Planning as model checking

Omar El-khatib and Hung Viet Le
March 15, 2004

A classical plan is of the form: a,as, ..., ay,, which is a sequence of actions.
In planning as model checking, we consider plans — called situated plans — of
the following form:

m={(s,a):s€ S and a € A}

Each (s,a) in 7 is called a state-action pair.
To execute a situated plan plan 7, we use the following algorithm:

whiles € {S: (s,a) e }
do execute a such that (s, a) € 7 and let s := R(s, a)

Example 1 Consider example 1 from previous lecture, repeated here:

o F = {Loaded, Locked }
o A = {Lock, Load, wait, Unlock, Unload }
o S ={¢, {Locked}, {Loaded}, {Locked, Loaded}}

e R= {(SOJ wait; 80)7 (SOJ Loack, Sl)} (SO; Load, 82)7 (31: UnIOCk: SO)} (82;
Unload, so), (s2, Lock, s3), (s3, Unlock, s3) }

wai t

I ock unl oad unl ock
Not Loaded Not Loaded Loaded Loaded
Locked Not Locked Not Locked Locked

Figure 1: System description



2 ()

a

Figure 2: Example with m5={(1, a), (2, b), (1, ¢)}

(See figure 1)

Let my = {(2, wait), (3, lock)}. Applying the previous algorithm, starting
from the state 2, we will execute wait forever.

If ma={(2, load), (3, lock)} then, starting from the state 2, we will execute
load, then lock and we will reach state {4} and stop.

This shows that the execution of a situated plan is different than the execu-
tion of a classical plan.
Another difference is illustrated in the next example.

Example 2 (See figure 2)
For ms={(1, a), (2, b), (1, c)}, since state {1} appears twice in w3, we
cannot decide whether we should execute a or c.

A plan is called a goal preserving plan if it satisfyies the following condition:

m={(s,a)ls ¢ G}

where G is the set of states in which the goal is satisfied. The above formula
says that the execution of a plan should stop when the goal is reached. This
condition is a strong one. A weaker condition for a plan might needed, which
is rather than not acting in a goal state, a plan can still act without removing
the goal states. This condition is called a dynamic goal preserving plan which
is stated formally:

m={(s,a):s€ S,a€ A ifs € G then R(s,a) € G}
A plan is called a fair goal preserving if it satisfies the following condition:

forevery (sg,ap) € m with sg € G, then 3(s1,a1), (s2,a2),...,(8n,an) such that
si+1 = R(si,a;) for 0<i<n—1and s, € G.

A goal achieving plan is defined recursivly as follows:

e ={(s,a): s€S,a€ A, R(s, a) € G} is a goal acheiving plan. This
represent reaching the goal in one step.

o If 7' is a goal acheiving plan, then = = #n'U {(s, a)} such that R(s, a) €
{s’: (¢’, @) € 7' } is a goal achieving plan.



Situated plan is a goal preserving and a goal achieving plan.

Situated plan is different than classical plan in that it can handle unexpected
action outcomes. Consider example 1, for the plan 72, starting from the state
2. If the execution of the action load fails (i.e. no load happens), then we stay
at state 2, and we need to execute load again. On the other hand, the classical
plan load;lock will fail.

The Algorithm for generating a situated plan is shown below:

Algorithm plan(P)

1 CS=¢

2 NS=¢

3 plan = ¢

4  whileNS # CS do

5 if I CNS then return plan

6 compute OS = OSP(NS, D)
7 CS=NS

8 plan = plan U prune(OS, NS)
9 NS = NS U proj(0S)

10 end_while
11 return fail
12 end_plan

where :
e NS is the next states set.

e CS is the current states set.

plan is a list of actions that represents the required plan.

0OS=O0SP: returns all state-action pairs that can reach any state in NS,
i.e. OSP={(s,a): s €S, acA, (3¢’ : (s € NS and s’=R(s, a)))}

prune(OS, NS) = {(s, a) : (s, a) € OS and s ¢ NS}
e proj(0S) = {s: (s,a) € OS }

Example 3 Consider example 1 (from the previous note). Let the goal be /.
Executing algorithm plan step by step is as follows:

step Ezecution

1 CS=¢

2 NS=/

3 plan =¢

4 while loop: CS # NS not satisfied so enter the loop
5 I¢NS

6 OS ={(3, lock)}

7 CS=1{4)



Not Loaded Not Locked
M spl aced

Not Loaded Not Loaded Loaded Loaded
Locked Not Locked Not Locked Locked

Figure 3: System description

8 plan ={(8, lock)}

9 NS={4y U {3 =13 4}

4 while loop: CS # NS not satisfied, so continue in while loop

5 I¢NS

6 OS={(2, load), (3, lock), (4, unlock)}

7 CS={3, 4}

8 plan={(3, lock)} U {(2, load)} = {(2, load), (3, lock)},
pruning will remove (3, lock) and (4, unlock) because they are in NS.

9 NS={3, 4} U {2} = {2 3 4}

4 while loop: CS # NS not satisfied, so continue in while loop

5 I NS satisfied return plan = {(2, load), (3, lock)}

The above algorithm returns a goal preserving plan and goal achieving plan.

Properties of the algorithm plan(P) are:

e Correctness: every plan returned by the algorithm plan(P) is a goal pre-
serving plan.

e Completness: If there is a situated plan, algorithm plan(p) will return
that plan. It will stop if there is no situated plan. However the algorithm
plan(P) returns only one plan, it can be modified to return multiplans
plans.

1 Non—-determinism

In classical planning we assume that actions are determinstic meaning that an
action will change from a state to only one state. However, if we relax this
assumption, by allowing actions to be non—determinism, i.e., execution of an
action might result in different states. Adding a new state 5 to example 1 (from



the previous note) as shown in figure 3, with a new action adjust.
This requires to change the function R to a transition relation R C S x A x S.
In this example, we have

o 5 = {(2, load), (3, lock), (5, adjust)} is called strong plan meaning that
it guarantees to reach a goal.

o pig={(2, load), (3, lock)} is a weak plan meaning that it might reach the
gaol.

We need an algorithm to generate situated plans in the presence of non-
determinism. It is easy, just modify the algorithm plan(P) by changing step 6
to:

OS = OSP(NS, D) = {(s, a) : V&’ (s’ € NS and R(s, a, s")}

2 planning via symbolic model checking
The key idea is the following:

e Planning problem is represented as formulas.

e Plans are represented as formulas.

e Planning is searching through the set of states by evaluating the assign-
ments to the variables in the formulas to satisfy the formulas.

How to construct the planning domain (D = <F, A, S, R>) as a formula:

e Fluent F is represented by x = x1,22,...,Zy.

S(x) is a formula in x. This represents the state S. In addition, s(x) = T
(tautology, i.e. always true).

for every Q CS, Q(x) is a formula represents Q.

Actions A is represented by a = a1,as,...,a,.

R is a transition relation which is represent by: R(x, a, x’), where x’ = x
but with a prime .

Example 4 Consider example 1 previously.
e 2= Loaded, Locked.

e s(x)= (—Loaded V —Locked) N (Locked V—Loaded) N (—Locked V Loaded)
A (Loaded V Locked)

e g = lock, unlock, load, unload, wait.

* R(z, 0, z’) is:



— R(1, unlock, 2) = (Locked A—Loaded) N unlock— (—Loaded’ A—Locked’)
— R(2, lock, 1) = (—Locked N—Loaded) A lock— (Locked’ A—Locked’)

— R(2, load, 3) = (—Locked A—Loaded) A load— (—Locked’ ALoaded’)

— R(3, unload, 2) = (—Locked ALoaded) A load— (—Locked’ A—Loaded’)
— R(3, lock, 4) = (—Locked ALoaded) A lock— (Locked’ ALoaded’)

— R(4, unlock, 8) = (Locked ALoaded) N\ unlock— (Locked’ A—Loaded’)

The symbolic representation of a planning problem P=<D, I, G> is obtained
from the symbolic representation of the planning domain D, and from the
boolean formulas I(x) and G(x). A ymbolic plan for a symbolic planning domain
D is a formula in X and a.

Example 5 For a plan {(2, load), (3, lock)}, it is represented symboliclly as:
(—LoadedV—Locked—load)A (LoadedV — Locked— lock).

To change algorithm plan(P) to handle the new symbolic representation of the
planning problem by changing:
OS = OSP = (x, a) : 3 x(x’ € NS and R(x, a, X')

Planning via symbolic model checking can be implemented in several ways,
but the most successful way is using Ordered Binary Decision Diagram (OBDD).
OBDD is a compact representation of the assignments satisfying (and falsifying)
a given boolean formula. OBDD is rooted, directed, binary, acyclic graph with
one or two terminal nodes (labeled 0 or 1).



