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1 Preliminary

A first-order theory consists of an alphabet, a first order language, a set of axioms and a set of inference
rules.

Definition 1 An alphabet consists of the following sets:

~

variables

. constants

. function symbols

. predicate symbols

. connectives: {A,V,, >, —}

. quantifiers:N, 3

S RS T S SO

. punctuation symbols: '(',') ']

NOTE: e The last three sets are the same for every alphabet.

e For an alphabet, only the set of constants or the set of function symbols may be empty.

e Notation convention: Variables: u,v,w,z,y, and z (possibly with indexes); constants: a, b, and ¢ (possibly
with indexes); function symbols of arities > 0: f, g, and h (possibly with indexes); and predicate symbols of
arities > 0: p, ¢, and r (possibly with indexes).

The precedence among the connectives: —=,V,3, A, V, =, &

Given an alphabet, a first order language is defined by the set of well-formed formula (wff or sentences) of
the theory (defined below).

Definition 2 A term is either

1. a variable,
2. a constant, or

3. an expression of the form f(t1,...,t,) where f is an n-ary function symbol and t1,...,t, are terms.



Definition 3 A (well-formed) formula is defined inductively as follows.

1. p(t1,...,tn) where p is an n-ary predicate symbol and t1,...,t, are terms,
2. if P and Q are formulas then (—P), (PAQ), (PVQ), (P = Q), (P + Q) are formulas

3. if P is a formula and x is o variable then (Vx P) and (3z P) are formulas.

Definition 4 A first order language given by an alphabet consists of the set of all formulas constructed from
the symbols of the alphabet.

Example 1 (Vz(Jy(p(z,y) = q(x)))) and (—=Fz((p(z,a) A q(f(2))))) are formulas. We can simplify them
to VaIy(p(x, y) = q(x)) and —=3z(p(z, a) A q(f(2))).

Definition 5 The scope of Vx (resp. Jx) in VzF (resp. xzF) is F. A bound occurrence of a variable
in a formula is an occurrence immediately following a quantifier or an occurrence within the scope of the
quantifier, which has the same variable immediately after the quantifier. Any other occurrence of a variable
is free.

Example 2 Jzp(z,y) — q(x) — the first two occurrences of x (in Az and p(x,y)) are bound but the third
one (in q(x)) is free.

Fz(p(z,y) — q(x)) — all occurrences of x are bound (because of the parentheses!).
Definition 6 A closed formula is a formula with no free occurrences of any variable.

Example 3 Jzp(z,y) = q(x) is not a closed formula.

Az(p(x,y) — q(x)) is a closed formula.

Definition 7 A grounded term is a term not containing a variable. A grounded atom is an atom not
containing o variable.

2 Interpretation
NOTE: When we say ‘a first order language L’ we understand that the alphabet of L is given.
Definition 8 Let L be a first order language. An interpretation I of L consists of

1. a non-empty set D, called the domain of I,

2. for each constant in L, the assignment of an element of D, (i.e., a constant ¢ is mapped into an element
I(c) € D),

3. for each n-ary function symbol in L, the assignment of a mapping from D™ to D, (i.e., a function
symbol f is mapped into a function f!)

4. for each n-ary predicate symbol in L, the assignment of a mapping from D™ to into {true, false}, (i.e.,
a predicate symbol p is mapped into a relation p’).



Let I be an interpretation. A variable assignment (wrt. I)is an assignment to each variable in L an element
in D.

Let I be an interpretation and V' be a variable assignment (wrt. I). The term assignment (wrt. I and V)
of the terms in L is defined as follows.

1. Each variable is given its assignment according to V/,
2. Each constant is given its assignment according to I,
3. If¢},...,t), are the term assignments of 1, . ..,t, and f' is the assignment of the n-ary function symbol

f, then f'(t],...,t) is the term assignment of f(t1,...,tn).

Let I be an interpretation and V' be a variable assignment (wrt. I). Then, a formula L can be given a truth
value, true or false, (wrt. I and V') as follows:

1. If L = p(t1,...,ts) and t},...,t, are the term assignments of ¢1,...,t, (wrt. I and V), and p' be
the mapping assigned to the n-ary predicate symbol p by I, then the truth value of L is obtained by
calculating the truth value of p'(¢1,...,t,),

2. If the formula has the form (=P), (PAQ), (PV Q), (P = @), (P + Q) then the truth value of the
formula is given by the following table

[P|Q|-P|[PAQ[PVQ|P>Q[P+Q]
t t t t t t

ot R

t | f f t f f
flt f t f f
f|f f t f t

3. If the formula has the form JxF, then the truth value of the formula is true if there exists d € D
such that F' has the truth value wrt. I and the variable assignment V' in which z is assigned to d;
Otherwise, its truth value is false.

4. If the formula has the form VzF', then the truth value of the formula is true if for all d € D, F has
the truth value wrt. I and the variable assignment V' in which x is assigned to d; Otherwise, its truth
value is false.

From the above, the truth value of a closed formula does not depend on the variable assignment. Thus,
we can speak about the truth value of a closed formula wrt. to an interpretation (without mentioning the
variable assignment).

Definition 9 A first order theory T is a set of formulas of a first order language L.

Definition 10 Let I be an interpretation of a first order language L and let F be a closed formula of L.
Then, I is a model of F if F is true wrt. I.

Let S be a closed formulas of a first order language L and I be an interpretation of L. I is a model of S if
every formula F' € S is true wrt. I.

Definition 11 Let S be a closed formulas of a first order language L. We say

1. S is satisfiable if L has an interpretation which is a model of S,



2. S is valid if every interpretation of L is a model of S,
3. S is unsatisfiable if no interpretation of L is a model of S,

4. S s nonvalid if L has an interpretation which is not a model of S.

Definition 12 Let S be a closed formulas of a first order language L and F o formula in L. S entails F,
denoted by S |= F, if F is true wrt. to every model of S.

3 Unification

Definition 13 A literal is either an atom P or its negation —P.

Given a first order language L, an expression is either a constant, a variable, a term, a literal, a conjunction
of literals, or a disjunction of literals.

Definition 14 A substitution 1 is a finite set of the form {vi/t1,...,vn/tn} where each v; is a variable,
each t; is a term distinct from v; and the variables vy, . .., v, are distinct.

Each v;[t; is called a binding for v;;

7 is called a grounded substitution if the t; are all ground terms.

Definition 15 Let n = {v1/t1,...,vn/tn} be a substitution and E be an expression (term, literal, conjunc-
tion of literals, or disjunction of literals). Then, En, the instance of E by n, is the expression obtained from
E by simultaneously replacing each occurrence of the variables v; in E by the term t;.

If En is ground, then it is called a ground instance of E.
Example 4 Let E = p(z,y, f(a)) and n = {z/b,y/x} then En = p(b,z, f(a)).

Definition 16 Let 0 = {v1/t1,...,vn/tn} and n = {u1/s1,...,um/sn} be two substitutions. Then the
composition no of n and o is the substitution obtained from the set {u1/s10,...,Um/S$no,v1/t1,. .., Vn/ts}
by deleting any binding vj/t; for which vj € {uq,...,um}.

Example 5 Let 0 = {z/a,y/b,z/y} and n = {z/f(y),y/z} then no = {z/f(b),z/y} since X =
{z/f(y)o,y/z0} = {z/f(]),y/y,z/a,y/b,z/y} and no is obtained from X by deleting y/y,x/a,y/b because
z and y are variables occurring in 7.

Two expressions E and F' are called variants if there exists a substitution 7 such that £ = F'p and F' = En.
(We also say that E is a variant of F' and vice versal)

A set of expressions S = {E},...,E,} is unifiable if there exists a substitution 5 such that Eyn = Eanp =
...= E,n. In that case, 1 is a unifier of S.

A unifier 5 of S is called a most general unifier (or mgu) of S if for each unifier o of S there exists a
substitution « such that o = 7.



Example 6 The set S = {p(f(z),a),p(y, f(w))} is not unifiable because we can not unify the constant a
with f(w).

The set S = {p(f(z,y),9(2),a),p(f(y,2),9(u),a)} is unifiable since for n = {z/y,z/u}, Snp =
{p(f(y,y),9(u),a)}. Here, n is a mgu of S.

Definition 17 Let S be a set of simple expressions (a simple expression is a term or an atom). The
disagreement set of S is defined as follows. Locate the leftmost symbol position at which not all expressions
in S have the same symbol and extract from each expression expression in S the subexpression beginning at
that symbol position. The set of all such subexpressions is the disagreement set.

Example 7 Let S = {p(f(z),h(y),a),p(f(z),2,a),p(f(z),h(y),b)}. Then the disagreement set is
{n(y),2)}-

Example 8 Let S = {p(f(z),h(y),a),p(f(z),2,a),p(f(x),w,b)}. Then the disagreement set is ?.

4 Unification Algorithm

Let S = {P,..., Py} be a set of simple expressions.

S1 Put k=0 and 09 = {}.

S2 If Soy is a singleton (P;o, = Pjoy, for every i # j), then stop; oy is an mgu (most general unifier) of
S; Otherwise, find the disagreement set Dy of Soy.

S3 If there exist v and ¢ in Dy, such that v is a variable that does not occur in ¢, then put o1 = op{v/t},
increment k and go to S2. Otherwise, stop; S is not unifiable.

Example 9 Let S = {p(f(a),g(z)),p(y,y)}-

S1 Put k=0 and o9 = {}.

S2 Sog = S is not a singleton. So, we need to find the disagreement set Do of Sog = S. We have:
Dy = {f(a)ay}

S3 Here, y is a variable which does not occur in f(a). So, we let o1 = oo{y/f(a)} = {y/f(a)} and go to
S2.

S2 Soy = {p(f(a),g(x)),p(f(a), f(a))} is not a singleton. So, we need to find the disagreement set Dy of
Soy, = S. We have: Dy = {g(z), f(a)}.

S8 Here, there is no variable in Dy. So, we stop; S is not unifiable.
Example 10 Let S = {p(a,z,h(9(2))),p(z, h(y), h(y))}-

S1 Put k=0 and o9 = {}.

S2 Sog = S is not a singleton. So, we need to find the disagreement set Dy of Sog = S. We have:
Dy = {a, 2}.

S3 Here, z is a variable which does not occur in a. So, we let 01 = oo{z/a} = {z/a} and go to S2.



S2 So1 = {p(a,z,h(g(a))),p(a, h(y), h(y))} is not a singleton. So, we need to compute the disagreement
set Dy of So1. We have: D1 = {z,h(y)}.

S3 Here, © is a variable which does not occur in h(y). So, we let 02 = o1{z/h(y)} = {z/a,z/h(y)} and
go to S2.

S2 Soy = {p(a,h(y), h(g(a))),p(a, h(y),h(y))} is not a singleton. So, we need to find the disagreement set
D, of Soy. We have: Dy = {y,g(a)}.

S3 Here, y is a wvariable which does not occur in g(a). So, we let o3 = o2{y/g9(a)} =
{2/a,/h(g(a)),y/9(a)} and go to S2.
S2 Sos = {p(a,h(g(a)),h(g(a)))} is a singleton. So we stop and one mgu of S is o3 =

{z/a,2/h(9(a)),y/9(a)}.

Theorem 1 Let S be a finite of simple expressions. If S is unifiable then the algorithm terminates and gives
an mgu for S. If S is not unifiable then the algorithm terminates and reports this fact.

5 Resolution

Definition 18 A literal is either an atom P or its negation —P.
A clause is a disjunction of literals. (sometime it is written as PtV ...V P, or {Py,...,P,})
A formula @ is said to be in conjunctive normal form (or CNF) if Q) is a conjunction of clauses.

A formula @ is said to be in implicative normal form if ) is a conjunction of implication of the form
PAN...ANP, = Q1 V...V Qn where each P;, Q); is an atom.

(PVQQV-S)AN(=PVQVS)AN(-PV-RV-S)AN(PVTV-S)isaCNF.

Theorem 2 For every formula ¢ there exists a formula v in CNF form such that ¢ and v is equivalent,
i.e., V(¢ ¢ ) is a valid formula.

Algorithm to convert a formula into CNF form.

1. Eliminate implications: Replace p — ¢ with -pV ¢
2. Move - inward: do the following

a
b

) —(pV q) is replaced by —p A —¢q
)
¢) —Vzp is replaced by Jzp
)

)

—_~ o~

—(p A q) is replaced by —p V —q

—~~

d
(e) ——p is replaced by p

—~

—dzp is replaced by Vz—p

3. Standardize variable: For sentences like (VzP(x))V (3zQ(z)) that use the same variable name twice,
change the name of one of the variable.

4. Skolemize: Remove the existential quantifier by elimination — this includes: (1) defines a Skolem
function, one for a variable occurred immediately after an existential quantification, (2) introduces a
new constant, one for a variable occurred immediately after an existential quantification, (3) removes
the existential quantification and substitutes  for F*(A?) in the formula.



5. Distribute A over V: (a Ab)V ¢ becomes (aVec)A(bV c).

6. Flatten nested conjunction and disjunction: (aAb)Ac becomes (aAbAc) and (aVb)Vcbecomes
(@avbVve).

Example 11 Convert ((=VzA(z)) V VyB(y))) = (=(Vz2Q(z, f(z)))) to CNF.

1. ~((=¥zA(2)) V (VyB())) V (~=(V2Q(z, £(2)))) (Eliminate implication)
2. ((-VzA(z)) A (-VyB(y))) V (=(V2Q(z, f(2)))) (Move — ...)
3. (VzA(z) AJy—=B(y)) V ((F2-Q(z, f(2)))) (Move = ...)
GO vt o e e oo o o ool 3 a5 reapectioy) L e untions and
5. (A(z) A ~B(Fy(Cy))) V ~Q(Cz, f(Fz(C%))) (Drop universal quantifier)
6. (A(z) V ~Q(Cz, f(F2(C2)))) A (~B(Fy(Cy)) V -Q(Cz, f(Fz(C2)))) (Distribute A over V)

NOTE: 1. In the above, F'z might not be needed.

2. Implicative normal form is often used to. A formula of the form —-P, V=P, V...V-P,VQ1VQ2...VQn
isequivalent to PL AP, ... AP, > Q1 VQ2...VQn

It is easy to see that if @) is in CNF then we can convert it into implicative normal form using the above
conversion.

The resolution inference rule If ; and (2 are unifiable and 7 is a mgu of #; and fs, then

aVpBi,=p2Vy (1)
an 'V yn
or
_'C(—>B1,ﬂ2—>’}’ (2)

—an =

Given a set of formulas S and a formula @), we would like to determines if S = Q.
We can use (1) (or (2)) to determine whether S F @ holds or not.

We make the following assumptions:

1. Each formula in S is a clause (why?)

2. @ is a literal (why?)
Example 12 Let A be the set consisting of the following clauses:

1. =P(w) V Q(w),
2. P(z) V R(x),



8. =Q(y) v S(y), and
4. =R(z) vV S(2).

Question: A+ S(A)?
Proof.

1 LSty ) where 1 = {y/w}

g, SEONSOUPEVRE) i, (1))

3. SENREZSENVSE yith {5/A,2/A} DONE!

Refutation proof procedure. Given a set of clauses S and a literal (). The refutation proof procedure
uses resolution to determine whether S |= @ holds or not.

1. Idea: If S = @ then SU{—~Q} is unsatisfiable, i.e., there is no model for SU{-Q}. So, we will assume
that =@ holds and try to derive a contradiction out of S U {-Q}.

2. Algorithm: We try to derive a proof that derives a contradiction from S U{—-Q}. The algorithm can
be described as follows.

Al Let k=0, Gy = 2Q.

A2 If Gy = false then step and answer ’yes’; Otherwise, find a clause C' in S that contains a literal
L which is contradictory with some L' of Gy, and 7 is a mgu of L and L'. Go to step [A3]!

A3 Let Ggy1 = ((C\{L}P) U (G \ {L'}))n, k = k+ 1, and go to step [A2]!

Example 13

Dog(D)
Owns(Jack, D)

Dog(y) A Owns(z,y) — Animal Lover(x)
Animal Lover(z) A Animal(y) A Kills(z,y) — False
Kills(Jack, Tuna) V Kills(Curiosity, Tuna)
Cat(Tuna)

Cat(z) — Animal(z)

N

N o~~~ o~~~
M N N~ N N

© o

Convert to clausal form

Dog(D) (10)

Owns(Jack, D) (11)

—Dog(y) V ~Owns(z,y) V Animal Lover(x) (12)
—Animal Lover(z) V = Animal(y) V ~Kills(z,y) (13)
Kills(Jack, Tuna) V Kills(Curiosity, Tuna) (14)
Cat(Tuna) (15)

—Cat(z) V Animal (x) (16)



Proving Kills(Curiosity, Tuna)

Go = ~Kills(Curiosity, Tuna), n = {}, Clause (14)

G1 = Kills(Jack, Tuna), n = {z/Jack,y/Tuna}, Clause (13)

G> = ~Animal Lover(Jack) V = Animal(Tuna), n = {z/Tuna}, Clause (16)
G5 = ~Animal Lover(Jack) V =Cat(Tuna), n = {z/Tuna}, Clause (16)

G4 = - Animal Lover(Jack), n = {}, Clause (15)

G5 = Dog(y) V ~Owns(Jack,y), n = {z/Jack}, Clause (12)

Gg = ~Dog(D), n = {y/D}, n ={}, Clause (11)

Gr =0 (or G7 = false), n ={}, Clause (10)! DONE



