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Abstract

We present two equivalent approaches for defining answer
sets for logic programs witharbitrary abstract constraint
atoms (c-atoms). The first approach uses an immediate conse-
quence operator for answer set checking, whose definition re-
lies on the notion ofconditional satisfactionof c-atoms w.r.t.
a pair of interpretations. The second approach generalizes the
notion ofwell-supportedmodels of normal logic programs to
programs with c-atoms. We prove that the newly defined se-
mantics coincides with previously introduced semantics for
logic programs with monotone c-atoms and extends the orig-
inal answer set semantics for normal logic programs. We
discuss different possibilities for treating negation-as-failure
c-atoms and characterize situations in which they yield the
same answer sets. We study some properties of answer sets
of programs with c-atoms and relate our definition to several
semantics for logic programs with aggregates.

Introduction and Motivation
Logic programming under the answer set semantics has re-
cently been presented as an attractive and suitable knowl-
edge representation language for AI research (Baral 2005),
since it features several desirable properties for this purpose.
Among other things, the language is declarative and has a
fairly simple syntax; it is nonmonotonic and is expressive
enough for representing several classes of problems in the
complexity hierarchy; it has solid theoretical foundations
with a large body of building block results (e.g., equivalence
between programs, systematic program development, rela-
tionships to other non-monotonic formalisms); it also has a
large number of efficient computational tools. Please, see,
e.g., (Baral 2003; Gelfond & Leone 2002) for more on this.

In recent years, a large number of extensions aimed at
improving the usability of logic programming in knowledge
representation and reasoning have been proposed or revis-
ited. For example:
◦ weight and cardinality constraintshave been introduced

to make the representation of several types of constraints
easier (Simons, Niemelä, & Soininen 2002);

◦ aggregates, first studied in the context of logic pro-
gramming in a variety of proposals (e.g., (Kemp &
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Stuckey 1991; Mumick, Pirahesh, & Ramakrishnan 1990;
Gelder 1992)), and further developed in recent years (e.g.,
(Dell’Armi et al. 2003; Denecker, Pelov, & Bruynooghe
2001; Elkabani, Pontelli, & Son 2004; Faber, Leone, &
Pfeifer 2004; Gelfond 2002; Pelov 2004; Son & Pontelli
2005)), have been introduced to support representation
and reasoning with set operators.

The semantics of these extensions has been defined either
indirectly, by translating programs with these extensions
to normal logic programs, or directly, by providing new
definitions of answer sets for programs with these exten-
sions. Weight and cardinality constraints have been imple-
mented inSmodels(Simons, Niemel̈a, & Soininen 2002).
dlv andSmodelshave been extended to deal with aggregates
in (Dell’Armi et al. 2003) and (Elkabani, Pontelli, & Son
2005) respectively.

Logic programs withabstract constraint atoms(or c-
atoms) have been introduced in (Marek & Truszczyński
2004) as a generalized theoretical framework for different
extensions of logic programming, among them weight con-
straints and aggregates. Intuitively, a c-atomA represents a
constraint on models (or answer sets) of the program con-
tainingA. Under this view, most of the extensions of logic
programming can be viewed as instances of logic programs
with c-atoms. The proposal has been further extended to
disjunctive logic programs (Pelov & Truszczyński 2004).
In these papers, the focus has been onmonotonec-atoms,
where a c-atomA is monotone if, for each pair of interpreta-
tionsI andI ′ with I ⊆ I ′, we have that, ifI satisfiesA then
I ′ satisfiesA as well. In another paper (Liu & Truszczyński
2005), properties of programs with monotone and convex c-
atoms have been studied. It is shown that many well-known
properties of logic programming under answer set semantics
are maintained in the case of programs with c-atoms.

The main advantage of focusing onmonotonec-atoms lies
in that it provides a simple way for defining answer sets
of logic programs with c-atoms. However, this restriction
does not allow several well-known types of constraints to
be directly considered. For example, the aggregate atom
M IN({X | p(X)}) 6= 2 and the choice atom1 {a, b} 1 can-
not be represented as monotone c-atoms.

In this paper, we overcome these limitations, by consider-
ing programs witharbitrary (e.g., non-monotone) c-atoms,
including c-atoms in the head of the rules. This advances



the state-of-the-art w.r.t. most proposals on aggregations
(by allowing, as (Marek & Truszczýnski 2004), c-atoms
in the heads) and w.r.t. to (Marek & Truszczyński 2004;
Liu & Truszczýnski 2005), by allowing arbitrary c-atoms in
the programs. We present two approaches to define answer
sets for logic programs with arbitrary c-atoms. In the first
approach, we generalize the notion ofconditional satisfac-
tion of (Son & Pontelli 2005) to program with c-atoms, as a
mean to deal with c-atoms. Using this notion, we define a
TP -like operator for answer set checking. In the second ap-
proach, we generalize the notion ofwell-supported modelof
(Fages 1994) to programs with c-atoms. We prove that the
two approaches are equivalent. We show that the newly de-
fined semantics coincides with the previously introduced se-
mantics for monotone c-atoms and extends the original sta-
ble model semantics for normal logic programs. We discuss
different approaches for treating negation-as-failure c-atoms
and characterize situations in which they are equivalent and
relate our definitions to several semantics for logic programs
with aggregates, as c-atom can encode arbitrary aggregates.

Preliminaries: Syntax, Model, and Satisfaction
We follow the syntax used in (Liu & Truszczyński 2005) to
define programs with abstract constraint atoms. Throughout
the paper, we assume a fixed propositional languageL with
a countable setA of propositional atoms. An abstract con-
straint atom (orc-atom) is an expression of the form(D, C),
whereD ⊆ A is a set of atoms andC is a collection of sets
of atoms belonging toD, i.e.,C ⊆ 2D. Intuitively, a c-atom
(D, C) is a constraint on the set of atomsD andC are its
admissible solutions. Given a c-atomA = (D, C), we use
Ad andAc to denoteD andC, respectively.

A c-atom of the form({a}, {{a}}) is called anelementary
c-atom and will be simply written asa. A c-atom of the form
(A, ∅), representing the fact that nothing is acceptable, will
be denoted by⊥. A c-atomA is said to bemonotoneif for
everyX ⊆ Y ⊆ Ad, X ∈ Ac implies thatY ∈ Ac.

It has been shown in (Marek & Truszczyński 2004) that
c-atoms can be used to conveniently represent weight and
cardinality constraints (Simons, Niemelä, & Soininen 2002)
and various types of aggregates. For example, the c-atom
({p(1), p(−2)}, {∅, {p(1)}, {p(−2), p(1)}}) represents the
aggregate atomSUM({X|p(X)})≥− 1 (assuming thatp(1)
andp(−2) are the only two atoms of the formp(X) in L),
and the c-atom({p(1), p(−1)}, {{p(1)}, {p(−1)}}) can be
viewed as theSmodelschoice atom1 {p(1), p(−1)} 1. For
this reason, we will often use aggregate atoms and/or weight
constraints instead of c-atoms in our examples, whenever no
confusion is possible.

A rule is of the form

A ← A1, . . . , Ak, not Ak+1, . . . , not An (1)

whereA, Aj ’s are c-atoms. The literalsnot Aj (k < j ≤
n) are callednegation-as-failure c-atoms(or naf-atoms). For
a ruler of the form (1),head(r), pos(r), andneg(r) de-
noteA, {A1, . . . , Ak}, and{Ak+1, . . . , An}, respectively.
body(r) denotes the right hand side (w.r.t.←) of r. A rule
r is (i) positive, if neg(r) = ∅; (ii ) basic, if head(r) is an
elementary c-atom; and (iii ) a constraint, if head(r) = ⊥.

A logic program with c-atoms(or logic program, for sim-
plicity)1 is a set of rules. A programP is called abasic
program if each ruler ∈ P is a basic or a constraint rule.
P is said to bepositiveif every rule inP is positive. P is
monotone(resp. semi-monotone) if each c-atom occurring
in P (resp. as a naf-atom inP ) is monotone. Clearly, a
monotone program is also semi-monotone.

A set of atomsS ⊆ A satisfies a c-atomA, denoted by
S |= A, if Ad ∩ S ∈ Ac. S satisfies not A, denoted by
S |= not A, if Ad ∩ S 6∈ Ac.

A set of atomsS satisfies the body of a ruler of the form
(1), denoted byS |= body(r), if S |= Ai for i = 1, . . . , k
andS |= not Aj for j = k + 1, . . . , n. S satisfies a ruler
if it satisfieshead(r) or it does not satisfy its body.

A set of atomsS is amodelof a programP if S satisfies
every rule ofP . M is a minimal model ofP if it is a model
of P and there is no proper subset ofM which is also a
model ofP . In particular, programs may have more than
oneminimalmodel (see Example 3).

Given a programP , a set of atomsS is said to support an
atoma ∈ A if there exists some ruler in P such thatS |=
body(r), S ∩ head(r)d ∈ head(r)c anda ∈ S ∩ head(r)d.

Example 1 Let P1 be the program

p(a). p(b). p(c) ← q. q ← COUNT({X | p(X)}) > 2.

COUNT({X|p(X)})>2 represents the c-atom(D, {D})
whereD = {p(a), p(b), p(c)}. P1 has two models:

M1 = {p(a), p(b)} and M2 = {p(a), p(b), p(c), q}.
M1 is a minimal model whileM2 is not. 2

Example 2 Let P2 be the program

p(1). p(−1) ← p(2). p(2) ← SUM({X | p(X)}) ≥ 1.

where SUM({X|p(X)})≥1 represents the c-atom(D, C)
whereD = {p(1), p(2), p(−1)} andC = {{p(1)}, {p(2)},
{p(1), p(2)}, {p(2), p(−1)}, {p(1), p(2), p(−1)}}. Be-
cause of the first rule, any model ofP2 will need to contain
p(1). Note that{p(1), p(−1)} and{p(1), p(2), p(−1)} are
models ofP2 but{p(1), p(2)} is not a model ofP2. 2

Example 3 Let P3 be the program

p ← ({q}, {∅}). q ← ({p}, {∅}).
P3 has three models{p}, {q}, and{p, q}, of which{p} and
{q} are minimal. 2

Answer Sets for Basic Programs: Fix-Point
Based Approach

In this approach, we follow the standard way to define an-
swer sets, i.e.,(i) we start with positive programs (Def. 2);
and(ii) extend it to deal with naf-atoms (Defs. 5-6).

Answer Sets for Basic Positive Programs
Example 3 shows that a basic positive program might have
more than one minimal model. This leads us to define aTP -
like operator for answer set checking, whose construction is
based on the following observation.

1Whenever we want to refer to traditional logic programs (with-
out c-atoms), we will explicitly talk aboutnormal logic programs.



Observation 1.2: Let P be a normal logic program (with-
out c-atoms) andR,S be two sets of atoms. Let

TP (R, S) =
{

a
∃r ∈ P : a = head(r),
pos(r) ⊆ R, neg(r) ∩ S = ∅

}

Then,M is an answer set ofP w.r.t. (Gelfond & Lifschitz
1988) iff M = Iω, whereIω is the limit of the mono-
tone sequence of sets of atoms〈Ij〉ωj=0 defined as follows:
I0 = ∅, andIj+1 = TP (Ij ,M) for j ≥ 0.

As it can be seen in the above observation, the (modified)
consequence operatorTP takes two sets of atoms,R andS,
as its arguments and generates one set of atoms which could
be viewed as the consequences ofP given thatR is true and
S is assumed to be an answer set ofP . It is easy to see
thatTP is monotone w.r.t. its first argument, i.e., ifR ⊆ V ,
thenTP (R, S) ⊆ TP (V, S). Thus, the sequence〈Ij〉ωj=0 is
monotone and converges toIω for a givenS. We will next
show howTP can be generalized to programs with c-atoms.

Observe that the definition ofTP requires thatpos(r) ⊆
R or, equivalently,R |= pos(r). For normal logic programs,
this is sufficient to guarantee the monotonicity ofTP (·, S).
If this definition is naively generalized to the case of pro-
grams with c-atoms, the monotonicity ofTP (., S) is guar-
anteed only when c-atoms inpos(r) are monotone. To deal
with arbitrary c-atoms, we need to introduce the notion of
conditional satisfactionof a c-atom as follows.

Definition 1 Let R and S be two sets of atoms. The set
R conditionally satisfiesa c-atomA w.r.t. S, denoted by
R |=S A, if R |= A and, for everyI such thatR ∩ Ad ⊆ I
andI ⊆ S ∩Ad, we have thatI ∈ Ac.

We say thatR conditionally satisfies a set of c-atomsV w.r.t.
S, denoted byR |=S V , if R |=S A for everyA ∈ V . This
allows us to generalize the operatorTP defined in Obser-
vation 1 as follows. For two sets of atomsS andR and a
positive basic programP , let

TP (R, S) =
{

a
∃r ∈ P : R |=S pos(r),
head(r) = ({a}, {{a}})

}

The following proposition holds.

Proposition 1 Let M be a model ofP , and letS⊆U⊆M .
ThenTP (S,M)⊆TP (U,M) ⊆ M .

The above proposition states thatTP is monotone for sub-
sets ofM w.r.t. its first argument (given that the second
argument is fixed). Hence, the sequenceT i

P (∅,M) where
T 0

P (∅,M) = ∅ andT i+1
P (∅,M) = TP (T i

P (∅,M), M), con-
verges to a fixpoint. We denote this fixpoint withT∞P (∅,M)
and define:

Definition 2 LetM be a model of a basic positive program
P . M is ananswer setof P if M = T∞P (∅,M).

2For a normal logic program ruler,
a ← a1, . . . , an, not b1, . . . , not bm

head(r), pos(r), and neg(r) denote a, {a1, . . . , an}, and
{b1, . . . , bm}, respectively.

Observe that the constraints present inP do not contribute
to the construction performed byTP ; nevertheless, the re-
quirement thatM should be a model ofP implies that all
the constraints will have to be satisfied by each answer set.

We illustrate Definition 2 in the next examples.

Example 4 Let P1 be the program in Example 1.

• M1 = {p(a), p(b)} is an answer set ofP1 since:
T 0

P1
(∅,M1) = ∅, T 1

P1
(∅, M1) = {p(a), p(b)} = M1, and

T 2
P1

(∅,M1) = M1.

• M2 = {p(a), p(b), p(c), q} is not an answer set ofP1,
since: T 0

P1
(∅,M2) = ∅, T 1

P1
(∅, M2) = {p(a), p(b)} =

M1, andT 2
P1

(∅, M2) = M1. 2

The next example shows that not every positive program has
an answer set.

Example 5 ConsiderP2 (Example 2). Since answer sets of
positive programs areminimal models (Proposition 5) and
M = {p(1), p(−1)} is the only minimal model ofP2, we
have thatM is the only potential answer set ofP2. Because
T 0

P2
(∅,M) = ∅, T 1

P2
(∅,M) = {p(1)}, andT 2

P2
(∅,M) =

{p(1)} (since{p(1)} 6|=M SUM({X | p(X)}) ≥ 1) we can
conclude thatM is not an answer set ofP2, i.e.,P2 does not
have any answer sets. 2

Answer Sets for Basic Programs
We will now define answer sets for basic programs (with
negation). It is interesting to note that various extensions
of logic programming (e.g., weight constraints, aggregates)
support negation-as-failure atoms by replacing eachnot A
with an A′, where A′ is obtained fromA by replacing
the predicate relation ofA with its “negation”. For exam-
ple, following this approach,not 1 {a, b} 1 is replaced by
({a, b}, {∅, {a, b}}) and not SUM({X | p(X)}) 6= 5 is re-
placed bySUM({X | p(X)}) = 5. On the other hand, in
(Marek & Truszczýnski 2004), naf-atoms are dealt with by
using a form ofprogram reduct(in the same spirit as (Gel-
fond & Lifschitz 1988)).

Following these perspectives, we study two different ap-
proaches for dealing with naf-atoms, described in the next
two subsections. It is worth mentioning that both approaches
coincide for monotone programs (Proposition 3).

Negation-as-Failure by Complement To define this no-
tion for programs with c-atoms, we first define the notion of
complementof a c-atom as follows.

Definition 3 The complement of a c-atomA is the c-atom
(Ad, 2Ad \Ac).
We next define the complementary program ofP .

Definition 4 Given a basic programP , we defineC(P ) to
be the program obtained fromP by replacing every occur-
rence of not A in P with the complement ofA.

Obviously,C(P ) is a basic positive program, whose answer
sets have been defined in Def. 2. This allows us to define
the answer sets of basic programs as follows.

Definition 5 A setM ⊆ A is ananswer set by complement
of a basic programP iff it is an answer set ofC(P ).



Example 6 Let P4 be the program
c ← not 1{a, b}1. a ← c. b ← a.

C(P4) is the program
c ← ({a, b}, {∅, {a, b}}). a ← c. b ← a.

This program does not have an answer set (w.r.t. Definition
2); thusP4 does not have an answer set by complement.2

Negation-as-Failure by Reduct Another approach for
dealing with naf-atoms is to adapt the Gelfond-Lifschitz
reduction of normal logic programs (Gelfond & Lifschitz
1988) to programs with c-atoms—this approach has been
considered in (Marek & Truszczyński 2004). We can gener-
alize this to programs with arbitrary c-atoms as follows. For
a basic programP and a set of atomsM , the reduct of P
w.r.t. M (PM ) is the set of rules obtained by

1. removing all rules containingnot A s.t.M |= A; and

2. removing all naf-atoms from the remaining rules.

Obviously, the programPM is a positive program. Thus, we
can define answer sets forP as follows.

Definition 6 A set of atomsM is ananswer set by reductof
P iff M is an answer set ofPM (w.r.t. Definition 2).

The next example shows that this approach might lead to dif-
ferent answer sets than the case of negation by complement
(for non-monotone programs).

Example 7 Consider the programP4 from Example 6. Let
M = {a, b, c}. The reduct ofP4 w.r.t. M is the program

c. a ← c. b ← a.
which hasM as its answer set, i.e.,M is an answer set by
reduct ofP4. 2

One drawback of the negation by reduct approach is the
fact that it might lead to non-minimal answer sets in the
presence of non-monotone atoms. For instance, if we re-
place the atomCOUNT({X | p(X)}) > 2 in P1 with
not COUNT({X | p(X)}) ≤ 2, the new program will ad-

mit {p(a), p(b), p(c), q} as an answer set by reduct. Never-
theless, this indicates that, for programs with c-atoms, there
might be different ways to treat naf-atoms. This problem
has been mentioned in (Ferraris 2005). Investigating other
methodologies for dealing with naf-atoms is an interesting
topic of research, that we plan to pursue in the future.

Answer Sets for Basic Programs: Level
Mapping Based Approach

The definitions of answer sets in the previous section can
be viewed as a generalization of the answer set semantics
for normal logic programs, in the sense that they rely on
a fixpoint operator (defined for positive programs). In this
subsection, we discuss another approach for defining answer
sets for programs with c-atoms, which is based on the notion
of well-supported models.

The notion of well-supported models for normal logic
programs has been introduced in (Fages 1994). It provides
an interesting characterization for answer sets as defined in
(Gelfond & Lifschitz 1988). Intuitively, a modelM of a
programP is a well-supported model iff there exists a level
mapping, from atoms inM to the set of positive integers,

such that each atoma ∈ M is supported by a ruler whose
body is satisfied byM and the level of each positive atom in
body(r) is strictly smaller than the level ofa.3 Fages proved
that answer sets are well-supported models and vice versa
(Fages 1994). The notion of well-supportedness has been
considered for dynamic logic programs (Bantiet al. 2005).
Level mapping has been used as an effective tool to analyze
different semantics of logic programs in a uniform way (Hit-
zler & Wendt 2005).

We will show that the notion of well-supported models
can also be ported to programs with c-atoms. Key to the for-
mulation of this notion is the answer to the question “what
will be the level of a c-atomA given a set of atomsM and
a level mappingL of M?” On one hand, one might argue
that the level mapping ofA should be defined independently
from the mapping of the other atoms. On the other hand, it
is reasonable to assume that the level ofA depends on the
levels of the atoms inAc, since the satisfaction ofA (w.r.t.
a given interpretation) depends on the satisfaction of the el-
ements inAd. The fact that every existing semantics of pro-
grams with c-atoms (or other extensions) evaluates the truth
value of a c-atomA based on the truth value assigned to el-
ements ofAd convinced us to adopt the second view. It is
worth to mention that this view also allows us to avoid cir-
cular justifications of elements of a well-supported model4.

Let M be a set of atoms,l be a mapping fromM to posi-
tive integers, and letA be a c-atom. We define

L(A,M) = min({H(X) | X ∈ Ac, X ⊆ M, X |=M A})
whereH(X) = max({l(a) | a ∈ X}). We assume that
max(∅) = 0, while min(∅) is undefined.
Definition 7 (Well-supported) Let P be a basic program.
A modelM of P is said to bewell-supportediff there exists
a level mappingl s.t. for eacha ∈ M , P contains a ruler
with head(r) = ({a}, {{a}}), M |= body(r), and for each
A ∈ pos(r), L(A,M) is defined andl(a) > L(A,M).

The next proposition generalizes Fages’s result to answer
sets by reduct for programs with c-atoms.
Proposition 2 A setM of atoms is an answer set by reduct
of a basic programP iff it is a well-supported model ofP .

As we have seen in the previous section, different ways to
deal with naf-atoms result in different semantics for pro-
grams with c-atoms. This indicates that certain adjustments
have to be made to apply Proposition 2 for answer sets by
complement. Indeed, we can show that for a basic program
P , each answer set by complement ofP is a well-supported
model ofC(P ) and vice versa.

Properties of Answer Sets of Basic Programs
We will now show that the notion of answer sets for basic
programs with c-atoms is a natural generalization of the no-

3This implicitly means thatpos(r) ⊆ M andneg(r)∩M = ∅,
i.e., naf-atoms are dealt with by reduct.

4In the first view, the program{a←b. b←a. a←A.} where
A=({a, b}, {∅, {a, b}}) hasM={a, b} as a well-supported model
with l(a)=1, l(b)=2, l(A)=0; a is true becauseA is true, which
is true becausea andb are both true. In our opinion,{a, b} should
not be viewed as an answer set of this program.



tions of answer sets for normal logic programs. We prove
that answer sets of basic positive programs are minimal and
supported models and characterize situations in which these
properties hold for basic programs. We begin with a result
stating that, for the class of semi-monotone programs, the
two approaches for dealing with naf-atoms coincide.

Proposition 3 For every basic programP , each answer set
by complement ofP is an answer set by reduct ofP . Fur-
thermore, ifP is semi-monotone, then each answer set by
reduct ofP is also an answer set by complement ofP .

This proposition implies that, in general, the negation-as-
failure by complement approach is more ‘skeptical’ than the
negation-as-failure by reduct approach, in that it may accept
fewer answer sets. Furthermore, Examples 6 and 7 show
that aminimal (w.r.t. set inclusion) answer set by reduct is
not necessarily an answer sets by complement of a program.

Let P be a normal logic program andc-atom(P ) be the
program obtained by replacing each occurrence of an atom
a in P with ({a}, {{a}}). Since({a}, {{a}}) is a monotone
c-atom, c-atom(P ) is a semi-monotone program. Propo-
sition 3 implies that answer sets by reduct ofc-atom(P )
are answer sets by complement and vice versa. In the next
proposition, we prove that the notion of answer sets for pro-
grams with c-atoms preserves the notion of answer set for
normal logic programs, in the following sense5.

Proposition 4 (Preserving Answer Sets)For a normal
logic programP , M is an answer set (by complement or
by reduct) of c-atom(P ) iff M is an answer set ofP (w.r.t.
Definition in (Gelfond & Lifschitz 1988)).

In the next proposition, we study the minimality and sup-
portedness properties of answer sets of basic programs.

Proposition 5 (Minimality of Answer Sets)

1. Every answer set by complement of a basic programP is
a minimal model ofP .

2. Every answer set by reduct of a basic, semi-monotone
programP is a minimal model ofP .

3. Every answer set (by complement/reduct) of a basic pro-
gramP supports each of its members.

Answer Sets for General Programs
In this section, we define answer sets for general programs
(i.e., programs where the rule heads are arbitrary c-atoms).
Our approach is to convert a program with c-atoms in the
head,P , into a collection of basic programs, whose answer
sets are defined as answer sets ofP . To simplify the pre-
sentation, we will use the phrase “an answer set of a basic
program” to refer to either an answer set by complement or
an answer set by reduct of the program. The distinction will
be stated clearly whenever it is needed.

Let P be a program andr ∈ P . For eachV ∈ head(r)c,
the instanceof r w.r.t. V , is the set of rules consisting of

1. a ruleb ← body(r), for eachb ∈ V , and

5Together with Proposition 3, this proposition implies that an-
swer sets ofP are answer sets ofC(c-atom(P )). Thus, normal
logic programs could be represented by positive basic programs.

2. a constraint⊥ ← d, body(r), for eachd ∈ head(r)d \ V .
An instance ofP is a program obtained by replacing each
rule of P with one of its instances. It is easy to see that an
instance ofP is a basic program. This allows us to define
answer sets of general programs as follows.
Definition 8 Let P be a general program.M is an answer
set ofP iff M is an answer set of one of its instances.
Observe that ifP is a basic program thenP is its unique
instance. As such, the notion of answer sets for general pro-
grams is a generalization of the notion of answer sets for ba-
sic programs. It can be shown that Proposition 3 also holds
for general programs.

Related Works and Discussions
In this section, we relate our work to some recently proposed
extensions of logic programming.Logic programs with c-
atoms, as defined in this paper, have been introduced in
(Marek & Truszczýnski 2004). One of the main differences
between our work and the work of (Marek & Truszczyński
2004) is that we considerarbitrary c-atomswhile they only
deal with monotone c-atoms. On the other hand, we did
not consider disjunctive programs with c-atoms, as done in
(Pelov & Truszczýnski 2004).

The proposed operatorTP differs from the nondeter-
ministic one-step provability operatorTnd

P of (Marek &
Truszczýnski 2004), in that it is deterministic and is applied
only to basic positive programs. We have not investigated
the portability of several properties of answer sets for normal
logic programs to answer sets for programs with c-atoms as
presented in (Liu & Truszczýnski 2005). As we will see
later, Proposition 6 implies that the results proved in (Liu &
Truszczýnski 2005) will be valid for the class of monotone
programs (w.r.t. our answer set definition). We do, however,
focus on the use of well-supported models and level map-
ping in studying answer sets for programs with c-atoms.

We will next present a result that shows that our approach
to define answer sets for monotone programs coincides with
that of (Marek & Truszczýnski 2004).
Proposition 6 For every monotone programP , a set of
atomsM is an answer set ofP w.r.t. Definition 8 iffM
is an answer set ofP w.r.t. (Marek & Truszczýnski 2004).
As discussed earlier, c-atoms can be used to represent sev-
eral extensions of logic programs, among them weight con-
straints and aggregates. Intuitively, an aggregate atomα
(e.g., see (Elkabani, Pontelli, & Son 2004; Faber, Leone, &
Pfeifer 2004)) can be represented by a c-atom(D,C) where
D consists of all atoms occurring in the set expression ofα
andC ⊆ 2D such that everyX ∈ C satisfiesα (see Ex-
amples 1-2). As indicated in (Marek & Truszczyński 2004),
many proposals do not allow aggregates in the head of rules.
Our general programs allow c-atoms in the head.

With regards to naf-atoms, some proposals (e.g., (Elka-
bani, Pontelli, & Son 2004)) do not allow aggregates to oc-
cur in naf-atoms. The proposal in (Faber, Leone, & Pfeifer
2004) treats naf-atoms by complement, although a reduction
is used in defining the semantics, while (Ferraris 2005) ar-
gues that, under a different logic, naf-atoms might require a
different treatment.



We will now present some propositions which relate our
work to the recent works on aggregates. We can prove6:

Proposition 7 For a program with aggregatesP , if M is an
answer set by complement ofP then it is an answer set ofP
w.r.t. (Faber, Leone, & Pfeifer 2004) and (Ferraris 2005).

The proposal presented in (Pelov 2004; Denecker, Pelov, &
Bruynooghe 2001) deals with aggregates by using approxi-
mation theory and three-valued logic, building the seman-
tics on the three-valued immediate consequence operator
Φaggr

P , which maps three-valued interpretations into three-
valued interpretations of the program. This operator can be
viewed as an operator which maps pairs of set of atoms
(R, S) whereR ⊆ S into pairs of set of atoms(R′, S′)
with R′ ⊆ S′. The authors show that the ultimate ap-
proximate aggregates provide the most precise semantics
for logic programs with aggregates. LetΦaggr

P (R, M) =
(Φ1(R,M), Φ2(R, M)). We next relateTP to Φaggr

P .

Proposition 8 LetP be a positive program with aggregates
andR andM be two set of atoms such thatR ⊆ M . Then,
TP (R, M) = Φ1(R, M).
The above proposition, together with the fact that the evalu-
ation of the truth value of aggregate formulas in (Denecker,
Pelov, & Bruynooghe 2001) treats naf-atoms by comple-
ment, implies that, for a program with aggregatesP , answer
sets by complement ofP (w.r.t. Definition 2) are ultimate
stable models ofP (Denecker, Pelov, & Bruynooghe 2001)
and vice versa. Together with the results in (Son & Pontelli
2005), it also implies thatTP is a generalization of the im-
mediate consequence operator for programs with aggregates
in (Son & Pontelli 2005).

Conclusions and Future Work
The goal of this paper is to explore a general logic program-
ming framework based on the use of arbitrary constraint
atoms. We provide two characterizations of answer set se-
mantics for programs with arbitrary constraint atoms, which
are equivalent for the class of semi-monotone programs. The
first approach is based on a generalization of the immediate
consequence operator for programs with aggregates of (Son
& Pontelli 2005) and the second is built on a generalization
of the notion of well-supported models of (Fages 1994). We
discuss two methodologies for treating naf-atoms and iden-
tify the class of semi-monotone programs, on which the two
approaches for dealing with naf-atoms coincide. We prove
that the newly proposed semantics coincides with the seman-
tics proposed in (Marek & Truszczyński 2004) for monotone
programs and relate our work to various works on logic pro-
grams with aggregates.

As future work, we propose to further investigate the rela-
tionships between different approaches for dealing with naf-
atoms; e.g., we would like to investigate the existence of
a program reduction which is equivalent to the complement
and the generalization of the notion of well-supported model
to general programs; we will also explore implementation
methodologies based on modifications ofSmodels.

6Abusing the notation, we use a single symbol to denote a pro-
gram in different notations.
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Marek, V. W., and Truszczýnski, M. 2004. Logic programs with
abstract constraint atoms. InAAAI.

Mumick, I. S.; Pirahesh, H.; and Ramakrishnan, R. 1990. The
magic of duplicates and aggregates. VLDB, 264–277.
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