrace op; and¢ holds
in s or « is a trace ofp; and—¢ holds insy,

e p =while ¢do py, n 1 and —¢ holds ins; or ¢
holds ins; and there exists somesuch thats; 4; ... A;
is a trace op; ands; 14,41 ... A, is atrace op, or

e p = pick(X,¢(X)), then there exists a constansuch
thata is a trace ofy(x).

The trace of each program is defined based on its structure.

We next deal with the new connectivgs , , and;f, , ;.

Definition 6 (Trace—Parallel and Overlapping Programs)
A trajectorya = s1A; ... s, A, is atrace of a program if
° p:pl;fthtg]pg, there exists two humbetrg andt, such
thatt; +1 < t3 < t5 + 1 andty < n (because the
index of the trace starts from 1) and either (i) there exists
atraces; B; ...s;, B, of py and atrace,;,Cy, ... s,C,
of po such thatd;, = B; U C; for everysi; or (i) t3 < t4
and there exists a traeg B; ... s, B, of p; and a trace
St Ctg ... Sty Ct4 of P2 such thatAi =B, UC; (We write
B; = 0 or C; = ( for indexes that do not belong to the
trace ofp; or ps); or
° p:pl;ﬁhtz]pg, there exists two numbetg andt, such
thatt; +t3 < t4 < ta+tgandty < nands;A; ... StgAtg
is atrace op; and atrace,, A, ... s, A, is atrace op.
andA; = () for everyts < i < t4.

This definition is best illustrated using a picture.

By By
trace ofp, B '3 >4
C Cy .
trace ofp o3 t4 Cn
trace ofp > .
A, At3 At4 A, time

Figure 3:A; = B; U C; — First Item, Case 1 (Definition 6)
Example 3 e For plz((b;[so,o] 0)5[80,0] a) (wrt. the ac-
tion theory in Example 1), we can easily check that
s1 {b,c} s3 0 si{a} s 0 sg 0 s§ 0 where
5%:{“]2‘@7"]1} S%Z{ﬁf} 8;13:{‘|f,g,h}
si=1{g,h} s ={g,h} s6={f,9,h}
is a trace ofp;. On the other hand, we can see that
st {b,c,d} s3 D s3{a} si O s O s 0 is not a trace ofp;
although it contains a trace pf.
o For po=(((bijp o) @)i1.1) ©)sfo, @) (Wrt.  the modified
action theory), let
st ={f,g, -}
S4 = {ﬂfa g, h}
5% = {f7 9, h}

S
S

2
2
2
5

we can checkthag {b,d} s3 {c} s% 0 s3{a} sz 0sZ0s20

is a trace of po but it is easy to see that

s {b,d} s30s2 {c}si0si{a}s2Bs30s2( is not

a trace ofp; because should start at the time moment 2.
We next deal with programs containing HTN-constructs.

Definition 7 (Trace—HTN Programs) A trajectory
a=s14A1...s,4, is a trace of a programp=(S,C)

with S={pi,...,px} If there exists two sequences of
numbersby, ..., by andey, ..., e, With b; < e;, a permu-
tation (i1, ...,ix) of (1,...,k), and a sequence of traces

aj=sp, A{)j ...sejAgj that satisfy the following conditions:
foreachl, 1 <[ <k, o is a trace op;,,

if P =P E C thenit<il,

if ptKthqQ]plEC theni, <i; andbit +q1 Sb“ <bit +q2,

if pﬁfqhqz]plec theni,<i; ande;, +q1 <b;, <e;, +q2,
if (¢[t1,t2],p1) € C (or (pi, d[t1,1t2]) € C) theng holds
in the statesy, —¢,, - S, —t; (or Sei +tir s Seil+t2)a
and
o if (pt, ¢[t1,t2],p1) € C then ¢ holds in sy, 44y, -
Sbi, —to-
o A, = Uj?:lA{ for everyi = 1,...,n where we assume
thatA! = () for i<b; ori > e;.
The intuition of the above definition is as follows. Firstcha
program startsi('s) and endsd;’s) at some time point and
it cannot finish before it even starts, hence, the requirémen
b; < e;. The order of the execution is specified by the or-
dering constraints and not by the program’s number. The
permutation(iq, . . ., 4x) andj's record the starting time of
the programs. The conditions on the trajectories make sure
that the constraints are satisfied (first four items) and they
indeed creately, ..., A, (lastitem).

An AnsProlog Interpreter

We have developed an AnsProlog interpreter for programs
defined in Definitions 2. For a prograprof an action theory
D, we definell(D, p) as a program consisting of( D), the
rules describing the program the set of rules for gener-
ating action occurrences (14)-(15), the constraint elarin
ing answer sets in whichrans(p, 1, plan_size) does not
hold, and a set of rules that realizes the operational seman-
tics of programs (Definitions 4-7). We follow the approach
in (Son, Baral, & Mcllraith 2001) and define a predicate
trans(p, t1,t2) which holds in an answer sét/ of II iff
se, (M)Ay, (M) ...s,,(M)A, (M) is a trace ofp®. Space
limitation does not allow a detailed presentationlbf We
therefore will concentrate on describing the ideas behind t
rules and their meaning rather than presenting the rules in
great detail. They can be found on our Web%ite

We will begin with an informal discussion on the ideas be-
hind the rules definingrans(p, t1,t2). Intuitively, because
of the rules (14)-(15), each answer 3dtof the progranil
will contain a sequence of sets of actians= A,,..., 4,
where A; = {a | init(a,i) € M}. The encoding of the
action theory;rp, makes sure that whenever an actiois

“For an answer set/, s;(M) = {f | h(f,i) € M, fisa
fluent literal and A; (M) = {a | init(a,i) € M}.

5URL: http://www.cs.nmsu.edu/"tson/ASPlan/Duration



initiated it is executable. Thus, the sequends a trajectory
of D. So, it remains to be verified thatis indeed a trace of
the progranmp. We will do this in two steps. First, we check
if o contains a trace g, i.e., we make sure that there is a
traces1 B, ... s, B, of p such thatB; C A;. Second, we
make sure that no action is initiated when it is not needed
and define two predicates:
o tr(p,t1,ta) - s¢, Ay, ... Ay, cONtains a trace af;
e used_in(p, q,t,t1,t2) - a trace ofp starting fromt is
used in constructing a trace @from ¢, to ¢o. Intuitively,
this predicate records the actions belonging to the traces
of ¢. The definition of this predicate will make sure that
for a simple actior, only actiona is used to construct its
trace, i.e.used_in(a, a,t1,t1,t1 + d(a)) is equivalent to
init(a,t1) andused_in(b, a, t1,t1,t1 + d(a)) is false for
everyb # a.
We define thattrans(p,ti,t2) holds iff tr(p,t1,ts2)
holds and for every actionacA; for t;<j<ty,
used-in(a,p, j, t1,t2) holds. The rules fotr(p,t;,t2) are
similar to the rules of the predicateans(p,t1,t2) from
(Son, Baral, & Mcllraith 2001) with changes that account
for action duration and the new constructs suchfg;h]

and;p, ., and checking for the condition of new constraint

on a HTN-program. The construction Bf D, p) allows us
to prove the following theorem.

Theorem 2 For a theoryD and a progranp, (i) for every
answer sed! of II(D, p), s1(M)A1 (M) ... s, (M)A, (M)

is a trace ofp, wheres;(M)={f | h(f,7)eM, fis a flu-
ent literall and A;(M)={a | init(a,i)eM}; and (i) if
s1B1so ... s, B, is atrace ofp then there exists an answer
setM of TII(D, p) such thats; = {f | h(f,7) € M} and
B; = {a | init(a,i) € M}.

Conclusion and Discussion

In this paper we propose a control specification lan-
guage Golog+HTRN that generalizes procedural (based on
GOLOG) and HTN-based specifications to allow time in-
tervals. In the process we generalize the connective ‘;’ to
two connectives;;, , "andp, , ."and make similar gen-
eralizations of the HTN constructs. We then discuss the im-
plementation of an AnsProlog-based interpreter for the lan
guage Golog+HTN’. Among the features that distinguish
Golog+HTN!? from previous extensions of GOLOG are:
1. The underlying action language of Golog+HfNallows

actions with duration and parallel execution;
2. The program constructs of Golog+HTNgeneralize the

constructs of GOLOG and HTN with time and intervals;
3. It does not require an explicit specification of time.
Finally, we notice that the approach presented in this pa-
per can be extended to allow more complex action lan-

guages that allow continuous fluents and processes such as

ADC in (Baral, Son, & Tuan 2002). Besides its use as a
specification language similar to cc-Golog, Golog+HTN
can also be viewed as a language for specifying domain-
dependent knowledge in a planner, a view explored by (Son,
Baral, & Mcllraith 2001) with respect to GOLOG. There,
they demonstrated that a simplified version of programs dis-
cussed in this paper can help improving the performance of

planner. To investigate this use of Golog+HTN we have
developed a prototype of a planner for domains with contin-
uous fluents and durative actions that uses Golog+HTN
with encouraging results. We will report our experiments
with Golog+HTN in planning in a future work.
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