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1 Review

1.1 Planning Problem and Plans

The planning problem P we are considering is a 3-tuple (D, I, G) described in the ADL language whose syntax is
given in the book, where I is the initial state, GG is the goal and D is the domain description.

Plans. We define a plan 7 as a sequence of sets of actions, i.e., 7 = Ag; A1;...; A, 1 where 4;,0<i<n-—1,isa
set of actions. That is, we allow actions to be executed parallelly.

Transition Function. Given a planning problem P = (D, I, G) with the set of actions A and set of fluents F, the
transition function & of the planning domain that maps sets of actions and states into states is defined as follows.

B(4,0) = 1 if =L or Ja € Ast a isnotexecutableino or Adds N Dela # 0 )
)= (o0 U Adda) \ Dely otherwise

where A C A is some set of actions, s is a state, Adda = |J, 4(Add,), and Dels = |J,c 4(Del,).
It is worthwhile extending the definition of ® for a plan 7 as well. More precisely, the transition function & for
plans are defined recursively as follows:
®([A],0) = ®(4,0)
®([4;p],0) = (p, ®(A,0)) ifp# 0
oo = I is called the initial state. We say that G can be achieved from o after executing plan 7 if (7, 09) #L and
® (7, 0¢) satisfies G.

1.2 SAT Encodings

Given a planning problem P = (D, I, G) in the ADL language with the transition function given in (1), the general
procedure for translating P into the corresponding propositional theory T" with n time instants is sketched out as
follows:

e Each fluent f € F corresponds to the set of propositions { ¢} in T', where i = 0. ..n.

e Eachaction a € A corresponds to the set of propositions {a‘}, where i =0...n — 1.

e The encoding consists of the following sentences
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1.3 Correctness
We will show that the encoding 7" from (2)-(6) is equivalent to the original planning problem P = (D, I, G).

2 Proof of the Correctness

To prove the correctness of the SAT-encoding, we need prove the following
1. [Soundness] If T' has a model M then we can extract from M a plan 7 for P that achieves G from the initial
state 1.

2. [Completeness] If P has a plan « of length n that achieves G from the initial state then 7" has at least one model
M from which 7 can be extracted.

2.1 Soundness

Assume that M is a model of T. Let A; = {a | aisanactionsuchthata® € M}, n = [Ao;A1;...A,—1] and
si ={f | f* € M}. Note that A}s might be empty. By (2) and (3), it is easy to see that s is the initial state of P and
G holds in s,,. Before proving the soundness of the encoding, let us prove the following lemmas.

Lemmal For every integer i, 0 < i < n, a fluent literal [ holds in a state s; if and only if M = I°.
Proof. It is obvious from the definition of s;.
Lemma 2 For every integer i, 0 <14 < n — 1, and for every action a in A;, a is executable in s;.

Proof. Let [ be a fluent literal in Pre,. By the definition of A;, we have M |= a®. On the other hand, a? = 1% (by (4)).
Hence, M |= I¢. As aresult, I holds in s; (by Lemma 1). That is, a is executable in s;.

Lemma 3 For every integeri, 0 < i <n—1, Adda, N Dela, = 0.

Proof. Assume that Add4, N Dela, # (. Thus, there exists a fluent f € F s.t. f € Adda, N Dely4,. This implies
that there exist two actions b,c € A; s.t. f € Addy and f € Del..

By (5), we have ! is true in M. And by (6), we have —f#+! is true in M. This is a contradiction. Therefore,
AddAi n DelAi =0.

Lemma4 Forevery integeri, 0 <i <n — 1, we have ®(A;,s;) = Si41.

Proof. According to Lemma 2 and Lemma 3, every action a in A; is executable in s; and Adda, N Del4, = § for
all 0 <4 < n — 1. Therefore, according to (1), ®(4;,s;) = (s; U Adda,) \ Dels, = s for some s. We will prove
8;+1 = s by showing that, for every f € F,

1) iffesitithenfes

() iffésiathenf¢s
Proof of (1). Assume that f € s;41.

According to Lemma 1, we have M = fi+1. Hence,

MEAC N —d)ve o d)

a€A,fe€Del, a€A,fEAdd,

There are two possibilities:
a) M (fiA (Asea,feper, f‘ai))
It is easy to see that M |= f*. Thus, f € s;.
b) M = V,ca reada, @ Thatis, there must exist an action b such that M = b* and f € Addy. Since
M = b?, we have b € A;. Hence, f € Addy C Adda,. Inaddition, Add 4, N Dela, = () (Lemma 4), we
have f & Del4,. Asaresult f € (s; U Addy,) \ Dela, = s.
Therefore, in both cases, we have f € s.



Proof of (2). Assumethat f & s;41.
According to Lemma 1, fi+1 isnotin M, i.e., M |= -~ f1. By (6), we have two possibilities:
8) M = (=f" A (Asea,seaaq, 7@*))- In this case, we have M |= —f*. Therefore, f ¢ s; (by Lemma 1).

On the other hand, since M = (=f* A (A,ca. e aaq, ~@°)), We have M = (A,ca reaaa, ~0°))- Thus,
f & Addy,. Consequently, f & (s; U Addy,) \ Dela, = s.

b) M = (V,ea.sepe, @)- Thatis, there must be exist an action b such that f € Del, and b* is true in M.
Thatis, f € Dela, andthus f & (s; U Adda;) \ Dela, = s

So, we can conclude that if f & s;41 then f & s.
The lemma is therefore proved.

Theorem 1 The encoding is sound.

Proof. Leto; = ®(Ag...A; 1,00) forl <i < mn. Aswe mentioned above, ¢ = so. By Lemma 4, using induction,
we can easily prove that s; = o; forall 0 < ¢ < n. Hence, ®(w,0¢) = 0, = s,. On the other hand, G holds s,.
Thus, G holds in ®(7,0¢). Thatis, G can be achieved from o after executing .

The encoding is therefore proved to be sound.

2.2 Completeness

Assume that P has a plan 7 = Ag; A1;...; An_1, Where 4;, 0 < ¢ < n — 1, is a set of actions, that achieves goal
G from go. We denote ®(Ao; Ai;...; Aj_1,00) by o;. Since w is a plan that achieves goal G, we have the following
properties:

(1) ag = 1.

(2) forevery integer,i, 0 < i <mn — 1, and for every action a € A;, a is executable in o;.

(3) oi#Land Dels, N Add, = 0 foreveryi, 0<i<n

(4) Oip1 = (O'z' U AddAz) \DelAi.

(5) forevery literal I € G, I holds in o,.
Let T" be the corresponding propositional theory for P with n time instants and for every i, 0 < i < n, let §; denote
the set of propositions { f¢ | f € o;}. We construct an interpretation M of T as follows:

M=(J syu( |J {da'lac 4}

0<i<n 0<i<n—1

First of all, we will prove the following lemmas and then use them to prove the completeness of the encoding.
Lemma5 For every integer i, 0 < i < n, a fluent literal [ holds in o; iff M = 1%,
Proof. It is easy to see that M |= ¢ iff I* is contained in §;, that is,  holds in ;.
Lemma6 For every integeri, 0 <4 <n — 1, we have

M = d Va € A;

M [ —d Va ¢ A;
Proof. It is obvious from the construction of M.
Theorem 2 The encoding is complete.

Proof. To prove that the encoding is complete we need to prove
(1) M isamodel of T and,
(2) from M we can construct the plan .



Proving (2) is trivial. We will show (1) by checking all the propositional sentences in 7.
By Lemma 5, the sentence (2) and (3) are apparently true in M.
For every integer 7, 0 < ¢ <n — 1, and an action a € A;, since a is executable in ¢;, every fluent literal [ € Pre,
must hold in o;. By Lemma 5, we have M |= Ii. Thus, the sentence (4) is true in M.
¢From Lemma 6, we have:
AN —de A\ -

a€A,f€Del, a€A;,f€Del,
A e A
a€A,feAdd, a€A;,feAdd,
V e V@
a€A,feAdd, a€A;, fEAdd,
Vo ode Vo
a€A,feDel, a€A;,f€Del,

So, to prove the sentences (5) and (6) are true in M, we only need to prove the following sentences are true in M.

fPrediac N v\ ) O]
a€A;,f€Del, a€A;,fEAdd,

o A GV AN Y AN ) A R VAR D ®)
a€A;,feEAdd, a€A;,f€Del,

For each fluent f € F, and an integer ¢, 0 < i < n — 1, consider the following four cases:
Case 1. f holdsinbotho; and oj41.

According to Lemma 5, we have M = fiand M = fitl.

Since 0,11 = (0; U Adda,) \ Dely,, f & Del,. Hence, we can reduce (7) and (8) to:

fHh e fiv( \/ a’) )
a€A;, fEAdd,
e (A N\ —ad) (10)

a€A;,fEAdd,

(9) is true in M as both f? and fi*+1 are true in M. (9) is also true in M as both the left hand side and the right
hand side are false in M.

Case 2. f holds in ¢; but does not hold in ;1.
By Lemma 5, we have M |= ftand M £ fitl.
Since o;41 = (0; U Addy,;) \ Dely,, f € Dely;. So, there exists a € A; such that f € Del,. Thus,
(Vaea, reper, ~a') is false in M and (A ,c 4, sepe, @) are true in M. On the other hand, since Del; N
Adda, = 0,wehave f &€ Adda,. As aresult, both sides of (7) are false, whereas both sides of (8) are true. That
is, (7) and (8) are true in M.

Case 3. f does not hold in o; but holds in oy 1.
In this case, we have f+1 is true in M but f?is not. Since, 011 = (0; U Adda,)\ Del,, we have f € Adda,.
Thus f & Del 4,. Similarly to Case 2, (7) is true in M as its both sides are true and (8) is also true because its
both sides are false.

Case 4. f does not hold in both o; and ;1.
In this case, we have M | —f? and M | —fitl. Since o;41 = (0; U Adda,) \ Dela,, we have either
f € Dely, or f ¢ Adda,. However, f € Del 4, also implies that f ¢ Adda,. Hence, in both cases, we have
f & Addy,.



(7) and (8) are therefore equivalent to

fffrefinc N\ -d) (11)
a€A;,f€Del,
St eafive [ d) (12)

a€A;,f€Del,

It is easy to see that both of them are true in M.
M is therefore a model of T'. So, the encoding is complete.



