Planning as Model Checking

Fausto Giunchiglia!? and Paolo Traverso!

1 IRST, Istituto per la Ricerca Scientifica e Tecnologica, 38050 Povo, Trento, Italy
2 Dipartimento di Informatica e Studi Aziendali, Universita’ di Trento, Italy
faustoQirst.itc.it, leaf@irst.itc.it

Abstract. The goal of this paper is to provide an introduction, with var-
ious elements of novelty, to the Planning as Model Checking paradigm.

1 Introduction

The key idea underlying the Planning as Model Checking paradigm is that plan-
ning problems should be solved model-theoretically. Planning domains are for-
malized as semantic models. Properties of planning domains are formalized as
temporal formulas. Planning is done by verifying whether temporal formulas are
true in a semantic model.

The most important features of the proposed approach are:

— The approach is well-founded. Planning problems are given a clear and in-
tuitive (semantic) formalization.

— The approach is general. The same framework can be used to tackle most
research problems in planning, e.g., planning in deterministic and in non-
deterministic domains, conditional and iterative planning, reactive planning.

— The approach is practical. It is possible to devise efficient algorithms that
generate plans automatically and that can deal with large size problems.

The goal of this paper is to provide an introduction, with various elements of
novelty, to the Planning as Model Checking paradigm. The core of the paper are
Sections 2, 3, 4, and 5. Section 2 gives a brief introduction to the model checking
problem. Section 3 shows how planning problems can be stated as model checking
problems. Section 4 shows how our formalization can be used to tackle various
planning problems. Section 5 shows how the approach can be extended to non-
deterministic domains. Section 6 shows how Planning as Model Checking can be
implemented. Our implementation relies heavily on existing work in the context
of finite-state program verification (see [9] for an overview), and in particular on
the work described in [8,2,20]. Section 7 discusses the related work.

2 Model Checking

The Model Checking problem is the problem of determining whether a formula
is true in a model. Model checking is based on the following fundamental ideas:

1. A domain of interest (e.g., a computer program, a reactive system) is de-
scribed by a semantic model.

2. A desired property of the domain (e.g., a specification of a program, a safety
requirement for a reactive system) is described by a logical formula.

3. The fact that a domain satisfies a desired property (e.g., the fact that a
program meets its specifications, that a reactive system never ends up in a
dangerous state) is determined by checking whether the formula is true in
the model, i.e., by model checking.

We formalize domains as Kripke Structures. We restrict ourselves to the case
of finite domains, i.e., domains which can be described by Kripke Structures
with a finite number of states. A Kripke Structure K is a 4-tuple (W, Wy, T, L),
where

1. W is a finite set of states.

2. Wy C W is a set of initial states.

3. T CW x W is a binary relation on W, the transition relation, which gives
the possible transitions between states. We require T’ to be total, i.e., for
each state w € W there exists a state w' € W such that (w,w’) € T.

4. L : W — 2% is a labeling function, where P is a set of atomic propositions.
L assigns to each state the set of atomic propositions true in that state.

A Kripke Structure encodes the possible evolutions of the domain (or behaviours)
as paths, i.e., infinite sequences wowiws ... of states in W such that, for each 1,
(w;, w;+1) € T. We require that paths start from an initial state wy € Wy. By
requiring that 7" is total, we impose that all paths are infinite.

As a simple example of Kripke Structure, consider Figure 1. It depicts a
simple domain, where an item can be loaded /unloaded to/from a container which
can be locked /unlocked. The corresponding Kripke Structure is the following:

1. W ={1,2,3,4}

2. Wy = {2}

3. T={(1,2),(2,1),(2,2),(2,3),(3,2),(3,4), (4,3)}

4. L(1) {Locked} L(2) =0, L(3) {Loaded} L(4) ={Loaded,Locked}.

We formalize temporal properties of domains in Computation Tree Logic
(CTL) [12]. Given a finite set P of atomic propositions, CTL formulas are in-
ductively defined as follows:

1. Every atomic proposition p € P is a CTL formula;
2. If p and ¢ are CTL formulas, then so are

(a) -p,pVag,

o el e e

_/
Not Loaded Not Loaded Loaded Loaded
Locked Not Locked Not Locked Locked

Fig. 1. An example of Kripke Structure

(b) AXp, EXp,
(c) A(pUg), and E(pUq))

X is the “next time” temporal operator; the formula AXp (EXp) intuitively
means that p holds in every (in some) immediate successor of the current state.
U is the “until” temporal operator; the formula A(pUgq) (E(pUgq)) intuitively
means that for every path (for some path) there exists an initial prefix of the
path such that ¢ holds at the last state of the prefix and p holds at all the
other states along the prefix. Formulas AFp and EFp (where the temporal
operator F stands for “future” or “eventually”) are abbreviations of E(TUp)
and A(TUp) (where T stands for truth), respectively. EGp and AGp (where
G stands for “globally” or “always”) are abbreviations of “~AF-p and -EF-p,
respectively. In the example in Figure 1, EF Loaded holds in state 2, since Loaded
holds eventually in a state of the path 2,3,4,3,4.... Instead, AF Loaded does
not hold in state 2, since Loaded does not hold in any state of the path 2,2,

CTL semantics is given in terms of Kripke Structures. We write K,w = p
to mean that p holds in the state w of K. Let p be a CTL formula. K,w = p is
defined inductively as follows:

- KwEpiffpe L(w),peP

- Kw = piff K,w i p

- KwEpVveqif KKwEpor K,wl=gq

- K,w | AXp iff for all paths 7 = wowyws ..., with w = wy, we have
K7w1 ':p

— K,w | EXp iff there exists a path 7 = wowyws . .., with w = wy, such that
K,U}l ':p

— K,w = A(pUyq) iff for all paths 7 = wowjws . .., with w = wy, there exists
i > 0 such that K,w; =q and, forall 0 < j <4, K,w; =p

— K,w | E(pUq) iff there exists a path # = wowyws ..., with w = wyg, and
i > 0 such that K,w; =q and, for all 0 < j <4, K,w; Ep

We say that p is true in K (K | p) if K,w | p for each w € Wy. The Model
Checking Problem for a CTL formula p and a Kripke Structure K is the problem
of determining whether p is true in K.

Algorithms for model checking exploit the structure of CTL formulas. For
instance, an atomic formula p is model checked by verifying that p € L(s) for
all s € Wy. As another example, model checking AXp (EXp) is performed by
model checking p in all states (in some state) s’ such that (s,s’) € T, for each

1. function MCHECKEF (p,K)

2 CurrentStates:= 0;

3 NextStates := STATES(p,K);

4 while NeztStates # CurrentStates do

5 if (Wo C NextStates)

6. then return True;

7 CurrentStates := NextStates;

8 NextStates := NextStates U ONESTEPM CHECK(NexstStates, K);
9 endwhile

10. return False;

Fig. 2. Model Checking EFp.

s € Wy. Finally, A(pUgq) or E(pUgq), can be model checked by exploiting the
fact that

pUg=qV
(p A Xq) Vv
(p N Xp A XXgq) V

As a simple explanatory example, we show in Figure 2 a possible algorithm
for model checking the CTL formula EFp, with p € P. Given a Kripke Struc-
ture K = (W, Wy, T, L), and a propositional formula p, the algorithm starts by
computing the set of states where p holds (line 3). We have in fact that:

STATES(p, K) ={s € W: pe L(s)} (1)

Then, MCHECKEF explores the state space of K. It repeatedly accumulates in
NextStates the states returned by ONESTEPMCHECK (line 8). Given a set of
states States C W, ONESTEPM CHECK returns the set of states which have at
least one immediate successor state in States:

ONESTEPM CHECK(States, K) = {s € W : 3s'. (s’ € States A T(s,s'))} (2)

Notice that EFp always holds in each state in NextStates. The loop terminates
successfully if NeztStates contains all the initial states (termination condition at
line 5). MCHECKEF returns False if NextStates does not contain all the initial
states and there are no new states to explore, i.e., NextStates = CurrentStates.
Termination is guaranteed by the monotonicity of the operator accumulating
states and by the fact that the set of states is finite. When applied to the Kripke
Structure in Figure 1 and to the formula EF(Loaded A Locked), MCHECKEF
starts with state 4 in NextStates, after the first step NexztStates is {3,4}, after
the second step NextStates is {2,3,4}, and then the algorithm stops returning
True.

wait

unlock load lock
o O o O
®‘\b£&/@‘\um%d/‘\umock/
Not Loaded Not Loaded Loaded Loaded
Locked Not Locked Not Locked Locked

Fig. 3. An example of Planning Domain

3 Planning as Model Checking

The underlying idea of the Planning as Model Checking paradigm is to generate
plans by determining whether formulas are true in a model. The fundamental
ingredients are the following:

1. A planning domain is described by a semantic model, which defines the states
of the domain, the available actions, and the state transitions caused by the
execution of actions.

2. A planning problem is the problem of finding plans of actions given planning
domain, initial and goal states.

3. Plan generation is done by exploring the state space of the semantic model.
At each step, plans are generated by checking the truth of some suitable
formulas in the model.

A planning domain D is a 4-tuple (F, S, A, R) where

1. F'is a finite set of fluents,

2. S C 2F is a finite set of states,

3. A is a finite set of actions,

4. R: Sx A w— S is a transition function. The action a € A is said to be
executable in s € S if R(s,a) # 0.

In this section, we restrict ourselves to deterministic actions, which, given a
state, lead to a single state. Notice that R is a function. Notice also that planning
domains are general enough to express actions with secondary effects [21], which
can be described in ADL-like languages (e.g., PDDL) but not in pure STRIPS-like
languages.

In Figure 3 we depict a simple planning domain. It is obtained from the
example in Figure 1 by labeling transitions with actions. The corresponding
planning domain is the following.

1. F = {Loaded,Locked}

2. S ={ {- Loaded, Locked}, {— Loaded, ~ Locked},
{ Loaded, ~ Locked}, { Loaded, Locked} }

3. A = { lock, unlock, load, unload, wait}

1. function PLAN(P)

2 CurrentStates := (;

3 NextStates := G;

4. Plan:=0;

5. while (NextStates # CurrentStates) do

6 if I C NextStates

7 then return Plan;

8 OneStepPlan := ONESTEPPLAN(NextStates, D);

9. Plan := Plan U PRUNESTATES(OneStepPlan, NextStates);
10. CurrentStates := NextStates;
11. NextStates :== NextStates U PROJECTACTIONS(OneStepPlan);

12. return Fail;

Fig.4. A “Planning as Model Checking” Algorithm.

4. R = { ({— Loaded, Locked},unlock,{— Loaded, = Locked})
({— Loaded, — Locked}, lock,{— Loaded, Locked})
({— Loaded, — Locked},wait,{— Loaded, ~ Locked})
({— Loaded, — Locked},load,{ Loaded, = Locked})
({Loaded, — Locked},unload,{— Loaded, — Locked})
({Loaded, — Locked},lock,{ Loaded, Locked})

(

{Loaded, Locked},unlock,{ Loaded, — Locked}) }

A planning problem P for a Planning Domain D = (F, S, A, R) is a 3-tuple
(D, I,G), where I = {so} C S is the initial state, and G C S is the set of goal
states.

Notice that we are restricting ourselves to planning problems with a com-
pletely specified initial situation, namely problems with a single initial state.
Notice also that planning problems allow for conjunctive and disjunctive goals,
and, more in general, for goals that can be described by any propositional for-
mula.

Intuitively, plans specify actions to be executed in certain states. More pre-
cisely, a plan = for a planning problem P = (D,I,G) with planning domain
D = (F,S, A, R) is defined as

m={(s,a): s € S,a€ A} 3)

We call (s,a) a state-action pair.

We say that a plan is executable if all its actions are executable, namely if
we have that 7 = {(s,a) : s € S,a € A, R(s,a) # 0}. In the following, we
consider plans which have at least one state-action pair (s,a) with s € I. A
simple algorithm for plan generation is presented in Figure 4. PLAN searches
backwards from G to I. At each step (see line 8), given a set of states States,
ONESTEPPLAN computes the set of state-action pairs (s, a) such that the action
a leads from s to a state in States:

ONESTEPPLAN(States, D) = @
{(s,a) : s € S,a € A,3s". (s' € StatesA\ s' = R(s,a))}

PRUNESTATES(OneStepPlan, NextStates) eliminates from OneStepPlan the state-
action pairs the states of which are already in NextStates, and thus have already
been visited.

PRUNESTATES(, States) = {(s,a) € 7 : s ¢ States} (5)

PROJECTACTIONS, given a set of state-action pairs, returns the corresponding
set of states.

PROJECTACTIONS(7) = {s: {(s,a) € 7} (6)

Consider the example in Figure 3, with 2 as initial state and 4 as goal state.
PLAN starts from state 4, after the first step Plan is {(3,lock)}, and after the
second step Plan is {(2,load), (3, lock)}. Notice that the pair {(4, unlock)} is
eliminated by PRUNESTATES. Therefore the algorithm stops returning {(2, load),
(3, lock)}.

Let us now see in which sense the planning problem is a model checking
problem:

1. The planning domain is a semantic model.

2. The planning problem is specified through a set of goal states that corre-
sponds to a formula representing a desired property of the domain.

3. Plan generation is done by checking whether suitable formulas are true in a
semantic model.

More precisely, let K = (W, Wy, T, L) and P = (D,I,G) with D = (F, S, A, R)
be a Kripke Structure and a planning problem, respectively. W, Wy and T cor-
respond to S, I and R, respectively. The set of atomic propositions P of the
labeling function L corresponds to the set of fluents F'. We have the following
differences:

1. The arcs defined by R are labeled by actions.

2. R is not required to be total. Indeed, in planning domains we may have
states where no actions are executable.

3. R is a function. Indeed, we are in deterministic domains. We extend to non-
determinism in Section 5.

4. Tis asingleton. We extend to partially specified initial situations in Section 5.

Therefore, a planning problem corresponding to a Kripke Structure
K =(W,W,,T,L)is P = (D, I,G),where

1. D = (F, S, A, R) with
(a) F =P,
(b) S=w,
(c) A={u},

(d) R={(s,u,8'): (s,8') € T};
2. I =W,.

It is now worthwhile to compare the algorithms MCHECKEF and PLAN. The
basic routine of MCHECKEF, ONESTEPMCHECK (see (2)), can be defined in
terms of the basic routine of PLAN, ONESTEPPLAN (see (4)), on the planning
domain Dy, corresponding to the Kripke Structure K:

ONESTEPMCHECK((States, K) = ™
PROJECTACTIONS(ONESTEPPLAN(States, Dy,))

Notice that MCHECKEF and PLAN are very similar. The main difference is that
MCHECKEF returns either True or False, while PLAN returns either a plan or a
failure. Let p be a propositional CTL formula such that K,w = p for all w € G
and K,w [~ p for all w € G. Then, K |= EFp iff there exists a plan satisfying the
planning problem P corresponding to K. Therefore, we have reduced planning
to the model checking of the formula EFp. This corresponds to an underlying
assumption of classical planning: the requirement for a plan is merely on the final
states resulting from its execution. However, previous papers on planning (see,
e.g., [26,24, 25]) have stated that the planning problem should be generalized to
the problem of finding plans that satisfy some specifications on their execution
paths, rather than on the final states of their execution. The Planning as Model
Checking paradigm can be a good approach for extending the classical planning
problem.

4 Situated Plans

The plans we construct are actually “situated plans” (see, e.g., [15,14]), namely
plans that, at run time, are executed by a reactive loop that repeatedly senses
the state, selects an appropriate action, executes it, and iterates, e.g., until the
goal is reached. Indeed, a plan 7 = {(s,a) : s € S,a € A} can be viewed as the
iterative plan

while s € {s: (s,a) € 7} do (8)
a such that (s,a) € ©

Plans as defined in Section 3 are rather general: they do not depend on the
goal of the planning problem, and no condition is imposed on the fact that a
plan should attempt to achieve a goal. A condition that a plan should satisfy is
that, if a goal is achieved, then the plan stops execution. We call these plans,
goal preserving plans.

A goal preserving plan is a set of state-action pairs
m={(s,a): s€ S,a€ A, s ¢G}.

The goal preserving condition can be generalized. A plan, rather than “not acting
in a goal state”, can still act without abandoning the set of goal states. Consider

for instance the task of a robot for surveillance systems: it may be required, after
reaching a given location, e.g., an area of a building, to move inside that area
without leaving it.

A dynamic goal preserving plan is a set of state-action pairs
m={(s,a):s€ S,a€ A,s € GDR(s,a) € G}.

The goal preserving condition can be even weaker. Consider a surveillance robot
which is required to repeatedly charge batteries in a given location in order to
explore a building (the robot should eventually charge its batteries infinitely
often). Let the goal states represent the charge battery location. This can be
specified by requiring the plan to “pass through” the set of goal states infinitely
often.

A fair goal preserving plan is a set of state-action pairs 7 such that for
each (sp,ap) € m with s9 € G, there exists {(s1,a1),...{(sn,an)} C 7
such that s;y1 = R(s;,a;) foreach0<i<n-—1,and s, € G

A condition that a plan should satisfy is that it should achieve the goal. We
call such plans, goal achieving plans. Intuitively, for each state-action pair in a
goal achieving plan, there should be a path leading from the state of the state-
action pair to a goal state. More precisely, this requirement can be described as
follows: “all the state-action pairs (s,a) contained in a plan m should be such
that, either a leads from s to the goal (R(s,a) € G), or a leads from s to a state
s' such that 7 contains (s’,a’) and a’ leads from s’ to the goal (R(s',a') € G),
and so on. This informal requirement can be formalized as follows:

A goal achieving plan is defined inductively as follows.

1. m={(s,a) : s € S,a € A, R(s,a) € G} is a goal achieving plan
2. If «' is a goal achieving plan, then m = ' U {(s, a)} such that
R(s,a) € {s': (s',a') € 7'} is a goal achieving plan

We can now define situated plans.
A situated plan is a goal preserving and goal achieving plan.

Situated plans can be “robust” to unexpected action outcomes, namely, when
executed, they can achieve the goal in spite of the fact that some actions may
have outcomes that are not modeled. Consider the plan {{2, load), (3, lock)} in
the example in Figure 3. The plan is robust to the fact that the execution of
load may lead from state 2 to state 2 (leave the item unloaded). The plan is not
robust to the fact that the execution of load may lead from state 2 to state 1
(leave the item unloaded and accidentally lock the container).

Universal plans [23] are particular cases of situated plans. The intuitive idea
is that a universal plan maps sets of states to actions to be executed for each
possible situation arising at execution time.

A universal plan is a situated plan 7w such that the states in 7 are all the
possible states of the domain, i.e., for each s € S there exists (s,a) € 7.

The definition of universal plan can be generalized to include situations which
are not modeled by states of the planning domain, as far as the situations can
be described by the language of the planner. A plan of this kind is a situated
plan 7 such that for each s € 2F there exists (s,a) € 7.

As a very specific case, we can define plans which resemble classical plans,
namely plans which consist of sequences of actions that lead from the initial
state to a goal state.

A quasi-classical plan is a plan 7 such that
L m= {<517 a1>7 Tt (Sn, an)}

2. 51 =859 €1,

3. R(si,a;) = si+1 for each 1 <i < n,

4. Sn+1 S G

At planning time, a quasi-classical plan is similar to a classical plan. However, a
quasi-classical plan is executed like a classical plan just under the main hypoth-
esis of classical planning that the model of the world is perfect. Consider again
the quasi-classical plan {(2, load), (3, lock)} in the example in Figure 3. At plan-
ning time, the plan is similar to the classical plan load, lock. Suppose that, the
execution of load leads twice from state 2 to state 2 (leaves the item unloaded).
The execution of the classical plan load, lock does not achieve the goal (state
4). The execution of the quasi-classical plan {(2, load), (3, lock)} results in the
execution of the action load three times followed by the execution of the action
lock, and achieves the goal. In this case, the execution of the quasi-classical plan
is equivalent to the execution of the classical plan load, load, load, lock.

The different behaviour of a classical plan and a quasi-classical plan at execu-
tion time is a consequence of the fact that a quasi-classical plan does not impose
a priori before execution any partial/total order on the execution of actions. We
see plans as sets, and as such, the order of the execution of actions is determined
at execution time, depending on the actual situation of the world.

We have now enough terminology to state and discuss several interesting
properties of the algorithm PLAN in Figure 4.

— Let us first consider correctness. PLAN returns situated plans. Actions are
guaranteed to be executable since state-action pairs are constructed from the
planning domain. The termination condition at line 6 guarantees that the
initial state is in the returned plan. The returned plan is goal preserving since
states-action pairs whose states are in G are pruned away by PRUNESTATES.
Finally, the returned plan is a goal achieving plan, since ONESTEPPLAN, at
each step, when applied to the set of states NextStates, finds situated plans
for the planning problems with initial states in NextStates and goal G.

— There may be different notions of completeness. A first notion is “if there
exists a situated plan, PLAN finds it”. The algorithm is complete in this sense,
since it explores the state space exhaustively. A second notion is: “if there is

no situated plan, PLAN terminates with failure”. PLAN always terminates.
It is guaranteed to terminate even in the case there is no solution. This
follows from the fact that NextStates is monotonically increasing at each
step, and the number of states S is finite. Termination in the case a solution
does not exists is a property which is not guaranteed by several state of the
art planners, e.g., SATplan [19], BlackBox [18] and UCPOP [21]. A third
notion of completeness is: “the planning algorithm returns all the possible
situated plans”. PLAN is not complete in this sense, since it stops after that
the initial state is reached. The algorithm can be easily modified to satisfy
this notion of completeness by continuing state exploration after the initial
state is reached. This can be done by eliminating the termination condition
at lines 6 and 7, and by modifying the return statement at line 12 as follows:

12. if I C NextStates
13. then return Plan;
14. else return Fuail;

— Consider now optimality. We can define optimality from the initial state, or
more in general, from all the states in the plan. Intutively, a plan is optimal
if for each state in the plan, each sequence of states, obtained by traversing
the planning domain according to the plan, is of minimal length. PLAN is
optimal in this general sense. This follows from the fact that the search is
breadth-first.

— Finally consider the combination of optimality and the third notion of com-
pleteness: “the planning algorithm returns all the possible optimal situated
plans”. PLAN satisfies this property. Indeed, at each iteration, ONESTEPPLAN
accumulates all the state-action pairs which lead to the subgoal. As a conse-
quence of this property, given a set of state-action pairs returned by PLAN,
the planner can select one of the many possible plans for execution, and can
switch freely from one plan to another during execution.

5 Non-determinism

Several realistic applications need non-deterministic models of the world. Actions
are modeled as having possible multiple outcomes, and the initial situation is
partially specified. Non-deterministic planning domains and non-deterministic
planning problems are obtained from definitions given in Section 3 by extending
them with transition relations and sets of initial states.

A planning domain D is a 4-tuple (F, S, A, R) where

1. F'is a finite set of fluents,

2. § C 2F is a finite set of states,

3. A is a finite set of actions,

4. RC S x A x S is a transition relation.

Not Loaded Not Locked
Misplaced

A@

unlock load \

T

o st O e @

adjust
lock
‘\IOSK/@ unload ™~ unlock __—~

Not Loaded Not Loaded Loaded Loaded
Locked Not Locked Not Locked Locked
Not Misplaced Not Misplaced Not Misplaced Not Misplaced

Fig.5. An example of Non-deterministic Planning Domain

In Figure 5 we depict a simple non-deterministic planning domain. The action
load can have two effects: either the item is correctly loaded, or it is misplaced
in a wrong position. An action adjust can reposition the item.

A planning problem P for a planning domain D = (F,S, A, R) is a 3-tuple
(D,I,G), where I C S is the set of initial states, and G C S is the set of goal
states.

Along the lines described in Section 3, we can provide different specifications
of plans as sets of state-action pairs for the non-deterministic case. However, in
non-deterministic planning problems, we need to distinguish different kinds of
solutions. Consider, for instance, the plan {(2,load), (3, lock)} in the planning
domain in Figure 5. In general, we cannot say whether this plan does or does
not achieve the goal state 4. It depends on the outcome of the non-deterministic
action load. The plan may achieve the goal, and this is the case if load leads to
state 3, or may not achieve the goal, in the case the outcome is state 5. Consider
now the plan {(2, load), (3, lock}, {5, adjust) }. It does achieve the goal, indepen-
dently of the outcome of load. This plan specifies a conditional behaviour, of the
kind “load; if load fails, then adjust; lock”. We distinguish therefore between
plans which may achieve the goal and those which are guaranteed to do so.

A weak (strong) plan is a set of state-action pairs which may (is guaran-
teed to) achieve the goal.

The distinction between weak and strong plans was first introduced in [7].
The algorithm PLAN (Figure 4), if applied to non-deterministic planning prob-
lems, finds weak plans. A Planning as Model Checking algorithm for weak plans
(searching the state space forward rather than backward) was first presented in
[4]. Planning as Model Checking for strong plans was first solved in [7], where
the notion of plan as set of state-action pairs was first introduced. The algorithm
PLAN is essentially obtained from the algorithm for strong planning proposed in
[7], simply replacing its basic routine STRONGPREIMAGE with ONESTEPPLAN.

STRONGPREIMAGE(States, D) = ©)
{(s,a) :s € S,a € A,Vs'. (s € States A\ R(s,a,s"))}

Not Loaded Not Locked
Misplaced

adjust
unlock load lock
o O
Not Loaded Not Loaded Loaded Loaded
Locked Not Locked Not Locked Locked
Not Misplaced Not Misplaced Not Misplaced Not Misplaced

Fig. 6. An example of a domain for strong cyclic planning

The only difference between ONESTEPPLAN (see (4)) and STRONGPREIMAGE
(see (9)) is that the existential quantifier “Js’...” (looking for weak plans) is
replaced with the universal quantifier “Vs’...” (looking for strong plans)®.

In [5], the authors exploit the Planning as Model Checking paradigm in order
to generate strong plans as conformant plans, i.e., sequences of actions, rather
than sets of state-action pairs.

Consider now the example in Figure 6. The action load has three possible
outcomes: either it loads the item correctly, or it misplaces it, or it leaves the item
unloaded (e.g., the robot simply fails to pick-up the item). In such a domain,
there is no strong plan. The plan {(2, load), (3, lock), (5, adjust)} may in principle
loop forever, leaving the situation in state 2. This plan specifies an iterative
behaviour, of the kind “load until the item is either loaded or misplaced; if it is
misplaced, then adjust; lock”. Plans encoding iterative trial-and-error strategies,
like “pick up a block until succeed”, are the only acceptable solutions in several
realistic domains, where a certain effect (e.g., action success) might never be
guaranteed a priori before execution. The planner should generate iterative plans
that, in spite of the fact that they may loop forever, have good properties.

A strong cyclic plan is a plan whose executions always have a possibility
of terminating and, when they do, they are guaranteed to achieve the
goal.

The plan {(2, load), (3, lock), (5, adjust)} is a strong cyclic plan for the goal state
4. Indeed, execution may loop forever in state 2, but it has always a possibility
of terminating (load may non-deterministically lead to states 3 and 5), and, if it
does, the plan achieves the goal both from state 3 and from state 5. The plan
{(2, load), (3, lock)} is not a strong cyclic solution.

The problem of planning for strong cyclic solutions was first tackled in [6],
where an efficient algorithm was proposed. The algorithm looks for strong plans,

! In the case of non-deterministic actions s’ = R(s,a) in (4) should be replaced with
R(s,a,s).

and, if it does not find one, iterates backward by applying ONESTEPPLAN, and
then by computing the strongly connected components of the set of states pro-
duced by ONESTEPPLAN. A formal account for strong cyclic planning was first
given in [10] where strong cyclic solutions are formalized as CTL specifications on
the possible executions of plans. A strong cyclic plan is a solution such that “for
each possible execution, always during the execution, there exists the possibility
of eventually achieving the goal”. More precisely, strong cyclic plans are plans
whose executions satisfy the CTL formula AGEFG, where G is a propositional
formula representing the set of goal states. Strong and weak plans are plans
whose executions have to satisfy the CTL formulas AFG and EFG, respectively.

6 Planning via Symbolic Model Checking

We now consider the problem of implementing Planning as Model Checking. The
problem is that realistic planning domains result most often in large state spaces.
With this problem in mind we have defined planning domains and problems
which are strictly related to Kripke Structures and CTL specifications. This has
allowed us to exploit all the work done within the Computer Science community
in the area of symbolic model checking [2,20], based on Ordered Binary Decision
Diagrams (0BDD’s) [1]2. As a practical consequence, we have implemented the
Model Based Planner (MBP), a planner built on top of NuSMV [3], a state of the
art OBDD based symbolic model checker. MBP can deal efficiently with rather
large size planning problems. For instance, it manages to find strong cyclic plans
in non-deterministic domains with more than 107 states in a few minutes [6].

In the rest of this section, in order to keep the paper self contained, we review
the idea of OBDD-based symbolic model checking. We show how it can be applied
to the Planning as Model Checking approach. As a matter of presentation, we
keep distinct the description of symbolic model checking (Section 6.1) from the
description of its OBDD-based implementation (Section 6.2).

6.1 Symbolic Representation

The fundamental ideas of Planning via Symbolic Model Checking are the follow-
ing:

1. The Planning Problem is represented symbolically: the sets of states and
the transitions of the semantic model are represented symbolically by logical
formulas.

2. Plans are represented symbolically as formulas.

3. Planning is performed by searching through sets of states, rather than single
states, by evaluating the assignments verifying (falsifying) the corresponding
logical formulas.

% Various alternatives of the notions used in this paper have been provided. For in-
stance, models can be formalized as w-automata [27] and another common temporal
logic is Linear Time Temporal Logic (LTL) [12]

Let D = (F,S, A, R) be a Planning Domain. Its symbolic representation is
a boolean formula. We construct the boolean formula corresponding to D as
follows. We associate to each fluent in F' a boolean variable. Let z = x1,..., 2,
be a vector of n distinct boolean variables, where each x; corresponds to a
distinct fluent in F' (let n be the cardinality of F'). S and each subset @) of S can
be represented by a boolean formula in the variables z, that we write as S(z)
and Q(z), respectively.

Consider the example in Figure 3. z is Loaded, Locked. Since S = 2F, S(z) =
T. State 1 ({— Loaded, Locked}) is represented by —Loaded A Locked and Q =
{3,4} = ({Loaded, —Locked}, { Loaded, Locked}}) by the formula Q(z) = Loaded.

We associate to each action in A a boolean variable. Let a = a1,...,am
be a vector of m distinct boolean variables (also distinct from each z;), where
each a; corresponds to a distinct action in A (let m be the cardinality of A).
For simplicity, in the following, we restrict ourselves to the case where formulas
in the m boolean variables a can be redefined as formulas in the variable Act,
which can be assigned m distinct values ay,...a,,. A boolean encoding of a
formula in Act into a boolean formula in a4, ..., a,;, can be easily defined: e.g.,
Act = a1 ¢ a3 A—ag A ... —a,. In order to keep the notation simple, from now
on, when we write a; in a boolean formula we mean a; A —as A ...—an,, and
similarly for the other a;’s.

The transition function R is represented symbolically by a formula R(z,a,z'),
where 2’ = z!,...,z] is a vector of n distinct boolean variables (also distinct
from each x; and a;). Intuitively, 2’ is used to represent the value of fluents after
the execution of an action. For instance, let R be the transition from state 1 to
state 2 caused by unlock in Figure 3. Then

R = ({—Loaded, Locked}, unlock, {—Loaded, - Locked})
and
R(z,a,z') = (~Loaded A Locked A unlock) D —Loaded A —Locked

The symbolic representation of the Planning Domain in Figure 3 is the fol-
lowing.

1. z = {Loaded, Locked}

2. a = {lock, unlock, load, unload, wait}

3. z' = {Loaded , Locked'}

4. R(z,a,z) = ((—~Loaded A Locked A unlock) D —Loaded A —Locked') A

((=Loaded A\ —Locked A lock) D —Loaded' A Locked') A
((—Loaded A\ —~Locked A wait) D = Loaded A —~Locked') A
((=Loaded N\ ~Locked A load) D Loaded A —Locked') A
((Loaded A ~Locked A unload) D —Loaded A —Locked') A
((Loaded A —~Locked A lock) D Loaded A Locked') A
((Loaded A Locked A unlock) D Loaded A —Locked')

Intuitively, symbolic representations of sets of states and transitions can be
very compact: the number of variables in a formula does not depend in general

Loaded O Q Loaded
Loaded O Locked O 0. i 1

L e »’// |
0 X 0 X Locked O 1 0 O Locked
» » . i AN
0 1 1 0 % \ ‘ / Ry
» \ kN
0 1 0 1
Loaded Not Locked Loaded or Locked Loaded and not Locked

Fig. 7. oBDD’s for Loaded, - Locked, Loaded V Locked, and Loaded A — Locked

on the number of states or transitions the formula represents. Given a Planning
Domain with e.g., 10% states in S, where the fluent Loaded is true in a subset Q
of e.g., 5 x 10° states, S is represented by the formula T, Q by Loaded, and the
empty set by L.

A symbolic representation of a Planning Problem P = (D, I,G) is obtained
from the symbolic representation of the Planning Domain D, and from the
boolean formulas I(z) and G(z). A symbolic plan for a symbolic planning domain
D is any formula ¢(z, a). For instance, the symbolic plan for the situated plan
{(2,load),(3,lock)} is (—Loaded A = Locked D load) A (Loaded A —Locked D lock).

Consider now the algorithm PLAN in Figure 4. Notice that it explores sets of
states, rather than single states. The formula representing ONESTEPPLAN, can
be written as a Quantified Boolean Formula (QBF).

3z'(States(z') A R(z, a,2"))) : (10)

An equivalent propositional boolean formula can be easily obtained. For instance,
Jy.p(x,y) can be rewritten to ¢(z, T) V @(z, L).

6.2 OBDD-based implementation

Planning via Symbolic Model Checking can still be implemented in different
ways. A technique which has been successfully applied in the area of formal ver-
ification is that known as Symbolic Model Checking [2,20], which makes use of
Ordered Binary Decision Diagrams (OBDD’s) [1]. OBDD’s are a compact repre-
sentation of the assignments satisfying (and falsifying) a given boolean formula.
Binary Decision Diagrams (BDD’s) are rooted, directed, binary, acyclic graphs
with one or two terminal nodes labeled 1 or 0 (for truth and falsity, respec-
tively). A node in a BDD corresponds to a variable in the corresponding boolean
formula. The two out-coming arcs from a BDD node represent the assignments of
the corresponding variable to true (the arc is labeled with 1) and false (labeled
with 0). OBDD’s are BDD’s with a fixed linear ordering on the propositional vari-
ables, which results in a corresponding order of the BDD nodes. Given a variable
ordering, OBDD’s are a canonical representation for boolean formulas. Figure 7
depicts the 0BDD’s for the formulas Loaded, — Locked, Loaded V Locked, and

Loaded

Locked Q Loaded
0
Y

lock Q Locked
0
Y

Loaded’ lock

1
1
Locked’ Locked’
S 1
0 1 0

Fig. 8. oBDD’s for the formulas (11) and (12)

Loaded A — Locked, where the variable ordering is Loaded < Locked. Figure 8
gives the OBDD’s encoding the formulas

(=Loaded A Locked A lock) D —Loaded' A —Locked' (11)
(—~Loaded A —~Locked A lock) D —Locked' (12)

where the variable ordering is Loaded < Locked < lock < Loaded < Locked' .

Operations on two sets S; and Ss, e.g., the union S; U Sy and the inter-
section S1 NSy, can be viewed as composing the corresponding formulas with
corresponding connectives, e.g., S1(z) V Sa2(z) and S1(z) A S2(z), and as a con-
sequence, as operations on the corresponding OBDD’s. For instance, in Figure 7,
the oBDD for the formula Loaded A —Locked (the rightmost one in the figure)
is obtained from the the OBDD’s for the formulas Loaded and —Locked (the two
leftmost ones) by simply replacing the terminal node labeled “1” of the OBDD
for Loaded with the OBDD for = Locked.

OBDD’s retain the advantage of a symbolic representation: their size (the num-
ber of nodes) does not necessarily depend on the actual number of assignments
(each representing, e.g., a state or a state transition). Furthermore, OBDD’s pro-
vide an efficient implementation of the operations needed for manipulating sets
of states and transitions, e.g., union, projection and intersection.

7 Related Work

The idea of a model-theoretic approach to planning is along the lines proposed
in [17], which argues in favor of a model-theoretic approach to knowledge repre-
sentation and reasoning in Artificial Intelligence.

Planning as Model Checking is a major conceptual shift w.r.t. most of the
research done in planning so far, like sTRIPs-like planning (see, e.g., [13,21])
and deductive planning (see, e.g., [24,25]). The framework is much more expres-
sive than STRIPS-like planning, and is closer to the expressiveness of deductive
planning frameworks.

The Planning as Model Checking approach has provided the possibility to
tackle and solve planning problems which have never been solved so far, like
strong planning [7] and strong cyclic planning [6,10] in non-deterministic do-
mains. The experimental results reported in [7, 6, 5] show that Planning as Model
Checking can be implemented efficiently.

Planning as propositional satisfiability [19, 18] is conceptually similar to Plan-
ning as Model Checking (even if technically different), since it is based on the
idea that planning should be done by checking semantically the truth of a for-
mula. The framework of planning as propositional satisfiability has been limited
so far to deterministic classical problems.

The work in [22] exploits the idea of Planning as Model Checking presented
in [4,7,6] to build an oBDD-based planner. [11] proposes a framework similar
to ours, which is based on an automata-theoretic approach to planning for LTL
specifications. In [11] there is no notion of situated plans.

8 Conclusions and Acknowledgements

The goal of this paper has been to provide an introduction, with various elements
of novelty, to the Planning as Model Checking paradigm. Various papers on
this topic have been published — see the references. The three papers which
introduce the two key intuitions are: [4] that first introduces the idea of seeing
planning as a semantic problem, and [7, 6] that first introduce the idea of seeing
a plan as a set of state-action pairs. The first idea was envisaged by the first
author of this paper as a follow on of the work, described in [16], where he first
introduced and analyzed the graph of the states (the Kripke Structure) of a
planning problem. The second idea was envisaged by the authors of [7,6] as an
effective and practical way to represent conditional and iterative plans. The ideas
reported in Sections 3 and 4 had never been written before. Many people in our
group have given substantial contributions to the development of the approach,
the most noticeable are: Alessandro Cimatti, Marco Roveri, Enrico Giunchiglia
and Marco Daniele.

References

1. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677-691, August 1986.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic Model Checking: 10° States and Beyond. Information and Computation,
98(2):142-170, June 1992.

10.

11.

12.

13.

14.

15.

16.

A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic
Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Con-
ference on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes
in Computer Science, pages 495-499, Trento, Italy, July 1999. Springer.

. A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via Model

Checking: A Decision Procedure for AR. In S. Steel and R. Alami, editors, Pro-
ceeding of the Fourth European Conference on Planning, number 1348 in Lecture
Notes in Artificial Intelligence, pages 130-142, Toulouse, France, September 1997.
Springer-Verlag. Also ITC-IRST Technical Report 9705-02, ITC-IRST Trento,
Italy.

. A. Cimatti and M. Roveri. Conformant Planning via Model Checking. In Susanne

Biundo, editor, Proceeding of the Fifth European Conference on Planning, Lec-
ture Notes in Artificial Intelligence, Durham, United Kingdom, September 1999.
Springer-Verlag.

. A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based Generation of

Universal Plans in Non-Deterministic Domains. In Proceeding of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin,
1998. AAAI-Press. Also IRST-Technical Report 9801-10, Trento, Italy.

. A. Cimatti, M. Roveri, and P. Traverso. Strong Planning in Non-Deterministic

Domains via Model Checking. In Proceeding of the Fourth International Conference
on Artificial Intelligence Planning Systems (AIPS-98), Carnegie Mellon University,
Pittsburgh, USA, June 1998. AAAI-Press.

. E. Clarke, O. Grumberg, and D. Long. Model Checking. In Proceedings of the

International Summer School on Deductive Program Design, Marktoberdorf, Ger-
many, 1994.

. E. M. Clarke and O. Grumberg. Research in automatic verification and finite-state

concurrent systems. Annual Review of Computer Science, 2(1):269-289, 1987.

M. Daniele, P. Traverso, and M. Y. Vardi. Strong Cyclic Planning Revisited.
In Susanne Biundo, editor, Proceeding of the Fifth European Conference on Plan-
ning, Lecture Notes in Artificial Intelligence, Durham, United Kingdom, September
1999. Springer-Verlag.

G. de Giacomo and M.Y. Vardi. Automata-theoretic approach to planning with
temporally extended goals. In Susanne Biundo, editor, Proceeding of the Fifth Eu-
ropean Conference on Planning, Lecture Notes in Artificial Intelligence, Durham,
United Kingdom, September 1999. Springer-Verlag.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Semantics,
chapter 16, pages 995-1072. Elsevier, 1990.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2(3-4):189-208, 1971.
M. Georgeff. An embedded reasoning and planning system. In J. Tenenberg,
J. Weber, and J. Allen, editors, Proc. from the Rochester Planning Workshop:
from Formal Systems to Practical Systems, pages 105-128, Rochester, 1989.

M. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proc. of the 6th
National Conference on Artificial Intelligence, pages 677-682, Seattle, WA, USA,
1987.

F. Giunchiglia. Abstrips abstraction — Where do we stand? Technical Report
9607-10, ITC-IRST, Trento, Italy, July 1996. To appear 1999 in the Artificial
Intelligence Review.

17

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

J. Y. Halpern and M. Y. Vardi. Model Checking vs. Theorem Proving: A Manifesto.
In J. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge Represen-
tations and Reasoning: Proceedings fo the Second International Conference, pages
325-334, 1991.

H. Kautz and B. Selman. BLACKBOX: A new approach to the application of
theorem proving to problem solving. In Working notes of the AIPS-98 Workshop
on Planning as Combinatorial Search, 1998.

Henry Kautz and Bart Selman. Pushing the Envelope: Planning, Propositional
Logic, and Stochastic Search. In Proc. AAAI-96, pages 1194-1201, 1996.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

J. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner for
ADL. In Proc. of KR-92, 1992.

R. Jensen and M. Veloso. Obdd-based universal planning: Specifying and solving
planning problems for synchronized agents in non-deterministic domains. Technical
report, CMU, Carnegie Mellon University, USA, 1999.

M. J. Schoppers. Universal plans for Reactive Robots in Unpredictable Environ-
ments. In Proc. of the 10th International Joint Conference on Artificial Intelli-
gence, pages 1039-1046, 1987.

S. Steel. Action under Uncertainty. J. of Logic and Computation, Special Issue on
Action and Processes, 4(5):777-795, 1994.

W. Stephan and S. Biundo. A New Logical Framework for Deductive Planning.
In Proc. of IJCAI93, pages 32-38, 1993.

P. Traverso and L. Spalazzi. A Logic for Acting, Sensing and Planning. In Proc.
of the 14th International Joint Conference on Artificial Intelligence, 1995. Also
IRST-Technical Report 9501-03, IRST, Trento, Italy.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. of LICS86, pages 332—-344, 1986.

