Technical Report CS-TR-3981, UMIACS-TR-9904 To appEHEAI-99

SHOP: Simple Hierarchical Ordered Planner

Dana Nau Yue Cao Amnon Lotem Héctor Munoz-Avila

Department of Computer Science, and Institute for Systems Research
University of Maryland, College Park, MD 20742
U.S.A.

Abstract Selman, 1996], Prodigy [Veloso and Blythe, 1994],
SHOP (Simple Hierarchical Ordered Planner) is a and UCPOP [Penberthy and Weld, 1992].

domain-independent HTN planning system with the * Smithet al.[1997, 1998] developed an approach that
following characteristics. combines HTN-style problem reduction with left-to-

right backtracking to produce a search strategy similar

to Prolog's. They used this approach successfully in

domain-specific planners for several practical
applications, including manufacturing planning [Smith
et al, 1997] and the game of bridge [Smtthal,

* Since SHOP knows the complete world-state at 1998]. They argued for the advantages of their
each step of the planning process, it can use highly ~ approach by analyzing the reasons for its success in
expressive domain representations. For example, it real-world applications [Nat al. 1998]. However,
can do planning problems that require complex they could not compare their approach head-to-head
numeric computations. against domain-independent planning algorithms,

« In our tests, SHOP was several orders of magnitude because their implementations were domain-specific.

faster than Blackbox and several times faster than |In order to test the performance of Smithalls
TLplan, even though SHOP is coded in Lisp and approach in a domain-independent setting, we have

e SHOP plans for tasks in the same order that they
will later be executed. This avoids some goal-
interaction issues that arise in other HTN planners,
so that the planning algorithm is relatively simple.

the other planners are coded in C. created a domain-independent formalization of the
approach, and have implemented it in a planner called
1 Introduction SHOP (Simple Hierarchical Ordered Planner). SHOP is

“ . . o . vailable at <http://www.cs.umd.edu/projects/shop>,
Conventional wisdom® in Al planning holds that tota inder the terms of the GNU General Public License.

order forward search is a bad idea because it ca P has the following characteristics:
excessive backtracking. However, several groups 0
researchers have begun to argue that the opposite is }rueSHOP plans for tasks in the same order that they will
that total-order forward-search allows planners to use abe executed. By avoiding some task-interaction
more expressive domain representations, which can beissues, this makes SHOP simpler than HTN planners

used to encode domain knowledge to make the plannerssuch as such as NONLIN [Tate, 1977], SIPE-2
h|gh|y efficient. More Specifica”y: [WllklnS, 1990], O-PLAN [Currle and Tate, 1991],

* Prodigy [Veloso and Blythe, 1994; Fink and Veloso, aondrg\ll\/éCSF;lElr—Z](rj?]da;Sil,ar1139c4c}mltIg:zzerggliiul}t:amer

1995] does a forward state-space search that is guidec} P P '

by a means-end analysis made by backward chaidngSince SHOP always knows the complete world-state
on the goals. Veloso and Blythe [1994] showed that at each step of the planning process, it can use
causal link commitments can affect the performance of considerably more expressivity in its domain
partial-order planners when the goals have a propertyrepresentations than most Al planners. For example,
called linkability In their experiments, Prodigy ran ~SHOP has the ability to do Horn-clause inferencing,
many times faster than SNLP [McAllestal, 1991]. numeric computations, and interactions with external

» TLplan [Bacchus and Kabanza, 1996, 1998] does aagents and external information sources.
forward state-space search, using modal-logic axicmsSHOP’s expressive power can be used to create
to prune unpromising search paths. In Bacchus andhighly efficient domain representations. In our tests
Kabanza's tests, TLplan ran several orders of on blocks-world and logistics problems, SHOP was
magnitude faster than Blackbox [Kautz and Selman, several orders of magnitude faster than Blackbox and
1998], IPP [Koehleat al, 1997], SatPlan [Kautz and several times faster than TLplan, even though SHOP

is coded in Lisp and the other planners are in C. The first method says thayiis already clear we should
do nothing; the second says that if another bisakn
2 Formal Definitions y, we should makeclear and then moxeo the table.

This section defines the syntax and semantics used M Semantics
SHOP, as well as the SHOP planning algorithm. Fo

brevity, the definitions below are for a somewhat[,[rhe intgpt&fa?n opsram':(:opellrart]ordb h Ddf? ©) th
simplified version of SHOP’s syntax and semantis 0 SPeCty can be accomplished by moditying the

Section 3 gives an informal overview of the additiorf: rrent state of the world to remove every atDmami

features that appear in the full syntax and semantics. (%e;féytﬁé?;n if‘ a'\:lloﬁ ?frz)erctlf:\:r?cljl)r/l, ;fuI(S:ha trl)’lrE:\?Jtli\ge
a formal description of those features, s & g

<WWW.cs.umd.edu/projects/shop/documentation.htmI>.g.round’ them is applicableto t, _and the. listrf) is a
simple plarfor t. If we execute this plan in some s$ate

2.1 Syntax it produces the stat§S) =o"(S) = (S- DY) U A"

. . i . The intent of a method = (:method h C T) is to
We use the usual first-order-logic definitions of varialy ecify that if the current state of the world sat@fies
and constant symbols, function and predicate symbgiSnn can be accomplished by performing the tasks in

terms, atoms, conjuncts, most-general unifiers (Mgy Sk e order given. More specifically Séte a stateX

and Horn clauses; with the notation adapted for Lisp. F&'51 axiom set, ahbe a task atom. Suppose there is an

example, here are two Horn clauses, first in Prolag, that unifies with h, and supposgiX satisfie<".
notation and then in our notation: Then m is applicableto t in SOX, and the result of

p(f(X) :- a(X,c), r(Y.d), s(d). applyingmto t is the set of task lis®s= {(T")" : vis an
q(b,c). mgs forC' from S}. Each task list in R is asimple

(G- (p (F2%)) ((q ?x €) (r 2y d) (s d))) reductioroft by min SOX.

(- (g b c) nil) A planis a list of heads of ground operator instances.

A stateis a set of ground atoms, andigiom sets a |f P iS @ plan an& is a state, thep(S) is the state
set of Horn clauses.3fand is a state aixdis an axiom Produced by starting wihand executing the operator

set, thenSOX satisfiesa conjunctC if there is a instances in the order thattheir heads appear in
substitutionu (called asatisfiey such thaSOX entails A planning problens a tuple® = (S,T,0, whereSis a
C'. uis amost general satisfi¢or mg3 if there is no state,T is a task list, anid is a set of_aX|oms, operators,
other satisfier more general than In contrast to mgu's @nd methods. IfST.D) is a planning problem, then
(which are unique modulo lexical renaming), there ma{S:T.D, the set of all plans férfromSin D, is defined

be several distinct mgs's @from S andX. recursively as follows. .
A taskis a list of the formgs t, t, ... t), wheres If Tis empty, thehl(S,T,D) contains exactly one plan,

(the task'mamé is a task symbol, and t,, ..., t. (the namelly the empty plan. Othgrwiset bet the first task
task'sargumentsare terms. The taskpimitiveif s is a atom inT, andR be the.re'mamlng task atoms. There are
primitivetask symbol (a symbol whose first character {#re€ cases. (1)tlfs primitive and there is a simple plan
an exclamation point) and it dempoundif s is a P fort thenr(S,T,0 = {appendgq) : q U M(p(S),R,D}.
compoundask symbol (a symbol whose first character (@) Iftis primitive and there is no simple plart, ftren
not a special character) ta&k lisis a list of tasks. r(s,1,.0 =0. (3) Iftis compound, thef(S,T,.0 =

An operatoris a expressiofoperator h D A, U{lN(Sappend(R).D):risasimple reduction f
whereh (thehead is a primitive task, ariyl andA (the
deletionsand addition¥ are sets of atoms containing n

variable symbols other than thosér.in For example, The SHOP planning procedure is as follows:
here is an operator to put a block on the table:

#-3 Soundness and Completeness

(:operator (!putdown ?block) pr?:teu?ﬁrsezzlglﬁ-plf(rrjls(?gn[ﬁ))
holding ?block)) : p » 1,08
(9. endfind-plan

((ontable ?block) (handempty))) procedureseek-plan(S, T.D, p)

A methodis an expression that has the flrathod if T = nilthenreturn the listp)
h C T), whereh (the method'dead is a compound t = the first task ifi; R = the remaining tasks
task,C (the method’preconditiohis a conjunct, and if tis primitivethen
(the method’sail) is a task list. For example, here is if there is a simple plarfort then
pair of methods for clearing the top of a block: return seek-plaf@(S),R,D,appendy,q))
(:method (make-clear ?y) ((clear ?y)) nil) else returnFAIL
(:method (make-clear ?y) else
((on ?x ?y)) for every simple reductiotiortin S
((make-clear ?x) ans=seek-plafs, append(R),D,p)
(lunstack ?x ?y) (putdown ?x)) if ans# FAIL thenreturn ans

endfor

Table 1: A simple transportation-planning domain.

The item

return FAIL numbers are for reference in the text.
endif No.| Item
endseek-plan A1l | (:- (have-taxi-fare ?distance)
Sincefind-planis a straightforward implementation o ((have-cash ?m) _
the definition of1(S,T,D), it is easy to show it is sound. (eval (>= ?m (+ 1.5 7distance)))))
For finite search spacéisd-planis also complete. For | A2|((walkn;]g-d_lstlancz?u V)
infinite search spaces, it is incomplete for the sg ((((\;\gzgnsgfug%oo\)lv)
reason Prolog is incomplete: if the leftmost unexplol (eval (<= ow '3)))'
path is infinite, it will never return from that path. It ((distance 2u ?v 2w)
straightforward to maked-plancomplete for infinite (eval (<= 2w 0.5))))
search spaces, by doing an iterative-deepening sear¢ m1 | (:method (pay-driver ?fare)
find-plans search space. Our implementation can ((have-cash ?m)
iterative deepening (at the user’s option), but in prac (eval (>= ?m ?fare)))
we have found it more efficient not to use it. “(('set-cash ?m (- ?m ?fare))))
M2 | (:method (travel-to ?q)
? ina-di 2D ?
3 Example Planning Domain -((((S@E)?(;Vglqk)')r;g distance 2p 7q))

To illustrate how SHOP works, we now describe| M3 |(method (travel-to ?y)
simple transportation-planning domain. Table 1 defi (first (at 2x)
the domain, Table 2 shows a specific problem in t (g_t—taxrstzi\)nd??t;?é()
domain, and Table 3 shows plans found by SHOP gh:\t/i?t(;ii:f);ré%d)%
several problems in that domain. “((thail 2t 2x) (ride 2t ?x 2y)

The scenario for the domain is that we want to tra (pay-driver ,(+ 1.50 2d)))
from one location to another in a city. There are th ((at ?x) (bus-route ?bus ?x ?y))
possible modes of transportation: taxi, bus, and fq *(('wait-for ?bus ?x)

Taxi travel involves hailing the taxi, riding to th (pay-driver 1.00)
destination, and paying the driver $1.50 plus $1.00 (Iride ?bus ?x ?y))) _
each mile traveled. Bus travel involves hailing the b| O1| (operator (thail ?vehicle ?location)
paying the driver $1.00, and riding to the destinati . .

: : : ; ((at ?vehicle ?location)))
Foot travel just involves walking, but the maximu) : .
feasible walking distance depends on the weather. T 02 | (coperator (twait-for Zbus ?location)
different plans are possible depending on what the lay ((at ?bus ?location)))
of the city is, where we start, where we want to go, h| o3| (:operator (Iride ?vehicle ?a ?b)
much money we have, and what the weather is like. ((at ?a) (at ?vehicle ?a))

As mentioned earlier, SHOP incorporates seve ((at ?b) (at ?vehicle ?b)))
extensions to the syntax and semantics described in| O4 | (:operator (!set-cash ?old ?new)
paper. To illustrate those extensions, the transporta ((have-cash ?old))
planning domain uses most of them. In particular: _ ((have-cash ?new)))

05| (:operator (‘walk ?here ?there)
1. Axioms’ tails and methods’ preconditions ca ((at ?here))
include negations (which are evaluated using ((at ?there)))
closed-world assumption) and calls to the Li Table 2: A le t tation-planni bl
evaluator. For example, Axiom Al of Table 1 sa a le - AN exampe ransporiation-planning provem.
that the taxi fare is $1.50 plus $1 for each m .((atdowntpvxfn)
o 2. (weather-is 'good)
traveled; and Method M1’s precondition says that 3. (have-cash 12)
pay the driver, we need sufficient money for the far 4. (distance downtown park 2) nil)
2. If a method’s precondition is satisfied, then its ent Initial | 5 (distance downtown uptown 8)
tail is passed to the Lisp evaluator. Lisp'ste state: | 6. (distance do(\j/vnto_wr(ljsuburb 12)
backquote and commaconstructs can be used td ;' g:zgi:zzgzd Egi:% dgmgm
prevent evaluatlon (see Method M2) or to d 9. (bus-route bus1 downtown park)
conditional evaluation (see Method M1, which do 10. (bus-route bus2 downtown uptown)
subtraction to creatst-cash 's second argument). 11. (bus-route bus3 downtown suburb))
1. Axioms can have multiple tails, to be used in an “[_Task list:| ((travel-to suburb))

then-else” fashion. For example, the axiom
head taill tail2 tail3)” saysheadis true iftaill is
true, or iftaill is false butail2 is true, or ifaill and
tail2 are false buttail3 is true. This gives

expressivity similar to a restricted version of Prolog's
“cut,” but in a way that is easier to understand. For
example, Axiom A2 says that walking distanse3is
miles in good weather, and mile otherwise.

Table 3: Plans produced by SHOP on problems in the planrTable 4: Performance of Blackbox, TLplan, and SHOP on
domain of Table 1. .In each problem, the distances and blocks-world problems in the Blackbox software distribution.

routes are the same as in lines 4-11 of Table 2. In each p CPU time (seconds] No. of actions in plan
lem, SHOP found all possible plans in less than 0.01 second{ Problem | Black- TLplan SHOF Black- TLplan SHOP
Problem Plan(s) found by SHOP box box
Go to park, good(('WALK DOWNTOWN PARK)) bw-simple .00 .00 .00 2 2 2
weather, no cash bw-sussmar .06 .10 .10 6 6 6
Go to park, bad [None (can't afford a taxi or bus, and it's bw-reversal .08 .10 .20 8 12 8
weather, no cashtoo far to walk). bw-12step .74 .20 .60 12 12 12
Go to park, 1 ("WALK DOWNTOWN PARK)) bw-large-a 2.67 .50 .40 12 20 12
good weather, |2 (('HAIL TAXI1 DOWNTOWN) bw-large-b (1915.3C 1.00 .90 18 28 18
have $12 ('RIDE TAXI1 DOWNTOWN PARK) bw-large-c * 26 .20 * 44 28
(ISET-CASH 12 8.5)) bw-large-d * 55 .36 * 58 36
Go to park, 1 (*WALK DOWNTOWN PARK)) * Blackbox ran out of memory on bw-large-c and bw-large-d
good weather, |2 (((HAIL TAXI1 DOWNTOWN) after about six minutes and 40 minutes, respectively.
have $80 ('RIDE TAXI1 DOWNTOWN PARK)
(!SET-CASH 80 76.5)) the two fastest planners in #818S-98planning compe-

Go uptown, goodNone (can’t afford a taxi or bus, and it’s tition [McDermott, 1998]; and TLplan [Bacchus and
weather, no cashtoo far to walk). Kabanza, 1998], which outperformed Blackbox by

Go uptown, IHAIL TAXI1 DOWNTOWN ; ;)
goodpweather, (((!RIDE TAXIL DOWNTOWN)UPTOWN) tsees\{;ral orders of magnitude in Bacchus and Kabanza's
have $12 ('SET-CASH 12 2.5)) :

Go uptown, IHAIL TAXI1 DOWNTOWN .

goodpweather, (((!RIDE TAXI1 DOWNTOWN)UPTOWN) 4.1 Blocks-World Planning

have $80 (ISET-CASH 80 70.5)) To run SHOP in the blocks world, we encoded the
Go to suburb, |(('WAIT-FOR BUS3 DOWNTOWN) blocks-world planning algorithm of [Gupta and Nau,
good weather, | (ISET-CASH 12 11.0) 1992] as a set of axioms, operators, and methods. We
have $12 ('RIDE BUS3 DOWNTOWN SUBURB)) tested SHOP, TLplan and Blackbox on the blocks-world
Go to suburb, [((lHAIL-TAXI DOWNTOWN) problems in the Blackbox software distribution. We ran
good weather, | ('RIDE-TAXI DOWNTOWN SUBURB) SHOP and TLplan on a 167-MHz Sun Ultra, and
have $80 (ISET-CASH 80 66.5)) Blackbox on a 143-MHz Sun Ultra. Both machines had

64 MB of RAM. The results are shown in Table 4.

4. If the first element of a method’s precondition or anBlackbox did worst: its time requirements increased far
axiom’s tail is:first , SHOP's theorem provermore quickly with problem size than SHOP’s and
returns after finding the first satisfier (just as Proldgplan’s. This was to be expected, because SHOP and
would do), rather than looking for all satisfiers. Ad-plan are guaranteed to run in low-order polynomial
an example, in Method M3 this is used to tell SH@ime on blocks-world problems, whereas Blackbox does
that it should only consider hailing the first taxi & exponential-time search. Blackbox could not solve the
the taxi stand, rather than hailing all of them. two largest problems at all, because it ran out of memory.

5. A method can have multiple pairs of preconditio On the larger problems, TLplan took more time than

. and tails, to be used in an “if-then-else” fashion Frﬁ_'OP' and fognd Ion.ge.r plans.. .We should run mare
example,(‘method head prel taill pre2 tail2)” - "8Ets to establlsh.stat.lsncal sllgn.|f.|cance, but the results
says tha:t fhe reductionhefadis taill if prelis true clearly are algorithmically significant: TLplan found

'~ some non-optimal plans that the blocks-world algorithm

or tail2 !f prelis f-alse angre2is 'Erue. M_ethod M3 thqt encoded into SHOP’s methods and operators [Gupta
uses this to specify that we won’t consider bus traxﬁd Nau, 1992] had been designed to avoid

unless we don’t have enough money for taxi travel.

6. Operators have numeric costs (the default cost is4l Logistics Problems

and the cost of a plan is the sum of its operator co${§.run SHOP in the logistics domain, we encoded the
The transportation domain does not illustrate this. fgjiowing procedure into methods, operators, and axioms.

Although the transportation-planning domain is easy, t@jrst remove from the current world-state all “useless

represent in SHOP, we believe that most other Alypjects” that will not contribute to the plan. These

planners would not have sufficient expressive power tgclude packages not mentioned in the goal, and empty

represent it fully, because of the numeric computationgcks and airplanes in the same city with other trucks

that need to be done as part of the planning process. and airplanes. Then do the following steps repeatedly
until every package is at its final destination:

4 Experiments 1. If there is a truck or airplane at the same location as

We have tested SHOP against two other planners: some packages that need to be picked up or dropped
Blackbox [Kautz and Selman, 1998], which was one of off, then pick them up or drop them off.

Table 5: Performance of Blackbox, TLplan, and SHOP on that need to go to the airport, and load them onto

logistics problems from the Blackbox software distribution. the airplane. Then fly the airplane toaity

Problem __CPU time (seconds) No. of actionsin plan 3 g|ge if there is an airplane with at least one package
iogon BlaCkg%); TL%IaZns 8%09'34 BlaCkbgz_)(TLplzag SHSSP on board, then fly it to the destination of one of the
logood 9598 0.3 0.19 31 27 |24 packages on board.
10g003 99.00 0.29 0.p9 28 27 27 4. Else if there are one or more packages that need to
log004 130.75 1.09 046 71 51 51 be picked up, then drive a truck to the location of
log005 231.94 0.95 0.66 69 42 42 any one of them.
logo0g 321.27 1.48 0[]l 82 51 150 5 Else if there is a truck that is carrying one or more
:09882 5(13‘71'22 i'% i'gg 191?) ;g gg packages, then drive it to the final destination of
@3009 1609.46 2.73 1/66 121 70 |ee Oneofthepackagesin the truck.
log01d 8405 1.95 a.5 71 41 39 We ran SHOP and TLplan on logistics problems in the
log011] 137.93 1.54 0,54 68 46 44 Blackbox and TLplan distributions, on a 167-MHz Sun
log012 136.30 1.53 041 49 38 34 Ultra with 64 MB of RAM. Because of Blackbox's
log013 165.84 4.54 132 85 66 63 memory requirements, we did not run it ourselves.
log014 77.75 6 2.23 89 73 69 Instead, we used published data for Blackbox on a
log01y 424.37 3.9 187 91 63 62 machine that is faster than ours and has 8 GB of RAM.
log0lq 926.97 0.92 0.67 85 39 |39 Tables 5 and 6 show the results.
log017 ~ 758.47 0.84 048 83 43 Again Blackbox did worst and SHOP did best.
logolg 152.35 5.08 1419 105 46 6Blackbox was several orders of magnitude slower than
:ggg%g égg'gg é'ég 2'2;1 1712 gg gi both SHOP and TLplan, and it found significantly Iarg-er
log021 19049 404 1016 87 59 plans. SHOP and TLplan found plans of comparable.snze,
logo2] 846.84 4.19 1[72 111 75 but on most of the problems SHOP ran several times
logo2d 173.97 3.45 143 85 62 5g faster than TLplan .(r.nore than an order of magnitude
log024 7483 323 188 87 64 60 faster on the more difficult problems).

log025 74.00 2.68 11 84 57 5

log02§ 233.41 2.35 0.95 80 55 495 Discussion and Conclusions

:gggg; ég;"}lg g'gg ;i? 1912 ;3 (;?L It did not surprise us that SHOP did so n_1uch better.than
log024 8952 342 157 84 45 Blackqu, for SHOR’S methods and axioms contained
logo3d 49537 2.26 0[74 92 51 7 sophisticated domain knowledge that could not be

represented in Blackbox’'s operators. However, it did

Table 6: Performance of TLplan and SHOP on logisti8rprise that SHOP did so much better than TLplan.
problems in the TLplan software distribution. According tdere, we think, are the primary reasons why it did so:

Fahiem Bacchus, these problems originally came from the Although
AIPS-9&lanning competition [McDermott, 1998].

TLplan's modal-logic representation

capabilities are quite sophisticated, their use (at least

Problem CPU time (seconds No. of actions in plan in the examples we have seen) has been limited to
TLplan SHOR TLplan SHOP writing pruning heuristics rather than actual planning
log-x-1 0.83 0.3 26 26 algorithms. SHOP's use of HTN methods makes it
:gg§§ 3435'3% i.gl ?_)35 3;3;_) easy to write efficient planning algor.ith_ms, as we did
log-x-4 95 36 887 59 59 for both the blocks world and the logistics domain.
log-x-5 0.66 0.64 22 24 2. TlLplan's planning algorithm is basically a state-
log-x-6 156.33 20.28 72 12 space search, whereas SHOP uses HTN-style
log-x-7 10.13 3.4y 34 36 problem reduction. Problem reduction can be much
log-x-8 180.64 9.5p 41 41 more efficient than state-space search (even by an
log-x-9 398.61 16.81 85 16 exponential amount in some cases [Korf, 1987; Yang
log-x-10 317.04 37.2] 105 103 et al, 1992]).
log-x-11 10.38 0.46 31 30 .
log-x-12 528.16 20.3p 41 43 Our results support the contention that total-order
log-x-13 2026.3 49.40 67 ¢9 forward search, combined with HTN-style problem
log-x-14 1577.6 17.05 94 90 reduction, can “scale up” to complex planning problems
log-x-15 49.04 2.56 94 g0 Dbetter than partial-order action-based planning. Our
2. Else if there is a packagen some city, andp's

1
destination is a city other thmrthen choose any We got the Blackbox performance data from Table 11 of

airplane, and lat be the city that it is in. Use the
truck in cityd to collect all packages in citythat

[Bacchus and Kabanza 1998]. According to Fahiem Bacchus,
the data came originally from the Blackbox distribution, and
the machine was a Silicon Graphics with 8 GB of RAM,

need to be moved. Bring to the airport all packag@fning at around 200 MHz.

results also illustrate the impact that planningEuropean Workshop in Al Planning (EWSP1995.

applications can have on planning theory: SHOP is[Géhpta and Nau, 1992] N. Gupta and D. Nau. On the
domain-independent formalization and implementator&ommexity of blocks-world planning. Artificial
that evolved from our previous domain-specific work ONintelligene 56(2-3), 223-254, 1992. '

manufacturing planning and computer bridge.

Blackbox: A SAT-technology planning system.

* We are doing additional experiments and analyses ibpp.//\www.research.att.com/~kautz/blackbox>, 1998.
order to get a better understanding of the efficienc

issues discussed above. [Koehleret al, 1997] J. Koehler, B. Nebel, J. Hoffmann,
.and Y. Dimopoulos. Extending planning graphs to an
« SHOP appears to be powerful enough to be of use IRp| subset. IECP-97 273-285, 1997.
complex applications such as noncombatant evacuation i o
operation planning [Mufioz-Avia al, 1999]. To [Korf, 1987] R. Korf. Planning as search: A quantitative
make it easier to embed SHOP in such applications, waPProachArtificial Intelligenc&3:65-88, 1987.

are creating an implementation of SHOP in Java. [McAllester et al, 1991] D. McAllester and D.

It is straightforward to prove soundness angRosenblitt. Systematic nonlinear planning.Prdrm.
completeness using the definitions in Section 2, but #AAI-91 1991.
is more difficult to prove soundness and completen@gsDermott, 1998] D. McDermotlIPS-98 Planning
in the presence of some of the extensions discussed @ompetition Results. <http://ftp.cs.yale.edu/pub/
Section 3 (such as the calls to the Lisp evaluator). Wmcdermott/aipscomp-results.html>, 1998.

have begun working with others who have experierzﬁ%u et al, 1998] D. Nau, S. J. Smith, and K. Erol
in these issues, to put this aspect of SHOP on a OControl Strategies in HTN Planning: Theory versus

solid formal footing. PracticeAAAI-98/IAAI-981127-1133, 1998,

ufoz-Avilaet al, 1999] H. Mufioz-Avila, D. Aha, J.
YBallas, L. Breslow, and D. Nau. Using guidelines to
Yconstrain interactive case-based HTN planning. Tech.

ReportAlC-99-004 Naval Center for Applied Research

on Al, Naval Research Lab., Washington, DC, 1999.

Ac.knowledgements)) [Penberthy and Weld, 1992] J. S. Penberthy and D. Weld,
This work was supported in part by the following grantsy 1992, UCPOP: A sound, complete, partial order
and contracts: Army Research Laboratory DAALOL1-97janner for ADL. IProc. KR-921992.

K0135, Naval Research Laboratory N00173981G007, Air . .

Force Research Laboratory F306029910013, and gcerdoti, 1977] E. SacerdAtiStructure for Plans and

» We are developing a general way to handle so
partial-order-planning operations while preservi
SHOP'’s expressivity and left-to-right control strateg
We intend to describe this in a forthcoming paper.

DMI-9713718. BehaviorAmerican Elsevier, 1977.
[Smithet al, 1997] S. J. Smith, K. Hebbar, D. Nau, and
References I. Minis. Integrating electrical and mechanical design

and process planning. In Martti Mantyla, Susan Finger
[Bacchus and. Kabanza, 1995] F. Bacchus and. Kand Tetsuo Tomiyama (edKRnowledge Intensive
Kabanza. Using temporal logic to control search in &oap volume 20p. 269-288, 1997.
forward chaining planner. In M. Ghallab and A. Milani ~ ' : N
(Eds.), New Directions in PlanningOS Press, [Smithet al, 1998] S. J. Smith, D. Nau, and T. Throop.
141-153, 1996. Computer bridge: a big win for Al plannirg.

Magazinel9(2), 93-105, 1998.
[Bacchus and Kabanza, 1998] F. Bacchus and K. .)
Kabanza. Using temporal logic to express sealégte, 1977] A. Tate. Generating project networks. In

control knowledge for planning. Proc. IJCAI-77888-893, 1977.
<ftp://logos.uwaterloo.ca/pub/bacchus/BKTIplan.ps>[Veloso and Blythe] M. Veloso and J. Blythe.
Submitted tértificial Intelligencel998. Linkability: Examining causal link commitments in

[Currie and Tate, 1991] K. Currie and A. Tate. O-Planfpartial-order planning.fmoc. AIPS-94,994.
The open planning architectuketificial Intelligence [wilkins, 1990] D. Wilkins. Can Al planners solve
52:49-86, 1991. practical problems@omputational Intelligen&e(4):

[Erol et al, 1994] K. Erol, K, J. Hendler, and D. Nau. 232-246, 1990.
UMCP: A sound and complete procedure fqivang et al, 1992] Q. Yang, D. Nau, and J. Hendler.
Hierarchical Task-Network plannifgyoc. 2nd Int'l Merging separately generated plans with restricted
Conf. Al Planning Systems (AIPS-B49-254, 1994. interactionsComputational Intelligen®£2):648—676,

[Fink and Veloso, 1995] E. Fink and M. Veloso. February 1992.
Formalizing the Prodigy planning algorithnRrbre.

