
A Knowledge-Based Approach to Planning with Incomplete Information and
Sensing∗

Ronald P. A. Petrick
Department of Computer Science

University Of Toronto
Toronto, Ontario

Canada M5S 1A4
rpetrick@cs.utoronto.ca

Fahiem Bacchus
Department of Computer Science

University Of Toronto
Toronto, Ontario

Canada M5S 1A4
fbacchus@cs.utoronto.ca

Abstract

In this paper we present a new approach to the problem of
planning with incomplete information and sensing. Our ap-
proach is based on a higher level, “knowledge-based”, repre-
sentation of the planner’s knowledge and of the domain ac-
tions. In particular, in our approach we use a set of formu-
las from a first-order modal logic of knowledge to represent
the planner’s incomplete knowledge state. Actions are then
represented as updates to this collection of formulas. Hence,
actions are being modeled in terms of how they modify the
knowledge state of the planner rather than in terms of how
they modify the physical world. We have constructed a plan-
ner to utilize this representation and we use it to show that
on many common problems this more abstract representation
is perfectly adequate for solving the planning problem, and
that in fact it scales better and supports features that make it
applicable to much richer domains and problems.

Introduction
We present a new approach to the problem of planning with
incomplete information and sensing. The intuition behind
our approach is that a planning agent operating under condi-
tions of incomplete knowledge (and without a model of un-
certainty) can only build plans based on what it knows and
on how its knowledge will change as it executes actions—
it has access to no other information at plan time. Hence,
it should possible to build plans by considering only the
agent’s knowledge state and the way that that knowledge
state is changed by actions, rather than by having to con-
sider the various ways the physical world can be configured
and the ways in which actions change the physical world.
In fact, as we will demonstrate, planning at the level of the
agent’s knowledge state has significant benefits. In partic-
ular, on many problems, planning at the knowledge level
scales up much better since it abstracts away from a number
of irrelevant distinctions that previous approaches are often
forced to make. Furthermore, there are a number of features
that we can model at the knowledge level that would be very
difficult or even impossible with previous approaches. For
example, we are not limited to the propositional case, and
we can deal with functions and run time variables, features
that are essential in a number of domains.

∗This research was supported by the Canadian Government
through their NSERC and NCE-IRIS programs.

A planner that can operate at the knowledge level re-
quires a tractable representation of its (incomplete) knowl-
edge and a tractable way of updating that representation so
as to model the effects actions have on its knowledge state.
In previous work (Bacchus & Petrick 1998) we have devel-
oped most of such a representation. In this paper we make a
key addition to the representation developed in this previous
work, an addition that makes it possible to generate plans for
a much wider range of problems.

Our representation supports a number of features that are
currently unique to our approach, features that we feel are
essential for planning in richer domains. Nevertheless, there
are some things that our “higher-level” representation can-
not handle that previous approaches can. In particular, our
representation is not able to handle problems that require
complex case analysis to distinguish various possible con-
figurations of the world. However, as we will demonstrate,
some of these other approaches are forced to engage in this
kind of potentially computationally expensive case analysis
even when it is not necessary for generating a plan.

Using our representation we have constructed a simple
forward chaining planner that is able to generate interest-
ing plans in a number of different domains. Our current im-
plementation does not as yet have any sophisticated forms
of search control. Nevertheless, even using blind search,
it is still able to demonstrate impressive performance, per-
formance that clearly demonstrates the potential of our ap-
proach.

In the paper we first present a short comparison between
our approach and the approach most commonly utilized in
previous work. Then we explain the representation of in-
complete knowledge we have developed, along with the way
in which actions, including sensing actions, are represented.
How planning problems are specified and a planning algo-
rithm for generating conditional plans are presented next.
We close with empirical results on a few different domains
and some concluding remarks.

Previous approaches
A number of works have addressed the problem of planning
under incomplete information, e.g., (Pryor & Collins 1996;
Bertoli et al. 2001; Bonet & Geffner 2000; Anderson,
Weld, & Smith 1998). The most recent of these approaches
have worked at the propositional level using sets of possi-

ble worlds to represent the planner’s incomplete knowledge.
These sets contain all the possible worlds that are compati-
ble with the planner’s knowledge. When an action is to be
applied, a check must be performed that its preconditions
hold in all of the possible worlds (i.e., that its preconditions
areknown), and then the action is applied to each world in
the set to yield a new set of possible worlds. That is, actions
are modeled in terms of how they change the world, and the
planner’s new incomplete knowledge state is computed by
considering how that action would behave in each of the dif-
ferent possible worlds characterizing the current knowledge
state.

Of course the number of possible worlds needed to repre-
sent any knowledge state grows exponentially with the num-
ber of propositions. And since each new object in a plan-
ning domain generates many new propositions, these sets
become very large, very quickly. In (Bertoliet al. 2001),
which is probably the most efficient of the current planners
for incomplete knowledge, this problem is addressed by us-
ing BDDs (Bryant 1992) to represent and manipulate these
sets compactly. Nevertheless, BDDs are limited to proposi-
tional representations and are not always compact.

For example, softbots (Weld & Etzioni 1994) are agents
that have to generate and execute plans in software envi-
ronments like theUNIX operating system or the world wide
web. In such domains the set of objects is either unknown
(e.g., the files available on the web) or very large, and thus
propositional representations are not suitable.

As a result we have taken a completely different approach
to the problem. In particular, we use finite sets of formulas of
a first-order modal logic of knowledge to represent incom-
plete knowledge, and we model actions as updates to these
sets of formulas (thus actions update the agent’s knowledge
state rather than the world state). A set of formulas is a
much more general and more compact representation of a
set of possible worlds than a BDD.1

The problem, of course, is that it can be computationally
intractable to reason with a set of logical formulas. Hence,
we are forced to restrict our representation and the kinds of
reasoning we can perform with it. In particular, we can-
not reason at the level of individual possible worlds with
our representation, and thus some planning problems that
require this kind of low-level world by world analysis can-
not be modeled in our approach whereas they can be han-
dled with BDDs. Nevertheless, we feel that the additional
features we gain more than make up for this deficiency

Representing the agent’s knowledge
In this section we describe our formalism for representing
incomplete knowledge. Our representation is based on ex-
tending theSTRIPS idea of utilizing a database that can be
easily updated by actions. Instead of a single database we
utilize a collection of databases, each representing a differ-
ent kind of knowledge. Actions can then be modeled by
specifying the updates they make to these databases.

1Every BDD can be represented with a similarly sized propo-
sitional formula but not vice-versa. Furthermore, with first-order
formulas the possible worlds can have a relational structure.

We want to provide a formal specification of the knowl-
edge state any particular configuration of this collection of
databases represents. We accomplish this by providing a
fixed translation from the database contents to a set of for-
mulas of a first-order modal logic of knowledge.2 Thus the
formal specification we want is automatically provided by
the formal semantics of this logic. In the sequel we useDB
to represent the agent’s databases, andKB to represent the
set of logical formulas that formalize the contents ofDB.

Briefly, a standard modal logic of knowledge adds a
modal operatorK to an ordinary first-order language, ex-
tending the language’s syntax by adding the rule: ifφ is a
formula then so isK(φ). Semantically, the language is in-
terpreted over a collection of possible worldsW , each of
which is an ordinary first-order model. Any non-modal for-
mulaφ is true at a particular worldw iff it is true according
to the standard rules for interpreting first-order formulas. A
formula of the formK(φ) is true atw iff φ is true at every
world in W .3

Semantically, the agent’s knowledge is being captured by
the setW . The agent does not know which world inW is
the real world, and considers all of these worlds as possible
versions of the way the real world could be configured. If
it does not know whether or notφ is true, then there will be
worlds inW whereφ is true and worlds whereφ is false. We
assume that although the agent’s knowledge is incomplete,
it is correct. This assumption is captured by requiring that
the real world be a member ofW . Hence, knowingφ, i.e.,
thatφ is true in every world inW , will also imply thatφ is
true in the real world (since the real world is a member of
W). For example,K(readable(paper.tex)) means that the
agent knows filepaper.texis readable, and thatpaper.texis
in fact readable (it must be true in the real world). However,
a formula likewriteable(paper.tex) means thatpaper.texis
writable, but this is not necessarily known by the agent.4

As mentioned above, previous works have tended to work
directly with the set of possible worldsW , rather than with
a set of formulas that characterizeW as we do here.

Rigidity
The agent’s knowledge will include atomic facts about
various terms, like the above knowledge about the term
paper.tex. We also allow functions in our representation. For
example, the agent might know various function values like
K(size(paper.tex) = 1024), i.e., thatpaper.texis 1024 bytes
in length.

Terms composed from functions and constants, like
paper.tex, 1024, and size(paper.tex), can be problematic
when dealing with knowledge. In particular, terms may be
rigid or non-rigid. Non-Rigid terms are terms whose deno-
tation (i.e., meaning) varies from world to world, while rigid
terms have a fixed denotation (i.e., the same meaning) across
worlds. To avoid certain complications that arise when these

2See (Faginet al. 1995) for an introduction to such logics.
3That is, the accessibility relation is such that every world is

accessible from every world.
4We will always interpret non-modal formulas at the real world.

two types of terms are mixed5 we impose the restriction that
all constants must be rigid. Thus, a term likepaper.texwill
always denote the same object in every world. On the other
hand, we allow functions to generate non-rigid terms. Thus,
a term likesize(paper.tex) can denote a different value in dif-
ferent worlds. We assume that numeric functions, like “+”,
or numeric predicates like “<” have their standard interpre-
tation in every world and are therefore rigid.

Formally, our rigidity assumption means that for every
constantc, the agent’s knowledge (the setKB) includes the
formula:

(∃x).K(x = c). (1)
This formula asserts that there is a particular object in the
real world such that in every possible world the constantc
denotes that object. We will also assume for simplicity that
all worlds have identical domains of discourse (We do not
assume that we know the domain).

Databases
We represent the agent’s knowledge by a collection of four
databases, the contents of each having a fixed translation to
a collection of formulas in the modal logic of knowledge.
These databases are presented next.
Kf : The first database is much like a standardSTRIPS
database, except that both positive and negative facts are al-
lowed and we do not apply the closed world assumption.
In particular,Kf can include any ground literal.Kf is fur-
ther restricted so that all the terms that appear in any literal
must be constants. So, for example, an atomic formula like
readable(parent(f)), where the functionparentspecifies the
parent directory of a filef , cannot appear inKf .

In addition to literals,Kf can also contain specifications
of function values. In particular, we allow formulas of the
form f(c1, . . . , cn) = cn+1 or f(c1, . . . , cn) 6= cn+1, where
f is ann-ary function and theci are all constants. An equal-
ity formula specifies thatf ’s value on this particular set of
arguments is or is not the constantcn+1. In effect, our re-
striction means that function values inKf are considered to
be known by the agent only if they can be “grounded” out as
constant values.

For every formulà ∈ Kf , KB includes the formula:
K(`). (2)

For example, if the formulareadable(paper.tex) is in Kf ,
KB includes the formulaK(readable(paper.tex)) (the agent
knowspaper.texis readable).
Kw: The second database contains a collection of formulas
every instance of which the agent either knows or knows
the negation. In particular,Kw can contain any formula
that is a conjunction of atomic formulas. By adding sim-
ple ground atomic facts toKw we can model the effects
of sensing actions. For example, if the agent at plan time
hypothesizes applying an action that senses some fact like
readable(paper.tex), all the agent will know at plan time is
that after executing the action it will know whether or not
this fact is true. Only at execution time will there be a reso-
lution of which of these disjunctions actually holds.

5See Garson (Garson 1977) for a good discussion of these is-
sues.

By adding formulas containing variables toKw we can
model the plan time effects of actions that generate universal
effects (which at run time generate local closed world infor-
mation (Etzioni, Golden, & Weld 1997)). For example, the
UNIX commandls(d) yields universal knowledge about the
contents of directoryd: after applyingls(d) we will know,
for every file, whether or not that file is in directoryd. The
actual names of the files ind, however, will only be known
at run time.6

For every formulaφ(~x) ∈ Kw (a conjunction of atomic
formulas in which the variables in~x appear free),KB in-
cludes the formula

(∀~x).K(φ(~x)) ∨K(¬φ(~x)). (3)
For instance, ifbomb(B1) is in Kw, KB includes the for-
mula K(bomb(B1)) ∨ K(¬bomb(B1)): the agent is in a
state where in every possible worldB1 is a bomb or in ev-
ery possible worldB1 is not a bomb. At run time, when the
agent actually executes the sensing action that added this
fact to Kw, the agent will have definite knowledge about
bomb(B1). The value ofKw knowledge at plan time is that
the agent can legitimately construct a conditional branch in
its plan at this point, branching on the value ofbomb(B1): it
is assured that it will have sufficient knowledge at run time
to decide which of these branches needs to be executed. By
utilizing the contents ofKw in this manner the agent can en-
sure that it is building a correct plan since it will know which
facts it will legitimately be able to branch on at run time.

Some predicates, e.g., numeric predicates like< and
equality=, have the same denotation in every world. Such
“rigid” predicates are considered to be implicitly inKw. For
example, the formulac < 1024, wherec is a constant, is
implicitly in Kw: sincec is rigid the agent knows that this
formula is true in all worlds or false in all worlds.
Kv: The third database is a specialized version ofKw de-
signed to store information about various function values the
agent will come to know at execution time. In particular,
Kv can contain any unnested function term. For example,
f(x, a) would be a legal entry inKv but f(g(a), c) would
not be. LikeKw, the entries inKv are used to model sensing
actions, except in this case the sensors are returning con-
stants (e.g., numbers) not truth values. The value returned
by the sensor will not be known until execution time, but at
plan time the agent will know that such a value will become
known.

For every formulaf(~x) ∈ Kv, where~x is the set of vari-
ables appearing in the term,KB includes the formula

(∀~x)(∃v).K(f(~x) = v). (4)
Formulas of this type are a standard way of specifying
that the agent knows a function value, see, e.g., (Scherl &
Levesque 1993). For example, ifsize(paper.tex) is in Kv,
KB includes the formula(∃v).K(size(paper.tex) = v) (the
agent knows thatpaper.texhas the same size in every possi-
ble world).
Kx: The fourth database is new to this paper. It contains in-
formation about a particular type of disjunctive knowledge,
namely “exclusive or” knowledge of literals. Entries inKx

6See (Bacchus & Petrick 1998) for more on the distinction be-
tween plan time and run time knowledge.

are of the form(`1|`2| . . . |`n), where each̀i is a ground lit-
eral (ground functional equalities are permitted). Intuitively,
such a formula represents knowledge of the fact that “ex-
actly one of thè i is true.” For each formulaφ ∈ Kx, KB
includes the formula

K(
n∨

i=1

`i ∧ (¬`1 ∧ . . . ∧ ¬`i−1 ∧ ¬`i+1 ∧ . . . ∧ ¬`n)). (5)

For example, if(infected(I1)|infected(I2)) ∈ Kx then the
formulaK((infected(I1)∧¬infected(I2))∨(¬infected(I1)∧
infected(I2))) is in KB . That is, the agent knows that one
and only one ofinfected(I1) or infected(I2) is true. This
form of incomplete knowledge is common in planning sce-
narios.

Knowledge states
Given a set of these four databases (a particularDB), the
translation specified by the set of formulas 1–5 defines the
agent’s knowledge state (the correspondingKB).7 Thus, the
contents of the databases have a fixed formal interpretation
in a first-order logic of knowledge.

Because the database contents can be interpreted at the
knowledge level, the restrictions we have placed on the
database contents result in restrictions in the types of knowl-
edge that can be modeled. At the possible world level, this
means there are certain configurations of possible worlds
that cannot be modeled.

Say we have worlds w1, w2, w3, so that at
w1: P (a), Q(b, c) holds, at w2: P (a),¬Q(b, c) holds,
and atw3: ¬P (a), Q(b, c) holds. Since our representation
does not allow us to model knowledge of general (non-
exclusive) disjunctions such asK(P (a) ∨ Q(b, c)), we
cannot represent the knowledge state characterized by the
set {w1, w2, w3} of possible worlds. Of course this also
means that we cannot generate plans from such an initial
state.

Querying a knowledge state
Planning requires an ability to query the current knowledge
state. For example, to determine the set of actions appli-
cable to the initial state the planner must be able to deter-
mine which of these action’s preconditions holds in the ini-
tial state. Computing an action’s conditional effects also re-
quires querying the knowledge state.

As mentioned above, to retain tractability we must restrict
the kinds of reasoning we can perform onKB (the knowl-
edge state). To this end we have developed a simple lan-
guage for representing a set of useful primitive queries about
a knowledge state. Letα be any ground atomic formula, and
t be any variable free term. The primitive queries we allow
are the following.

1. K(α), is α known to be true?

2. K(¬α), is α known to be false?

7The agent’s knowledge state is actually characterized by the
set of all models that satisfy the formulas inKB in the style of
Levesque’s characterization of all I know (Levesque 1990). See
(Bacchus & Petrick 1998) for a discussion.

3. Kw(α), is the agent is in a state whereα is true in all
worlds orα is false in all worlds?

4. Kv(t), is t known to have a fixed value in every world?

5. The negation of any of the above four queries.

To evaluate such queries, an inference algorithm,IA , has
been developed. The truth of a primitive query is determined
by checking the status of the databases. In (Bacchus & Pet-
rick 1998),IA is specified and shown to be sound. That is,
every inference is correct and is entailed by the knowledge
stateKB . IA is, however, incomplete. That is, there are
conclusions that can be entailed fromKB that can’t be es-
tablished byIA . We do not have a formal characterization of
whenIA is complete, but in all of the planning domains we
have experimented withIA ’s incompleteness has not proved
to be an impediment to finding plans.

Planning problems
A planning problem is a four tuple〈I, G, A, U〉, whereI is
the initial state,G is the set of goal conditions,A is a non-
empty set of action specifications, andU is a set of domain
specific knowledge update rules.

The initial stateI is specified by describing the initial
contents of each database. This initial configuration of the
databases defines the agent’s initial knowledge state. The
goal conditionsG are specified as a conjunctive set of prim-
itive queries. For a goal to be satisfied by a planP , ev-
ery primitive query in the goal set must be satisfied in every
knowledge state that could arise from executingP . (P has
conditional branches so its execution could give rise to dif-
ferent knowledge states.)A andU are discussed below.

Representing actions
As mentioned above, actions are represented as updates to
the collection of databases. Hence, actions specify how they
change the agent’s knowledge state, rather than how they
change the state of the world. More specifically, actions have
three components: parameters, preconditions, and effects.8

Parameters: The parameters are a set of variables that are
bound to produce a particular instance of the action. Action
parameters may be used in the action’s preconditions and
effects.
Preconditions: The preconditions are a conjunctive set of
primitive queries aboutKB . For a precondition to be satis-
fied, each primitive query in the set must evaluate to true.
Effects: An action’s effects are specified by a list of con-
ditional effect statements of the formC ⇒ E. Each
condition C is a conjunctive set of primitive queries.
Each effectE is specified as a set of additions or dele-
tions to the four databases. For example, effects such
as add(Kf , size(project.tex) = 1024) specifies adding the
function valuesize(project.tex) = 1024 to theKf database.
In general, updates can be applied to any of the databases.

8In our approach, an action’s effects are actually divided into
plan timeeffects andexecution timeeffects. In this paper, however,
we will only focus on plan time effects. See (Bacchus & Petrick
1998) for a discussion of the distinction between these two types
of effects.

Action Precondition Effects
drop(x) K(holding(x)) del(Kf , holding(x))

K(¬broken(x)) add(Kf , onfloor(x))
add(Kf , dropped(x))
del(Kf ,¬broken(x))
K(fragile(x)) ⇒

add(Kf , broken(x))
inspect(y) ¬Kw(broken(y)) add(Kw, broken(y))

Table 1:dropandinspectactions

Modeling action effects as updates to the databases means
that it is easy to compute the new knowledge state that arises
from the application of an action. This is in contrast to the
situation where incomplete knowledge is represented as a
set of possible worlds. In that situation one needs to compute
the effect of the action on each of the worlds in the set, which
can be difficult even when done symbolically via a BDD.
An Example: Consider the definition of the actionsdrop
andinspectin Table 1. For an agent to consider applying the
drop(x) action it must know that it is holdingx and thatx
is not broken.drop(x)’s effects on the real world are that
it always causesx to be on the floor and to be dropped,
and breaksx if x is fragile. At the knowledge level, how-
ever, things are somewhat different. Sinceonfloor(x) and
dropped(x) are always caused, the agent will know that they
are true after performing the action. However, if the agent
does not know thatx is fragile, it will not come to know that
x is broken: in some worldsx will be fragile and broken,
and in others it will not fragile and not broken. Thus it will
lose knowledge thatx is not broken (del(Kf ,¬broken(x))),
and it will only gain knowledge of broken if it knows thatx
is fragile.

Notice, however that after a drop the agent does in fact
come to know something about fragile,K((broken(x) ∧
fragile(x)) ∨ (¬broken(x) ∧ ¬fragile(x))), and that if we
were representing knowledge as a set of possible worlds we
would capture this information. However, our representa-
tion cannot capture this information as it does not fit our
syntactic restrictions. This is an example of where our rep-
resentation is abstracting away from fine distinctions: it can
be computationally expensive to track these distinctions and
in many planning domains it is not necessary to keep track
of knowledge of this form.

Consider the initial state defined byKf =
{¬broken(vase), holding(vase), ¬broken(box),
holding(box), fragile(vase)}. The precondition of
drop(vase) is satisfied in this initial knowledge state,
and applying it yields the new knowledge state defined
by Kf = {onfloor(vase), holding(box), fragile(vase),
broken(vase), dropped(vase)}. In particular, the condition
fragile(vase) was known, sobroken(vase) will be known
after the action is performed.

The precondition ofdrop(box) is also satisfied in the
above initial knowledge state. However, the effect precondi-
tion K(fragile(box)) is not satisfied, so the conditional ef-
fect cannot be applied. The new knowledge state in this
case isKf = {holding(vase), onfloor(box), fragile(vase),
dropped(box)}. If we now apply the actioninspect(box),

we obtain the databaseKw = {broken(box)}, with Kf un-
changed. That is, after the inspect the agent will have sensed
the value ofbroken(box).

Domain specific update rules
A planning problem may also include a setU of domain
specific update rules. These rules have the same form as
those for conditional effects (C ⇒ E), whereC is a con-
junctive set of primitive queries andE is a set of database
updates. These updates correspond to state invariants at the
knowledge level and may be triggered in any knowledge
state where the preconditions for a specific update are sat-
isfied.

Strictly speaking domain specific update rules are not nec-
essary. Rather, one could always elaborate the action effects
so as to capture these invariants. This approach is common
in classical planning. For example, in the blocks world the
stack action requires that the block to be stacked on be clear
and it deletes clear, thus maintaining the state invariant that
a block can have only one block on top of it. Dealing with
knowledge level invariants this way tends, however, to be
more cumbersome. Thus we have added the notion of do-
main specific update rules to ease the task of writing knowl-
edge level domain specifications.

For example, in the above example we could add the fol-
lowing update rules:

• K(broken(x))∧K(dropped(x)) ⇒ add(Kf , fragile(x)).
• K(¬broken(x)) ∧K(dropped(x)) ⇒

add(Kf ,¬fragile(x)).
Since drop only operates on objects known to be unbroken,
if we know that an object was dropped and was broken it
must have been broken by the drop, and thus it must have
been fragile. Similarly, if the object was dropped and re-
mains unbroken it must not be fragile. These update rules
would allow knowledge level conclusions about fragile to
be drawn when we obtain knowledge about broken.

Consistency rules
The standardSTRIPS formalism involves only a single
database. In our case, however, since we have distinct
databases we must ensure that their contents remain mu-
tually consistent. As with domain update rules, we have
found that we can facilitate the specification of actions by
providing a collection of standard, domain independent con-
sistency rules. These rules allow the actions to specify an up-
date to one database with the necessary updates to the other
databases being performed automatically. Our consistency
rules maintain the following conditions:

1. there is no formulaα such thatα and¬α are both inKf .

2. no functionf(c1, . . . , cn) in Kf can map to more than one
distinct constant.

3. if a literal ` is added or deleted fromKf as the result of
a non-sensing action, remove all formulas fromKx that
mention` or¬`.

4. if a literal ` is added toKf as the result of making a
conditional branch in the plan, and there exists a formula
φ ∈ Kx such thatφ = (`1| . . . |`m), then

(a) if ` ≡ `i for somei, deleteφ from Kx and add¬`j to
Kf for eachj 6= i.

(b) if ` ≡ ¬`i for somei, deleteφ from Kx and add the
formula(`1| . . . |`i−1|`i+1| . . . |`m) to Kx.

Rules 1 and 2 are simple consistency conditions forKf .
In the specification of a planning problem, the initial state
must include aKf database that meets the consistency re-
quirements of rules 1 and 2.

Rules 3 and 4 maintain consistency betweenKf andKx.
In general, sensing actions and ordinary (non-sensing) ac-
tions are different: sensing actions observe the state of the
world, whereas ordinary actions make changes to the state
of the world. In terms of our representation, sensing actions
add formulas toKv andKw, while ordinary actions add for-
mulas toKf . Kf , however, may also be updated by adding
assumptions arising from adding conditional branches to the
plan (see Knowledge-based planning, below). This distinc-
tion is important for ensuring the correct interaction between
Kf andKx: additions toKf resulting from making assump-
tions may allowKx formulas to be resolved, adding addi-
tional facts toKf (the agent’s knowledge is refined as a re-
sult of making an assumption about the outcome of an ob-
servation), whereas additions toKf resulting from ordinary
actions may causeKx knowledge to be lost (an action may
change the world so that aKx formula is no longer valid).

For example, if the formula φ =
(infected(I1)|infected(I2)) is in Kx, addinginfected(I2) to
Kf by assumption along a conditional branch would delete
φ from Kx and add¬infected(I1) to Kf . We could add
such a conditional branch if a sensing action had added
infected(I2) to Kw. Along the branch where we assume
infected(I2) we could also conclude¬infected(I1) since
our Kx knowledge tells us that that only one of these holds.
If, on the other hand,infected(I2) was added toKf by an
action that caused the infection we would simply removeφ
from Kx—it would no longer be necessarily true that only
one ofinfected(I1) or infected(I2) holds.

Knowledge-based planning
In this section we describe the operation ofPKS,9 a forward-
chaining planner that is able to construct conditional plans
in the presence of incomplete knowledge. The planning al-
gorithmPlanPKSis given in Table 2.

The planning algorithmPlanPKS(DB, P, G) takes as in-
put a database collectionDB, an initial planP , and a set of
goalsG. PlanPKSreturns a plan that achieves the goals, or
failure. A plan is a nested list of action sequences, where the
nesting indicates conditional branches in the plan. Given a
problem specification〈I, G,A,U〉, the planning algorithm
is initially invoked asPlanPKS(I, ∅, G), whereI is the ini-
tial database collection,∅ indicates an empty plan, andG is
the goal set.

The algorithm attempts to grow the plan by non-
deterministically choosing to either add a new action or a
new conditional branch.
Action addition: Adding an action is itself a non-
deterministic choice from among the set of actions whose

9PKS stands for Planning with Knowledge and Sensing.

beginPlanPKS(DB, P, G)
if goalsSatisfied(DB, G) then

return P
else Choose

pick(A) : precondsSatisfied(A, DB) ;
applyEffects(A, DB, DB′) ;
return PlanPKS(DB′, (P, A), G)

or
pick(α) : α is a ground instance of an entry inKw;
branch(DB, α, DB1, DB2) ;
C := {PlanPKS(DB1, ∅, G), PlanPKS(DB2, ∅, G)} ;
return P, C

endChoose
end

Table 2:PKS planning algorithm

preconditions hold inDB (the preconditions are tested using
the inference algorithmIA). Once the action is chosen, its
effects are applied to updateDB, after which all of the do-
main specific updates are applied and the consistency rules
enforced, this yields a new databaseDB′. Planning contin-
ues fromDB′.
Conditional branching: Adding a conditional branch first
involves making a non-deterministic choiceα of a ground
instance from the set of formulas inKw. In our implemen-
tation we restrict ourselves to branches on atomic formulas
from Kw. If α is a ground atomic formula fromKw then the
planner will know whether or notα is true at this point in the
plan when the plan is being executed. Thus it will have suf-
ficient knowledge to choose which branch direction it must
take at execution time. Since at plan time the planner does
not know which branch will be taken it must build a plan to
solve for both contingencies.

Onceα is chosen, two new databasesDB1 andDB2 are
created by modifyingDB. In particular, for bothDB1 and
DB2 α is removed fromKw, and inDB1 α is added toKf

(i.e.,α is known to be true inDB1), and inDB2 ¬α is added
to Kf in DB2 (i.e., α is known to be false inDB2). These
additions toKf may trigger various update rules to further
augmentDB1 or DB2.

PlanPKSis then invoked recursively to achieve the goal
setG from each of the new initial databasesDB1 andDB2.
These new plans are added to the current planP as a condi-
tional branch point.
Goal testing: The goalsSatisfiedstep simply evaluates the
set of goalsG in the currentDB. If the goal is true, the
current planP is returned. This means that for a conditional
branch,PlanPKSmust satisfy the goals along each branch.
Search: Search is used to implement the non-determinism
in PlanPKS. We have implemented both a breadth-first
search and a depth-first search version ofPlanPKS, but have
not yet implemented any search heuristics or other forms of
search control. That is we are employing blind search, with
some forms of cycle checking, to find plans. As can be ex-
pected breadth-first search does not scale up well. However,
the blind depth-first search does surprisingly well, which in-
dicates that there is a significant advantage to our approach
of modeling planning problems at the knowledge level.
Plan correctness:When planning with knowledge precon-

Action Precondition Effects
dunk(x) add(Kf , disarmed(x))

Table 3: BT action specification

Action Precondition Effects
dunk(x) K(¬clogged) add(Kf , disarmed(x))

add(Kf , clogged)
flush add(Kf ,¬clogged)

Table 4: BTC action specification

Action Precondition Effects
dunk(x, y) K(package(x)) add(Kf , disarmed(y))

K(toilet(y)) add(Kf , clogged(y))
K(¬clogged(y))

flush(y) add(Kf ,¬clogged(y))
Table 5: BMTC action specification

ditions, plan correctness relies on two criteria. As Levesque
(Levesque 1996) points out, not only is it necessary at plan
time for the planner to know that the plan will achieve its de-
sired goals, but at run time the planner must have sufficient
knowledge at every step of the plan to execute it.

ThegoalsSatisfiedstep of the planning algorithm ensures
that PKS meets the first criterion: plans are constructed so
that the goals are satisfied in the knowledge states along ev-
ery conditional branch of the plan. The second criterion
places an important condition on plan generation: a plan
should be built so that it doesn’t depend on information that
will be unknown to the planner at the required time. This
requirement is essential for constructing correct conditional
plans, where deciding what branch to execute must depend
on knowledge obtained earlier in the plan.

Our planner also meets this second criterion. Conditional
branches are built based on formulas inKw, where such for-
mulas are the result of sensing actions. The semantics of
Kw, however, ensure the planner will have definite knowl-
edge obtained from the results of the sensing action. Thus,
at run-time the planner will have sufficient knowledge to de-
termine which branch of a conditional plan should be ex-
ecuted (see (Bacchus & Petrick 1998) for a more detailed
discussion).

Empirical Results
Problems simple at the Knowledge Level
The first set of experiments involve two problem domains
which show the value of modeling problems at the knowl-
edge level. These domains become almost trivial at the
knowledge level. The first consists of 3 versions of the bomb
in the toilet domain, and the second is the medicate domain.
Bomb in the Toilet: In the standard BT version (Table 3)
there is one toilet andp packages, one of which is a bomb.
At the knowledge level it is irrelevant which of thep pack-
ages is the bomb: we must generate a plan that allows us to
know that every package is disarmed, and the dunk action
is the only action that provides such knowledge. Thus we
can only achieve our goal by dunking every package. Note
that this abstracts from the distinctions maintained by those
approaches that use sets of possible worlds to represent in-
complete knowledge. Such approaches will keep track of
the individual possibilities as to which package is a bomb.

Then they must implicitly reason about the sequence of ac-
tions they will employ to ensure that these actions cover all
of these possibilities.

The next version is the BTC version (Table 4) where the
toilet becomes clogged on every dunk, we must know that
the toilet is unclogged before we can do a dunk, and we have
an additional flush action that always unclogs the toilet (thus
providing us knowledge of this fact). This version forces the
solution to be sequential and thus the results provide a better
comparison of our approach with other planners since our
planner is not currently capable of generating parallel plans.

The last version is the multiple toilets version with high
uncertainty (BMTC) where we do not initially know whether
or not the toilets are clogged. At the knowledge level this
domain is almost the same as the simpler BTC version. The
only change is that thedunkaction must also specify which
toilet to dunk into, thus it has an extray parameter. Again
at the knowledge level all that matters is to gain knowledge
that each package is disarmed, and the only way to know that
a package is disarmed is to dunk it. To perform a dunk the
agent must know that the toilet is not clogged, and the only
way to achieve that knowledge is to flush the toilet. Thus
at the knowledge level it is irrelevant which particular col-
lection of toilets are initially clogged: toknow that a toilet
is unclogged we have to flush it. In this version, the sets of
possible worlds approach faces an explosion in the number
of initial states. In particular, withk toilets such approaches
would have to represent all2k possible sets of clogged and
unclogged toilets.10 That is, it is forced to maintain a dis-
tinction between all possible ways that the toilets could be
initially clogged, when in fact this is irrelevant, all that mat-
ters is that the agent does not know they are not clogged.

The performance of our planner on these problems is
shown in Tables 6 and 7. All times are reported in CPU
seconds, and we ran our planner on a 450 MHz Sun with
4GB of memory.11 The plans produced are the ones ex-
pected: dunk all of the packages one by one, flushing the
toilet at each stage to ensure it is unclogged. The perfor-
mance of our planner on these problems is at least as good
as those reported in (Bertoliet al. 2001) for their HSCP
system, and considerably better than those reported for the
CMBP (Cimatti & Roveri 2000) and GPT (Bonet & Geffner
2000) systems. However, results for the HSCP system were
only given for very small problems (10 packages in the BT
domain, 16 in the BTC domains, and 10 packages/6 toilets
for the BMTC domain) which makes a proper comparison
impossible.

The results demonstrate that these problems are very easy
at the knowledge level. Breadth first search can also be ap-
plied to these domains, but it is much slower since it must
investigate all permutations of package dunkings. It is worth
noting that our approach can solve the (100,60) BMTC prob-

10It could be that BDDs can represent this set compactly, how-
ever, the point remains the same: the set of possible worlds ap-
proach is forced to make many more distinctions that might be
necessary for solving the problem.

11This machine is a general compute server, our planner in fact
had very modest memory requirements.

#P BT BTC #P BT BTC
10 0.00 0.00 60 0.00 0.01
20 0.00 0.00 70 0.00 0.01
30 0.00 0.00 80 0.01 0.02
40 0.00 0.00 90 0.01 0.02
50 0.00 0.01 100 0.02 0.03

Table 6: Results for BT and BTC with #P packages using
depth first search

BMTC – DFS
(#P, #T) Time (#P, #T) Time (#P, #T) Time

(10, 10) 0.00 (10, 20) 0.01 (10, 30) 0.01
(20, 10) 0.02 (20, 20) 0.03 (20, 30) 0.04
(40, 10) 0.15 (40, 20) 0.20 (40, 30) 0.24
(60, 10) 0.57 (60, 20) 0.68 (60, 30) 0.81
(80, 10) 1.63 (80, 20) 1.97 (80, 30) 2.41

(100, 10) 4.78 (100, 20) 5.68 (100, 30) 6.92

(10, 40) 0.02 (10, 50) 0.02 (10, 60) 0.03
(20, 40) 0.05 (20, 50) 0.06 (20, 60) 0.08
(40, 40) 0.29 (40, 50) 0.35 (40, 60) 0.43
(60, 40) 0.97 (60, 50) 1.19 (60, 60) 1.47
(80, 40) 3.05 (80, 50) 3.66 (80, 60) 4.71

(100, 40) 8.17 (100, 50) 9.64 (100, 60) 11.54

Table 7: Results for BMTC with #P packages, #T toilets
using depth first search

Medicate
#I Time #I Time #I Time
20 0.08 50 1.61 80 9.52
30 0.28 60 3.13 90 13.68
40 0.74 70 5.71 100 20.39

Table 8: Results for Medicate with #I infections

lem in less than 12 seconds. This problem would have over
260 possible worlds in the initial state.
Medicate: Medicate is another domain that becomes trivial
at the knowledge level. In this domain the patient has one
of I possible infections, or no infections at all. The plan
that must be found involves performing astainaction to di-
agnose the infection the patient has and then conditionally
applying the appropriatemedicateaction to cure the infec-
tion. Applying the wrong medication will kill the patient.

Once again at the knowledge level all that we need to do
is to achieve knowledge that the patient is cured, so our plan
simply moves through a sequence of knowledge states where
the possible infections are eliminated one by one. We never
need to track the different possibilities reflecting which of
the uneliminated illnesses might be the actual one. The per-
formance of our planner on this domain is shown in Table 8.
The Knowledge Level: It could be argued that our results
for these two domains are incomparable with those reported
in (Bertoli et al. 2001) since our model of the problem is
different. To some extent this is true. But the point we are
making here is that we are able to solve the same problem
using a more abstract model of the domain. In particular,
we are using the same intuitive description of the domain
and we are generating the same plans as those generated by
HSCP. Hence these results provide evidence of the utility of
modeling problems at the knowledge level.

Action Precondition Effects
dial(x) add(Kw, open)

del(Kf ,¬open)
add(Kf , justDialed= x)
K((combo) = x) ⇒

add(Kf , open)
Domain specific update rules
K(open) ∧K(justDialed= x) ⇒ add(Kf , (combo) = x)
K(¬open) ∧K(justDialed= x) ⇒ add(Kf , (combo) 6= x)

Table 9: OSMC action specification

Opening a safe
A far more interesting domain for our planner is the open
safe problem. We consider two versions of this problem. In
the first version (OSMC) we consider a safe and a fixed num-
ber of possible combinations. In the initial state we know
that the safe is closed and that one of these combinations
is the combination for the safe (this is represented asKx

knowledge in the initial state). The actual combination of
the safe is represented as a 0-ary function(combo). Since
the actual combination is unknown, semantically, this func-
tion has different values in different possible worlds. The
goal is to know that the safe is open.

There is only one action for this domain which dials a
combinationx, given in Table 9. If we dialx we no longer
know with certainty that the safe is closed (del(Kf ,¬open)),
but we also know whether the safe is open (add(Kw, open)).
That is, when this action is actually executed the agent will
detect if the safe is open, but at plan time it only acquires
Kw knowledge. We also come to know thatx was the com-
bination we just tried, and if we know with certainty thatx
is the combination,K(x = (combo)) then we will come to
know that the safe is open.

We also have two domain specific update rules which al-
low us to conclude (1) that the combination just dialed is the
safe’s combination if it opened the safe, and (2) the combi-
nation just dialed is not the safe’s combination if it failed to
open the safe.

Using blind depth-first search the planner is able to solve
fairly large instances of this problem (100 combinations in
less than 900 sec.). However, as to be expected with undi-
rected depth-first search, the solutions generated are lengthy
and contain many irrelevant instances of thedial operator.
Eventually, however, the plan does succeed opening the safe.

We are still investigating alternate methods for controlling
search inPKS. However, a particularly simple and effec-
tive approach to search control to use extra preconditions to
block attempting an action in contexts where it is not useful
to perform it (Bacchus & Ady 1999). Given that the goal is
to open the safe, there are two obvious ways to use precon-
dition control. First, if we know whether the safe is open, it
is clearly better to branch on this possibility rather than try-
ing to dial another combination: on one side of the branch
we will have achieved the goal and other we would have
achieved more knowledge. This control can be achieved by
adding the precondition¬Kw(open) to dial. Second, if we
know thatx is not the combination of the safe, then there is
no point in dialingx. This control can be achieved by adding

OSMC
#C Orig. Pre. #C Orig. Pre.
10 0.07 0.00 60 80.48 0.08
20 0.94 0.01 70 162.95 0.12
30 4.62 0.01 80 289.23 0.18
40 14.59 0.03 90 516.58 0.25
50 36.88 0.05 100 863.25 0.34

Table 10: Results for OSMC with #C combinations

the precondition¬K((combo) 6= x).
With these two preconditions the performance of the plan-

ner is significantly improved. Its performance on the orig-
inal domain (Orig.) and when control preconditions are
added (Pre.), is shown in Table 10. This example illustrates
that as in classical planning (Bacchus & Ady 1999) search
control can be applied with great effect in the incomplete
knowledge situation.

Besides speeding up the planner, search control also
greatly improves the quality of the plans generated. The
plans constructed consist of a sequence of dial actions, one
for each possible combination. After each dial the planner
hasKw knowledge ofopenand the planner can insert a con-
ditional branch after each dial. On one side of the branch
we have that the safe is open. Furthermore, the first domain
specific update rule allows us to conclude thatx is in fact
the combination of the safe (i.e., it just opened the safe), and
the domain independent consistency rules use theKx knowl-
edge to conclude that all of the other combinations are not
the safe’s combination. This side of the branch achieves the
goal of knowing that the safe is open as well as knowledge
of what the combination is.

On the other side of the branch the safe is open, and we
also know, via the second domain specific update rule, thatx
is not the combination of the safe. The consistency rules al-
low us to conclude that only one of the untried combinations
can be the combination. This branch will then be extended
by dialing another combination. Thus the plan generated
will try all of the combinations in sequence stopping when
one of them opens the safe.

Run-time variables The second open safe problem is
much easier to solve, but it illustrates a very interesting
feature of our approach. In this version we have two ac-
tions available as shown in Table 11. The extra action is
a readComboaction, which can be executed if we know
haveCombo, i.e., we have the safe’s combination written on
a piece of paper. In the initial state we knowhaveCombo,
but we know nothing else about the safe’s combination. In
particular, we do not have a finite set of different possibili-
ties for its combination. Again the goal is to know that the
safe is open.

readCombois a sensing action that senses the value of
the function(combo) at execution time. At plan time it
adds(combo) to Kv: at plan time we will come to know
that this term’s value is known. Once weKv the term
(combo) the preconditions ofdial((combo)) hold, as we
Kv((combo)), and we know(combo) = (combo) (and thus
that¬K((combo) 6= (combo)). The effects of this action are
to know whether the safe is open, and since the precondition

Action Precondition Effects
dial(x) Kv(x) add(Kw, open)

¬K((combo) 6= x) K((combo) = x) ⇒
add(Kf , open)

readCombo K(haveCombo) add(Kv, (combo))

Table 11: OSSC action specification

of the conditional effect is true (weK((combo) = (combo))
since these two terms are syntactically identical), we also
come to know that the safe is open.12

Thus from an initial state where we knowhaveComboour
planner constructs the planreadCombo; dial((combo)): first
read the combination and then dial it to open the safe. This
plan is constructed in time that is below the resolution of our
measurements. It should also be noted that the single action
dial((combo)) is not a plan: prior toreadCombowe do not
know the value of(combo).

An important feature of this plan is that the value for
(combo), and thus the parameter that instantiatesdial, is not
know until run-time. The term(combo) acts as a run-time
variable (Etzioni, Golden, & Weld 1997), its value is only
determined at run time. However, at plan time we know that
the value it will take on at run time will allow the plan to
achieve its goal. (That is, no matter what value(combo)
takes at run time, that value will open the safe.) The ability
to generate a plan whose parameters are only filled in at run
time is essential when dealing with environments where not
all objects are know at plan time. In this case, in contrast to
the previous example, we do not know the range of different
combinations that could be dialed. Thus the only plan that
will work is one with a run-time variable.

UNIX domain
Our final example is taken from theUNIX domain. The ac-
tions for this domain are given in Table 12. A directory hi-
erarchy is defined by the relationindir(x, y) (x is in direc-
tory y), the current working directory is specified by a 0-ary
function(pwd), and there are two actions for moving around
in this hierarchy and one for gathering information. The first
action is a change directorycd-down(x) that can move down
to a sub-directory of(pwd). It requires thatx is know to be
a sub-directory of the current directory, and its effect is to
change the current directory. The second action iscd-up(x)
that moves up to the parent of the current directory. It re-
quires that it be know thatx, the directory to be moved to,
contains the current working directory. Finally, the third ac-
tion is an ls action that can sense the presence of a file in
the current working directory. Note that the change direc-
tory actions operate by modifying the value of the function
(pwd).

Initially, the planner has knowledge of the value
of the current directory,(pwd) = root, and knowl-
edge of the directory structure: indir(papers, root),
indir(mail, root), indir(kr, papers), indir(aips, papers), and

12It is not inconsistent toKw that the safe is open as well as know
it (Kf). TheKw information is, however, made redundant by this
Kf information.

Action Precondition Effects
cd-down(x) K(directory(x)) add(Kf , (pwd) = x)

K(indir(x, (pwd)))
cd-up(x) K(directory(x)) add(Kf , (pwd) = x)

K(indir((pwd), x))
ls(x, y) K(file(x)) add(Kw, indir(x, y))

K((pwd) = y)

Table 12:UNIX domain action specifications

indir(planning, aips). The goal is to move the cur-
rent working directory to the directory containing the
file paper.tex. This goal can be specified as the con-
dition K(indir(paper.tex, (pwd))). That is, achieve a
knowledge state where it is known thatpaper.tex is in
directory (pwd). Initially, the planner has incomplete
knowledge of the location ofpaper.tex. In particular,
(indir(paper.tex, planning)|indir(paper.tex, kr) is in Kx (file
paper.texis in directoryplanningor kr).

One solution is the conditional plan:
cd-down(papers); cd-down(kr); ls(paper.tex, kr);
cd-up(papers); branch on indir(paper.tex, kr): if
K(indir(paper.tex, kr)) then cd-down(kr), otherwise
cd-down(aips), cd-down(planning).

The BFS version of our planner finds this plan in 0.16
seconds. This is the first plan found, but other plans can be
found, including one that branches right after thels rather
this one which moves back up topapersbefore branching.
Note that theKw knowledge obtained byls is not destroyed
by thecd-up(papers) action, so it is a valid plan to branch
after this action rather than before. The planner is also able
to solve other more elaborate problems with these actions.
If a “move file” action was defined in the domain, another
way the goal could be achieved would be by moving the file
paper.texto the present directory (whatever it was). Since
we do not have such an action, we must move to the file
instead.

Conclusions
We have presented a new approach to planning with incom-
plete knowledge and sensing. Our approach works directly
at the knowledge-level, modeling how the agent’s knowl-
edge evolves as actions are added to a plan. The advantage
of our approach is that it is able to abstract from many irrel-
evant distinctions that occur at the level of possible worlds
but not at the level of “compact” knowledge assertions. As
a result we are able to model many additional features, like
functions and run time variables, that appear to be essential
for many interesting domains. On the other hand, our ap-
proach is limited in its inferential power: plans that could be
discovered by reasoning at the level of possible worlds might
not be found by our approach. Nevertheless, we consider the
trade off between the power of low-level case analysis and
the power of richer representations to be worth making, at
least in the domains that we are most interested in like the
UNIX domain.

There are many issues for future study, including improv-
ing the searching capacity of our planner and increasing the
power of the representation so that we can handle additional

types of planning problems. One issue that our work raises
is the question of just how easy is it to specify domains at
the knowledge level. We are currently studying methods
for automatically converting a set of actions described by
their effects on the world into a set of knowledge-level ac-
tions described by their effects on the agent’s knowledge.
Some progress has been made on this problem, and solving
it would remove this particular concern (Petrick & Levesque
2002).

References
Anderson, C. R.; Weld, D. S.; and Smith, D. E. 1998. Extending
graphplan to handle uncertainty & sensing actions. InProceed-
ings of the AAAI National Conference, 897–904.

Bacchus, F., and Ady, M. 1999. Precondition control. available
at http://www.cs.toronto.edu/˜fbacchus/on-line.html.

Bacchus, F., and Petrick, R. 1998. Modeling and agent’s incom-
plete knowledge during planning and execution. InProceedings
of the International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 432–443.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001. Plan-
ning in nondeterministic domains under partial observability via
symbolic model checking. InProceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 473–478.

Bonet, B., and Geffner, H. 2000. Planning with incomplete in-
formation as heuristic search in belief space. InProceedings of
the International Conference on Artificial Intelligence Planning,
52–61.

Bryant, R. E. 1992. Symbolic boolean manipulation with ordered
binary decision diagrams.ACM Computing Surveys24(3):293–
318.

Cimatti, A., and Roveri, M. 2000. Conformant planning via sym-
bolic model checking.Journal of Artificial Intelligence Research
13:305–338.

Etzioni, O.; Golden, K.; and Weld, D. 1997. Sound and efficient
closed-world reasoning for planning.Artificial Intelligence89(1–
2):113–148.

Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.Rea-
soning About Knowledge. MIT Press, Cambridge, Massachusetts.

Garson, J. W. 1977. Quantification in modal logic. In Gabbay, D.,
and Guenthner, F., eds.,Handbook of Philosophical Logic, Vol. II.
Dordrecht, Netherlands: Reidel. 249–307.

Levesque, H. J. 1990. All I Know: A study in autoepistemic
logic. Artificial Intelligence42:255–287.

Levesque, H. J. 1996. What is planning in the presence of sens-
ing? In Proceedings of the AAAI National Conference, 1139–
1146. AAAI Press / MIT Press.

Petrick, R. P. A., and Levesque, H. J. 2002. Knowledge equiv-
alence in combined action theories. InProceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoning.

Pryor, L., and Collins, G. 1996. Planning for contingencies: A
decision-based approach.Journal of Artificial Intelligence Re-
search4:287–339.

Scherl, R. B., and Levesque, H. J. 1993. The frame problem
and knowledge-producing actions. InProceedings of the AAAI
National Conference, 689–695. AAAI Press / MIT Press.

Weld, D., and Etzioni, O. 1994. A softbot-based interface to the
internet.Communications of the ACMJuly:72–76.

