Planning as Search — Review

CS 579

January 28, 2004

1 Search

Search is an important part of our problem solving process. Practically, we search for a solution every time
we try to solve a problem. Search is often needed when we do not have a step-by-step algorithm but we
know what is a solution. Examples:

o Travesing salesman Given n cities, distance between every pair of two cities. A salesman needs to visit
these cities, each at least one. Find for him a shortest route through the cities.

e Knap-sack problem Given n items, the weight and value of each item, and a knap-sack and its capacity.
Find the most valuable way to pack the items into the knap-sack.

e Nawvigation path Find a path connecting the two points on a map for a robot.

e SLD derivation Given a goal ?g, find a SLD derivation for g.

Definition 1.1 Search is an enumeration of a set of potential partial solutions to a problem so that they
can be checked to see if they truly are solutions, or could lead to a solutions.

To carry out a search, we need:

e A definition of a potential solution.
e A method of generating the potential solutions (hopefully in a clever way).

e A way to check whether a potential solution is a solution.

2 Graph Searching

Use to present general mechanism of searching. To solve a problem using search, we translate it into a graph
searching problem and use the graph searching algorithms to solve it.

Definition 2.1 A graph consists of a set N of nodes and a set A of ordered pairs of nodes, called arcs.
Two possible ways to represent a problem as a graph:

o State-space graph: each node represents a state of the world and an acr represents changing from one
state to another.

e Problem-space graph: each node represents a problem to be solved and an arc represents alternate
decomposition of the problems.

Example:

o State-space graph: finding path for robot — each node is a location. The state of the world is the
location of the robot.

e Problem-space graph: SLD resolution — each node is a goal. Connection from one node to the other
represents that the second one is obtained from the other through a SLD resolution.

Node ns is a neighbor of n; if there is an arc from n; to ne. That is, if (n1,n2) € A. An arc may be

labeled.
A path is a sequence of nodes {ng,ny,...,ng) such that {(n;;1,n;) € A.

A cycle is a nonempty path such that the end node is the same as the start node. A graph with out
cycle is called directed acyclic graph or DAG.

Given a set of start nodes and goal nodes, a solution is a path from a start node to a goal node.

The forward branching factor of a node is the number of arcs going out from the node, and he backward
branching factor of a node is the number of arcs going into form the node.

3 A Generic Searching Algorithm

Given a graph, the set of start nodes, and the set of goal nodes. A path between a start node and a goal
node is a solution. Searching algorithms provide us a way to find a solution.

Idea: Incrementally explore paths from start nodes. Maintaining a frontier or fringe of paths from the
start nodes that have been explored.

The algorithm:

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {<s> : s is a start nodel};

while frontier is not empty:

select and remove path <n0, . . . , nk> from frontier;
if goal(nk)

return <n0, . . . , nk>;
for every neighbor n of nk

add <n0, . . . , nk, n> to frontier;

end while

4 Blind Search Strategies

So far, we do not pay attention to the detail of how to select the next node when expand the frontier. The
algorithm does not specify how they should be implemented.

Definition. A search strategy specifies which node should be selected at each iteration and how the frontier
should be expanded.

Definition. A blind search strategy is a search strategy that does not take into account where the goal is.

e Depth-First Search: Completing the search of one path before exploring the other. Treats the
frontier as a stack.

e Breadth-First Search: Always takes the path with fewest arcs to expand. Treats the frontier as a
queue.

o Lowest-Cost-First Search: Need to have a function ¢(n) that returns the cost of reaching a node
n. This strategy requires the expansion of the lowest cost path first. Treats the frontier as a priority
queue.

Space and Complexity of the Blind Search Strategies: Important factors in deciding which strategy
to use.

Depth-First Breadth-First

Might not find the solution Guarantee to find a solution if one exists if branch-
ing factor is finite

Linear in size of the path being explored Exponential time and space in size of the path
being explored

Search is unconstrained until solution is found Search is unconstrained by the goal

Lowest-cost strategy: similar to breath-first.

5 Heuristic Search — Informed Search Strategies

Idea: Taking into account the goal information and (if available) knowledge about the goal. At any iteration,
the “most promising” node — one, that probably leads to the goal — is selected to expand the frontier.
Represent as a heuristic function, h, from the set of nodes into non-negative real numbers, i.e., for each node
n, h(n) > 0.

h(n) is underestimate if it is less than or equal the actual cost of the lowest-cost path from n to the goal.

Example: For the robot delivery, the straight-line distance between the node and the goal is a good heuristic
function, which is underestimate.

Example: For the SLD search graph, the number of atoms in the query is a heuristic function.

e Best-First Search: Always select the element that appears to be the closest to the goal, i.e., lowest
h(n). Frontier is treated as priority queue.

e Heuristic Depth-First Search: Like depth-first, but use h(n) in deciding what branch of the search
tree to explore.

e A* Search: Selecting the next node based on the actual cost and the estimate cost. If the actual cost
to the node n is g(n) and the estimate cost from n to the goal is h(n), the value f(n) = g(n) + h(n)
will be used in selecting the node to expand the frontier. This method is implemented by a priority
queue based on f(n).

Best-First Depth-First A*

Might not find the solution Might not find the solution Guarantee to find an optimal so-
lution if one exists and branching
factor is finite

Exponential time and space in | Linear in size of the path being | Exponential time and space in
size of the path being explored explored size of the path being explored

6 Refirements to Search Strategies
Idea: Deals with cycles in the graph

e Cycle checking: Before inserting new paths into the frontier, check for their occurrence in the path.
If the path selected to expand is {(ng,-..,nx) and m is a neighbor if nj; we add to the frontier the path
(ng, - -.,ng,m) if m does not occur in {(ng, .. .,ng)-

— easy to implement in depth-first (one extra bit); set when visits; reset when backtracks;

— need more time in exponential space strategies

e Multi-path Prunnning: Before inserting new paths into the frontier, check for the occurrence of
new neighbors n the frontier. Need to be done carefully if shortest/lowest cost path need to be found.
In A*, monotone restriction is sufficient to guarantee that the shortest path to a node is the first path
found to the node.

monotone restriction: |h(n') — h(n)| < d(n’,n) where d(n',n) is the actual cost from n' to n.

Subsumes cycle checking. Preferred in strategies where the visited nodes are explicitely stored (breath-
first); not prefered in depth-first searchs since the requirement of space required.

e Iterative deepening: Instead of storing the frontier, recompute it. Use depth-first to explore paths
of 1, 2, 3, ...arcs until solution is found. When the search fails unnaturally, i.e., the depth bound is
reached; in that case, restart with the new depth bound.

— Linear space in size of the path being explored.

— Little overhead in recomputing the frontier.

Iterative deepening A*: Instead of using the number of arcs as the bound, use f(n). Initially, f(s)
is used (s is the start node with minimal h-value). When the search fails unnaturally, the next bound
is the minimal f-value that exceeded the previous bound.

e Direction of Search: forward (from start to goal), backward (from goal to start), bidirectional (both
directions until meet). The main problem in bidirectional search is to ensure that the frontiers will
meet (e.g. breath-first in one direction and depth-first in the other).

— Island-driven Search: Limit the places where backward and forward search will meet (desig-
nated islands on the graph). Allows a decomposition of the problem in group of smaller problems.
To find a path between s and g, identify the set of islands 4g, ..., %, and then find the path from
s to ig, from 4; to i;41, and finally from 44 to g.

— Searching in a Hierarchy of Abstractiosn: Find solution at different level of abstraction.
Details are added to the solution in refinement steps.

e Dynamic Programming: construct the perfect heuristic function that allows depth-first heuristic to
find a solution without backtracking. The heuristic function represents the ezact costs of a minimal

path from each node to the goal. This will allow us to specify which arcs to take in each step, which
is called a policy. Define

0 if is_goal(n)
M (n,myea(|{n, m)| + dist(m)) otherwise

dist(n) = {

where dist(n) is the actual cost to the goal from n.

dist(n) can be computed backward from the goal to each node. It can then be stored and used in
selecting the next node to visit.

— dist(n) depends on the goal;
— dist(n) can be pre-computed only when the graph is finite;

— when dist(n) is available, only linear space/time is needed to reach the goal;

7 Planning as Search

A planning domain is specified by a set of fluents and a set of actions. Often, the set of fluents is implicitely
given by the set of fluents used in representing the actions. We will assume that the actions will be given in
ADL/STRIPS like notation as follow: Action(a, Pre,, Add,, Delete,).

Given a planning problem P = (Act,I,G) where

e Act — a set of actions

e | — a state

e (G — a conjunction of fluent literals

A fluent is a time-dependent property. A fluent literal is either a fluent f or its negation —f. A state
is a set of fluents. A set of fluents S is satisfied by a state s if S C s. For a set of fluent literals X, X+ and

X~ denote the set of positive and negative fluent literals belonging to X, respectively. X is satisfied by a
state s if XT Csand sN X~ =0.

P can be represented as a search problem for a state satisfying the goal, starting from the initial state,
as follows.
e A potential solution is a state
e Actions change the state (computing potential solutions)
e Checking if the goal is satisfied is exactly the same as checking if the conjunction of goal is satissfied
by a state.

The graph representing the search problem with

e the set of nodes is the set of states

e the set of arcs consists of pairs {si,s2) such that there exists an action a € Act such that Pre(a)
is satisfied in sy and sy = sy U Add, \ Delete,. For simplicity, we will use Progress(a,s) to denote
sU Add, \ Delete,. If Pre, is not satisfied by s then Progress(s,a) is said to be undefined.

Example 7.1 Let Act = {a,b,c} where
Action(a,{f,~g},{g},0)
Action(b,{f,—g},0,{h, f})
Action(c,{h},{g},{f, h})

The set of fluents in this domain is {f, g, h}.

For action a, Pre, = {f,—g}, Add, = {g}, and Delete, = 0.

For action b, Prey, = {f,~g}, Addy, = 0, and Delete, = {h, f}.

For action ¢, Pre. = {h}, Add. = {g}, and Delete. = {h, f}.

Given a state s = {f} then Pre, (and so is Prey) is satisfied by s but Pre. is not.

We can compute:

e Progress(a,s) ={f, g}
e Progress(b,s) = 0.

e Progress(c,s) is undefined.

