Propositional Logic (Review)

CS 579

January 22, 2004

1 Syntax

Formulas (or sentences) are constructed from propositions (or statements) and the logical connectives $\land, \lor, \neg, \rightarrow, \leftrightarrow$.

The BNF grammar of formulas in propositional logic is given by:

```
Formula \rightarrow Proposition | ComplexFormula Proposition \rightarrow True | False | Symbol Symbol \rightarrow p | q | r | ... ComplexFormula \rightarrow \neg Formula | (Formula \land Formula) | (Formula \rightarrow Formula) | (Formula \rightarrow Formula) | (Formula \rightarrow Formula)
```

(Sometime, the parentheses can be omitted if no confusion is possible.)

2 Semantics

Interpretation. An interpretation I maps each symbol p (proposition symbol) into a value $I(p) \in \{True, False\}$. (sometime, we write t and f instead of True and False.)

p is true in an interpretation I if I(p) = True.

The truth value of a formula φ in an interpretation I is determined by the truth value of the proposition symbols occurring in φ and the truth table:

p	q	¬р	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$\mathbf{p} \leftrightarrow \mathbf{q}$
t	t	f	t	t	t	t
t	f	\mathbf{f}	\mathbf{f}	t	\mathbf{f}	f
\mathbf{f}	t	t	${f f}$	t	\mathbf{f}	f
f	f	t	\mathbf{f}	t	f	t

Satisfiable. A formula φ is *satisfiable* if there exists an interpretation I and φ is true in I. (I will be called as a *model* of φ).

Validity. A formula φ is valid if φ is true in every interpretation (of φ).

Knolwedge Base. A KB is a set of formulas.

Model. An interpretation I is a *model* of KB if every formula belonging to KB is true in I.

Entailment. A KB *entails* a formula φ , denoted by $KB \models \varphi$, if φ is true in every model of KB.

Equivalence. Two formulas ϕ and ψ are equivalent if and only if $\phi \leftrightarrow \psi$ is a valid formula.

3 Inference

Given a KB and a formula φ , to determine whether $KB \models \varphi$ holds or not, we can use one of the following methods.

- Model theoretic approach: We can find all the models of KB and check whether φ is true in them; if φ is false in some model of KB, then the answer is no; otherwise, the answer is yes.
- Proof theoretic approach: We can also use inference rules such as
 - 1. The modus ponents rule:

$$\frac{\phi \to \psi, \phi}{\psi}$$

which says that whenever $\phi \to \psi$ and ψ are true, then so is ψ ;

2. The and elimination rule:

$$\frac{\phi \wedge \psi}{\phi}$$
;

3. The resolution rule:

$$\frac{p_1 \vee \ldots \vee p_k, m}{p_1 \vee \ldots \vee p_{i-1} \vee p_{i+1} \vee \ldots \vee p_k}$$

where each p_j is literal (a proposition p or its negation $\neg p$) and m is the complementary literal of p_i (i.e., if $p_i = p$ (resp. $p_i = \neg p$) then $m = \neg p$ (resp. m = p).

 φ is a *consequence* of KB with respect to a set of inference rules S if we can use the inference rules in S to obtain φ from KB. We will write $KB \vdash_S \varphi$ to say that φ is derived from KB wrt. S.

A set of inference rules S is sound if $KB \vdash_S \varphi$ implies that $KB \models \varphi$. It is complete if $KB \models \varphi$ then $KB \vdash_S \varphi$ holds.

For propositional logic, the resolution rule is complete.