First-Order Theories

CS 579 - Review

January 22, 2004

1 Preliminary

A first-order theory consists of an alphabet, a first order language, a set of axioms and a set of inference rules.

Definition 1 An alphabet consists of the following sets:

- 1. variables
- 2. constants
- 3. function symbols
- 4. predicate symbols
- 5. connectives: $\{\land, \lor, \neg, \leftrightarrow, \rightarrow\}$
- 6. quantifiers: \forall , \exists
- 7. punctuation symbols: '(',')',',','

NOTE: • The last three sets are the same for every alphabet.

- For an alphabet, only the set of constants or the set of function symbols may be empty.
- Notation convention: Variables: u, v, w, x, y, and z (possibly with indexes); constants: a, b, and c (possibly with indexes); function symbols of arities > 0: f, g, and h (possibly with indexes); and predicate symbols of arities ≥ 0 : p, q, and r (possibly with indexes).

The precedence among the connectives: $\neg, \forall, \exists, \land, \lor, \rightarrow, \leftrightarrow$

Given an alphabet, a first order language is defined by the set of well-formed formula (wff or sentences) of the theory (defined below).

Definition 2 A term is either

- 1. a variable,
- 2. a constant, or
- 3. an expression of the form $f(t_1, \ldots, t_n)$ where f is an n-ary function symbol and t_1, \ldots, t_n are terms.

Definition 3 A (well-formed) formula is defined inductively as follows.

- 1. $p(t_1,\ldots,t_n)$ where p is an n-ary predicate symbol and t_1,\ldots,t_n are terms,
- 2. if P and Q are formulas then $(\neg P)$, $(P \land Q)$, $(P \lor Q)$, $(P \to Q)$, $(P \leftrightarrow Q)$ are formulas
- 3. if P is a formula and x is a variable then $(\forall x \ P)$ and $(\exists x \ P)$ are formulas.

Definition 4 A first order language given by an alphabet consists of the set of all formulas constructed from the symbols of the alphabet.

Example 1 $(\forall x(\exists y(p(x,y) \rightarrow q(x))))$ and $(\neg \exists x((p(x,a) \land q(f(x)))))$ are formulas. We can simplify them to $\forall x \exists y(p(x,y) \rightarrow q(x))$ and $\neg \exists x(p(x,a) \land q(f(x)))$.

Definition 5 The scope of $\forall x$ (resp. $\exists x$) in $\forall xF$ (resp. $\exists xF$) is F. A bound occurrence of a variable in a formula is an occurrence immediately following a quantifier or an occurrence within the scope of the quantifier, which has the same variable immediately after the quantifier. Any other occurrence of a variable is free.

Example 2 $\exists x p(x,y) \rightarrow q(x)$ – the first two occurrences of x (in $\exists x$ and p(x,y)) are bound but the third one (in q(x)) is free.

 $\exists x(p(x,y) \rightarrow q(x))$ - all occurrences of x are bound (because of the parentheses!).

Definition 6 A closed formula is a formula with no free occurrences of any variable.

Example 3 $\exists x p(x,y) \rightarrow q(x)$ is not a closed formula.

 $\exists x(p(x,y) \rightarrow q(x)) \text{ is a closed formula.}$

Definition 7 A grounded term is a term not containing a variable. A grounded atom is an atom not containing a variable.

2 Interpretation

NOTE: When we say 'a first order language L' we understand that the alphabet of L is given.

Definition 8 Let L be a first order language. An interpretation I of L consists of

- 1. a non-empty set D, called the domain of I,
- 2. for each constant in L, the assignment of an element of D, (i.e., a constant c is mapped into an element $I(c) \in D$),
- 3. for each n-ary function symbol in L, the assignment of a mapping from D^n to D, (i.e., a function symbol f is mapped into a function f^I)
- 4. for each n-ary predicate symbol in L, the assignment of a mapping from D^n to into $\{true, false\}$, (i.e., a predicate symbol p is mapped into a relation p^I).

Let I be an interpretation. A variable assignment (wrt. I) is an assignment to each variable in L an element in D.

Let I be an interpretation and V be a variable assignment (wrt. I). The term assignment (wrt. I and V) of the terms in L is defined as follows.

- 1. Each variable is given its assignment according to V,
- 2. Each constant is given its assignment according to I,
- 3. If t'_1, \ldots, t'_n are the term assignments of t_1, \ldots, t_n and f' is the assignment of the n-ary function symbol f, then $f'(t'_1, \ldots, t'_n)$ is the term assignment of $f(t_1, \ldots, t_n)$.

Let I be an interpretation and V be a variable assignment (wrt. I). Then, a formula L can be given a truth value, true or false, (wrt. I and V) as follows:

- 1. If $L = p(t_1, \ldots, t_n)$ and t'_1, \ldots, t'_n are the term assignments of t_1, \ldots, t_n (wrt. I and V), and p' be the mapping assigned to the n-ary predicate symbol p by I, then the truth value of L is obtained by calculating the truth value of $p'(t_1, \ldots, t'_n)$,
- 2. If the formula has the form $(\neg P)$, $(P \land Q)$, $(P \lor Q)$, $(P \to Q)$, $(P \leftrightarrow Q)$ then the truth value of the formula is given by the following table

Р	Q	¬ P	$P \wedge Q$	$P \vee Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
t	t	f	t	t	t	t
t	f	f	${f f}$	t	${f f}$	f
f	t	t	${f f}$	t	${f f}$	f
f	f	t	\mathbf{f}	t	\mathbf{f}	t

- 3. If the formula has the form $\exists x F$, then the truth value of the formula is true if there exists $d \in D$ such that F has the truth value wrt. I and the variable assignment V in which x is assigned to d; Otherwise, its truth value is false.
- 4. If the formula has the form $\forall xF$, then the truth value of the formula is true if for all $d \in D$, F has the truth value wrt. I and the variable assignment V in which x is assigned to d; Otherwise, its truth value is false.

From the above, the truth value of a closed formula does not depend on the variable assignment. Thus, we can speak about the truth value of a closed formula wrt. to an interpretation (without mentioning the variable assignment).

Definition 9 A first order theory T is a set of formulas of a first order language L.

Definition 10 Let I be an interpretation of a first order language L and let F be a closed formula of L. Then, I is a model of F if F is true wrt. I.

Let S be a closed formulas of a first order language L and I be an interpretation of L. I is a model of S if every formula $F \in S$ is true wrt. I.

Definition 11 Let S be a closed formulas of a first order language L. We say

1. S is satisfiable if L has an interpretation which is a model of S,

- 2. S is valid if every interpretation of L is a model of S,
- 3. S is unsatisfiable if no interpretation of L is a model of S,
- 4. S is nonvalid if L has an interpretation which is not a model of S.

Definition 12 Let S be a closed formulas of a first order language L and F a formula in L. S entails F, denoted by $S \models F$, if F is true wrt. to every model of S.

3 Unification

Definition 13 A literal is either an atom P or its negation $\neg P$.

Given a first order language L, an expression is either a constant, a variable, a term, a literal, a conjunction of literals, or a disjunction of literals.

Definition 14 A substitution η is a finite set of the form $\{v_1/t_1, \ldots, v_n/t_n\}$ where each v_i is a variable, each t_i is a term distinct from v_i and the variables v_1, \ldots, v_n are distinct.

Each v_i/t_i is called a binding for v_i ;

 η is called a grounded substitution if the t_i are all ground terms.

Definition 15 Let $\eta = \{v_1/t_1, \ldots, v_n/t_n\}$ be a substitution and E be an expression (term, literal, conjunction of literals, or disjunction of literals). Then, $E\eta$, the instance of E by η , is the expression obtained from E by simultaneously replacing each occurrence of the variables v_i in E by the term t_i .

If $E\eta$ is ground, then it is called a ground instance of E.

Example 4 Let E = p(x, y, f(a)) and $\eta = \{x/b, y/x\}$ then $E\eta = p(b, x, f(a))$.

Definition 16 Let $\sigma = \{v_1/t_1, \ldots, v_n/t_n\}$ and $\eta = \{u_1/s_1, \ldots, u_m/s_n\}$ be two substitutions. Then the composition $\eta \sigma$ of η and σ is the substitution obtained from the set $\{u_1/s_1\sigma, \ldots, u_m/s_n\sigma, v_1/t_1, \ldots, v_n/t_n\}$ by deleting any binding v_j/t_j for which $v_j \in \{u_1, \ldots, u_m\}$.

Example 5 Let $\sigma = \{x/a, y/b, z/y\}$ and $\eta = \{x/f(y), y/z\}$ then $\eta \sigma = \{x/f(b), z/y\}$ since $X = \{x/f(y)\sigma, y/z\sigma\} = \{x/f(b), y/y, x/a, y/b, z/y\}$ and $\eta \sigma$ is obtained from X by deleting y/y, x/a, y/b because x and y are variables occurring in η .

Two expressions E and F are called *variants* if there exists a substitution η such that $E = F\eta$ and $F = E\eta$. (We also say that E is a variant of F and vice versa!)

A set of expressions $S = \{E_1, \ldots, E_n\}$ is unifiable if there exists a substitution η such that $E_1 \eta = E_2 \eta = \ldots = E_n \eta$. In that case, η is a *unifier* of S.

A unifier η of S is called a most general unifier (or mgu) of S if for each unifier σ of S there exists a substitution γ such that $\sigma = \eta \gamma$.

Example 6 The set $S = \{p(f(x), a), p(y, f(w))\}$ is not unifiable because we can not unify the constant a with f(w).

The set $S=\{p(f(x,y),g(z),a),p(f(y,x),g(u),a)\}$ is unifiable since for $\eta=\{x/y,z/u\},\ S\eta=\{p(f(y,y),g(u),a)\}.$ Here, η is a mgu of S.

Definition 17 Let S be a set of simple expressions (a simple expression is a term or an atom). The disagreement set of S is defined as follows. Locate the leftmost symbol position at which not all expressions in S have the same symbol and extract from each expression expression in S the subexpression beginning at that symbol position. The set of all such subexpressions is the disagreement set.

Example 7 Let $S = \{p(f(x), h(y), a), p(f(x), z, a), p(f(x), h(y), b)\}.$ Then the disagreement set is $\{h(y), z\}\}.$

Example 8 Let $S = \{p(f(x), h(y), a), p(f(x), z, a), p(f(x), w, b)\}$. Then the disagreement set is ?.

4 Unification Algorithm

Let $S = \{P_1, \dots, P_m\}$ be a set of simple expressions.

- S1 Put k = 0 and $\sigma_0 = \{\}.$
- S2 If $S\sigma_k$ is a singleton $(P_i\sigma_k = P_j\sigma_k \text{ for every } i \neq j)$, then stop; σ_k is an mgu (most general unifier) of S; Otherwise, find the disagreement set D_k of $S\sigma_k$.
- S3 If there exist v and t in D_k such that v is a variable that does not occur in t, then put $\sigma_{k+1} = \sigma_k \{v/t\}$, increment k and go to S2. Otherwise, stop; S is not unifiable.

Example 9 Let $S = \{p(f(a), g(x)), p(y, y)\}.$

- S1 Put k = 0 and $\sigma_0 = \{\}.$
- S2 $S\sigma_0 = S$ is not a singleton. So, we need to find the disagreement set D_0 of $S\sigma_0 = S$. We have: $D_0 = \{f(a), y\}$.
- S3 Here, y is a variable which does not occur in f(a). So, we let $\sigma_1 = \sigma_0\{y/f(a)\} = \{y/f(a)\}$ and go to S2.
- S2 $S\sigma_1 = \{p(f(a), g(x)), p(f(a), f(a))\}\$ is not a singleton. So, we need to find the disagreement set D_1 of $S\sigma_1 = S$. We have: $D_1 = \{g(x), f(a)\}.$
- S3 Here, there is no variable in D_1 . So, we stop; S is not unifiable.

Example 10 Let $S = \{p(a, x, h(g(z))), p(z, h(y), h(y))\}.$

- S1 Put k = 0 and $\sigma_0 = \{\}.$
- S2 $S\sigma_0 = S$ is not a singleton. So, we need to find the disagreement set D_0 of $S\sigma_0 = S$. We have: $D_0 = \{a, z\}$.
- S3 Here, z is a variable which does not occur in a. So, we let $\sigma_1 = \sigma_0\{z/a\} = \{z/a\}$ and go to S2.

- S2 $S\sigma_1 = \{p(a, x, h(g(a))), p(a, h(y), h(y))\}$ is not a singleton. So, we need to compute the disagreement set D_1 of $S\sigma_1$. We have: $D_1 = \{x, h(y)\}$.
- S3 Here, x is a variable which does not occur in h(y). So, we let $\sigma_2 = \sigma_1\{x/h(y)\} = \{z/a, x/h(y)\}$ and go to S2.
- S2 $S\sigma_2 = \{p(a, h(y), h(g(a))), p(a, h(y), h(y))\}$ is not a singleton. So, we need to find the disagreement set D_2 of $S\sigma_2$. We have: $D_1 = \{y, g(a)\}$.
- S3 Here, y is a variable which does not occur in g(a). So, we let $\sigma_3 = \sigma_2\{y/g(a)\} = \{z/a, x/h(g(a)), y/g(a)\}$ and go to S2.
- S2 $S\sigma_3 = \{p(a, h(g(a)), h(g(a)))\}$ is a singleton. So we stop and one mgu of S is $\sigma_3 = \{z/a, x/h(g(a)), y/g(a)\}.$

Theorem 1 Let S be a finite of simple expressions. If S is unifiable then the algorithm terminates and gives an mgu for S. If S is not unifiable then the algorithm terminates and reports this fact.

5 Resolution

Definition 18 A literal is either an atom P or its negation $\neg P$.

A clause is a disjunction of literals. (sometime it is written as $P_1 \vee \ldots \vee P_n$ or $\{P_1, \ldots, P_n\}$)

A formula Q is said to be in conjunctive normal form (or CNF) if Q is a conjunction of clauses.

A formula Q is said to be in implicative normal form if Q is a conjunction of implication of the form $P_1 \wedge \ldots \wedge P_n \to Q_1 \vee \ldots \vee Q_m$ where each P_i , Q_j is an atom.

$$(P \lor Q \lor \neg S) \land (\neg P \lor Q \lor S) \land (\neg P \lor \neg R \lor \neg S) \land (P \lor T \lor \neg S)$$
 is a CNF.

Theorem 2 For every formula ϕ there exists a formula ψ in CNF form such that ϕ and ψ is equivalent, i.e., $\forall (\phi \leftrightarrow \psi)$ is a valid formula.

Algorithm to convert a formula into CNF form.

- 1. Eliminate implications: Replace $p \to q$ with $\neg p \lor q$
- 2. Move ¬ inward: do the following
 - (a) $\neg (p \lor q)$ is replaced by $\neg p \land \neg q$
 - (b) $\neg (p \land q)$ is replaced by $\neg p \lor \neg q$
 - (c) $\neg \forall xp$ is replaced by $\exists xp$
 - (d) $\neg \exists xp$ is replaced by $\forall x \neg p$
 - (e) $\neg \neg p$ is replaced by p
- 3. **Standardize variable**: For sentences like $(\forall x P(x)) \lor (\exists x Q(x))$ that use the same variable name twice, change the name of one of the variable.
- 4. **Skolemize**: Remove the existential quantifier by elimination this includes: (1) defines a Skolem function, one for a variable occurred immediately after an existential quantification, (2) introduces a new constant, one for a variable occurred immediately after an existential quantification, (3) removes the existential quantification and substitutes x for $F^x(A^x)$ in the formula.

- 5. **Distribute** \land **over** \lor : $(a \land b) \lor c$ becomes $(a \lor c) \land (b \lor c)$.
- 6. Flatten nested conjunction and disjunction: $(a \land b) \land c$ becomes $(a \land b \land c)$ and $(a \lor b) \lor c$ becomes $(a \lor b \lor c)$.

Example 11 Convert $((\neg \forall x A(x)) \lor (\forall y B(y))) \to (\neg (\forall z Q(z, f(z))))$ to CNF.

1.
$$\neg((\neg \forall x A(x)) \lor (\forall y B(y))) \lor (\neg(\forall z Q(z, f(z))))$$
 (Eliminate implication)

2.
$$((\neg \neg \forall x A(x)) \land (\neg \forall y B(y))) \lor (\neg (\forall z Q(z, f(z))))$$
 (Move $\neg ...$)

3.
$$(\forall x A(x) \land \exists y \neg B(y)) \lor ((\exists z \neg Q(z, f(z))))$$
 (Move $\neg ...$)

4. $\forall x((A(x) \land \neg B(Fy(Cy))) \lor \neg Q(Cz, f(Fz(Cz))))$ (Skolemize – Fy, Fz are two new functions and Cy, Cz are two new constants, correspond to the variable y and z respectively)

5.
$$(A(x) \land \neg B(Fy(Cy))) \lor \neg Q(Cz, f(Fz(Cz)))$$
 (Drop universal quantifier)

6.
$$(A(x) \lor \neg Q(Cz, f(Fz(Cz)))) \land (\neg B(Fy(Cy)) \lor \neg Q(Cz, f(Fz(Cz))))$$
 (Distribute \land over \lor)

NOTE: 1. In the above, Fz might not be needed.

2. Implicative normal form is often used to. A formula of the form $\neg P_1 \lor \neg P_2 \lor \ldots \lor \neg P_n \lor Q_1 \lor Q_2 \ldots \lor Q_m$ is equivalent to $P_1 \land P_2 \ldots \land P_n \to Q_1 \lor Q_2 \ldots \lor Q_m$

It is easy to see that if Q is in CNF then we can convert it into implicative normal form using the above conversion.

The resolution inference rule If β_1 and β_2 are unifiable and η is a mgu of β_1 and β_2 , then

$$\frac{\alpha \vee \beta_1, \neg \beta_2 \vee \gamma}{\alpha \eta \vee \gamma \eta} \tag{1}$$

or

$$\frac{\neg \alpha \to \beta_1, \beta_2 \to \gamma}{\neg \alpha \eta \to \gamma \eta} \tag{2}$$

Given a set of formulas S and a formula Q, we would like to determines if $S \models Q$.

We can use (1) (or (2)) to determine whether $S \vdash Q$ holds or not.

We make the following assumptions:

- 1. Each formula in S is a clause (why?)
- 2. Q is a literal (why?)

Example 12 Let Δ be the set consisting of the following clauses:

1.
$$\neg P(w) \lor Q(w)$$
,

2.
$$P(x) \vee R(x)$$
,

3.
$$\neg Q(y) \lor S(y)$$
, and

4.
$$\neg R(z) \lor S(z)$$
.

Question: $\Delta \vdash S(A)$?

Proof.

1.
$$\frac{\neg P(w) \lor Q(w), P(x) \lor R(x)}{\neg P(w) \lor S(w)}$$
 where $\eta = \{y/w\}$

2.
$$\frac{\neg P(w) \lor S(w), P(x) \lor R(x)}{S(x) \lor R(x)} \text{ with } \{w/x\}$$

3.
$$\frac{S(x)\vee R(x), \neg R(z)\vee S(z)}{S(A)}$$
 with $\{x/A, z/A\}!$ DONE!

Refutation proof procedure. Given a set of clauses S and a literal Q. The refutation proof procedure uses resolution to determine whether $S \models Q$ holds or not.

- 1. **Idea:** If $S \models Q$ then $S \cup \{\neg Q\}$ is unsatisfiable, i.e., there is no model for $S \cup \{\neg Q\}$. So, we will assume that $\neg Q$ holds and try to derive a contradiction out of $S \cup \{\neg Q\}$.
- 2. **Algorithm:** We try to derive a proof that derives a contradiction from $S \cup \{\neg Q\}$. The algorithm can be described as follows.

A1 Let
$$k = 0, G_k = \neg Q$$
.

A2 If $G_k = false$ then step and answer 'yes'; Otherwise, find a clause C in S that contains a literal L which is contradictory with some L' of G_k and η is a mgu of L and L'. Go to step [A3]!

A3 Let
$$G_{k+1} = ((C \setminus \{L\}) \cup (G_k \setminus \{L'\}))\eta$$
, $k = k+1$, and go to step [A2]!

Example 13

$$Dog(D) \tag{3}$$

$$Owns(Jack, D)$$
 (4)

$$Dog(y) \wedge Owns(x,y) \rightarrow AnimalLover(x)$$
 (5)

$$AnimalLover(x) \land Animal(y) \land Kills(x, y) \rightarrow False$$
 (6)

$$Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$$
 (7)

$$Cat(Tuna)$$
 (8)

(9)

Convert to clausal form

$$Dog(D) \tag{10}$$

$$Owns(Jack, D)$$
 (11)

$$\neg Dog(y) \lor \neg Owns(x,y) \lor AnimalLover(x) \tag{12}$$

$$\neg AnimalLover(x) \lor \neg Animal(y) \lor \neg Kills(x, y) \tag{13}$$

$$Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$$
 (14)

$$Cat(Tuna)$$
 (15)

$$\neg Cat(x) \lor Animal(x) \tag{16}$$

 $Cat(x) \rightarrow Animal(x)$

Proving Kills(Curiosity, Tuna)

$$G_0 = \neg Kills(Curiosity, Tuna), \eta = \{\}, Clause (14)$$

$$G_1 = Kills(Jack, Tuna), \eta = \{x/Jack, y/Tuna\}, Clause (13)$$

$$G_2 = \neg AnimalLover(Jack) \lor \neg Animal(Tuna), \ \eta = \{x/Tuna\}, \ Clause \ (16)$$

$$G_3 = \neg AnimalLover(Jack) \lor \neg Cat(Tuna), \ \eta = \{x/Tuna\}, \ Clause \ (16)$$

$$G_4 = \neg AnimalLover(Jack), \ \eta = \{\}, \ Clause \ (15)$$

$$\textit{G}_{5} = \neg \textit{Dog}(\textit{y}) \vee \neg \textit{Owns}(\textit{Jack}, \textit{y}), \, \eta = \{\textit{x}/\textit{Jack}\}, \, \textit{Clause (12)}$$

$$G_6 = \neg Dog(D), \ \eta = \{y/D\}, \ \eta = \{\}, \ {\it Clause (11)}$$

$$G_7 = \square$$
 (or $G_7 = false$), $\eta = \{\}$, Clause (10)! DONE