Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms *

Tran Cao Son
Computer Science Department
New Mexico State University
Las Cruces, NM 88003, USA
tson@cs.nmsu.edu

Las Cruces, NM

Abstract

We present two equivalent approaches for defining answer
sets for logic programs witlarbitrary abstract constraint
atoms (c-atoms). The first approach uses an immediate conse-
guence operator for answer set checking, whose definition re-
lies on the notion o€onditional satisfactiorf c-atoms w.r.t.

a pair of interpretations. The second approach generalizes the
notion ofwell-supportednodels of normal logic programs to
programs with c-atoms. We prove that the newly defined se-
mantics coincides with previously introduced semantics for
logic programs with monotone c-atoms and extends the orig-
inal answer set semantics for normal logic programs. We
discuss different possibilities for treating negation-as-failure
c-atoms and characterize situations in which they vyield the
same answer sets. We study some properties of answer sets
of programs with c-atoms and relate our definition to several
semantics for logic programs with aggregates.

Introduction and Motivation

Logic programming under the answer set semantics has re-
cently been presented as an attractive and suitable knowl-
edge representation language for Al research (Baral 2005),
since it features several desirable properties for this purpose.
Among other things, the language is declarative and has a
fairly simple syntax; it is nonmonotonic and is expressive
enough for representing several classes of problems in the
complexity hierarchy; it has solid theoretical foundations
with a large body of building block results (e.g., equivalence
between programs, systematic program development, rela-
tionships to other non-monotonic formalisms); it also has a
large number of efficient computational tools. Please, see,
e.g., (Baral 2003; Gelfond & Leone 2002) for more on this.
In recent years, a large number of extensions aimed at
improving the usability of logic programming in knowledge
representation and reasoning have been proposed or revis
ited. For example:
o weight and cardinality constraintsave been introduced
to make the representation of several types of constraints
easier (Simons, Niem&| & Soininen 2002);
o aggregates first studied in the context of logic pro-
gramming in a variety of proposals (e.g., (Kemp &

*Supported by NSF grants 0454066, 0420407, and 0220590.
Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Enrico Pontelli
Computer Science Department
New Mexico State University

epontell@cs.nmsu.edu

Phan Huy Tu
Computer Science Department
New Mexico State University
Las Cruces, NM 88003, USA
tphan@cs.nmsu.edu

88003, USA

Stuckey 1991; Mumick, Pirahesh, & Ramakrishnan 1990;
Gelder 1992)), and further developed in recent years (e.g.,
(Dell’Armi et al. 2003; Denecker, Pelov, & Bruynooghe
2001; Elkabani, Pontelli, & Son 2004; Faber, Leone, &
Pfeifer 2004; Gelfond 2002; Pelov 2004; Son & Pontelli
2005)), have been introduced to support representation
and reasoning with set operators.
The semantics of these extensions has been defined either
indirectly, by translating programs with these extensions
to normal logic programs, or directly, by providing new
definitions of answer sets for programs with these exten-
sions. Weight and cardinality constraints have been imple-
mented inSmodelqSimons, Niemé, & Soininen 2002).
dlv andSmodel$iave been extended to deal with aggregates
in (Dell’Armi et al. 2003) and (Elkabani, Pontelli, & Son
2005) respectively.

Logic programs withabstract constraint atomsgor c-
atomg have been introduced in (Marek & Truszéski
2004) as a generalized theoretical framework for different
extensions of logic programming, among them weight con-
straints and aggregates. Intuitively, a c-atdnmepresents a
constraint on models (or answer sets) of the program con-
taining A. Under this view, most of the extensions of logic
programming can be viewed as instances of logic programs

with c-atoms. The proposal has been further extended to

disjunctive logic programs (Pelov & Truszdzki 2004).
In these papers, the focus has beemuwmotonec-atoms,

where a c-atomd is monotone if, for each pair of interpreta-

tionsI andI’ with I C I’, we have that, if satisfiesd then
I’ satisfiesA as well. In another paper (Liu & Truszazski
2005), properties of programs with monotone and convex c-
atoms have been studied. It is shown that many well-known
properties of logic programming under answer set semantics
are maintained in the case of programs with c-atoms.

The main advantage of focusing oronotone-atoms lies
in that it provides a simple way for defining answer sets
of logic programs with c-atoms. However, this restriction
does not allow several well-known types of constraints to
be directly considered. For example, the aggregate atom
MIN({X | p(X)}) # 2 and the choice atorh{a, b} 1 can-
not be represented as monotone c-atoms.

In this paper, we overcome these limitations, by consider-
ing programs witharbitrary (e.g., non-monotone) c-atoms,
including c-atoms in the head of the rules. This advances

the state-of-the-art w.r.t. most proposals on aggregations
(by allowing, as (Marek & Truszchski 2004), c-atoms

in the heads) and w.r.t. to (Marek & Truszéwki 2004;

Liu & Truszczyhski 2005), by allowing arbitrary c-atoms in

A logic program with c-atomgor logic program) for sim-
plicity)® is a set of rules. A progran® is called abasic
program if each rule- € P is a basic or a constraint rule.
P is said to bepositiveif every rule in P is positive. P is

the programs. We present two approaches to define answermonotoneg(resp. semi-monotoneif each c-atom occurring

sets for logic programs with arbitrary c-atoms. In the first
approach, we generalize the notionawinditional satisfac-
tion of (Son & Pontelli 2005) to program with c-atoms, as a
mean to deal with c-atoms. Using this notion, we define a
Tp-like operator for answer set checking. In the second ap-
proach, we generalize the notionwéll-supported modedf
(Fages 1994) to programs with c-atoms. We prove that the
two approaches are equivalent. We show that the newly de-
fined semantics coincides with the previously introduced se-
mantics for monotone c-atoms and extends the original sta-
ble model semantics for normal logic programs. We discuss
different approaches for treating negation-as-failure c-atoms
and characterize situations in which they are equivalent and
relate our definitions to several semantics for logic programs

with aggregates, as c-atom can encode arbitrary aggregates.

Preliminaries: Syntax, Model, and Satisfaction

We follow the syntax used in (Liu & Truszcagki 2005) to
define programs with abstract constraint atoms. Throughout
the paper, we assume a fixed propositional languzagsth

a countable se#l of propositional atoms. An abstract con-
straint atom (oc-aton) is an expression of the forD, C),
whereD C A is a set of atoms and' is a collection of sets

of atoms belonging td®, i.e.,C C 2. Intuitively, a c-atom

(D, C) is a constraint on the set of atomsandC' are its
admissible solutions. Given a c-atat= (D, C), we use

Ag and A, to denoteD andC, respectively.

A c-atom of the form({a}, {{a}}) is called arelementary
c-atom and will be simply written as A c-atom of the form
(A, 0), representing the fact that nothing is acceptable, will
be denoted byl.. A c-atomA is said to benonotonef for
everyX CY C Ay, X € A, implies thatY € A..

It has been shown in (Marek & Truszdrski 2004) that
c-atoms can be used to conveniently represent weight and
cardinality constraints (Simons, Nieragl& Soininen 2002)
and various types of aggregates. For example, the c-atom
({p(1), (=2}, {0, {p(1)}, {p(~2).p(1)}}) represents the
aggregate atomuM({ X |p(X)})> — 1 (assuming thap(1)
andp(—2) are the only two atoms of the forp(X) in £),
and the c-atont{p(1), p(~1)}, {{p(1)} {p(~1)}}) can be
viewed as theSmodelshoice atoml {p(1),p(—1)} 1. For
this reason, we will often use aggregate atoms and/or weight
constraints instead of c-atoms in our examples, whenever no
confusion is possible.

A rule is of the form

A— A, ..., , not A, Q)

where A, A,’s are c-atoms. The literalsiot A; (k < j <

n) are callechegation-as-failure c-atom®r naf-atom$. For
a ruler of the form (1), head(r), pos(r), andneg(r) de-
note A, {A1,..., Ax}, and{Ag41,..., A}, respectively.
body(r) denotes the right hand side (w.rt-) of r. A rule

r is (i) positive if neg(r) = 0; (ii) basig if head(r) is an
elementary c-atom; andi() aconstraint if head(r) = L.

Ay, not Agq1,. ..

in P (resp. as a naf-atom i) is monotone. Clearly, a
monotone program is also semi-monotone.

A set of atomsS C A satisfies a c-atoml, denoted by
SEAIfA NS e A. S satisfiesnot A, denoted by
SE not A,if AgznS ¢ A..

A set of atomsS satisfies the body of a ruleof the form
(1), denoted byS |= body(r), if S = A;fori=1,...k
andS = not A forj =k+1,...,n. S satisfies a rule
if it satisfieshead(r) or it does not satisfy its body.

A set of atomsS' is amodelof a programP if S satisfies
every rule ofP. M is a minimal model of? if it is a model
of P and there is no proper subset df which is also a
model of P. In particular, programs may have more than
oneminimalmodel (see Example 3).

Given a progran®, a set of atoms is said to support an
atoma € A if there exists some rulein P such thatS |=
body(r), S N head(r)q € head(r). anda € S N head(r),.

Example 1 Let P; be the program
p(a). p(). p(c) < q. ¢+ COUNT({X [p(X)}) > 2.

COoUNT({X|p(X)})>2 represents the c-ator\D,{D})
whereD = {p(a), p(b), p(c)}. P; has two models:

My = {p(a),p(b)} and M, = {p(a),p(b), p(c),q}.
M, is a minimal model while\/; is not. O

Example 2 Let P, be the program
p(1). p(—=1) —p(2). p2)— SumM({X |p(X)}) > 1.
where SUM({ X |p(X)})>1 represents the c-atorfD, C)

whereD = {p(1),p(2),p(-1)} andC = {{p(1)}, {p(2)}
{p(1),p(2)}, {p(2), p(=1)}, {p(1), p(2),p(=1)}}. Be-

cause of the first rule, any model 8% will need to contain

p(1). Note that{p(1), p(—1)} and{p(1), p(2), p(~1)} are
models ofP, but{p(1), p(2)} is not a model of. O
Example 3 Let P; be the program

p = ({0} ¢ < {1 {0}

P; has three modelsp}, {¢}, and{p, ¢}, of which {p} and
{¢} are minimal.

Answer Sets for Basic Programs: Fix-Point
Based Approach
In this approach we follow the standard way to define an-

swer sets, i.e(j) we start with positive programs (Def. 2);
and(ii) extend it to deal with naf-atoms (Defs. 5-6).

Answer Sets for Basic Positive Programs

Example 3 shows that a basic positive program might have
more than one minimal model. This leads us to defifi®a

like operator for answer set checking, whose construction is
based on the following observation.

Whenever we want to refer to traditional logic programs (with-
out c-atoms), we will explicitly talk aboutormal logic programs

Observation 12: Let P be a normal logic program (with-
out c-atoms) and, S be two sets of atoms. Let

Tp(R,S) = {a ‘ pos(r) C R,neg(r)NS =10

Ir e P : a= head(r), }
Then,M is an answer set dP w.r.t. (Gelfond & Lifschitz
1988) iff M = I¥, wherel? is the limit of the mono-
tone sequence of sets of atoffs)s_, defined as follows:
Iy = (Z), andeH = TP(I]',M) forj > 0.

Observe that the constraints presenfiro not contribute

to the construction performed B§p; nevertheless, the re-

quirement thatV/ should be a model of implies that all

the constraints will have to be satisfied by each answer set.
We illustrate Definition 2 in the next examples.

Example 4 Let P, be the program in Example 1.

o My = {p(a),p(b)} is an answer set ofP; since:
Tp, (0, My) = 0, Tp, (0, My) = {p(a), p(b)} = My, and
T2 (0, M) = M;.

As it can be seen in the above observation, the (modified) ® M, = {p(a),p(b),p(c),q} is not an answer set af},

consequence operatdp takes two sets of atom& and.S,

since: T2 (0, Mz) = 0, T} (0, Ma) = {p(a),p(b)} =

as its arguments and generates one set of atoms which could A7y, andT,%1 (0, My) = M. O

be viewed as the consequenceddjiven thatR is true and
S is assumed to be an answer setfof It is easy to see
thatTp is monotone w.r.t. its first argument, i.e. . BffC V,
thenTp(R,S) C Tp(V,S). Thus, the sequendd;)4_,, is
monotone and converges fg for a givenS. We will next
show howT'p can be generalized to programs with c-atoms.
Observe that the definition &p requires thapos(r) C
R or, equivalentlyR = pos(r). For normal logic programs,
this is sufficient to guarantee the monotonicityof(-, S).
If this definition is naively generalized to the case of pro-
grams with c-atoms, the monotonicity @% (., .S) is guar-
anteed only when c-atoms jws(r) are monotone. To deal
with arbitrary c-atoms, we need to introduce the notion of
conditional satisfactiomf a c-atom as follows.

Definition 1 Let R and S be two sets of atoms. The set
R conditionally satisfiea c-atomA w.rt. S, denoted by
R Egs A, if R = Aand, for everyl suchthatRnN Ay, C T
andl C SN Agq, we have thaf € A..

We say thaf? conditionally satisfies a set of c-atorisw.r.t.
S, denoted byR |=5 V, if R |=5 A foreveryA € V. This
allows us to generalize the operatbp defined in Obser-
vation 1 as follows. For two sets of atom¥sand R and a
positive basic progran®, let

Ire P : Rl=g pos(r), }
head(r) = ({a}, {{a}})

The following proposition holds.

Proposition 1 Let M be a model of?, and letSCUCM.
ThenTp (S, M)CTp(U, M) C M.

The above proposition states tHat is monotone for sub-
sets of M w.r.t. its first argument (given that the second
argument is fixed). Hence, the sequeflég, M) where
T30, M) = 0 andT5™ (0, M) = Tp(Th(0, M), M), con-
verges to a fixpoint. We denote this fixpoint witt3° (3, M)
and define:

Tp(R,S) = {a

Definition 2 Let M be a model of a basic positive program
P. M is ananswer sebf P if M = T (0, M).

2For a normal logic program rule
a<— ai,...,0an, notbi,..., not by,
head(r), pos(r), and neg(r) denotea, {au,..
{b1,...,bm}, respectively.

.,an}, and

The next example shows that not every positive program has
an answer set.

Example 5 ConsiderP, (Example 2). Since answer sets of
positive programs areninimal models (Proposition 5) and
M = {p(1),p(—1)} is the only minimal model o, we
have that\/ is the only potential answer set 6. Because
Tp,(0,M) = 0, Tp, (0, M) = {p(1)}, andT3 (0, M) =
{p(1)} (since{p(1)} Frr SUM({X | p(X)}) > 1) we can
conclude thaf\/ is not an answer set db,, i.e., P, does not
have any answer sets. O

Answer Sets for Basic Programs

We will now define answer sets for basic programs (with
negation). It is interesting to note that various extensions
of logic programming (e.g., weight constraints, aggregates)
support negation-as-failure atoms by replacing eaoh A
with an A’, where A’ is obtained fromA by replacing
the predicate relation afl with its “negation”. For exam-
ple, following this approachpnot 1 {a, b} 1 is replaced by
({a,b},{0,{a,b}}) and not SUM({X | p(X)}) # 5 is re-
placed bySum({X | p(X)}) = 5. On the other hand, in
(Marek & Truszczyski 2004), naf-atoms are dealt with by
using a form ofprogram reduct(in the same spirit as (Gel-
fond & Lifschitz 1988)).

Following these perspectives, we study two different ap-
proaches for dealing with naf-atoms, described in the next
two subsections. It is worth mentioning that both approaches
coincide for monotone programs (Proposition 3).

Negation-as-Failure by Complement To define this no-
tion for programs with c-atoms, we first define the notion of
complemenbf a c-atom as follows.

Definition 3 The complement of a c-ator is the c-atom
(Ag, 249\ A,).

We next define the complementary programfof
Definition 4 Given a basic progran?, we defineC(P) to

be the program obtained from® by replacing every occur-
rence of not A in P with the complement of.

Obviously,C(P) is a basic positive program, whose answer
sets have been defined in Def. 2. This allows us to define
the answer sets of basic programs as follows.

Definition 5 A setM C A is ananswer set by complement
of a basic progran® iff it is an answer set of (P).

Example 6 Let P, be the program
¢ — not 1{a,b}l. a+—c. b—a.
C(Py) is the program
c+— ({a,b},{0,{a,b}}). a—c ba.
This program does not have an answer set (w.r.t. Definition
2); thusP, does not have an answer set by complement.

Negation-as-Failure by Reduct Another approach for
dealing with naf-atoms is to adapt the Gelfond-Lifschitz
reduction of normal logic programs (Gelfond & Lifschitz
1988) to programs with c-atoms—this approach has been
considered in (Marek & Truszcagki 2004). We can gener-
alize this to programs with arbitrary c-atoms as follows. For
a basic progranP and a set of atom8/, thereduct of P
w.rt. M (PM) is the set of rules obtained by

1. removing all rules containingiot A s.t. M = A; and
2. removing all naf-atoms from the remaining rules.

Obviously, the progran® is a positive program. Thus, we
can define answer sets féras follows.

Definition 6 A set of atomd/ is ananswer set by reducf
P iff M is an answer set aP™ (w.r.t. Definition 2).

The next example shows that this approach might lead to dif-

ferent answer sets than the case of negation by complement

(for non-monotone programs).

Example 7 Consider the progran®, from Example 6. Let
M = {a,b,c}. The reduct ofP, w.r.t. M is the program

c. a <« c. b« a.
which hasM as its answer set, i.e)/ is an answer set by
reduct of P;. |

One drawback of the negation by reduct approach is the
fact that it might lead to non-minimal answer sets in the
presence of non-monotone atoms. For instance, if we re-
place the atomCoUNT({X | p(X)}) > 2 in P, with

not COUNT({X | p(X)}) < 2, the new program will ad-
mit {p(a), p(b), p(c), q} as an answer set by reduct. Never-
theless, this indicates that, for programs with c-atoms, there
might be different ways to treat naf-atoms. This problem
has been mentioned in (Ferraris 2005). Investigating other
methodologies for dealing with naf-atoms is an interesting
topic of research, that we plan to pursue in the future.

Answer Sets for Basic Programs: Level
Mapping Based Approach
The definitions of answer sets in the previous section can

be viewed as a generalization of the answer set semantics

for normal logic programs, in the sense that they rely on
a fixpoint operator (defined for positive programs). In this

such that each atom € M is supported by a rule whose
body is satisfied by/ and the level of each positive atom in
body(r) is strictly smaller than the level of® Fages proved
that answer sets are well-supported models and vice versa
(Fages 1994). The notion of well-supportedness has been
considered for dynamic logic programs (Bagitial. 2005).
Level mapping has been used as an effective tool to analyze
different semantics of logic programs in a uniform way (Hit-
Zler & Wendt 2005).

We will show that the notion of well-supported models
can also be ported to programs with c-atoms. Key to the for-
mulation of this notion is the answer to the question “what
will be the level of a c-atom given a set of atom3/ and
a level mappingl of M?” On one hand, one might argue
that the level mapping ofl should be defined independently
from the mapping of the other atoms. On the other hand, it
is reasonable to assume that the leveoflepends on the
levels of the atoms i, since the satisfaction of (w.r.t.

a given interpretation) depends on the satisfaction of the el-
ements ind,. The fact that every existing semantics of pro-
grams with c-atoms (or other extensions) evaluates the truth
value of a c-atomA based on the truth value assigned to el-
ements ofd; convinced us to adopt the second view. It is
worth to mention that this view also allows us to avoid cir-
cular justifications of elements of a well-supported médel

Let M be a set of atomg,be a mapping frond/ to posi-
tive integers, and lefl be a c-atom. We define

LAM)=nin({H(X) | X € A X CM,X Epm A})
where H(X) = max({l(a) | a € X}). We assume that
max(f)) = 0, whilemin(f) is undefined.

Definition 7 (Well-supported) Let P be a basic program.
A modelM of P is said to bewell-supportedff there exists
a level mapping s.t. for eachu € M, P contains a ruler
with head(r) = ({a}, {{a}}), M E body(r), and for each
A € pos(r), L(A, M) is defined and(a) > L(A, M).

The next proposition generalizes Fages’s result to answer
sets by reduct for programs with c-atoms.

Proposition 2 A setM of atoms is an answer set by reduct
of a basic progran® iff it is a well-supported model aP.

As we have seen in the previous section, different ways to

deal with naf-atoms result in different semantics for pro-
grams with c-atoms. This indicates that certain adjustments
have to be made to apply Proposition 2 for answer sets by
complement. Indeed, we can show that for a basic program
P, each answer set by complementrofs a well-supported
model ofC(P) and vice versa.

Properties of Answer Sets of Basic Programs

subsection, we discuss another approach for defining answerWe will now show that the notion of answer sets for basic

sets for programs with c-atoms, which is based on the notion
of well-supported models
The notion of well-supported models for normal logic

programs has been introduced in (Fages 1994). It provides

programs with c-atoms is a natural generalization of the no-

3This implicitly means thapos(r) C M andneg(r) "M = 0,
i.e., naf-atoms are dealt with by reduct.
*In the first view, the programfa«b. b—a. a—A.} where

an interesting characterization for answer sets as defined in 4_ 14 b}, {0, {a,b}}) hasM={a, b} as a well-supported model

(Gelfond & Lifschitz 1988). Intuitively, a modelM of a
programP is a well-supported model iff there exists a level
mapping, from atoms i/ to the set of positive integers,

with I(a)=1, I(b)=2, [(A)=0; a is true because! is true, which

is true because andb are both true. In our opinioda, b} should
not be viewed as an answer set of this program.

tions of answer sets for normal logic programs. We prove 2. a constraintlL < d, body(r), for eachd € head(r)q \ V.

that answer sets of basic positive programs are minimal and An instance ofP is a program obtained by replacing each
Supported models and characterize situations in which these rule of P with one of its instances. It is easy to see that an

properties hold for basic programs. We begin with a result
stating that, for the class of semi-monotone programs, the
two approaches for dealing with naf-atoms coincide.

Proposition 3 For every basic progran®, each answer set
by complement oP is an answer set by reduct éf. Fur-
thermore, if P is semi-monotone, then each answer set by
reduct of P is also an answer set by complemenfof

This proposition implies that, in general, the negation-as-
failure by complement approach is more ‘skeptical’ than the
negation-as-failure by reduct approach, in that it may accept

fewer answer sets. Furthermore, Examples 6 and 7 show

that aminimal (w.r.t. set inclusion) answer set by reduct is

not necessarily an answer sets by complement of a program.

Let P be a normal logic program argtaton{P) be the

instance ofP is a basic program. This allows us to define
answer sets of general programs as follows.

Definition 8 Let P be a general program}/ is an answer
set of P iff M is an answer set of one of its instances.

Observe that ifP is a basic program theR is its unique
instance. As such, the notion of answer sets for general pro-
grams is a generalization of the notion of answer sets for ba-
sic programs. It can be shown that Proposition 3 also holds
for general programs.

Related Works and Discussions
In this section, we relate our work to some recently proposed
extensions of logic programmingd.ogic programs with c-
atoms as defined in this paper, have been introduced in

program obtained by replacing each occurrence of an atom (Marek & Truszczyiski 2004). One of the main differences

ain Pwith ({a},{{a}}). Since({a}, {{a}}) isamonotone
c-atom, c-aton(P) is a semi-monotone program. Propo-
sition 3 implies that answer sets by reductméton{P)

between our work and the work of (Marek & Truszéski
2004) is that we considerrbitrary c-atomswhile they only
deal with monotone c-atomsOn the other hand, we did

are answer sets by complement and vice versa. In the next ot consider disjunctive programs with c-atoms, as done in

proposition, we prove that the notion of answer sets for pro-
grams with c-atoms preserves the notion of answer set for
normal logic programs, in the following sefise

Proposition 4 (Preserving Answer Sets)For a normal
logic program P, M is an answer set (by complement or
by reduct) of c-atorfP) iff M is an answer set aP (w.r.t.
Definition in (Gelfond & Lifschitz 1988)).

In the next proposition, we study the minimality and sup-
portedness properties of answer sets of basic programs.

Proposition 5 (Minimality of Answer Sets)
1. Every answer set by complement of a basic prograis
a minimal model of°.

2. Every answer set by reduct of a basic, semi-monotone
programP is a minimal model of.

3. Every answer set (by complement/reduct) of a basic pro-
gram P supports each of its members.

Answer Sets for General Programs

(Pelov & Truszczfiski 2004).

The proposed operatdfp differs from the nondeter-
ministic one-step provability operatdfz? of (Marek &
Truszczyiski 2004), in that it is deterministic and is applied
only to basic positive programs. We have not investigated
the portability of several properties of answer sets for normal
logic programs to answer sets for programs with c-atoms as
presented in (Liu & Truszchski 2005). As we will see
later, Proposition 6 implies that the results proved in (Liu &
Truszczyiski 2005) will be valid for the class of monotone
programs (w.r.t. our answer set definition). We do, however,
focus on the use of well-supported models and level map-
ping in studying answer sets for programs with c-atoms.

We will next present a result that shows that our approach
to define answer sets for monotone programs coincides with
that of (Marek & Truszczfiski 2004).

Proposition 6 For every monotone progran®, a set of
atoms M is an answer set of w.r.t. Definition 8 iff M
is an answer set aP w.r.t. (Marek & Truszczyski 2004).

As discussed earlier, c-atoms can be used to represent sev-

In this section, we define answer sets for general programs eral extensions of logic programs, among them weight con-

(i.e., programs where the rule heads are arbitrary c-atoms).

Our approach is to convert a program with c-atoms in the
head,P, into a collection of basic programs, whose answer
sets are defined as answer setsPof To simplify the pre-

straints and aggregates. Intuitively, an aggregate atom
(e.g., see (Elkabani, Pontelli, & Son 2004; Faber, Leone, &
Pfeifer 2004)) can be represented by a c-atdmC') where

D consists of all atoms occurring in the set expression of

sentation, we will use the phrase “an answer set of a basic andC' C 2P such that everyX € C satisfiesa (see Ex-

program” to refer to either an answer set by complement or
an answer set by reduct of the program. The distinction will
be stated clearly whenever it is needed.

Let P be a program and € P. For eachV € head(r).,
theinstanceof r w.r.t. V, is the set of rules consisting of

1. aruleb — body(r), for eachb € V, and
STogether with Proposition 3, this proposition implies that an-

swer sets ofP are answer sets d@f(c-aton(P)). Thus, normal
logic programs could be represented by positive basic programs.

amples 1-2). As indicated in (Marek & Truszémki 2004),
many proposals do not allow aggregates in the head of rules.
Our general programs allow c-atoms in the head.

With regards to naf-atoms, some proposals (e.g., (Elka-
bani, Pontelli, & Son 2004)) do not allow aggregates to oc-
cur in naf-atoms. The proposal in (Faber, Leone, & Pfeifer
2004) treats naf-atoms by complement, although a reduction
is used in defining the semantics, while (Ferraris 2005) ar-
gues that, under a different logic, naf-atoms might require a
different treatment.

We will now present some propositions which relate our
work to the recent works on aggregates. We can pfove

Proposition 7 For a program with aggregateB, if M is an
answer set by complement®fthen it is an answer set @?
w.r.t. (Faber, Leone, & Pfeifer 2004) and (Ferraris 2005).

The proposal presented in (Pelov 2004; Denecker, Pelov, &
Bruynooghe 2001) deals with aggregates by using approxi-
mation theory and three-valued logic, building the seman-
tics on the three-valued immediate consequence operator
o%9", which maps three-valued interpretations into three-
valued interpretations of the program. This operator can be
viewed as an operator which maps pairs of set of atoms
(R,S) whereR C S into pairs of set of atoms$R’, S")

with R’ C S’. The authors show that the ultimate ap-
proximate aggregates provide the most precise semantics
for logic programs with aggregates. Lét’?" (R, M) =

(P (R, M), ®*(R, M)). We next relatd’p to 37",

Proposition 8 Let P be a positive program with aggregates
and R and M be two set of atoms such th&tC M. Then,
Tp(R,M) = ®Y (R, M).

The above proposition, together with the fact that the evalu-
ation of the truth value of aggregate formulas in (Denecker,
Pelov, & Bruynooghe 2001) treats naf-atoms by comple-
ment, implies that, for a program with aggregatesaanswer
sets by complement aP (w.r.t. Definition 2) are ultimate
stable models oP (Denecker, Pelov, & Bruynooghe 2001)
and vice versa. Together with the results in (Son & Pontelli
2005), it also implies thal'p is a generalization of the im-
mediate consequence operator for programs with aggregates
in (Son & Pontelli 2005).

Conclusions and Future Work

The goal of this paper is to explore a general logic program-
ming framework based on the use of arbitrary constraint
atoms. We provide two characterizations of answer set se-
mantics for programs with arbitrary constraint atoms, which
are equivalent for the class of semi-monotone programs. The
first approach is based on a generalization of the immediate
consequence operator for programs with aggregates of (Son
& Pontelli 2005) and the second is built on a generalization
of the notion of well-supported models of (Fages 1994). We
discuss two methodologies for treating naf-atoms and iden-
tify the class of semi-monotone programs, on which the two
approaches for dealing with naf-atoms coincide. We prove
that the newly proposed semantics coincides with the seman-
tics proposed in (Marek & Truszcagki 2004) for monotone
programs and relate our work to various works on logic pro-
grams with aggregates.

As future work, we propose to further investigate the rela-
tionships between different approaches for dealing with naf-
atoms; e.g., we would like to investigate the existence of
a program reduction which is equivalent to the complement
and the generalization of the notion of well-supported model
to general programs; we will also explore implementation
methodologies based on modificationsSshodels

Abusing the notation, we use a single symbol to denote a pro-
gram in different notations.

References

Baral, C. 2003. Knowledge Representation, reasoning, and
declarative problem solving with Answer se®amb. Uni. Press.

Baral, C. 2005. From Knowledge to Intelligence: Building
Blocks and Applications. Invited Talk, AAAlwww.public.
asu.edu/"cbaral/aaai05-invited-talk.ppt

Banti, F.; Alferes, J.; Brogi, A.; and Hitzler, P. 2005 The Well
Supported Semantics for Multidimensional Dynamic Logic Pro-
grams. INLPNMR 356-368.

Dell’Armi, T.; Faber, W.; lelpa, G.; Leone, N.; and Pfeifer, G.
2003. Aggregate functions in disj. logic programming: semantics,
complexity, and implementation in DLV. IICAI, 847-852.

Denecker, M.; Pelov, N.; and Bruynooghe, M. 2001. Ultimate
well-founded and stable semantics for logic programs with ag-
gregates. INCLP, 212-226.

Elkabani, I.; Pontelli, E.; and Son, T. C. 2004. Smodels with CLP
and its applications: A simple and effective approach to aggre-
gates in ASP. InCLP, 73-89.

Elkabani, I.; Pontelli, E.; and Son, T. C. 2005. Smoflels
A System for Computing Answer Sets of Logic Programs with
Aggregates. ILPNMR 427-431.

Faber, W.; Leone, N.; and Pfeifer, G. 2004. Recursive aggre-
gates in disjunctive logic programs: Semantics and complexity.
In JELIA, 200-212.

Fages, F. 1994. Consistency of Clark’s completion and existence
of stable modelsMLCS(1):51-60.

Ferraris, P. 2005. Answer sets for propositional theories.
LPNMR 119-131.

Gelder, A. V. 1992. The well-founded semantics of aggregation.
In PODS 127-138. ACM Press.

Gelfond, M., and Leone, N. 2002. Logic programming and
knowledge representation—A-Prolog perspecti&kl 138(1-2).

Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. IHCLP, 1070-1080.

Gelfond, M. 2002. Representing Knowledge in A-Prolog. In
Computational Logic: Logic Programming and Beyofgbringer
Verlag. 413-451.

Hitzler, P., and Wendt, M. 2005. A uniform approach to logic
programming semantic§.PLP5(1-2):123-159.

Kemp, D. B., and Stuckey, P. J. 1991. Semantics of logic pro-
grams with aggregates. IBLP, 387—401.

Liu, L., and Truszczfiski, M. 2005. Properties of programs with
monotone and convex constraints.AAAIl, 701-706.

Marek, V. W., and Truszczski, M. 2004. Logic programs with
abstract constraint atoms. KAAL

Mumick, I. S.; Pirahesh, H.; and Ramakrishnan, R. 1990. The
magic of duplicates and aggregates. VLDB, 264-277.

Pelov, N., and Truszchski, M. 2004. Semantics of disjunc-
tive programs with monotone aggregates — an operator-based
approach. INMR, 327-334.

Pelov, N. 2004.Semantic of Logic Programs with Aggregates
Ph.D. Dissertation, Katholieke Universiteit Leuven.

Simons, P.; Niemél, N.; and Soininen, T. 2002. Extending and
Implementing the Stable Model SemantiédJ 138:181-234.

Son, T., and Pontelli, E. 2005. A Constructive Semantic Char-

acterization of Aggregates in Answer Set ProgrammiGgRR
¢s.Al/0601051.

In

