
Artificial Intelligence 143 (2003) 151–188

www.elsevier.com/locate/artint

Algorithms for propagating resource
constraints in AI planning and scheduling:

Existing approaches and new results ✩

Philippe Laborie

ILOG S.A., 9, rue de Verdun, BP 85, F-94253 Gentilly cedex, France

Received 12 January 2002; received in revised form 7 August 2002

Abstract

This paper summarizes the main existing approaches to propagate resource constraints in
Constraint-Based scheduling and identifies some of their limitations for using them in an integrated
planning and scheduling framework. We then describe two new algorithms to propagate resource
constraints on discrete resources and reservoirs. Unlike most of the classical work in scheduling, our
algorithms focus on the precedence relations between activities rather than on their absolute position
in time. They are efficient even when the set of activities is not completely defined and when the
time window of activities is large. These features explain why our algorithms are particularly suited
for integrated planning and scheduling approaches. All our algorithms are illustrated with examples.
Encouraging preliminary results are reported on pure scheduling problems as well as some possible
extensions of our framework.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Scheduling; AI planning; Constraint programming; Cumulative resources

1. Introduction

As underlined in [29], some tools are still missing to solve problems that lie between
pure AI planning and pure scheduling. Until now, the scheduling community has focused
on the optimization of large scheduling problems involving a well-defined set of activities.
In contrast, AI planning research—due to the inherent complexity of plan synthesis—

✩ A shorter version of this paper appeared in Proceedings of the Sixth European Conference on Planning,
Toledo, Spain, 2001.

E-mail address: plaborie@ilog.fr (P. Laborie).

0004-3702/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 36 2- 4

152 P. Laborie / Artificial Intelligence 143 (2003) 151–188

has focused on the selection of activities leaving aside the issues of optimization and the
handling of time and complex resources. From the point of view of scheduling, mixed
planning and scheduling problems have two original characteristics. First, as the set of
activities is not completely known beforehand, it is better to avoid taking strong scheduling
commitments during the search (e.g., instantiating or strongly reducing the time window
of an activity). Secondly, most of the partial plans handled by partial order planners
(POP) or by hierarchical task network planners (HTN) make extensive use of precedence
constraints between activities. And surprisingly, until now, the conjunction of precedence
and resource constraints has not been deeply investigated, even in the scheduling field
itself. Indeed, except for the special case of unary resources (for example in job-shop
scheduling), disjunctive formulations of cumulative resource constraints are relatively new
techniques and until now, they were mainly used for search control and heuristics [8,
22]. This is clearly a limitation, as POP-based frameworks start to be competitive with
recent state-of-the-art planning systems [26,29] and are recognized to be one of the most
promising approaches for handling domains with activity durations, and complex temporal
and resource constraints.

This paper proposes some new algorithms for Constraint-Based scheduling that strongly
exploit the relationships between precedence and resource constraints and allow a natural
implementation of least-commitment planning and scheduling approaches. The first
section of the paper describes our scheduling model. The second one summarizes the
state-of-the-art scheduling propagation techniques and explains why most of them are not
satisfactory for dealing with integrated planning and scheduling. In the next section, we
describe the basic structure—precedence graphs—on which our new proposed algorithms
rely. Then, we present two original techniques for propagating resource constraints: the
energy precedence algorithm and the balance algorithm. These algorithms have been
implemented in ILOG Scheduler, a C++ library for constrained-based scheduling [19].
The next two sections describe how these propagation algorithms can be embedded in a
least-commitment search procedure and give some preliminary results on pure scheduling
problems. Finally, the last section presents some extensions of the balance constraint: one
that allows for a stronger pruning, the other that extends it into a plan generation procedure
that can be proved sound and complete.

2. Model and notations

2.1. Activities

An activity A corresponds to a time interval [start(A), end(A)) where start(A) and
end(A) are the decision variables denoting the start and end time of the activity. We
assume that time is discrete that is, the values of start(A) and end(A) are integer.
Conventionally, startmin(A) denotes the current earliest start time, startmax(A) the latest
start time, endmin(A) the earliest end time, and endmax(A) the latest end time of activity A.
The duration of activity A is a variable dur(A) = end(A) − start(A). Depending on the
problem, the duration may be known in advance or may be a decision variable. In a mixed

P. Laborie / Artificial Intelligence 143 (2003) 151–188 153

planning and scheduling problem, the application of a planning operator may result in the
insertion of an activity or complex of activities into the current plan.

2.2. Temporal constraints

Our temporal constraint network is represented as a Simple Temporal Problem [12].
A temporal constraint is a constraint of the form: dmin � ti − tj � dmax where ti and tj are
each either a constant or a variable representing the start or end time of an activity, and
dmin and dmax are two integer constants. Note that simple precedence between activities
(dmin = 0, dmax = +∞) as well as release dates and deadlines (tj = 0) are special cases of
temporal constraints.

2.3. Resources

The most general class of resources we shall consider in this paper is the reservoir
resource. A reservoir resource is a multi-capacity resource that can be consumed and/or
produced by the activities. A reservoir has an integer maximal capacity and may have an
initial level. As an example of a reservoir, you can think of a fuel tank.

A discrete resource is a special kind of reservoir resource that is used over some time
interval: a certain quantity of resource is consumed at the start time of the activity and the
same quantity is released at its end time. Discrete resources are also often called cumulative
or sharable resources in the scheduling literature. A discrete resource has a known maximal
capacity profile over time. They allow us, for example, to represent a pool of workers whose
availability may change over time.

A unary resource is a discrete resource with unit capacity. It imposes that all the
activities requiring the same unary resource are totally ordered. This is typically the case of
a machine that can process only one operation at a time. Unary resources are the simplest
and the most studied resources in scheduling as well as in AI planning.

2.4. Resource constraints

A resource constraint defines how a given activity A will require and affect the
availability of a given resource R. It consists of a tuple 〈A,R,q,TE〉 where q is an integer
decision variable defining the quantity of resource R consumed (if q < 0) or produced
(if q > 0) by activity A and TE is a time extent that defines the time interval where the
availability of resource R is affected by the execution of activity A. For example:

• 〈A,R1,−1,FromStartToEnd〉 is a resource constraint stating that activity A will
require 1 unit of resource R1 between its start time and end time; thus, the availability
of R1 will decrease of 1 unit at the start time of A and will increase of 1 unit at its end
time, when A releases R1.

• 〈A,R2, q = [2,3],AfterEnd〉 is a resource constraint that states that activity A will
produce 2 or 3 units of reservoir (this is a decision variable of the problem) R2 at its
end time. This will increase the availability of R2 after the end time of A.

154 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 1. Mapping between time extents and resource events.

• 〈A,R3,−4,AfterStart〉 is a resource constraint that states that activity A will consume
4 units of resource R3 at its start time. This will decrease the availability of R3 after
the start time of A.

The possible time extents are FromStartToEnd, AfterStart, AfterEnd, BeforeStart,
BeforeEnd, and Always. An illustration of these time extents is available in the left part
of Fig. 1. Of course, the same activity A may participate in several resource constraints.
On a discrete resource, all the quantities q are less than or equal to zero. On a unary re-
source, they all belong to the set {−1,0}. Note that the change of resource availability at
the start or end time of an activity is considered to be instantaneous: continuous changes
are not handled.

2.5. Partial schedule

We assume in this paper that the search space consists of a global search tree that
consists in iteratively refining a partial schedule. A partial schedule is a set of activities,
temporal constraints and resource constraints. It corresponds to the current scheduling
information available at a given node in the search tree. In a mixed planning and scheduling
problem, it represents all the temporal and resource information of a partial plan.

2.6. Closed status of a resource

At given node in the search, a resource is said to be closed if no additional resource
constraint on that resource will be added in the partial schedule when continuing in
the search tree. The closed status of a resource is used in the algorithms described in
this paper: in general, when a resource is closed, more information can be deduced. In
stratified planning and scheduling approaches where the planning phase is separated from
the scheduling one, all the resources can be considered closed during scheduling as all
the activities and resource constraints have been generated during the planning phase.
Note also that in approaches that interleave planning and scheduling and implement a

P. Laborie / Artificial Intelligence 143 (2003) 151–188 155

hierarchical search as in [18], resources belonging to already processed abstraction levels
can be considered closed.

3. Existing approaches

From the point of view of Constraint Programming, a partial schedule is a set of
decision variables (start, end, duration of activities, required quantities of resource) and
a set of constraints between these variables (temporal and resource capacity constraints).
A solution schedule is an instantiation of all the decision variables so that all the constraints
are satisfied. In Constraint Programming, the main technique used to prune the search
space is constraint propagation. It consists in removing from the possible values of a
decision variable the ones we know will surely violate some constraint. More generally,
constraint propagation allows us in the current problem to find features shared by all the
solutions reachable from the current search node; these features may imply some domain
restriction or some additional constraints that must be satisfied. Currently, in constraint-
based scheduling there are two families of algorithms to propagate resource constraints:
timetabling and activity interaction techniques.

3.1. Timetabling

The first propagation technique, known as timetabling, relies on the computation for
every date t of the minimal resource usage at this date by the current activities in the
schedule [23]. This aggregated demand profile is maintained during the search. It allows
us to restrict the domains of the start and end times of activities by removing the dates that
would necessarily lead to an over-consumption or over-production of the resource.

For simplicity, we describe this technique only for discrete resources and assume
all the time extents are FromStartToEnd. Suppose that an activity A requires q(A) ∈
[qmin(A), qmax(A)] units of a given discrete resource R and is such that startmax(A) <

endmin(A), then we know surely that A will at least execute over the time interval
[startmax(A), endmin(A)). Thus, it will surely require |qmax(A)| units of resource R on this
time interval.1 See activity A1 in Fig. 2 for an illustration. For each resource R, a curve
CR(t) is maintained that aggregates all these demands:

CR(t)=
∑

{〈A,R,q〉/startmax(A)�t<endmin(A)}

∣∣qmax(A)
∣∣.

It is clear that if there exists a date t such that CR(t) is strictly greater than Q, the maximal
capacity of the resource, the current schedule cannot lead to a solution and the search must
backtrack. Furthermore, if there exists an activity B requiring q(B) units of resource R
and a date t0 such that:

(1) endmin(B)� t0 < endmax(B); and

1 As q(A)� 0, the minimal quantity of resource required by the activity is indeed |qmax(A)|.

156 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 2. Limitations of resource profiling approaches.

(2) ∀t ∈ [t0, endmax(B)),CR(t)+ |qmax(B)|>Q,

then, activity B cannot end after date t0. It would otherwise over-consume the resource.
Indeed, remember that, as endmin(B)� t0, B is never taken into account in the aggregation
on the time interval [t0, endmax(B)). Thus, t0 is a new valid upper bound for end(B).

Similar reasoning can be applied to find new lower bounds on the start time of activities
as well as new upper bounds on the quantity of resource required by activities. Moreover,
this approach easily extends to all types of time extent and to reservoirs.

The main advantage of this technique is its relative simplicity and its low algorithmic
complexity. It is the main technique used today for scheduling discrete resources and
reservoirs.

Unfortunately these algorithms propagate nothing until the time windows of activities
become so small that some dates t are necessarily covered by some activity. See activityA1
in Fig. 2. This means that unless some strong commitments are made early in the search on
the time windows of activities, these approaches are not able to propagate efficiently. For
example, if all the activities are like activity A2 in Fig. 2, the curve CR(t) will be equal to
zero and no propagation will occur. Furthermore, these approaches do not directly exploit
the existence of precedence constraints between activities.

3.2. Activity interactions

The second family of algorithms is based on an analysis of activity interactions. Instead
of considering what happens at a date t , it considers subsets Ω of activities competing for
the same resource and performs propagation based on the position of activities inΩ . Some
classical activity interaction approaches are summarized below.

3.2.1. Disjunctive constraint
The simplest example of such an algorithm is the disjunctive constraint on unary

resources [14]. This algorithm analyzes each pair of activities (A,B) requiring the same
unary resource. Whenever the current time bounds of activities are such that startmax(A) <

endmin(B), it deduces that, as activity A necessarily starts before the end of activity B ,

P. Laborie / Artificial Intelligence 143 (2003) 151–188 157

Fig. 3. Example of edge-finding propagation.

it must be completely executed before B . Thus, end(A) � startmax(B) and start(B) �
endmin(A).

Actually, on a unary resource, the classical disjunctive constraint can be generalized as
follows: whenever the temporal constraints are such that the constraint start(A) < end(B)
must hold,2 it adds the additional constraint that end(A) � start(B). Note that this
algorithm is the exact counterpart in scheduling of the disjunctive constraint to handle
unsafe causal links in POCL planners proposed in [20]. Unfortunately, such a simple
constraint only works in the restricted case of unary resources.

3.2.2. Edge-finding
Edge-finding techniques [5,27] are available for both unary (disjunctive scheduling) and

discrete resources (cumulative scheduling). On a unary resource, edge-finding techniques
detect situations where a given activity A cannot execute after any activity in a set Ω
because there would not be enough time to execute all the activities in Ω ∪ A between
the earliest start time of activities in Ω ∪A and the latest end time of activities in Ω ∪A.
When such a situation occurs, it means that A must execute before all the activities in Ω
and it allows computing a new valid upper bound for the end time of A. More formally, let
Ω be a subset of activities on a unary resource, and A /∈Ω another activity on the same
unary resource. If startmin(X), endmax(X) and durmin(X) respectively denote the minimal
start time, maximal end time and minimal duration over all activities in a set X, most of
the edge-finding techniques can be captured by the rule (1)⇒ (2) where:

(1) endmax(Ω ∪A)− startmin(Ω) < durmin(Ω ∪A),
(2) end(A)� minΩ ′⊆Ω (endmax(Ω

′)− durmin(Ω
′)).

In the example of Fig. 3, if we take A = A4 and Ω = {A1,A2,A3}, we see that the
conditions of the propagation rule are satisfied as endmax(Ω ∪ A) = 16, startmin(Ω)= 6

2 startmax(A) < endmin(B) is only a sufficient condition for the precedence constraint start(A) < end(B)
to hold. The extended disjunctive constraint allows propagation even when this precedence constraint is not a
consequence of the time-bounds of activities but, for example, belongs to the initial problem or has been added
as a decision in the search tree.

158 P. Laborie / Artificial Intelligence 143 (2003) 151–188

and dur(Ω ∪A)= 11. The edge-finding algorithm would compute a new upper bound on
the end time of A4 equal to 16 − 9 = 7 realized by taking Ω ′ = {A1,A2,A3}.

Similar rules allow us to detect and propagate the fact that a given activity must end
after all activities in Ω (Last), cannot start before all activities in Ω (Not First) or cannot
end after all activities in Ω (Not Last). See [31] for more details. Furthermore, edge-
finding techniques can be adapted to discrete resources by reasoning on the resource energy
required by the activities; that is, the product duration × required quantity of resource.
Most of the edge-finding algorithms can be implemented to propagate on all the n activities
and all the subsets Ω with a total complexity in O(n2) [3].

3.2.3. Energetic reasoning
Whereas edge-finding techniques compare the temporal characteristics of an activity

A with respect to a set of activities Ω , energetic reasoning [15] consists in comparing
the amount of resource energy required over a time interval [t1, t2) to the total amount
of energy that is available over the same interval. Both the edge-finding and energetic
reasoning techniques analyze the current time-bounds of activities in order to adjust them
by removing some invalid values.

A typical example of energetic reasoning consists in finding pairs of activities (A,B) on
a unary resource such that ordering activity A before B would lead to a dead end because
the unary resource would not provide enough “energy” between the earliest start time of
A and the latest end time of B to execute A, B and all the other activities that necessarily
need to partly execute on this time window. More formally, if C is an activity and [t1, t2) a
time window, the energy necessarily required by C on the time window [t1, t2) is:

W
[t1,t2)
C = max

(
0, min(endmin(C)− t1, t2 − startmax(C), durmin(C), t2 − t1)

)
.

Thus, as soon as the condition below holds, it means that A cannot be ordered before B
and thus, must be ordered after.

endmax(B)− startmin(A)

< durmin(A)+ durmin(B)+
∑

C/∈{A,B}
W

[startmin(A),endmax(B))
C .

This rule allows the update of the earliest start time of A and the latest end time of B .
Other adjustments of time bounds using energetic reasoning can be used, for example,

to deduce that an activity cannot start at its earliest start time or cannot end at its latest end
time. Furthermore, energetic reasoning can easily be extended to discrete resources.

A good starting point to learn more about edge-finding and energetic reasoning are [2,3,
13] where the authors describe and compare several variants of these techniques. Although
these tools (edge-finding, energetic reasoning) are very efficient in pure scheduling
problems, they suffer from the same limitations as timetabling techniques. Because they
consider the absolute position of activities in time (their time-bounds) rather than their
relative position (the precedence constraints between them), they will not propagate until
the time windows of activities are small enough. The propagation may be very limited
when the current schedule contains many precedence constraints. Furthermore, these tools
are available for unary and discrete resources only and are difficult to generalize to
reservoirs.

P. Laborie / Artificial Intelligence 143 (2003) 151–188 159

The following sections of this paper describes two new techniques to propagate
discrete and reservoir resources based on analyzing the relative position of activities rather
than their absolute position in time. These algorithms exploit the precedence constraints
between activities and propagate even when the time windows of activities are still
very large (which is typically the case in least-commitment planners and schedulers). Of
course—and this is one of the strength of constraint programming—these new propagation
algorithms can be used in cooperation with the existing techniques we just described above.
Both of our algorithms are based on the precedence graph structure presented in the next
section.

4. Precedence graph

4.1. Definitions

A resource event x on a resource R is a variable time-point at which the availability of
the resource changes because of an activity. A resource event corresponds to the start or
end point of an activity. Let:

• t (x) denote the variable date of event x . tmin(x) and tmax(x) will respectively denote
the current minimal and maximal value in the domain of t (x).

• q(x) denote the relative change of resource availability due to event x with the
usual convention that q > 0 denotes a resource production and q < 0 a resource
consumption. qmin(x) and qmax(x) will respectively denote the current minimal and
maximal values in the domain of q(x).

There is of course an evident mapping between the resource constraints on a resource
and the resource events as illustrated in Fig. 1. Depending on the time extent, a resource
constraint is mapped to one or two resource events.

Note that if the availability of the resource changes over time, dummy events may be
introduced to accommodate this availability profile. Of course, these dummy events may
impact the complexity.

A precedence graph on a resource R is a directed graph GR = (V ,E�,E<) where
E< ⊆E� and:

• V is the set of resource events on R.
• E� = {(x, y)} is the set of precedence relations between events of the form t (x) �
t (y).

• E< = {(x, y)} is the set of precedence relations between events of the form t (x) <

t(y).

The precedence graph on a resource is designed to collect all the precedence information
between events on the resource. These precedence information may come from: (1)
temporal constraints in the initial statement of the problem, (2) temporal constraints
between activities inserted by the same planning operator, (3) search decisions (e.g., causal

160 P. Laborie / Artificial Intelligence 143 (2003) 151–188

link, promotion, demotion [24], ordering decisions on resources) or (4) may have been
discovered by propagation algorithms (e.g., unsafe causal links handling [20], disjunctive
constraint, edge-finding, or balance constraint as described in Section 5.3) or simply
because tmax(x) � tmin(y). When new events or new precedence relations are inserted,
the precedence graph incrementally maintains its transitive closure [21]. The precedence
relations in the precedence graph as well as the initial temporal constraints are propagated
by an arc-consistency algorithm. Given an event x in a precedence graph and assuming the
transitive closure has been computed, we define the following subsets of events:

• S(x) is the set of events simultaneous with x; that is, the events y such that (x, y) ∈E�
and (y, x) ∈E�. Note that x ∈ S(x).

• B(x) is the set of events before x; that is, the events y such that (y, x) ∈E<.
• BS(x) is the set of events before or simultaneous with x; that is, the events y such that
(y, x) ∈E�, (y, x) /∈E< and (x, y) /∈E�.

• A(x) is the set of events after x; that is, the events y such that (x, y) ∈E<.
• AS(x) is the set of events after or simultaneous with x; that is, the events y such that
(x, y) ∈E�, (x, y) /∈E< and (y, x) /∈E�.

• U(x) is the set of events unranked with respect to x; that is, the events y such that
(y, x) /∈E� and (x, y) /∈E�.

Note that for any event x , {S(x),B(x),BS(x),A(x),AS(x),U(x)} is a partition of V . An
example of precedence graph with an illustration of these subsets is given in Fig. 4. On
figures depicting precedence graphs, a solid arc between two events x and y denotes a
constraint t (x) < t(y) whereas a dotted arc denotes a constraint t (x)� t (y). The graph in

Fig. 4. An example of precedence graph.

P. Laborie / Artificial Intelligence 143 (2003) 151–188 161

Fig. 4 corresponds to a current schedule with the six resource constraints listed below and
some precedence relations.

〈A1,R,−2,FromStartToEnd〉, 〈A2,R, [−10,−5],AfterStart〉,
〈A3,R,−1,AfterStart〉, 〈A4,R,+4,AfterEnd〉,
〈A5,R,+2,AfterEnd〉, 〈A6,R,+2,AfterEnd〉.

The subsets in Fig. 4 are relative to the event x corresponding to the start of activity A1.

4.2. Implementation and complexity

As we will see in next section, our propagation algorithms often need to query
the precedence graph about the relative position of two events on a resource, so this
information needs to be accessible in O(1). It explains why we chose to implement the
precedence graph as a matrix that stores the relative position of every pair of events.
Furthermore, in our structure, the complexity of traversing any subset of events (e.g., B(x)
or U(x)) is equal to the size of this subset. Note that the precedence graph structure is
extensively used in ILOG Scheduler and is not only useful for the algorithms described
in this paper. In particular, the precedence graph implementation allows the user to write
his own complex constraints that rely on this graph, as, for example, the one involving
alternative resources and transition times described in [16].

5. New propagation algorithms

5.1. Introduction

We describe in this section two new propagation algorithms respectively on discrete
resources and reservoirs. Like previous propagation algorithms, both of them are used to
discover new time bounds and/or new precedence relations on the current partial schedule.
The main originality of our algorithms relies on the fact that they analyze the relative
position of activities (precedence relations in the precedence graph) rather than their
absolute position only as it was the case for previous algorithms. As a consequence, they
allow a much stronger propagation when the time windows of activities is large and when
the current schedule contains a lot of precedence relations, which is typically the case when
integrating planning and scheduling.

5.2. Energy precedence constraint

The energy precedence constraint is defined on discrete resources only. It does not
require the resource to be closed (new activities and resource constraint can be added later
on in the search tree) thus, it can be used at any time during the search. For simplicity, we
assume that all the resource constraints have a time extent FromStartToEnd. Suppose that
Q denotes the maximal capacity of the discrete resource over time. If x is a resource event
and Ω is a subset of resource constraints that are constrained to execute before x , then the

162 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 5. Example of energy precedence propagation.

resource must provide enough energy to execute all resource constraints in Ω between the
earliest start times of activities of Ω and t (x). More formally:

tmin(x)� min〈A,R,q〉∈Ω
(
startmin(A)

) +
∑

〈A,R,q〉∈Ω(|qmax(A)| · durmin(A))

Q
.

A very simple example of the propagation performed by this constraint is given in Fig. 5.
If we suppose that the maximal capacity of the discrete resource is 4 and all activities
must start after time 0, then by considering Ω = {A1,A2,A3,A4}, we see that event x
cannot be executed before time [0] + [(2 × 10)+ (2 × 2)+ (2 × 8)+ (2 × 8)]/4 = 14. Of
course, a symmetrical rule can be used to find an upper bound on t (x) by considering the
subsets Ω of resource constraints that must execute after x . The same idea as the energy
precedence constraint is used in [30] to adjust the time-bounds of activities on different
unary resources.

It’s important to note that the energy precedence algorithm propagates even when the
time window of activities is very loose (in the example of Fig. 5, the latest end times
of activities may be very large). This is an important difference with respect to classical
energetic and edge-finding techniques that would propagate nothing in this case.

The propagation of the energy precedence constraint can be performed for all the events
x on a resource and for all the subsets Ω with a total worst-case time complexity of
O(n(p + log(n)) where n is the number of the events on the resource and p the maximal
number of predecessors of a given event in the graph (p < n).

5.3. Balance constraint

The balance constraint is defined on a reservoir resource. When applied to a reservoir,
the basic version of this algorithm requires the reservoir to be closed. When applied to a
discrete resource, the resource may still be open. The basic idea of the balance constraint
is to compute, for each event x in the precedence graph, a lower and an upper bound on the
reservoir level just before and just after x . The reader will certainly find some similarities
between this constraint and the Modal Truth Criterion (MTC) on planning predicates
first introduced in [10]. Actually this is not surprising as the balance constraint can be

P. Laborie / Artificial Intelligence 143 (2003) 151–188 163

considered as a kind of MTC on reservoirs that detects only some necessary conditions.3

Given an event x , using the graph we can compute an upper bound on the reservoir level
at date t (x)− ε4 just before x assuming:

• All the production events y that may be executed strictly before x are executed strictly
before x and produce as much as possible; that is, qmax(y);

• All the consumption events y that need to be executed strictly before x are executed
strictly before x and consume as little as possible; that is, qmax(y);5 and

• All the consumption events that may execute simultaneously or after x are executed
simultaneously or after x .

For simplicity we assume in this paper that the reservoir is initially empty (initial level
equal to zero). If this is not the case, we can always add a producing event that produces
the initial level of the reservoir at the time origin of the schedule.

More formally, if P is the set of production events and C the set of consumption events,
this upper bound can be computed as follows:

L<max(x)=
∑

y∈P∩(B(x)∪BS(x)∪U(x))
qmax(y)+

∑
y∈C∩B(x)

qmax(y). (1)

Applying this formula to event x in Fig. 4 leads to L<max(x)= (+4 + 2 + 2)+ (−5)= 3.
In case of a consuming resource constraint of time extent FromStartToEnd, and if both

the start and end event of the resource constraint are in BS(x) ∪ U(x), it is important
to notice that those two opposite events can be ignored by the balance constraint for the
computation of L<max(x). Indeed, any attempt to execute the production event (end event)
before x would also constrain the opposite consumption event (start event) to be executed
before x and the global contribution of the resource constraint would then be equal to
zero. This adjustment is very important for discrete resources as most of the resource
constraints on discrete resource are precisely consuming resource constraints of time extent
FromStartToEnd. Although this adjustment of the balance constraint was implemented, for
simplicity, we do not take it into account in the rest of this article.

In a very similar way, it is possible to compute:

• L<min(x): a lower bound of the level just before x .
• L>max(x): an upper bound of the level just after x .
• L>min(x): a lower bound of the level just after x .

For each of these bounds, the balance constraint is able to discover four types of
information: dead ends, new bounds for resource usage variables, new bounds for time

3 One can imagine extending our propagation algorithm into a real non-deterministic “goal-achievement
procedure” on reservoirs that would allow justifying the insertion of new reservoir producers or consumers into
the current plan when the resource is not closed. This extension is outlined in Section 8.2.

4 Remember that we assume that changes of resource availability only occur at discrete times (a time value is
an integer). In this context one can think of ε as any real number in the interval (0,1).

5 For a consumption event, q < 0 and thus, qmax really corresponds to the smallest consumption of the event.

164 P. Laborie / Artificial Intelligence 143 (2003) 151–188

variables, and new precedence relations. For symmetry reasons, we describe only the
propagation based on L<max(x).

5.3.1. Discovering dead ends
This is the most trivial propagation: whenever L<max(x) < 0, we know that the level of

the reservoir will surely be negative just before event x so the search has reached a dead
end.

5.3.2. Discovering new bounds on resource usage variables
Suppose there exists a consumption event y ∈ B(x) such that qmax(y) − qmin(y) >

L<max(x). If y would consume a quantity q such that qmax(y)− q > L<max(x) then, simply
by replacing qmax(y) by q(y) in formula (1), we see that the level of the reservoir
would be negative just before x . Thus, we can find a better lower bound on q(y) equal
to qmax(y) − L<max(x). In the example of Fig. 4, this propagation would restrict the
consumed quantity at the beginning of activity A2 to [−8,−5] as any value lower than
−8 would lead to a dead end. Similar reasoning can be applied to production events in
B(x)∪ BS(x)∪U(x).

5.3.3. Discovering new bounds on time variables
Formula (1) can be rewritten as follows:

L<max(x)=
∑
y∈B(x)

qmax(y)+
∑

y∈P∩(BS(x)∪U(x))
qmax(y). (2)

If the first term of this equation is negative, it means that some production events in
BS(x)∪U(x) will have to be executed strictly before x in order to produce at least:

Π<
min(x)= −

∑
y∈B(x)

qmax(y).

Let P(x) denote the set of production events in BS(x) ∪ U(x). We suppose the events
(y1, . . . , yi, . . . , yp) in P(x) are ordered by increasing minimal time tmin(y). Let k be the
index in [1,p] such that:

k−1∑
i=1

qmax(yi) <Π
<
min(x)�

k∑
i=1

qmax(yi).

If event x is executed at a date t (x)� tmin(yk), not enough producers will be able to execute
strictly before x in order to ensure a positive level just before x . Thus, tmin(yk)+ 1 is a
valid lower bound of t (x). In Fig. 4, Π<

min(x)= 5, and this propagation will deduce that
t (x) must be strictly greater than the minimal between the earliest end time of A5 and the
earliest end time of A6.

5.3.4. Discovering new precedence relations
There are cases where we can perform an even stronger propagation. Let P(x) denote

the set of production events in BS(x)∪U(x). Suppose there exists a production event y in
P(x) such that:

P. Laborie / Artificial Intelligence 143 (2003) 151–188 165

∑
z∈P(x)∩(B(y)∪BS(y)∪U(y))

qmax(z) <Π
<
min(x).

Then, if we had t (x)� t (y), we would see that again there is no way to produce Π<
min(x)

before event x as the only events that could produce strictly before event x are the ones in
P(x) ∩ (B(y) ∪ BS(y) ∪ U(y)). Thus, we can deduce the necessary precedence relation:
t (y) < t(x). For example on Fig. 4, the balance algorithm would discover that x needs to
be executed strictly after the end of A4. Note that a weaker version of this propagation
has been proposed in [9] that runs in O(n2) and does not analyze the precedence relations
between the events of P(x).

Note also that the precedence relations discovered by the balance constraint can be
rephrased in terms of algorithms on Minimal Critical Sets (MCSs) [22]. On a discrete
resource, a MCS is defined as a minimal set of activities (for the set inclusion) such that
all the activities in the set may globally overlap and the combined capacity requirement is
greater than the resource capacity. MCSs can be generalized on reservoirs by transforming
the reservoir into a discrete resource as follows. Any consumption event x is considered as
a requirement of a quantity |q(x)| over the time interval [t (x),+∞) and any production
event y as a requirement of a quantity |q(y)| over the time interval [−∞, t (y)). The
capacity of the discrete resource is equal to the maximal capacity of the reservoir plus
the sum of the quantities q(y) of each production event. Given an MCS Φ = {A1, . . . ,An},
it is sufficient to post one of the precedence relations Ai �Aj between a pair of activities
in the MCS to solve the potential conflict. An MCS is said to be deterministic if all those
precedence relations but one are incoherent with the current temporal network. In this case,
the unique coherent precedence relation can be inferred by constraint propagation without
opening a choice point. The problem with this approach is that the number of MCS grows
exponentially with the size of the problem. In this context, the balance constraint can be
seen as an algorithm that implicitly detects and solves some deterministic MCSs on the
reservoir—as each precedence relation discovered by the algorithm necessarily belongs
to at least one MCS—while avoiding the combinatorial explosion of enumerating these
MCSs.

5.3.5. Balance constraint properties
One can show that the balance algorithm—like timetabling approaches—is sound that

is, it will detect a dead end on any fully instantiated schedule that violates the reservoir
resource constraint. In fact, the balance algorithm does not even need the schedule to be
fully instantiated: for example, it will detect a dead end on any non-solution schedule as
soon as all the production events are ordered relatively to all the consumption events on
each resource.

We say that an event x is safe if and only if x is such that L<max(x)�Q, L>max(x)�Q,
L<min(x) � 0, and L>min(x) � 0. It is easy to see that when all events x on a reservoir are
safe, any instantiation consistent with the current precedence graph satisfies the reservoir
constraint. In other words, the reservoir is solved. This very important property allows
us to stop the search on a reservoir when all the events are safe and even if they are not
completely ordered. Note anyway that the fact that all events are safe is only a sufficient
condition for a partial schedule to be a solution. Because the bounds L<min(x), L

>
min(x),

L<max(x) and L>max(x), are not the tightest lower and upper bounds on the reservoir level,

166 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 6. Propagation of the balance constraint on a discrete resource.

this criterion is not a necessary condition. Thus, relying on this criterion to stop the search
may still lead to unnecessarily constrained solutions. We will see in Section 8.1 how to
improve the tightness of these bounds.

The balance algorithm can be executed for all the events on the reservoir with a global
worst-case complexity in O(n2) if the propagation that discovers new precedence relations
is not turned on, in O(n3) for a full propagation. In practice, there are many ways to
shortcut this worst case and in particular, we noticed that the algorithmic cost of the extra-
propagation that discovers new precedence relations was negligible. In our implementation,
at each node of the search, the full balance constraint is executed from scratch6 until a fixed
point is reached.

5.4. Comparison

Both the energy precedence and the balance algorithms can be applied to discrete
resources and rely on an analyze of the precedence relations between activities. An
interesting question is how the two propagation techniques perform relative to one another.
In fact, it is easy to see that no one technique dominate the other and that they are
complementary. The energy precedence propagation relies on some global energetical
considerations, as such, it is closer to edge-finding and energetical reasoning whereas the
balance propagation reasons on the level of the resource and, from this point of view, is
closer to timetabling approaches. Because it does not take the duration of activities into
account, the balance constraint is for instance not able to propagate in the case of Fig. 5.
The energy precedence algorithm does not discover new relative positioning of events and
for instance on the configuration of Fig. 6 on a discrete resource of maximal capacity 2,
it would not discover that activity A3 must start after min(endmin(A1), endmin(A2)). This
adjustment is found by the balance constraint.

So one can expect the precedence energy to be effective as soon as there are some
precedence constraints of the form end(A) � start(B) between activities on the discrete
resource whereas the balance constraint will be more effective in presence of temporal
constraints of the form start(A)� start(B), start(A)� end(B) or end(A)� end(B).

6 More precisely, as mentioned in Section 4, the sets S(x),B(x),A(x), BS(x), AS(x) and U(x) are maintained
incrementally in the precedence graph. Only the levels L<max(x), L

>
max(x), L

<
min(x), and L>min(x) are recomputed

from scratch.

P. Laborie / Artificial Intelligence 143 (2003) 151–188 167

6. Search

Before we describe in detail a search procedure and heuristics based on the balance
constraint for pure scheduling problems, the subsection below introduces some basic
blocks used by the search.

6.1. Basic blocks

6.1.1. Reservoir levels
Let x be an event on a reservoir of capacity Q and L<max(x), L

>
max(x), L

<
min(x), and

L>min(x) the levels computed by the balance constraint as described in Section 5.3.
We can define the following quantities:

• lack<(x)= max(0,−L<min(x)) denotes the maximal lack of reservoir just before event
x estimated by the balance constraint.

• lack>(x)= max(0,−L>min(x)) denotes the maximal lack of reservoir just after event x
estimated by the balance constraint.

• lack(x)= max(lack<(x), lack>(x)) denotes the maximal lack of reservoir just before
or after event x estimated by the balance constraint.

• excs<(x)= max(0,L<max(x)−Q) denotes the maximal excess of reservoir just before
event x estimated by the balance constraint.

• excs>(x) = max(0,L>max(x)−Q) denotes the maximal excess of reservoir just after
event x estimated by the balance constraint.

• excs(x) = max(excs<(x), excs>(x)) denotes the maximal excess of reservoir just
before or after event x estimated by the balance constraint.

• if we roughly suppose that all the levels between L<min(x) and L<max(x) and between
L>min(x) and L>max(x) are equiprobable,

prod(x)= L>min(x)+L>max(x)−L<min(x)−L<max(x)

2

estimates the average reservoir production at the time when event x occurs.

Event x will be said to be a globally producing event if and only if prod(x) > 0; in that
case, we will denote it isProd(x); otherwise, if prod(x)� 0, we will say that x is a globally
consuming event and denote it isCons(x).

Event x is said to be a globally underflowing event if and only if lack(x) > excs(x);
in that case, we will denote isLack(x). This means that if we roughly suppose that all the
levels between L<min(x) and L<max(x) and between L>min(x) and L>max(x) are equiprobable,
there are more chances that the reservoir will underflow at date t (x) than chances it will
overflow. Otherwise, if lack(x)� excs(x) we will say that x is a globally overflowing event
and denote it isExcs(x). These notions are depicted in Fig. 7.

6.1.2. Temporal commitment
The level of commitment of posting a constraint is usually defined as the ratio of fully

grounded schedules that are invalidated by this constraint. We describe in this section an

168 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 7. Reservoir levels.

estimation of the level of commitment of posting precedence constraints between events.
Let x and y be two events with respective lower and upper bound for time value: tmin(x),
tmax(x), tmin(y), tmax(y). The level of commitment of posting the constraint t (x) � t (y)

can be estimated as the ratio of the area of the rectangle tmin(x), tmax(x), tmin(y), tmax(y)

that is invalidated by the constraint as illustrated in Fig. 8. Let δmin = 1 if tmin(x) > tmin(y)

and 0 otherwise and let δmax = 1 if tmax(x) > tmax(y) and 0 otherwise. Furthermore, let:

A= (
tmax(y)− tmin(y)+ 1

) · (tmax(x)− tmin(x)+ 1
)
,

B = (tmax(x)− tmin(y)+ 1)2

2
,

Cmin = (tmin(x)− tmin(y))
2

2
,

Cmax = (tmax(x)− tmax(y))
2

2
.

The ratio is then equal to:

commit
(
t (x)� t (y)

) = B − (δmin ·Cmin)− (δmax ·Cmax)

A
.

If temporal constraints are propagated by a path-consistency algorithm that maintains
the distances between each pair of events d(x, y)= t (y)− t (x) ∈ [dmin, dmax] then, a better
estimation of the level of commitment of posting t (x)� t (y) is given by [22] as:

commit
(
t (x)� t (y)

) = min(dmax,0)− min(dmin,0)

dmax − dmin + 1
.

We can estimate in the same way the level of commitment of posting t (x) < t(y) as
commit(t (x) < t(y))= commit(t (x)� t (y)− 1).

P. Laborie / Artificial Intelligence 143 (2003) 151–188 169

Fig. 8. Temporal commitment.

6.2. Search procedure overview

The search procedure works as follows:

(1) select a critical unsafe event7 x;
(2) select a critical unsafe event y unranked with respect to x;
(3) depending on the pair of events (x, y), branch on the constraints:

• t (x)� t (y) or t (x) > t(y),
• t (x) < t(y) or t (x)� t (y),
• t (y)� t (x) or t (y) > t(x),
• t (y) < t(x) or t (y)� t (x).

Several search procedures were designed depending on the two criticality evaluation
functions: (1) criticality of an event x and (2) criticality of an event y to be ordered with
respect to x . These different criticality evaluations are described below. They all rely on
the upper and lower bounds on reservoir levels L<max(x), L

>
max(x), L

<
min(x), and L>min(x)

computed by the balance constraint. These levels can indeed be considered as some kind
of texture measurements8 projected on the schedule events. Actually, and this is a very
interesting perspective from the standpoint of heuristics, most of the literature on textures,
see for example [4], could be extended and handled at the level of events in the precedence
graph rather than on the absolute time axis.

6.3. Criticality of an event

The basic idea is that an event x is highly critical if one of its values lack(x) or excs(x)
is “large” as it means that the reservoir may underflow or overflow a lot when x is executed.
Furthermore, if the temporal domain [tmin(x), tmax(x)] of x is small, it means that there will

7 Cf. Section 5.3.5 for a definition of a safe event.
8 A texture is a data structure that maintains some data useful for computing heuristics.

170 P. Laborie / Artificial Intelligence 143 (2003) 151–188

not be much room to choose a date when to execute x and thus, it increases its criticality.
Let:

t&(x)= 1 + tmax(x)− tmin(x),

crit<(x)= max(lack<(x), excs<(x))

L<max(x)−L<min(x)
,

crit>(x)= max(lack>(x), excs>(x))

L>max(x)−L>min(x)
.

We used three criticality evaluations that implement this idea; they are defined as follows:

crit1(x)= max(crit<(x), crit>(x))

t&(x)
,

crit2(x)= max(lack(x), excs(x))

Q · t&(x) ,

crit3(x)= max(crit<(x), crit>(x))2

t&(x)
.

Note that evaluation crit2 is normalized by the maximal capacity of the reservoir and
evaluation crit3 gives a higher priority to the reservoir levels compared to the temporal
slack.

6.4. Criticality of an ordering

Now suppose that an unsafe event x has been selected by using one of the three
criticality functions described in the previous subsection.

Basically, when an event x has been selected, it falls into one of two categories: either
x is a globally underflowing event or a globally overflowing event (see Section 6.1.1).

Suppose x is a globally underflowing and producing event. It means that the balance
constraint estimates that there are risks of reservoir underflow at the time event x is
executed, and that on average, the level of the reservoir will be increased at this date. Thus,
the risk of underflow is even stronger at t (x)−ε than at t (x)+ε. To fix this risk of reservoir
underflow at date t (x)−ε, we can either select a producing event y and try first posting the
constraint that t (y) < t(x) or select a consuming event y and try first postponing it after x
by posting the constraint t (x)� t (y). Following this idea, the branching schemes for the
possible combinations of status of events x and y are summarized in Table 1.

We see that for a pair of events (x, y) the branching scheme always looks like try
Ct(x, y), then ¬Ct(x, y) where Ct(x, y) is a precedence constraint between the two events.

Table 1

isProd(y) isCons(y)

isLack(x) isProd(x) try t (y) < t(x), then t (y)� t (x) try t (x)� t (y), then t (x) > t(y)
isLack(x) isCons(x) try t (y)� t (x), then t (y) > t(x) try t (x) < t(y), then t (x)� t (y)

isExcs(x) isProd(x) try t (x) < t(y), then t (x)� t (y) try t (y)� t (x), then t (y) > t(x)
isExcs(x) isCons(x) try t (x)� t (y), then t (x) > t(y) try t (y) < t(x), then t (y)� t (x)

P. Laborie / Artificial Intelligence 143 (2003) 151–188 171

The actual Ct(x, y) depends on the status (is globally under- or overflowing, is producing
or consuming) of events x and y as shown in the table.

In our search procedure, given x , we used three possible evaluations of event y and
select the event y that maximizes this evaluation.

crita(x, y)= min
(
commit

(
Ct(x, y)

)
, commit

(¬Ct(x, y)
)) · ∣∣prod(y)

∣∣,
critb(x, y)= commit

(
Ct(x, y)

) · ∣∣prod(y)
∣∣,

critc(x, y)= −commit(Ct(x, y))

|prod(y)| .

Note that crita and critb correspond to a first fail strategy whereas critc corresponds to a
least commitment strategy. Note also that these criticality measurements are weighted by
the estimated production (or consumption) of event y: |prod(y)|.

Whenever an event y has been selected to be ordered with respect to an event x , the
ordering Ct(x, y) is posted on the left branch of the search tree. In case of failure, the
opposite ordering ¬Ct(x, y) is posted on the right branch and search continues until all the
events are safe. This search procedure is clearly sound and complete.

7. Results

7.1. Balance constraint

Until now, very few benchmarks have been available for problems involving tempo-
ral constraints and complex resources like reservoirs. The only one we are aware of is
[25] where the authors generate 300 project scheduling problems involving 5 reservoirs,
min/max delays between activities and minimization of makespan. From these 300 prob-
lems, 12 hard instances could not be solved to optimality by their approach. We tested the
search procedure described in the previous section on these 12 open problems. All the other
problems were easily solved using our approach. The results are summarized in Table 2.

The size of the problem is the number of activities. LB and UB are the best lower and
upper bounds of [25]. The column OptSol describes the pair (i, u) of criticality functions
used by the search procedure to find the best solution that is, a solution with a makespan
less than or equal to the optimal makespan. The column OptProof describes the pair (i, u)
of criticality functions used by the search procedure for the proof of optimality; that is,
proving that no solution exists with a makespan strictly less than the optimal makespan.
The column CPU Time is the sum of the CPU time to find the optimal solution and the
CPU time to prove the optimality of this solution using the search control parameters
described in the two previous columns. This time was measured on a HP-UX 9000/785
workstation. We can see that all of the 12 open problems have been closed in less than 10
seconds CPU time. Furthermore, our approach produces highly parallel schedules as the
balance constraint implements some sufficient conditions for a partial order between events
to be a solution. For example, the Hasse diagram of the partial order between activities
corresponding to a part of the optimal solution to problem #41 is given in Fig. 11.

For solving these problems, we used the conjunction of the balance and the timetable
constraint on each reservoir. Although it does not propagate more than the balance

172 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Table 2

Problem Size LB UB Opt Opt Optimal CPU
Proof Sol time (s)

#10 50 92 93 1,a 3,b 92 0.28
#27 50 85 +∞ 1,b* 2,a 96 2.43
#82 50 148 +∞ 1,a no solution 0.05
#6 100 203 223 3,c 2,a 211 0.97
#12 100 192 197 1,a 2,a 197 0.72
#20 100 199 217 1,a 1,b 199 0.46
#30 100 196 218 3,b* 3,c* 204 2.11
#41 100 330 364 1,a 3,b 337 0.62
#43 100 283 +∞ 2,b* no solution 7.65
#54 100 344 360 1,a 1,b 344 0.46
#58 100 317 326 1,a 2,a 317 0.49
#69 100 335 +∞ 2,c* no solution 1.96

Fig. 9. Effect of heuristic for finding optimal solution.

constraint, we noticed that, in general, at each node the timetable constraint (which has
a lower algorithmic complexity) helps the balance constraint to reach the fixed point
more quickly. It results in decreasing the propagation time. Precedence constraints are
propagated by an arc-consistency algorithm except for the instances marked with a star
(∗) in Table 2 for which we used a limited version of path-consistency to detect cycles in
temporal constraints.9

9 Note that the time performances of these instances could be improved by using a more efficient algorithm
for cycle detection as the one proposed in [7].

P. Laborie / Artificial Intelligence 143 (2003) 151–188 173

Fig. 10. Effect of heuristic for proving optimality.

Figs. 9 and 10 give a more precise idea of how the different heuristics behave on these
problems. In these figures, the 9 search heuristics are compared using a time limit of 2mn.
One can notice that for easy instances, there is not a large difference between heuristics.
But on harder ones, like #30 or #27, variations are greater. Note that all the 9 heuristics
allow closing all problems but problem #30 in less than 2mn CPU time. This suggests that
our approach is fairly robust.

If in these tests we switch off the part of the balance constraint that is responsible for
discovering new precedence relations (see Section 5.3.4), only 6 out of the 12 problem
instances can be solved to optimality in less than 2mn CPU time. This suggests that
the discovery of new precedence relations between events plays an important role in the
propagation of the balance constraint. This is not very surprising as these new precedence
relations result in a more accurate precedence graph that will help the following cycles of
the balance constraint.

7.2. Energy precedence constraint

The main strength of the energy precedence constraint is to allow propagation even
when the time window of activities is very large. This is, for instance, typically the case
in pure scheduling problems with makespan minimization when searching for a good first
solution in the absence of tight upper bound on makespan. In our experiments, we focused
on jobshop problems (unary resources) because a considerable effort has been devoted in
the past forty years to design heuristic greedy procedures for solving job-shop problems so
there is a lot of material to compare with. For this purpose, we wrote a very simple least-

174 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 11. Part of an optimal solution to instance #41.

commitment search procedure based on the precedence graph that orders pairs of activities
on a unary resource and aims at finding very good first solutions.10

On a given unary resource, the level of commitment of ordering an activity A before
and activity B is estimated as:

commit(A� B)= commit
(
end(A)� start(B)

)
as described in Section 6.1.2. The search procedures looks for the pair of activities {A,B}
still unranked on a unary resource that maximizes the criterion:

crit({A,B})= min
(
u(A),u(B)

) · ∣∣commit(A� B)− commit(B �A)
∣∣

where u(X) is the number of activities still unranked with respect to activityX on the unary
resource. For such a pair of activities, we can hope that one of the ordering induces much
less commitment than the opposite one and that, as the activitiesA andB are in a part of the
schedule where many activities are still unranked, posting the least commitment ordering
will have less impact on the schedule. The search procedure can be seen as a greedy
algorithm: it iteratively selects the pair of activities {A,B} that maximizes crit({A,B}) and
post the least commitment ordering. As at each step, we select a local potential conflict
(pair of activities) that can be solved with a minimal impact on the other activities, this
search procedure is expected to find solutions where the domain of the start and end
variables of activities is still very large. If there is an optimization criterion, these large
domains leave room for optimizing it.

We tested this greedy search procedure with the energy precedence constraint alone
(LCEP) on 45 job-shop problems for which we could compare with other algorithms
(namely: abz5-6, ft6, ft10, ft20 and la1-40). For our tests, we used a schedule horizon
equal to the sum of the duration of all the activities, which is of course a very large
upper bound on the optimal makespan. The average deviation from optimal makespan
(or from best known lower bound on optimal makespan) of the solution produced by
our greedy algorithm is only 5.3%. This result is to be compared with some state-of-

10 The C++ code of this search procedure is available in the distribution of ILOG Scheduler 5.2.

P. Laborie / Artificial Intelligence 143 (2003) 151–188 175

Fig. 12. Average deviation from optimal of some greedy single-pass algorithms.

the art and/or well-known greedy algorithms for solving jobshop problems.11 In [1],
a bidirectional greedy algorithm is proposed (BIDIR) that builds the schedule from
both sides (chronologically and anti-chronologically). In [6], the authors describe a
chronological scheduling procedure (GREEDY) based on a look-ahead technique that
select the next operation to schedule as the one that is expected to increase as little as
possible the makespan. We also compared our approach with a single pass of the PCP
algorithm proposed in [11] using the same loose initial upper bound as for LCEP (sum
of the duration of all the activities). In this paper, the authors start from an initial upper
bound given by the application of six priority rules (SPT, LPT, LFT, EFT, MOR, LOR).
We also compare our approach with this upper bound (6RULES). As far as we know, the
best greedy algorithm so far is AMCC [28]. AMCC selects the pair of activities (A,B)
such that posting A � B would increase as much as possible the current lower bound on
makespan and then post the opposite constraintB �A. The average deviation from optimal
makespan of all these procedures is given on Fig. 12. Note that when the energy precedence
constraint is not used (LCNEP), the average deviation of our greedy search procedure
increases up to 10.9%. It shows that the energy precedence constraint allows a strong
propagation when the domain of activities is not very tight. Because of this additional
propagation, the heuristics for estimating the level of commitment are more informed and
lead to better results. As expected, we noticed that the usage of the timetabling, disjunctive
and/or edge-finding constraint has strictly no influence on the quality of the solution found
by our search procedure given the large horizon of the schedule.

8. Balance constraint extensions

8.1. Balance constraint as a first order approximation of resource level

We show in this section how the levels computed by the balance constraint L<max(x),
L>max(x), L

<
min(x), L

>
min(x) can be seen as a first order approximation of the actual level of

the reservoir just before and after event x .

11 We focus here on a comparison with similar procedures that do not explore a search tree, that are not
randomized and that are executed in a single pass.

176 P. Laborie / Artificial Intelligence 143 (2003) 151–188

For symmetry reasons, we focus only on L<max(x). As seen in formula (2) in
Section 5.3.3, this level is defined as follows:

L<max(x)= λ(x)+µ1(x) where



λ(x)=

∑
y∈B(x)

qmax(y),

µ1(x)=
∑

y∈P∩(BS(x)∪U(x))
qmax(y).

λ(x) represents the maximal contribution to the reservoir level of those events that are
certainly before event x . Provided the reservoir variables q are independent, this maximal
contribution is evaluated exactly by λ(x). µ1(x) represents the contribution to the reservoir
level of those events that are still not ranked with respect to event x . The formula to
compute µ1(x) is an upper bound of the actual contribution. It can be seen as the exact
contribution of a relaxed problem where all the precedence relations between events in
the subset BS(x) ∪U(x) are ignored. In that case, indeed, it is possible to execute all the
producing events y of BS(x) ∪ U(x) strictly before x and all the consuming events of
BS(x)∪U(x) simultaneously or after x .

But we could compute a much better estimation of the contribution of those events that
are still not ranked with respect to event x . The idea is to apply the balance constraint to
the subgraph Ψ (x)= BS(x)∪U(x).

Let’s illustrate this idea by an example. Suppose the precedence graph of Fig. 13.
We are interested in computing an estimate of the level of reservoir just before event x .
The balance constraint would compute a level L<max(x) = 4 as λ(x) = (+2 − 1) = 1
and µ1(x) = (+1 + 2) = 3. A second-order estimate of the maximal level just before x
consists in applying the balance constraint on the subgraph Ψ (x)= BS(x) ∪U(x) shown
in the figure. The levels resulting from the application of the balance constraint on this
subgraph are represented in italic. For any instantiation of time variables compatible with
the precedence graph, either (1) all the events in Ψ (x) are scheduled strictly before x or
(2) there exists some event y0 ∈ Ψ (x) (not necessarily unique) such that y0 is the first
event of Ψ (x) to be executed simultaneously or after x in the instantiation. In the first
case, the contribution of the events of Ψ (x) to the level just before x is exactly equal

Fig. 13. Example of second order approximation of resource levels.

P. Laborie / Artificial Intelligence 143 (2003) 151–188 177

to σx = ∑
y∈Ψ(x) qmax(y). In the second case, the level L<max(y0,Ψ (x)) computed by the

balance constraint before y0 onΨ (x) is clearly an upper bound of the contribution of Ψ (x).
As a conclusion, the maximal value in {σx, {L<max(y,Ψ (x))}y∈Ψ(x)} is a valid upper bound
for the contribution of Ψ (x) to the reservoir level at date t (x)− ε. In the example, we have
σx = 0 and the values for L<max(y,Ψ (x)) are {0,1,1,−1,1} thus, an upper bound on the
contribution of Ψ (x) is evaluated as µ2(x)= 1 which gives an upper bound of 2 for the
reservoir level just before event x . This upper bound of 2 can be contrasted with the upper
bound 4 computed by the 1st-order balance constraint.

To express more formally the recurrence relation implied by this idea, we need to
extend our notation slightly. Let Ω be a subset of events on the reservoir and Ψ (x,Ω)=
Ω ∩ (BS(x)∪U(x)). The level computed by the balance constraint on the set of events Ω
is given by

L<max,1(x,Ω)= λ(x,Ω)+µ1(x,Ω)

where



λ(x,Ω)=

∑
y∈Ω∩B(x)

qmax(y),

µ1(x,Ω)=
∑

y∈P∩Ψ (x,Ω)
qmax(y).

As suggested above, a better estimation of this level can be computed as follows:

L<max,i(x,Ω)= λ(x,Ω)+µi(x,Ω)

where µi(x,Ω)= max




max
y∈Ψ(x,Ω)

L<max,i−1

(
y,Ψ (x,Ω)

)
∑

y∈Ψ(x,Ω)
qmax(y)


 . (3)

Let Ω0 denote the set of all events on the reservoir. The following results are shown in
Appendix A:

Proposition 1. ∀i , L<max,i (x,Ω0) provides an upper bound on the reservoir level at
t (x)− ε.

Let p denote the maximal degree of parallelism of the precedence graph; that is, the
size of the biggest set Q⊂Ω0 such that ∀x, y ∈Q,y ∈ BS(x)∪U(x).

Proposition 2. The sequence L<max,i (x,Ω0) is decreasing with index i . Furthermore, after
the index p, the sequence is stationary and equal to a value we will denoteL<max,∞(x,Ω0).

Proposition 3. If the only constraints are the precedence relations in the precedence graph
and the reservoir maximal level, then, there exists an instantiation of the variables such
that the reservoir level at date t (x) − ε is equal to L<max,∞(x,Ω0). Stated otherwise,
L<max,∞(x,Ω0) is the best upper bound on the reservoir level just before event x .

Let’s assume |Ψ (x,Ω)| = β · |Ω | where β ∈ [0,1).

178 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 14. Computing ith-order approximation of resource levels.

Proposition 4. L<max,i (x,Ω0) can be computed with a polynomial algorithm whose

complexity is in O(βi(i+1)/2−1 ni).

Proposition 5. L<max,∞(x,Ω0) can be computed with an algorithm whose complexity is in
O(n−lnn/lnβ).

All these results are illustrated in Fig. 14.
The advantages of computing better bounds for the reservoir levels are clearly to quickly

detect dead ends and safe events (which results in having less unnecessary precedence
relations in the solutions). Furthermore, it is easy to see that all the propagation performed
by the balance constraint (new bounds on resource usage variables, new bounds on time
variables, new precedence relations) can be extended and improved by using the levels
computed on Ψ (x,Ω).

The short algorithmic complexity analysis above suggests that, although systematically
computing higher approximation orders may turn out to be expensive, it could be
interesting to detect situations where, for example, the gap L<max,1(x,Ω0)−L<max,2(x,Ω0)

is large so that it would be worth using a 2nd-order approximation for some event x .
Furthermore, in practice, for computing L<max,i(x,Ω0), the full recursion suggested by

formula (3) does not need to be completely explored. For example suppose that for some
event x , the list (y1, y2, . . . , yk, . . .) represents the set of events in Ψ (x,Ω0) ordered by
decreasing L<max,1(y,Ψ (x,Ω0)). If there is an index i such that

L<max,i

(
y1,Ψ (x,Ω0)

)
� L<max,1

(
y2,Ψ (x,Ω0)

)
then

L<max,i(x,Ω0)= λ(x,Ω0)+L<max,i

(
y1,Ψ (x,Ω0)

)
as for all k � 2 we will have

L<max,i

(
y1,Ψ (x,Ω0)

)
� L<max,1

(
y2,Ψ (x,Ω0)

)
� L<max,1

(
yk,Ψ (x,Ω0)

)
� L<max,i

(
yk,Ψ (x,Ω0)

)
.

In other words, in this case, L<max,i(y,Ψ (x,Ω0)) does not need to be computed for all the
events y in Ψ (x,Ω0).

P. Laborie / Artificial Intelligence 143 (2003) 151–188 179

Another way to improve the computation is based on the fact that in the recurrence
relation, the value L<max,i (x,Ω) is computed several times for the same subset Ω . This
suggests that dynamic programming approaches could help reducing the complexity.

Note also that, as suggested by the comparison with MCSs evoked in Section 5.3, the
computation of L<min,∞(x,Ω0) (and symmetrically L<max,∞(x,Ω0)) can be reformulated
as the search for a critical set that maximizes resource consumption. This problem can
be seen as the search for a maximum weighted independent set on a comparability
graph.12 As shown in [17], there exists efficient polynomial-time algorithms that run in
O(n1.5

√
m/ log(n)) to solve this problem. The adaptation of these algorithms to compute

better bounds on the reservoir levels is part of our future works.

8.2. Toward a real plan generation procedure

This section outlines a planning search procedure that relies on the levels computed by
the balance constraint (at 1st-order or higher) to generate a plan.

It should be noted than in a typical planning problem, resource attributes have to be
handled together with pre-condition achievement on classical attributes. As proposed in
[22], we can distinguish between several types of flaws on the partial plan (unexplained
propositions, threads and resource conflicts). The opportunity to solve a given flaw can
be estimated independently of the nature of this flaw (unexplained propositions, threads
and resource conflicts). The global search algorithm then consists in selecting the most
opportunistic flaw to be solved at the current search node and branching on its possible
resolvers. This approach leads to a natural integration of the processes of plan generation
and scheduling as some opportunistic scheduling decisions are taken before the whole plan
is generated.

In this section, we focus on the definition of flaws on reservoirs and their resolvers.
Let s be the current state on a given reservoir of maximal level Q. For a given event x ,
the possible positions of the levels L<min(x) and L<max(x) with respect to the level interval
[0,Q] is depicted in Fig. 15. Note that for symmetry reasons, we do not consider the levels
L>min(x) and L>max(x).

Except for case (A) where the event is safe, each case in Fig. 15 corresponds to a
potential flaw of the current plan where the reservoir could underflow or/and overflow.
The basic tools to solve potential flaws are either: (V) to reduce the domain of reservoir
usage variables q , (T) to add new precedence relations between events or (O) to insert in
the plan new operators that contain some events on the reservoir. The idea consists in using
those basic tools to bring the bounds L<min(x) and L<max(x) back to a situation where event
x is safe, that is, as shown in case (A): 0 � L<min(x) and L<max(x)�Q.

For symmetry reason, we only consider cases (B), (C) and (D).
Case (B). In this case, it is clear that at least a consuming event y must be inserted strictly

before event x . Indeed, if no planning operator is applied to insert a new consuming event
strictly before x , then, by definition of L<min(x) we are sure that the reservoir will overflow
just before x . Indeed, the consuming events unranked with respect to x are not sufficient

12 The graph whose edges represent precedence relations between activities requiring the resource.

180 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 15. Potential flaws on reservoir.

to prevent the reservoir overflow. The analogous case in classical partial order planning is
when no action currently exists in the plan to ensure a given pre-condition; in this case, a
new action must be inserted. This can be stated as follows:

∃y ∈ new_op/new_op /∈ s, y ∈ new_op, q(y) < 0, t (y) < t(x) | (O)

Case (C). In this case, as L<min(x) � Q, it is possible that a monotonic change (Q) or
(T) will result in a situation where L<max(x)�Q. It will consist in decreasing the reservoir
production before x or stating that an existing consuming event must be executed strictly
before x or that an existing producing event cannot be executed strictly before x . Of course,
inserting a consuming event strictly before event x is also possible.

∨




∃y ∈ Bs(x) / q(y) < qmax,s(y)

∃y ∈ P ∩Ψs(x) / q(y)< qmax,s(y)

∣∣∣∣ (V)

∃y ∈ C ∩Ψs(x) / t (y) < t(x)
∃y ∈ P ∩Ψs(x) / t (y)� t (x)

∣∣∣∣ (T)

∃y ∈ new_op/new_op /∈ s, y ∈ new_op, q(y) < 0, t (y) < t(x) | (O)

Case (D). This case is the union of case (C) with its symmetrical case on the reservoir
underflow. That is:

∨




∃y ∈ Bs(x) / [q(y) < qmax,s(y)] ∨ [q(y) > qmin,s (y)]
∃y ∈ P ∩Ψs(x) / q(y)< qmax,s(y)

∃y ∈ C ∩Ψs(x) / q(y) > qmin,s(y)

∣∣∣∣∣∣ (V)

∃y ∈Ψs(x) / [t (y)< t(x)] ∨ [t (y)� t (x)] | (T)

∃y ∈ new_op/new_op /∈ s, y ∈ new_op, t (y) < t(x) | (O)

The complexity of computing this criterion for a given event x is clearly in O(n) in worst
case if the levels L<min(x), L

<
max(x), L

>
min(x) and L>max(x) are the ones computed by the

balance constraint.
Let’s illustrate the underlying search procedure by an example. Suppose a reservoir

of maximal capacity Q = 10 with two initial events c0 and p0 such that q(c0) = −5,

P. Laborie / Artificial Intelligence 143 (2003) 151–188 181

Fig. 16. Initial plan.

Fig. 17. Plan after insertion of two instances p1, p2 of Op before c0.

q(p0) = +10 and t (c0) < t(p0). The precedence graph on this reservoir is shown in
Fig. 16. Suppose also that there exists two operatorsOp andOc: Op contains a production
event p such that q(p) ∈ [+3,+4], and Oc contains a consumption event c such that
q(c) ∈ [−2,−1].

The levels L<min(x), L
<
max(x), L

>
min(x) and L>max(x) are represented for each event in

the figure. One can notice that the reservoir level just before c0 is in situation (A), and in
situation (E) just after. The reservoir level just before p0 is in situation (E), and in situation
(A) just after. Thus, there are two potential flaws: one just after c0 and one just before p0.
Case (E) is symmetrical to case (B) and when applied just after event c0, it enforces the
insertion of an instance of operatorOp in the current plan before event c0. In the next state,
we can see that the reservoir level just after c0 is estimated to belong to [−2,−1], thus it
is still in situation (E) and another instance of operatorOp needs to be inserted. This leads
to the current plan of Fig. 17.

We see now that event p0 is in situation (B) at t (p0)+ ε which justifies the insertion of
an instance of operator Oc before p0. This leads to the current plan in Fig. 18. Note that,
so far, no choice point has been created.

Now, we can consider, for example, event c0 which is in situation (F) at t (c0) − ε.
Here, there are several ways to reduce the potential flaw. In the current situation, we

182 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Fig. 18. Plan after insertion of one instances c3 of Oc before p0.

Fig. 19. A final plan.

have B(c0) = ∅, Ψ (c0) = {p1,p2, c3}, thus the procedure will branch on the following
decisions:

∨




q(c3) >−2 | (V)

t (p1) < t(c0)

t (p2) < t(c0)

t (c3)� t (c0)

∣∣∣∣∣∣ (T)

insert Op,p4 ∈Op, t (p4) < t(c0) | (O)

The search continues until all events are safe. An example of final state of the procedure is
depicted in Fig. 19.

We can show that the planning search procedure based on the non-deterministic criterion
described in this section is sound and complete. More precisely, if we define a final state
of the procedure as a partial state reachable by the procedure where all the events are safe
then two properties hold:

P. Laborie / Artificial Intelligence 143 (2003) 151–188 183

• Soundness. A fully instantiated solution plan can be built in polynomial time from any
final state of the procedure.

• Completeness. If a fully instantiated solution plan exists, then there exists a final state
of the procedure.

Furthermore, all the changes on reservoir usage variables (V) and time variables (T)
introduced by the search procedure are strictly monotonic: they reduce the domain
[L<min(x),L

<
max(x)]. A corollary of this property is that in the case that no operator can be

inserted in the plan (pure scheduling), the search space is finite and the search procedure
will terminate as for each x , the size of the domain [L<min(x),L

<
max(x)] is finite.

9. Conclusion and future work

This paper describes two new algorithms for propagating resource constraints on
discrete resources and reservoirs. These algorithms strongly exploit the temporal relations
in the partial schedule and are able to propagate even if the time windows of activities are
still very large. Furthermore, on discrete resources, they do not require the resource to be
closed. These features explain why they particularly suit integrated approaches to planning
and scheduling. Even from the standpoint of pure scheduling, these two algorithms and
the precedence graph are very powerful tools to implement complete and efficient search
procedures based on the relative position of activities. An additional and non-negligible
advantage of this approach is that it produces partially ordered solutions instead of fully
instantiated ones. These solutions are more robust. All the algorithms described in this
paper (except for the extensions described in Section 8) have been implemented and are
available in the current version of ILOG Scheduler [19]. From a scheduling point of view,
we hope that this work will be a good starting point to generalize to discrete resources and
reservoirs many existing techniques on unary resources based on a disjunctive formulation
of the resource constraint (search procedures, shaving techniques, local search moves,
etc). As far as AI Planning is concerned, future work will mainly consist in studying the
integration of our scheduling framework into a HTN or a POP Planner as well as improving
our search procedures.

Acknowledgements

The author would like to thank Christoph Schwindt for making available the project
scheduling benchmarks as well as Chris Beck, Filippo Focacci, Emmanuel Guéré, Pascal
Massimino, Wim Nuijten, Jérôme Rogerie, and Francis Sourd for enlightening discussions
on the existing approaches for resource constraint propagation, the complexity analysis,
and the heuristics we used in this paper. We also gratefully acknowledge the two
anonymous reviewers whose comments have improved the quality of this article.

184 P. Laborie / Artificial Intelligence 143 (2003) 151–188

Appendix A

A.1. Computing ith-order approximation of resource levels

We give in this section the sketch of proof for the propositions introduced in Section 8.1.

Proposition 2. Let p denote the maximal degree of parallelism of the precedence graph.
The sequence L<max,i(x,Ω0) is decreasing with index i . Furthermore, after the index p, the
sequence is stationary and equal to a value we will denote L<max,∞(x,Ω0).

Proof. The proof that the sequence is decreasing is a direct consequence from the trivial
fact that for any set Ω and any event x , µ2(x,Ω) � µ1(x,Ω). It thus implies that
L<max,2(x,Ω)� L<max,1(x,Ω). With an easy recurrence, L<max,i+1(x,Ω)� L<max,i(x,Ω).

Let p be the maximal degree of parallelism of the precedence graph that is, the size of
the biggest set Q ⊂Ω0 such that ∀(x, y) ∈Q×Q,y ∈ BS(x) ∪ U(x). We need to show
that if k � p, L<max,k(x,Ω)= L<max,p(x,Ω).

Let {x1, x2, . . . , xk} ⊂Ω . It is clear from the definition of p that

Ψ
(
x1,Ψ

(
x2, . . . ,Ψ (xk,Ω) . . .

)) = ∅.
This proposition implies that the recursive definition ofL<max,k(x,Ω) andL<max,p(x,Ω) are
exactly the same as in both cases, the sets Ψ (x1,Ψ (x2, . . . ,Ψ (xk,Ω) . . .)) become empty
before the recursion reaches L<max,1(x,Ω). ✷
Proposition 3. If the only constraints are the precedence relations in the precedence graph
and the reservoir maximal level, then, there exists an instantiation of the variables such
that the reservoir level at date t (x) − ε is equal to L<max,∞(x,Ω0). Stated otherwise,
L<max,∞(x,Ω0) is the best upper bound on the reservoir level just before event x .

Proof. The proof uses a recurrence on the size of the set Ω .
First, it is clear that if |Ω | � 1, L<max,∞(x,Ω)= 0 and this is the value of the level of

the reservoir at date t (x)− ε in any instantiation of t (x).
Now, let’s suppose that for all sets Ω such that |Ω |< n, the proposition is true, and let’s

consider a set Ω0 such that |Ω0| = n.
We need to show:

(1) For all instantiation of the variables π , the level of the reservoir at tπ (x)− ε, which
will be denoted L<π (x,Ω0), is such that L<π (x,Ω0)� L<max,∞(x,Ω0).

(2) There exists an instantiation of the variables π such that L<π (x,Ω0)= L<max,∞(x,Ω0).

The proof of item (1) uses an idea already introduced in Section 8.1. If π is an instantiation
of time variables compatible with the precedence graph, either (i) all the events y ∈ Ψ (x)
are scheduled strictly before x (that is, tπ (y) < tπ(x)) or (ii) there exists some event
y0 ∈ Ψ (x) (not necessarily unique) such that y0 is the first event of Ψ (x) to be executed
simultaneously or after tπ (x) in the instantiation π . In the first case, the contribution of the
events of Ψ (x) to the level just before x is exactly equal to σx = ∑

y∈Ψ(x) qmax(y). In the

P. Laborie / Artificial Intelligence 143 (2003) 151–188 185

second case, by recurrence as |Ψ (x)| < n, the level L<max,∞(y0,Ψ (x)) computed by the
balance constraint before y0 on Ψ (x) is an upper bound of the contribution of Ψ (x). As
a conclusion, the maximal value in {σx, {L<max,∞(y,Ψ (x))}y∈Ψ(x)} is a valid upper bound
for the contribution of Ψ (x) to the reservoir level at date tπ (x)− ε.

In order to prove item (2), an instantiation π is constructed that satisfies the precedence
constraints in the graph and such that L<π (x,Ω0) = L<max,∞(x,Ω0). Here also there are
two situations. Either

(i) ∀y ∈Ψ (x),L<max,∞
(
y,Ψ (x)

)
�

∑
z∈Ψ(x)

qmax(z), or

(ii) ∃y0 ∈ Ψ (x)
/


L<max,∞

(
y0,Ψ (x)

)
>

∑
z∈Ψ(x)

qmax(z) and

∀y ∈Ψ (x), L<max,∞
(
y0,Ψ (x)

)
�L<max,∞

(
y,Ψ (x)

)
.

In case (i), π can be constructed as any instantiation that satisfies the original precedence
constraints in the graph plus the additional precedence constraints that ∀y ∈ Ψ (x), t (y) <
t(x).

In case (ii), by recurrence, there exists an instantiation π ′ of the subgraph induced by
Ψ such that the level of the reservoir at date tπ ′(y0) is equal to L<max,∞(y0,Ψ (x)). In
this context, π is constructed as any instantiation that satisfies the original precedence
constraints in the graph plus the additional precedence constraints that: ∀y / tπ ′(y) <
tπ ′(y0), t (y) < t(x) and ∀y / tπ ′(y)� tπ ′(y0), t (y)� t (x).

Note that in both cases, the precedence graph does not become inconsistent with
introduction of the additional precedence constraints because no cycle of arcs < are
introduced. ✷
Proposition 1. ∀i , L<max,i (x,Ω0) provides an upper bound on the reservoir level at
t (x)− ε.

Proof. This proposition is a direct consequence of Propositions 2 and 3: if L is a
reservoir level at date t (x) − ε in an instantiation, then, given Proposition 3 we have
L � L<max,∞(x,Ω0). And as Proposition 2 states that for any index i , L<max,∞(x,Ω0) �
L<max,i(x,Ω0), we see that L� L<max,i (x,Ω0). ✷
A.2. Complexity analysis

For our analysis, we assume that:

• |Ω ∩B(x)| = α · |Ω | where α ∈ [0,1).
• |Ψ (x,Ω)| = β · |Ω | where β ∈ [0,1).
• 0 � α+ β < 1.

A.2.1. Order-i approximation
The level L<max,i(x,Ω) is defined by the following recurrence relation:

186 P. Laborie / Artificial Intelligence 143 (2003) 151–188

L<max,i(x,Ω)= λ(x,Ω)+µi(x,Ω)

where µi(x,Ω)= max




max
y∈Ψ(x,Ω)

L<max,i−1

(
y,Ψ (x,Ω)

)
∑

y∈Ψ(x,Ω)
qmax(y)


 .

If ci(n) denotes the complexity of computing L<max,i(x,Ω) when |Ω | = n, we have
c1(n)= (α+β)n as this is the complexity of the balance constraint. Furthermore, it directly
follows from the recurrence relation that:

ci(n)= αn+ βnci−1(βn).

It is easy to see that ci(n) is polynomial of degree i:

ci(n)=
i∑

j=1

ai,j n
j where



ai,1 = α,

ai,j = αβi(i+1)/2−1 if 1< j < i,
ai,i = (α + β)βi(i+1)/2−1.

So basically, we see that ci(n) behaves in O((α + β)βi(i+1)/2−1ni).

A.2.2. Full recurrence
We analyze in this section the average complexity of computing L<max,∞(x,Ω). This

level is defined by the following recurrence relation:

L<max,∞(x,Ω)= λ(x,Ω)+µ∞(x,Ω)

where µ∞(x,Ω)= max




max
y∈Ψ(x,Ω)

L<max,∞
(
y,Ψ (x,Ω)

)
∑

y∈Ψ(x,Ω)
qmax(y)


 .

If c∞(n) denotes the complexity of computing L<max,∞(x,Ω) when |Ω | = n, from the
recurrence relation it directly follows that

c∞(1)= 1, c∞
(

1

βk

)
= α + β

βk
+ 1

βk−1
c∞

(
1

βk−1

)
.

If we assume that c can be expressed as a power series

c∞
(

1

βk

)
=

∞∑
i=1

ai

(
1

βk

)i
.

By substituting variable n by 1/βk in c∞(n), we obtain
∞∑
i=1

ai

(
1

βk

)i
= α + β

βk
+ 1

βk−1

∞∑
i=1

ai

(
1

βk−1

)i

= (α + β)
1

βk
+

∞∑
i=1

aiβ
i+1

(
1

βk

)i+1

= (α + β)

(
1

βk

)1

+
∞∑
i=2

ai−1β
i

(
1

βk

)i
.

P. Laborie / Artificial Intelligence 143 (2003) 151–188 187

Thus, we have: a1 = α + β , ai = βiai−1 which leads to

ai = α + β

β
βi(i+1)/2.

Thus

c∞
(

1

βk

)
= α+ β

β

∞∑
i=1

βi(i+1)/2
(

1

βk

)i
.

Which can also be written

c∞
(

1

βk

)
= α+ β

β

∞∑
i=1

e(−Ai2+Bi) where

{
A= 1

2 ln 1
β
,

B = (
k − 1

2

)
ln 1
β
.

As when A> 0 (saddle point method),

∞∑
i=1

e(−Ai2+Bi) ∼
B→∞

√
π

A
eB

2/4A.

We see that

c∞
(

1

βk

)
∼ α+ β

β

√
2π

ln 1
β

(
1

β

)(k−1/2)2/2

.

Thus

c∞(n)∼ α + β

β

√
2π

ln 1
β

(
1

β

)(lnn/lnβ+1/2)2/2

.

This gives an asymptotic behavior of the complexity c∞(n) in O(n−lnn/lnβ).

References

[1] M. Dell’Amico, M. Trubian, Applying tabu search to the job-shop scheduling problem, Ann. Oper. Res. 41
(1993) 231–252.

[2] P. Baptiste, C. Le Pape, A theoretical and experimental comparison of constraint propagation techniques for
disjunctive scheduling, in: Proc. IJCAI-95, Montreal, Quebec, 1995.

[3] P. Baptiste, C. Le Pape, W. Nuijten, Constraint-Based Scheduling. Applying Constraint Programming to
Scheduling Problems, Kluwer Academics, Dordrecht, 2001.

[4] C. Beck, Texture measurements as a basis for heuristic commitment techniques in constraint-directed
scheduling, PhD Thesis, University of Toronto, 1999.

[5] J. Carlier, E. Pinson, A practical use of Jackson’s preemptive schedule for solving the job-shop problem,
Ann. Oper. Res. 26 (1990) 269–287.

[6] Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals, Technical Report 95-25, LIENS, Ecole
Normale Supérieure, Paris, France, 1995.

[7] A. Cesta, A. Oddi, Gaining efficiency and flexibility in the simple temporal problem, in: Proc. Third
International Conference on Temporal Representation and Reasoning (TIME-96), 1996.

[8] A. Cesta, A. Oddi, S.F. Smith, A constrained-based method for project scheduling with time windows,
J. Heuristics 8 (1) (2002).

188 P. Laborie / Artificial Intelligence 143 (2003) 151–188

[9] A. Cesta, C. Stella, A time and resource problem for planning architectures, in: Proc. ECP-97, Toulouse,
France, 1997.

[10] D. Chapman, Planning for conjunctive goals, Artificial Intelligence 32 (1987) 333–377.
[11] C. Cheng, S. Smith, Applying constraint satisfaction techniques to job shop scheduling, Ann. Oper. Res. 70

(1997) 327–357.
[12] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial Intelligence 49 (1–3) (1991) 61–96.
[13] U. Dorndorf, T. Phan Huy, E. Pesch, A survey of interval capacity consistency tests for time and resource

constrained scheduling, in: Project Scheduling—Recent Models, Algorithms and Applications, Kluwer
Academic, Dordrecht, 1999, pp. 213–238.

[14] J. Erschler, Analyse sous contraintes et aide à la décision pour certains problèmes d’ordonnancement, PhD
Thesis, Université Paul Sabatier, Toulouse, France, 1976.

[15] J. Erschler, P. Lopez, C. Thuriot, Raisonnement temporel sous contraintes de ressources et problèmes
d’ordonnancement, Revue d’Intelligence Artificielle 5 (3) (1991) 7–32.

[16] F. Focacci, P. Laborie, W. Nuijten, Solving scheduling problems with setup times and alternative resources,
in: Proc. Fifth International Conference on Artificial Intelligence Planning and Scheduling, Breckenridge,
CO, 2000, pp. 92–101.

[17] L. Ford, D. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
[18] F. Garcia, P. Laborie, Hierarchisation of the search space in temporal planning, in: New Directions in AI

Planning, IOS Press, Amsterdam, 1996, pp. 217–232.
[19] ILOG, ILOG Scheduler 5.2 Reference Manual, 2001, http://www.ilog.com/.
[20] S. Kambhampati, X. Yang, On the role of disjunctive representations and constraint propagation in

refinement planning, in: Proc. KR-96, Cambridge, MA, 1996, pp. 135–146.
[21] P. Laborie, Modal Precedence Graphs and their usage in ILOG Scheduler, Technical Report OIR-1999-01,

ILOG, 1999. Restricted availability.
[22] P. Laborie, M. Ghallab, Planning with sharable resource constraints, in: Proc. IJCAI-95, Montreal, Quebec,

1995, pp. 1643–1649.
[23] C. Le Pape, Implementation of resource constraints in ILOG schedule: A library for the development of

constraint-based scheduling systems, Intelligent Systems Engineering 3 (2) (1994) 55–66.
[24] D. McAllester, D. Rosenblitt, Systematic nonlinear planning, in: Proc. AAAI-91, Anaheim, CA, 1991,

pp. 634–639.
[25] K. Neumann, C. Schwindt, Project scheduling with inventory constraints, Technical Report WIOR-572,

Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe, 1999.
[26] X. Nguyen, S. Kambhampati, Reviving partial order planning, in: Proc. IJCAI-01, Seattle, WA, 2001,

pp. 459–464.
[27] W. Nuijten, Time and resource constrained scheduling: A constraint satisfaction approach, PhD Thesis,

Eindhoven University of Technology, 1994.
[28] D. Pacciarelli, A. Mascis, Job-shop scheduling of perishable items, in: INFORMS’99, 1999.
[29] D.E. Smith, J. Frank, A.K. Jonsson, Bridging the gap between planning and scheduling, Knowledge

Engineering Review 15 (1) (2000).
[30] F. Sourd, W. Nuijten, Multiple-machine lower bounds for shop scheduling problems, INFORMS J.

Comput. 4 (12) (2000) 341–352.
[31] P. Torres, P. Lopez, On not-first/not-last conditions in disjunctive scheduling, European J. Oper. Res. 127

(2000) 332–343.

