Pre-print from Al Magazine, 20(2), Summer 1999, pp 37-54.

An Overview of Planning Under Uncertainty

Jim Blythe
Information Sciences Institute
University of Southern Caifornia
4676 Admiralty Way
Marinadel Rey, CA 90292 USA
blythe@isi.edu

Abstract

The recent advances in computer speed and agorithms for probabilistic inference have led to a
resurgence of work on planning under uncertainty. The aim isto design Al planners for environments
where there may be incomplete or faulty information, where actions may not always have the same
results and where there may be tradeoffs between the different possible outcomes of a plan. Addressing
uncertainty in Al planning algorithmswill greatly increase the range of potentia applications but there
is plenty of work to be done before we see practical decision-theoretic planning systems. This article
outlines some of the challenges that need to be overcome and surveys some of the recent work in the
area

I ntroduction

Al planning algorithms are concerned with finding a course of action to be carried out by some agent to
achieveitsgoals. In problems where actions can lead to a number of different possible outcomes, or where
the benefits of executing a plan must be weighed against the costs, the framework of decision theory can be
used to compare alternative plans.

For a long time the planning community has maintained an interest in decision-theoretic planning,
with Feldman and Sproull’s work being one of the earliest in this area (Feldman & Sproull 1977). After a
period where attention was focussed on efficient algorithmsfor planning under quiterestrictive assumptions,
the past five years have seen a resurgence in work on planning under uncertainty and decision-theoretic
planning. There are several reasons for this. The recent advances in Bayesian inference have made it
feasible to compute (or approximate) the expected utility of a plan under conditions of uncertainty. The
success of Markovian approaches in areas such as speech recognition and the closely-related reinforcement
learning techniques have encouraged work in planning using Markov decision processes. Faster computers
have made it feasible to build decision-theoretic planners, which in general have more complicated search
spaces than their classical counterparts.

In this article | provide a brief overview of some of the recent work in decision-theoretic planning. |
highlight some of the advances made and some technical problemsthat still lie ahead. In the next section |
describethe problem addressed by decision-theoretic planning systems. Thefollowingtwo sectionsdescribe
work based on classical planning algorithms and based on solving Markov decision processes respectively.

Goals of decision-theoretic planning

A planning problem in Al isusually specified as follows: Given a description of the current state of some
system, a set of actions that can be performed on the system and a description of agoal set of states for the
system, find a sequence of actionsthat can be performed to transform the system into one of the goa states.
In the text-book example of the blocks world, the system consists of a set of nhamed blocks, each of which
may be on the ground or on top of another block. The possible actions move a block from one location to
another and the goal is a particular configuration of blocks, for example atower.

When planning programs are used to provide courses of action in real-world settings, such as medica
treatments, high-level robot control or disaster relief, they must take into account the fact that actions may
have severd different outcomes, some of which may be more desirable than others. They must balance the
potential of some plan achieving a god state against the risk of producing an undesirable state and against
the cost of performing the plan.

Decision theory (Luce & Raiffa 1957) provides an attractive framework for weighing the strengths and
weaknesses of a particular course of action, with roots in probability theory and utility theory. Given a
probability distribution over the possible outcomes of an action in any state, and a reasonable preference
function over outcomes, we can define a utility function on outcomes such that whenever the agent would
prefer one plan over another, the preferred plan has higher expected utility. The task of the planner then
seems straightforward — to find the plan with the maximum expected utility (MEU).

Unfortunately, decision theory says nothing about the task of constructing a plan with high expected
utility. Therefore Al planning and decision theory would appear to be complementary and there has been
interest in merging the two approaches for a considerable time (Feldman & Sproull 1977). However there
are hard problemsto overcome. It isusually not feasible to search the entire space of plansto find the MEU
plan. Indeed, computing the expected utility of a single plan can be prohibitively expensive because the
number of possible outcomes can grow very large. In order to avoid specifying the value of each possible
outcome we nheed to find compact specifications of utilities as well as actions, and consider the interaction
between them. The recent increase in research in decision-theoretic planning follows the recent success
of work in reasoning under uncertainty, and draws on compact representations such as those of belief nets
(D’ Ambrosio 1999).

Extending classical planners

Sincethe early systems GPS (Newell & Simon 1963) and sTRIPS (Fikes & Nilsson 1971), most Al planners
that have been designed make essentialy the same assumptions about the world in which they operate.
From the point of view of decision-theoretic planing, three assumptions of note are:

¢ thegod of the planner isalogica description of aworld state,
¢ the actions taken by the planner are the only sources of change in the world, and

¢ each action can be described by the conditions under which it can be applied and its effects on the
world. These effects are described by a set of facts which are either to be added to or deleted from
the world state in which the action is applied.

The last is known as the “STRIPS assumption”. | refer to planners that share these assumptions as
the “classical planners’. They include Prodigy (Veloso et al. 1995), UCPOP (Penberthy & Weld 1992),
Graphplan (Blum & Furst 1997) and the hierarchical task network planner Nonlin (Tate 1977).

! Although compound operatorsin hierarchical task network planners are more complex, the primitive operators (that exclusively
fill complete plans) have this form.

(at car ?x) (at car ?x)

(in china car) (in china car)
Drive*china ?x ?y Drive-china ?x ?y
~(at car ?x) 0.7 0.3
(at car ?y)
~(at china ?x)
(at china ?y) ~(at car ?x) ~(at car ?x)
(at car ?y) (at car ?y)

~(at china ?x) ~(at china ?x)
(at china?y) (at china ?y)
[(broken ching)

Deterministic effects Non-deterministic effects

(at car ?x)
(in china car)

Drive-china ?x ?y
~(packed china)

~ 2 ~ 2
ggt gg{ ";’? gg{ gg{ 7;3 ~(atcar ?2x) ~(atcar :.)>x)
~(at china ?x) ~(at china ?x) ~8{ gﬁirn’;y%x) ~8§ gﬁirné y2>x)
i 2 i o} ! H ! H
(at china ?y) |€g:00£é2achmd) (at china ?y) (at china ?y)
[(broken ching)

Non-deterministic effects with conditional probabilities

Figure 1: Three versionsof the operator drive-china

(at car ?loc) True
(at ?x ?loc) |
Pack-china
Put-in ?x

(packe*d china)
(in ?x car)

Figure 2: Other operators in the moving-house example.

Here | describe work that relaxes one or more of these assumptions in a classical planner. First,
we can relax the assumption that actions are deterministic by specifying a set of possible outcomes,
rather than the single outcome in the deterministic case. Consider the planning problem of moving my
kitchen china from an old apartment to a new one. The goa is to move the china unbroken, specified
as (at china new-apartment) A — (broken china). Figure 1 shows three increasingly detailed
descriptionsof thedrive-china action which can achievethisgoa. Thefirst isdeterministic and could be
used in aplan that achievesthe goal with certainty: (put-in china), (drive-china old-apartment
new-apartment), using the extra operators in Figure 2. The second drive-china operator has two
alternative sets of effects, modeling two different world states that can arise if the operator is applied. The
numbers on the arcs are the probabilities of each state of affairs. Under this model, the two-step plan will
only achieve the goal with probability 0.7.

Inthethird formulationof drive-china, different sets of outcomesare possiblebased on the conditions
that hold when the operator is applied and the arcs now show conditional probabilities. The two-step
plan still has a probability of 0.7 of succeeding. The three-step plan (pack china) (put-in china)
(drive-china ...) succeeds with probability 0.95.

Second, we can relax the assumption that goals are logical descriptions of world states, so that a plan
either succeeds or fails. We can attach utilitiesto different world states representing degrees of desirability.
For example suppose the state in which all my chinais moved unbroken has a utility of 10, while onein
which half of my chinaismoved and noneisbroken has a utility of 6, any state in which chinais broken has
a utility of -100 and any other state has a utility of 0. If the pack operator can only pack half of the china,
the two-step plan has an expected utility of -23 while the three-step plan has an expected utility of 1. Inthis
case the plan to pack some of the chinais slightly better than doing nothing, which has a utility of O, while
the plan to simply move the chinawithout packing it is much worse.

Challengesfor classically-based decision-theoretic planning

In the next four sections | describe four different approaches for planning under uncertainty that can be
viewed as extending a classical planning approach. These are sNLP-based planners, DRIPS, Weaver and
Maxplan, athough thelast of theseisarguably not aclassical planner. Organizing the article around specific
research programs makes it easier to keep in mind the specific assumptions behind each one, at the cost of
making it harder to follow how they address some of the issuesand challengesthat must befaced in creating
decision-theoretic planners. In this section | briefly describe some of those issues, as away of forming a
road-map for understanding the different approaches.

Action representation

As the chinasmoving example shows, in order to represent uncertain actions one has to represent severa
aternative outcomes and their probabilities, conditiona on the state. Providing aricher representation of
action inevitably makes the planning problem harder, and planners must use a representation that expresses
the different outcomes as concisely as possible while still being fully expressive. The representation of
the final drive-china operator is not very concise, for example, because the four possible outcomes are
described explicitly, even though the two branches only differ in their probabilities and each outcome only
differsin whether the chinaisbroken. When different state variables are affected independently by an action
it is possiblefor the number of outcomesto grow exponentially in the number of variables.

Plan utility

Severa systems based on classical planning ignore outcome utility beyond the binary measure of goal
achievement, although exceptions are DRIPS (Haddawy & Suwandi 1994) and Pyrrhus (Williamson &
Hanks 1994). In planners based on Markov decision processes, discussed later in this article, a numeric
reward function is specified for an action in a state. While thisis adequate from a purely decision-theoretic
point of view, a more structured representation of utility is needed to make planning tractable, one where
the utility of a stateis built up from smaller building blocks so that it islesstediousto specify and also the
utility of abstract states can be estimated. This problem has been approached in both frameworks.

Some planners relax the binary measure of goa achievement to alow partia satisfaction of goals. In
the china-moving example the full goal isto moveall the chinaunbroken, but we might attach partial credit
for moving some of it unbroken. Given a conjunctive set of goals, sometimes the utility from solving a
subset can be specified as the sum of some utility for each goal. Care must be taken with this approach,
for example in the china-moving example the top-level goalsare (at china new-apartment) and (not
(broken china)), but a planner that achieves the first goal without the second should not receive half
the credit. Sometimes the utility of an outcome can be made more modular by summing the cost of each
operator independently (Pérez & Carbonell 1994), with the same caution.

Haddawy and Hanks describe an approach that further assumes a deadline by which agoal shouldideally
be achieved, with a separate penalty function that offsets the utility for the goal when it is achieved after the
deadline. They propose arepresentation that encompasses most of these approaches independently of any
planner in (Haddawy & Hanks 1998a).

Plan evaluation

Whether outcome utility is multi-valued or simply binary, one must compute or estimatethe expected utility
of aplan. For the degenerate case, thisis simply the probability of success. There are severa different
ways this can be approached as we shall see, and none completely dominates any other. For the problem
of deciding which partial plan to expand, al that is required is a comparative value — deciding which plan
has higher expected utility — which is sometimes ssmpler than finding the absolute value. For efficient
planning, one must also consider the tradeoff between time spent estimating plan value and time spent
expanding aplan whose value is poorer than estimated.

Observability and conditional planning

Most of these systems distinguish between observable and non-observable domain variables. A classical
STRIPS plan essentially assumes no observability since the plan is a sequence of actions executed “blind”.
In normal Markov decision processes, the output is apolicy, a mapping from state to action which assumes
that every state variable can be observed without error, although some work that relaxes this assumptionis
described later. In the Buridan planner (Kushmerick, Hanks, & Weld 1995) actions can have sensing results
aswell as effectsin the world, and noisy sensors can be model ed.

In an uncertain world, high-utility plans created in advance may need to have some actions that are
conditional on future observations. Most of the planners discussed are capable of handling this, employing
avariety of techniques. Note that planning agents must be able to make observations of their domain during
execution in order to use conditional plans.

Tractability

Perhaps the largest question mark hanging over the planners described here is their tractability. Few have
been applied in large, high-dimensional domains although exceptions are DRIPS (Haddawy, Doan, & Kahn

5

Initial

(at chin*a old-apartment)
(at car old-apartment)
~(broken chinal

(at car ?loc

(at ?x ?lo

at car ?x)
(in china car)

Put-in ?x

(in ?x car])
Drive-thina ?x ?y

~(at car ?x)
(at car ?y)
~(at china ?x)

(at china ?y)

(at china new-apartme
~(broken china)

Figure 3: A plan to move china asfound by sNLP. The bold arrows represent causal linksin the plan.

1996) and Weaver (Blythe 1998). In addition it is rare that the planners are directly compared with each
other although MAXPLAN is an exception (Majercik & Littman 1998). Thisis partly because as we shall see
the planners have concentrated on different aspects of the planning problem.

The tractability of the planners is affected by the kind of planning algorithm used: SNLP, Prodigy,
refinement planning, HTN planning and compilation to satisfiability have all been used. It is aso affected
by the use of search control, which has been studied in several of the planners.

SNL P based planners

The classical planner sNLP maintains a plan as a partialy-ordered set of actions, aong with ordering
constraints between steps, bindings for variables in steps and explicit data structures, called “causal links”,
that represent what the step is supposed to accomplish in the plan (Weld 1994). A causal link records the
subgoal being achieved, the “consumer” step, that has this subgoal as a precondition, and the “provider”
step, that has the subgoal as an effect. For example, the arrow between drive-china and goal in Figure 3
isacausal link for the subgoal (at china new-apartment Withdrive-china asprovider and goal as
consumer. goal isadummy step added to the plan to represent the top-level goals. Similarly initial
is adummy step representing the initia state. The sNLP agorithm follows the loop shown in Figure 4. It
repeatedly picks an unsupported condition in the plan, adds a causal link supporting it from some step that
achieves the condition, and removes any threats to the link by forcing any step that negates the condition to
take place either before or after both linked steps. By considering all possible choices for causal links and
threat orderings, SNLP iscomplete, ieit will find aplan if one exists. For more details see (Weld 1994).

Buridan

Buridan (Kushmerick, Hanks, & Weld 1995) is a modified version of the SNLP planning algorithm that can
create plans that meet a threshold probability of success when actions are non-deterministic, as are the last
two actionsin Figure 1. Buridan differs from sNLP by allowing more than one causal link for each condition
inthe plan. Under different execution scenarios, different actions may cause the condition to be true, so the

1. If the current plan has no unsupported conditions, return it.

2. Pick an unsupported condition P for some step U and add a causal link to the plan that supportsit,
achieving the condition with either an existing or a new step, A. (On backtracking, try al possible
links.)

3. Resolve any threatsto the new link. A threat comes from any step T in the plan that can take place
between A and U and can negate P. Resolve the threat by ordering T either before A or after U if
possible (on backtracking, try both orderings). If thisisnot possible, fail and backtrack.

Figure 4: An outline of the sNLP algorithm

links combine to increase support for the condition. SNLP's termination criterion that al conditions have
exactly onelink isno longer appropriate. Instead, Buridan explicitly computesthe probability of success of
the plan and terminates if thisis above the given threshold. Figure 5 shows a plan found by Buridan in the
china-moving exampleif the third model of actionis used.

Initial
(at chinta old-apartment)
(at car old-apartmen
~(broken china)
(at car ?loc ~(packed chin
(at ?x ?lo
Putin 2x ~(packed china)
(in ?x car

~(atcar ?x) ~(at car ?x)

(at car ?y) (at car 2y) ~(atcar ?x) ~(at car ?x)

_ : _ - (at car ?y) (at car ?y)
Eg{ china Z;; (archina 29 _(at china 2x)~(at china 2x)

*, (at china ?y) (at china ?
Ero <on ch g (broken ching

(at china new-apartm
(broken china)

Goal
Figure5: A plan to move china, found by Buridan

This plan succeeds with probability 0.7, because with probability 0.3 executing drive-china can lead
tothe chinabeing broken. Thisstep isthereforeathreat tothelink for (broken china) fromInitialto
Goal. In addition to SNLP's re-orderings to remove threats, Buridan can confront a threat by decreasing the
probability of an outcomein which the threatened condition is negated. In this case, that is done by adding
a link from the outcome with probability 0.95 that does not add (broken china), and planning for its
trigger, (packed china). Buridan can then find the plan [pack-china, put-in china, drive-china],
that succeeds with probability 0.95.

So far we haven't discussed how a planner finds the probability that a plan succeeds. There are a
number of possible strategies, based on forward projection or on analyzing the dependencies among state
descriptors. Empirical experiments show no clear winner (Kushmerick, Hanks, & Weld 1995).

Forward projection begins with the set of possible initial states and simulates executing the plan one

Step | State | Features Parent | Prob
Pack-china | 57 . | packed [0.5
Pack-china | 52 | - packed I 05

Put-in-china | S1, | packed, in-car S ek 0.5
Put-in-china | $2,, | - packed, in-car 52 e 0.5
Drive-china | S} | packed, - broken St | 0475
Drive-china | %2 | packed, broken St | 0.025
Drive-china | $7 | - packed, - broken | $2, | 0.35
Drive-china | 522 | - packed, broken 52, | 015

Figure 6: Using forward projection to evaluate the plan for the china-moving problem.

step at a time, maintaining the set of possible states and their probabilities after each step is completed.
When the simulationis finished, summing the probability of each statein which the goas are satisfied gives
the plan’s probability of succeeding. The table at the top of Figure 6 shows the sets of states that are built
as thethree-step plan is evaluated by forward projection. To make the example more interesting we assume
that the pack-china action succeeds with probability 0.5, and otherwise has no effect. It therefore leadsto
two states in the forward projection, which are propagated through the put-in-china step and lead to four
possible states after the drive-china action. The probability of success, 0.825, is found by summing the
probabilities of states 53! and 531,

(at car home), ((at china home), |0

pack-china
(pack—ed china), 1
put-in-china
(in china car), 2

drive-china

N

(broken china), 3 (at china new),

/

GOAL

oo

Figure 7: Using a belief net to evaluate the plan for the china-moving problem. The nodes with bold text
represent actions in the plan, while the others represent fluent values at a given point in time.

In general, the number of states considered can clearly grow exponentially with the length of the plan.
Many of the states created might differ only on features that are irrelevant to the plan. This observation

Initial

(at chin*a old-apartment)
(at car old-apartme
~(broken china)

(at car ?loc)
(at ?x ?loc) Get-weather-report
i) /\
Put;n ?X
I ~
(in ?x Car)\ , \\
(at car ?x) N (atcar?x)
(in china c -1 (inchinacar) ¥
[ok] <4~ r{) [bad]
Drive-china-o&er-mountain X ?y Drive-china-around-mountain ?x ?y
(at china ? v (at china ?y)
~(broken china) /

(at china new-apartment)

Goal

Figure 8: A conditional plan represented using context |abels attached to actions.

suggestsother plan eval uation strategi esthat expl oit the structure of theplan. Onesuch strategy isto evaluate
the plan using a belief net (Pearl 1988). The STRIPS representation for action, in which the preconditions
contain sufficient information to completely determine the outcomes of the action, is a specia case of the
Markov assumption and thisis preserved in the action representation used here (Wellman 1990). One can
use this observation to create abelief net that can be queried to determine the probability of success of the
plan. There are many ways to do this— one exampleis shown in Figure 7. Its nodes are random variables
representing either the value of state descriptors at a point in time or the outcomes of actions taken in the
plan. Thefinal action goal isincluded, with two possiblevalues: true or false. The probability that thishas
valuetrueisequa to the plan’s probability of success.

Conditional planning

CNLP was the first sNLP-based planner to represent conditional plans (Peot & Smith 1992). Each step
in the plan has a set of context labels associated with it that denote the conditions under which the step
will be executed. For example, Figure 8 shows a conditional plan for moving the china in which the
agent loads the chinain the car and then listens to the weather report before deciding whether to take the
route over the mountain or around the mountain. The operator get-weather-report has two possible
outcomes, each producing one of the observation labels ok or bad. Each of the two driving operators is
marked with one of the labels as its context. Thusthey must be executed after get-weather-report, and
drive-china-over-mountain, for example, will only be executed if the label ok was produced. If any
subseguent actions had no context labels, they would be executed on both “branches’ of the conditiona
plan. Contexts are not as direct a representation as putting an explicit branch in a plan, but they can easily
represent plans that branch and then re-merge as well as partially-ordered branching plans.

C-Buridan refines the approach of cNLP by keeping observations distinct from effects and allowing
different outcomesof asensing actionto havethe same observation label, thusmodeling partial observability
(Draper, Hanks, & Weld 1994). In C-Buridan, new contextsare added in response to threats between actions
that can be put in separate branches of a conditional plan. Obviously, the ability to create conditiona plans
can make the planning problem even less tractable. Most conditional planners do not require a plan to be

produced for every contingency (although Cassandrais an exception (Pryor & Collins 1996)). Onder and
Pollack have studied how to choose which contingencies to plan for, both to improve efficiency and based
on the observation that some contingencies can safely be left for re-planning at execution time (Onder &
Pollack 1997).

DRIPS: searching for optimal planswith a refinement planner

The planners described above search for plans that exceed a given minimum expected utility. In order to
find the plan with maximum expected utility, however, one must somehow evauate al possible plans to
select the best one. In DRIPS, ranges of utility values are computed for partial plans, encompassing the best
and worst expected utilities of all possible completions of the partial plan (Haddawy & Suwandi 1994). If
the lowest value in some partial plan’s range exceeds the highest value in another’s the partia plan with
the lower range can be dropped from consideration without expanding al the complete plans below it, an
approach that can lead to significant savings. The dropped plan is said to be dominated by the other plan,
an ideaaso explored by Wellman (Wellman 1990).

DRIPS accomplishesthis by skeletal refinement planning based on an abstraction hierarchy of operators
(Friedland & Iwasaki 1985). In this approach, a partial plan is a sequence of operators, one or more of
which may be an abstraction of a number of ground operators. Planning proceeds by repeatedly choosing a
more specific version of an operator in the plan until there are no abstract operatorsleft. The planner begins
with one of aset of skeletal plans contai ning highly abstract operators chosen from alibrary. Figure 9 shows
some example ground and abstract operators from the china-moving exampl e, extended with aricher model
of the utilities of outcomes.

0.8 gﬁ

acke
packe ' ' ' p 0. 27
Drive-China- Drive-China- :
d- tai over-mountain
around-mountain . 0.6 %&
~ packed ~ packed

0.4 ép

Duration: 6 hours Duration: 3 hours

[0.8, 0.95] gf\

[0.05, 0.2]

Drive-China
(abstracted)

[0.6, 0.7]

[0.3, 0.4]

Duration: [3, 6] hours

Figure9: Ground and abstract operatorsfrom the china-moving exampl ethat coul d be used by the refinement
planner DRIPS. The thumbs-up symbol denotes an outcome in which the china is moved successfully and
the thumbs-down icon denotes an outcome in which the chinais broken.

Figure 10 shows an abstraction/decomposition network that describes all possible specidizations of a
skeleta plan to move the china. Solid lines denote decomposition of an operator and dashed lines denote
possible choices for an abstract operator. The skeletal plan encodes four potential plans: one can choose
whether to pack the china and one can independently choose which route to take.

10

move china

T~

load-up-china » drive-china
s\ ~
AN - - ~
’ N - ~ -
7 \ g ~
pack-and-load load drive-around-mountain drive-over-mountain

pack-china— load

Figure 10: Ground and abstract operators from the chinamoving example that could be used by the
refinement planner brIPS. Solid lines represent compound decompositions and dotted lines represent
alternative decompositions.

Suppose DRIPS begins refining this plan by choosing between pack-and-load and load to refine the
load-up-china operator. The planner will normally add both refinementsto aqueue of partia plans, but first
it computes ranges of expected utility for each one. To do this, it explicitly considers each set of possible
outcomes, or chronicle, for each plan, as shown in Table 1. Each plan has two possible chronicles, either
the china gets broken or it does not. For each chronicle, DRIPS computes ranges for the duration, utility
and probabilities based on the ranges or values found in the actions in the plan. A series of ssimple linear
programming problems are solved to compute ranges for the expected utility of each abstract plan. In this
case the ranges are [-17.6 0.7] for plan A and [-37 -23] for plan B. Therefore briPs will not add plan B to
thelist of plansto refine, since no refinement can do better than any refinement of plan A. DRIPS determined
this without exploring the refinements of plan B, an ability that can lead to large computationa savingsin
more complicated domains.

Plan A: pack and load china Pan B: load china, don’t pack

Chronicle Duration Utility prob Chronicle Duration Utility prob

not broken [36] [36] [0.80.95] || not broken [36] [510] [0.60.7]
broken [36] -100 [0.050.2] broken [36] -100 [0.304]

Table1l: A summary of the possible outcomes for each refinement of the skeletal plan found by refining the
load-china abstract action.

The use of skeletal refinement planning in DRIPS trades planning power for simplicity and the ability to
compute utility ranges for partial plans. In some complex domains it may be burdensome to represent the
range of possible plans as skeletal plans that can be refined in thisway. On the other hand, thisform alows
utility ranges to be computed for partial plans based on the ranges computed for abstract actions. It is not
clear how to compute utility ranges for, say, partial Buridan plans, because they include no commitment for
the action or actions used to achieve an open condition.

Some interesting work has been done on search control within the brIPS framework. DRIPS has two
choice-points: which abstract plan to specialize and which abstract action in a plan to specialize. The plan
with current highest upper bound on expected utility must be expanded in order to provably find the optimal
plan, so choosing such aplan to expand gives a search heuristic similar to A* (Haddawy, Doan, & Goodwin
1995; Goodwin & Simmons 1998). The representation of utilitiesin DRIPS allows for goa deadlines and
goals of maintenance, following (Haddawy & Hanks 1998a). The system has been applied in challenging

11

landlord-at-apartment landlord-lost landlord-lost true

} }

Event: landlord-leaves Event: landlord-arrives search-for-landlord call-landlord
0.01 0.5
called ~called l l
~landlord-lost lled
landlord-at-apartment ~landlord-lost calle
landlord-at-apartment
l 0.02 0.05
~landlord-at-apartment ~landlord-at-apartment
landlord-lost landlord-lost

Figure 11: Two exogenous events modeling the landlord’s whereabouts and operators to call and search for
thelandlord.

medical domainswith favorable results (Haddawy, Doan, & Kahn 1996).

Weaver: efficiently handling exogenous events

Weaver (Blythe 1998) is a prababilistic planner based on Prodigy (Veloso et al. 1995). Like C-Buridan,
it has no representation of utilities. It has no explicit model of observability, but assumes the world is
completely observable at plan execution time. However it has an explicit representation for uncertain
exogenous events, in other words for events that take place outside the volition of the planning agent and
that can be modeled as occurring with some conditional probability given the world state. External events
often play asignificant rolein real domains, and should be considered by a decision-theoretic planner since
(2) they can be influenced at least indirectly by atering the world state conditions they depend on and (2)
contingent plans can be built based on their effects.

For examplein the china-moving domain, supposethat in order to unload the chinaat the new apartment,
the landlord must be waiting there with the key when the car arrives. Initialy the landlord is waiting, but
as time passes he may get restless and leave, in which case he may return later. A planning agent can
reduce the probability that the landlord will leave by calling him when the car is close to the apartment. If
he is not waiting when the car arrives, the agent can search for him. Figure 11 shows a set of exogenous
events modeling the landlord’s whereabouts over time, as well as the operators call-landlord and search-
for-landlord. Assuming a discrete-time model, the landlor d-moves events mean that if at any time point
the landlord is at the apartment and has not been called, he is a the apartment at the next time point
with probability 0.95, and his whereabouts are unknown with probability 0.05. If he has been caled the
probability of hisleaving dropsto 0.02. If hiswhereabouts are unknown, he may reappear at the apartment
with probability 0.01.

In theory the use of exogenous events does not increase the representational power of the planner,
since the effects of these events can be modeled by effects of the actionsin the domain. For example, the
drive-china actions could include effects describing the landlord’s whereabouts, as could the pack-china
operator if it takes asignificant amount of time. In practice, modeling exogenous events in this way can be
extremely inefficient, because their effects are duplicated in every operator in the domain, and conversely
each operator may have to model many events.

Weaver evaluates plans efficiently when there are exogenous events using a three-step process. First
aplan isbuilt and partially evaluated ignoring exogenous events. In the china-moving domain, the same
three-step plan that is found by Buridan will be found: pack-china, put-in china, drive-china. Second,
the goal structure for this plan is used to determine the relevant exogenous events, which are those whose
effects can alter the domain features required by the plan or can influence other relevant events. Third, the
plan is improved by either adding steps to reduce the probability of an undesirable effect or by adding a
conditional branch. The plan improvement operations are similar to those of C-Buridan (Draper, Hanks, &
Weld 1994), but using the Prodigy planner (Veloso et al. 1995). The main difference is that the exogenous

12

eventsthat affect the plan evaluation are also considered aswell as the actionsin the plan (Blythe 1994). In
the china-moving example, a possibleimprovement isto add a conditional branch to search for thelandlord
if heisnot at the apartment when the car arrives.

The belief net fragment on the left in Figure 12 shows an evauation structure for the plan before
improvement, after the relevant events governing the movement of the landlord have been added. It is
possible to make this evaluation more efficient by taking advantage of the fact that the exogenous events
model aMarkov process. Rather than explicitly modeling the events' effects at each time step, independent
Markov chains are produced that describe parts of the world state’s evolution over time — in this case,
the landlord’s whereabouts. The Markov chains are used to compute links in the belief net on the right in
Figure 12. Such a belief net can be much more efficiently evaluated, especially when some actions have
long durations compared with those of the exogenous events. Weaver uses asound algorithm to create these
streamlined belief nets automatically (Blythe 1996).

0.05

0.95 0.99

0.01

Events

landlord landlord
Action drive-china Action drive-china
carlocaton
0 1 2 3 0 1 2 3

Figure 12: Two time-slice bayes nets that can be used to evaluate the plan under exogenous events. The
numbers along the x-axis represent time pointswhile nodes for fluents, actions and events are grouped al ong
the y-axis. In the fragment on the left, exogenous events are represented directly while on the right, their
effects are compiled into Markov chains that are used to compute probabilities over the time intervals of
interest.

Search heuristics for planning under uncertainty have aso been studied in Weaver. When steps are
added to a plan to increase the number of chroniclesin which it succeeds, a useful strategy isto seek steps
that succeed in cases that are complementary to those in which the original plan succeeds. This can be
doneusing alocd analysis of the possiblesteps, producing search heuristicsthat improve performance both
in Weaver and in Buridan (Blythe 1995). Weaver aso makes use of analogy between different branches
of a conditiona plan (Blythe & Veloso 1997). These performance improvements alow it to be applied to
problemsrequiring several rounds of improvement in plans sometens of stepsin length (Blythe 1998). This
is encouraging in the search for tractable planning under uncertainty, but leaves plenty of room for further
improvement.

MAXPLAN: probabilistic plan compilation

Oneway to improve the efficiency of planning under uncertainty may come from inspiration from recently
developed classical planning algorithms, such as saTPLAN (Kautz & Selman 1996) which compiles a
planning problem into alogical satisfiability problem. After this step, standard algorithms can be used to
solve the problem.

13

MAXPLAN (Majercik & Littman 1998) is a probabilistic planner that is similar in spirit to SATPLAN.
Littman, Gol dsmith and Mundhenk show that, under reasonabl e conditions, probabilistic planningis N PF'F-
completeandintroducean N P'* -compl ete decision problem E-MAJSAT (Littman, Goldsmith, & Mundhenk
1998). MAXPLAN compiles a probabilistic planning problem into an instance of E-MAJSAT and solves it.
Just as Graphplan and saTPLAN are more efficient than classica planners in some domains, so MAXPLAN
should have an advantage in some domains, as preliminary experimentsindicate.

Aninstance of E-MAJSAT isasatisfiability problem, a Boolean formulawhose variables are divided into
two types, choice variables and chance variables. The chance variables are each assigned an independent
probability of being true. The task is to find an assignment of truth values to the choice variables that
maximizes the probability of the given Boolean formula being true. MAXPLAN transforms a planning
problem into an instance of E-MAJSAT whose solution yields a plan with maximum probability of success,
equa to the maximum probability of the E-MAJSAT problem. The number of clauses in the formulais
polynomial in the size of the planning problem.

The resulting instance of E-MAJSAT is solved with the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm (Davis, Logemann, & Loveland 1962). This algorithm systematically finds the best assignment
by constructing a binary tree in which each node represents a variable and each subtree represents a
subproblem found by conditioning on the variable. DPLL either maximizes or computes the weighted
average of the subtrees depending on whether the node is a choice or a chance variable. At each node, the
algorithm eliminates al irrelevant variables (that only appear in satisfied clauses), forced variables (that
appear alone in an unsatisfied clause) and “pure” variables (that appear either always negated or aways not
negated). The authors have experimented with different orderings on the variables.

Graphplan (Blum & Furst 1997) is Another classical planner that uses a plan compilation step, and is
perhaps the best known. Probabilistic planning based on Graphplan has also been explored (Smith & Weld
1998; Weld, Anderson, & Smith 1998).

Pointersto other work

There is a growing literature on extending classical planning approaches to plan under uncertainty. |
apol ogize to those whose work | omit here for reasons of space.

Goldman and Boddy (Goldman & Boddy 1994) explore the idea of relaxing the assumption that the
outcomes of different actionsin a plan are probabilistically independent, using a knowledge-based model
construction approach (Wellman, Breese, & Goldman 1992). This assumptionis madein al the planners
discussed above, although the causal influences used by Goldman and Boddy bear similaritiesto the external
events of Weaver.

XFRM (McDermott 1992) produces plans using a rich language that can express do-while loops and
includearbitrary LIsP code. Thesystem selectsaplan from auser-defined library and appliestransformations
to improveits performance. Because of the rich plan representation it is hard to evaluate plans anaytically,
and instead XFRM relies on possible execution scenarios called projections to compare plans and find
potentia problems.

Cypress (Wilkinset al. 1995) isaframework for probabilistic planning built around three components:
siPe-2 isahierarchical task network (HTN) planner, PRS-CL isareactive plan execution system and GISTER-
CL is an uncertain reasoning system. Cypressis broader than the planners described here in that it allows
planning and execution to be done concurrently. The HTN planning style, where domain operators describe
a problem decomposition rather than specify a set of subgoals, is successful in applications of classical
planning. It typically offers areduced search space at the cost of requiring more information to be specified
as part of the domain knowledge.

14

Summary

Almost every approach that has been used to solve classi cal planning problemshasbeen adapted for decision-
theoretic planning. This section described decision-theoretic planners based on SNLP, skeletal refinement
planning, Prodigy and compilation to satisfiability. This has necessarily been only a small sample of the
work being donein this area, but a representative one.

Each described system concentrates on a different aspect of planning under uncertainty and while each
has been successful, their relatively narrow focus has made meaningful comparison difficult. Future work
should lead to broader systems that would allow us to compare aternative strategies directly.

Broadening the coverage of each of these planners raises a number of interesting research questions.
For example, isit possible to exploit utility ranges to search for optimal plansin sNLP or Prodigy? How
should plan compilation approaches deal with structured utility models? These approaches aso have the
potential to handle exogenous events gracefully although this has not yet been explored.

Solving M ar kov decision processes

In this section | review approaches to planning under uncertainty based on Markov decision processes
(MDPs). My aimisto give the flavour of MDP approaches, the problems they engender and solutions being
currently explored, and compare these approaches with those of the previous section. For a more thorough
survey of mDP-based approaches, see (Boutilier, Dean, & Hanks 1998). After a brief description of MbP
algorithms| show how at abroad level the two approaches are solving the same problem, and describe four
approaches to exploiting structured representations of state, action and utility within the MmDp framework.

Overview of Markov Decision Processes

Thisdescription of Markov decision processesfollows(Littman 1996) and (Boutilier, Dean, & Hanks1995).
A Markov decision process M isatuple M =< 5,4, P, R > where

e Sisafinite set of states of the system.
o Aisafiniteset of actions.

e ®: A xS — N(Y)isthe state transition function, mapping an action and a state to a probability
distribution over 5 for the possibleresulting state. The probability of reaching state s* by performing
action a in state s iswritten ®(a, s, 5').

e R:5 x A— Risthereward function. R(s,a) isthereward the system receivesif it takes action a
in state s.

A policy for an MDP isamapping 7 : S — A that selects an action for each state. Given a policy, we
can defineitsfinite-horizon valuefunction V.7 : S — R, where V. (s) isthe expected value of applying the
policy = for n steps starting in state s. Thisis defined inductively with Vi (s) = R(s,7(s)) and

Vin(s) = R(s,m(s)) + Y ®((s), s,u)Vy _au)

ueS

Over an infinite horizon, a discounted model is frequently used to ensure policies have a bounded
expected value. For some /5 chosen so that 5 < 1, the value of any reward from the transition after the

15

next is discounted by a factor of 3 and the one after that by afactor of 32, and so on. Thusif V7 (s) isthe
discounted expected value in state s following policy 7 forever, we must have

V7(s) = R(s,7(s))+ 5 Y D(x(s),s,u)V"(u)
ueS
Thisyieldsa set of linear equationsin the values of V().
A solution to an MDP isa policy that maximizesits expected value. For the discounted infinite-horizon
case with any given discount factor /3, thereisapolicy V* that is optimal regardiess of the starting state
(Howard 1960), that satisfies the following equation:

Vi(s) = m;’:lX{R(s, a)+ f Z D(a,s, u)V*(u)}
ueS

Two popular methods for solving this equation and finding an optimal policy for an MDP are value
iteration and policy iteration (Puterman 1994).

In policy iteration, the current policy is repeatedly improved by finding some action in each state that
has a higher val ue than the action chosen by the current policy for that state. The policy isinitially chosen at
random, and the process terminates when no improvement can be found. Thealgorithmisshownin Table 2.
This process converges to an optimal policy (Puterman 1994).

Policy-lteration(S, A, ®, R, 3):
1. For each s € 9, n(s) = RandomElement(.A)
2. Compute V7(.)
3. Foreachs € 5
4. Find someaction « such that
R(Sv a) + 8 ZuES CD(av 8y u)V”(u) > VW(S)
Set 7'(s) = a if such an a exists,
otherwise set 7'(s) = 7(s).

o o

\l

If 7'(s) # 7(s) for somes € S goto 2.
. Return ©

(o]

Table 2: The policy iteration algorithm

In value iteration, optimal policies are produced for successively longer finite horizons, until they
converge. It isrelatively simple to find an optimal policy over n steps 7% (.), with value function V,*(.),
using the recurrence relation:

() = agmax, {R(s.a)+ 5) ®(a,s,u)V,;_y(u)}
ueS

with starting condition V' (s) = 0Vs € S, where V% is derived from the policy 7, as described above.
Table 3 shows the value iteration algorithm, which takes an MDpP, a discount value 5 and a parameter ¢
and produces successive finite-horizon optimal policies, terminating when the maximum change in values
between the current and previous vaue functions is below ¢. It can aso be shown that the algorithm
converges to the optimal policy for the discounted infinite case in a number of steps that is polynomia in
|51, | A[, log max, .| R(s,a)| and 1/(1— ().

Planning under uncertainty with MDPs

Solving aMarkov decision processis essentialy the same problem as planning under uncertainty discussed
in thefirst part of thisarticle, with some minor differences. The standard agorithmsfor mpps find apolicy,

16

Value-lteration(5, A, @, R, 3, ¢):
1. foreachs € 5, Vo(s) =0
2.t=0
t=t+1
4. foreachs € 5 {
5. foreacha € A
6. Qi(s,a) = R(s,a)+ >ues P(a,s,u)Vi_a(u)
7. m(s) = argmax,()+(s,a)
8. Vi(s) = Quls. 7))
}
9. if (max, |Vi(s) — Vi—1(s)| > €) goto 3
10. return 7,

Table 3: The valueiteration algorithm

which chooses an action for every possiblestate of the underlying system, while methods based on classical
plannersexpect aset of possibleinitia statesasinput to the problem, and find a sequence of actions (possible
branching) based on them. The difference is partly because the MbpP solution methods emphasized the use
of dynamic programming while Al planning methods emphasized the use of structured representations for
the state space and for actions. However the improvementsto policy and value iteration discussed below
exploit structured representations.

Another difference is in the specification of goas. Markov decision processes attach a reward to an
action in a state, while classical planning takes a logical description of a set of states as a goal. Some of
the planners described in the last section attach utilitiesto goals, however, and again as the MDP algorithms
described below make use of structure their objective functions become more goal-like.

The standard mDP agorithms seek a policy with maximum expected utility. Half of the planners of the
last section do thiswhile half seek a plan that passes athreshold probability of success. Againthisisaminor
difference, because given a thresholding planner one could produce an optimizing planner by repeatedly
increasing the threshold until no plan is found. Conversely one could terminate policy iteration when a
threshold value is reached.

Policy iteration and value iteration can find optimal policiesin polynomial timein the size of the state
space of the MDP. However, this state space is usualy exponentially large in the inputs to a planning
problem, which includes a set of literalswhose cross product describes the state space. Attemptsto buildon
these and other techniques for solving MDPs have concentrated on ways to gain leverage from the structure
of the planning problem to reduce the computation time required.

Partitioning the state space and factored state representations.

Dean et a. used policy iteration in arestricted state space called an envelope (Dean et al. 1993). A subset
of the states is selected, and each transition in the MDP that leaves the subset is replaced with a transition
to anew state OUT with zero reward. No transitionsleave the OUT state. They developed an agorithm that
aternated between solving the restricted-space MDP with policy iteration and expanding the envelope by
including the » most likely elements of the state space to be reached by the optimal policy that were not in
the envelope. Thealgorithm convergesto an optimal policy considerably more quickly than standard policy
iteration on thewhol e state space, but asthe authors point out (Dean et al. 1995), it makes some assumptions
that limit its applicability, including a sparse MDP in which each state has only a small number of outward
transitions. Tash and Russell extend the idea of an envelope with an initia estimate of distance-to-goal for
each state and amodel that takes the time of computation into account (Tash & Russell 1994).

17

Abstractionsand hierarchical approaches

While the envel ope extension method ignores portions of the state space, other techniques have considered
abstractions of the state space that try to group together sets of statesthat behave similarly under the chosen
actions of the optimal policy. Boutilier and Dearden (Boutilier & Dearden 1994) assume a representation
for actions that is similar to that of Buridan (Kushmerick, Hanks, & Weld 1994) described earlier and a
state utility function that is described in terms of domain literals. They then pick a subset of theliterals that
accountsfor the greatest variation in the state utility and use the action representation to find literal sthat can
directly or indirectly affect the chosen set, using a technique similar to the one developed by Knoblock for
building abstraction hierarchies for classica planners (Knoblock 1991). This subset of literals then forms
the basisfor an abstract MDP by projection of the original states. Since the state space size is exponential in
the set of literals, this reduction can lead to considerabl e time savings over the origina MbpP. Boutilier and
Dearden prove bounds on the difference in value of the abstract policy compared with an optimal policy in
the original MDP.

Dean and Linrefine thisideaby splitting the MDP into subsets and allowing a different abstraction of the
states to be considered in each one (Dean & Lin 1995). This approach can provide a better approximation
because typically different literals may be relevant in different parts of the state space. However thereis an
added cost to re-combining the separate pieces unless they happen to decompose very cleanly. Dean and
Lin assume the partition of the state space is given by some externa oracle.

Factored action and state representations

While the last approaches exploited structure in the state utility description it is aso possible to exploit it
in the action description. Boutilier et a. extend modified policy iteration to propose a technique called
structured policy iteration that makes use of a structured action representation in the form of 2-stage
Bayesian networks (Boutilier, Dearden, & Goldszmidt 1995). The representation of the policy and utility
functions are aso structured, using decision trees. In standard policy iteration, the value of the candidate
policy is computed on each iteration by solving a system of |.5| linear equations (step 2 in Table 2), which
is computationaly prohibitive for large real-world planning problems. Modified policy iteration replaces
this step with an iterative approximation of the value function V; by a series of value functions VO, V1, ...
given by ' :
Vis)= R(s)+ Z d(7(s),s, u)VZ_l(u)
ueS

Stopping criteria are given in (Puterman 1994).

In structured policy iteration, the value function is again built in a series of approximations, but in each
oneit isrepresented as adecision tree over the domainliterals. Similarly the policy isbuilt up asadecision
tree. On each iteration, new literals might be added to these trees as a result of examining the literals
mentioned in the action specification ® and utility function R. In thisway the agorithm avoids explicitly
enumerating the state space.

Using classical planningideasto help approximate MDPs

Structured policy iteration makes use of afactored action representation that issimilar to actionsin classical
planning. It is aso possibleto make use of causal links and the planning graphs used in Graphplan (Blum
& Furst 1997). In (Boutilier, Brafman, & Geib 1997), Boutilier, Brafman and Geib decompose the reward
function of the MDP into components and produce policies for them separately. They then make a causal
link analysis of each policy to produce partially ordered action sets from them using ucrop. The flexibility
in the partial order makes it easier to merge the component policies into a policy for the origina reward

18

function, again much as an sNLP based planner such as ucrPoP might merge subplans for individual goals.
In (Boutilier, Brafman, & Geib 1998), a reachability analysis inspired by Graphplan is used to restrict the
states considered for policy creation given an initial state.

Givan and Dean (Givan & Dean 1997) show that STRIPS-style goal regression computes an approximate
minimized form of the finite state automaton corresponding to the problem. In (Dean & Givan 1997) the
authors show how to use model minimization techniques to solve MDPs.

Partial observability

Similar work has been done with partially-observable Markov decision processes or POMDPS, in which the
assumption of complete observability isrelaxed. InaPoMDP thereisaset of observationlabels O and aset of
conditional probabilities P(o|a,s),0 € O,a € A, s € S, such that if the system makes a transition to state
s with action « it receives the observation label o with probability P(o|a, s). Cassandraet a. introducethe
witness algorithmfor solving POMDPs (Cassandra, Kaelbling, & Littman 1994). A standard technique for
finding an optimal policy for aPoMDP isto construct the MDP whose states are the belief states of the original
POMDP, ie each stateis a probability distribution over statesin the PoMDP, with beliefs maintained based on
the observation labels using Bayes' rule. A form of valueiteration can be performed in this space making
use of the fact that each finite-horizon policy will be convex and piecewise-linear. The witness agorithm
includes an improved technique for updating the basis of the convex value function on each iteration. Parr
and Russell use a smooth approximation of the value function that can be updated with gradient descent
(Parr & Russell 1995). Brafman introduces a grid-based method in (Brafman 1997). Although work on
POMDPS is promising, it is still preliminary and can only be used to solve small POMDP problems (Brafman
1997).

Conclusions

After introducing decision-theoretic planning, this paper discussed four different approaches based on
extending classica planning agorithms. The approaches all use different planning styles, and attack
different aspects of the decision-theoretic planning problem. Approaches based on algorithms for solving
Markov decision processes were briefly discussed, emphasi zing extensions that make use of factored action
representations, causal links, abstraction and other ideas from classical planning. There are interesting
directions still to be explored that come from the interplay between the two approaches. Surprisingly, in
improving MDP approaches little attention has been paid to the DRIPS style of planning, althoughitistheonly
classically-inspired planner mentioned here that aims to solve the same problem as an MDP: maximizing
expected utility. Using dominanceto eliminate portions of the state or action space may provefruitful in Mbp
approaches. Similarly, few classical planning a gorithms make use of local improvement search or dynamic
programming, although some agorithmsfor saT-compilation planning perform local improvements.

A blind spot shared by both approaches is the reliance on complete, detailed domain models. In many
real domains, specifying full probability distributionsfor all actions and the initia state would be at best
tedious, and typically impossible. Therehasbeenrdatively littlework inthisarea, but seearecent workshop
on interactive decision-theoretic systems (Haddawy & Hanks 1998b).

It should aso be noted that most of the systems described here either concentrate on parts of the
decision-theoretic planning task or represent individual techniquesthat will need to be used in combination
to achieve significant results. Scaling up inthisway is one of the largest challenges ahead. The techniques
developed so far have been shown to be practical in some domains (e.g (Blythe 1998; Haddawy, Doan, &
Kahn 1996)) but many simple domains till lie beyond our current capabilities. Still, the wealth of ideas
being proposed show that thisis an exciting time to be working in decision-theoretic planning.

19

References

Blum, A., and Furst, M. 1997. Fast planning through planning graph analysis. Artificial Intelligence
90:281-300.

Blythe, J., and Veloso, M. 1997. Using analogy in conditional planners. In Proc. Fourteenth National
Conference on Artificial Intelligence. AAAI Press.

Blythe, J. 1994. Planning with external events. In de Mantaras, R. L., and Poole, D., eds., Proc. Tenth
Conference on Uncertainty in Artificial Intelligence, 94-101. Seattle, WA: Morgan Kaufmann. Available
as http://www.cs.cmu.edu/jblythe/papers/uai 94.ps.

Blythe, J. 1995. The footprint principle for heuristics for probabilistic planners. In Ghallab, M., and
Milani, A., eds., New Directionsin Al Planning, 173-185. Assissi, Itay: 10S Press.

Blythe, J. 1996. Decompositions of markov chains for reasoning about external change in planners. In
Drabble, B., ed., Proc. Third International Conference on Artificial Intelligence Planning Systems, 27-34.
University of Edinburgh: AAAI Press.

Blythe, J. 1998. Planning Under Uncertainty in Dynamic Domains. Ph.D. Dissertation, Carnegie Mellon
University Computer Science Department.

Blythe, J. 1999. Decision-theoretic planning. Al Magazine 20(2).

Boutilier, C., and Dearden, R. 1994. Using abstractions for decision-theoretic planning with time con-
straints. In Proc. Twelfth National Conference on Artificial Intelligence, 1016-1022. AAAI Press.

Boutilier, C.; Brafman, R. I.; and Geib, C. 1997. Prioritized goal decomposition of markov decision
processes. Toward a synthesis of classical and decision theoretic planning. In Proc. 15th International
Joint Conference on Artificial Intelligence. Nagoya, Japan: Morgan Kaufmann.

Boutilier, C.; Brafman, R.; and Geib, C. 1998. Structured reachability analysis for markov decision
processes. In Proc. Fourtheenth Conference on Uncertaintyin Artificial Intelligence. Madison, Wisconsin:
Morgan Kaufmann.

Botilier, C.; Dean, T.; and Hanks, S. 1995. Planning under uncertainty: structural assumptions and
computational leverage. In Ghallab, M., and Milani, A., eds., New Directions in Al Planning, 157-172.
Assisg, Italy: 10S Press.

Boutilier, C.; Dean, T.; and Hanks, S. 1998. Planning under uncertainty: structural assumptions and
computational leverage. Journal of Artificial Intelligence Research in press.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Exploiting structurein policy construction. In Proc.
14th International Joint Conference on Artificial Intelligence, 1104-1111. Montréal, Quebec: Morgan
Kaufmann.

Brafman, R. 1997. A heuristic variable grid solution method of pomdps. In Proc. Fourteenth National
Conference on Artificial Intelligence, 727—-733. AAAI Press.

Cassandra, A. R.; Kaglbling, L. P; and Littman, M. L. 1994. Acting optimally in partialy observable
stochastic domains. In Proc. Twelfth National Conference on Artificial Intelligence, 1023-1028. AAAI
Press.

D’Ambrosio, B. 1999. Inference in bayesian networks. Al Magazine 20(2).

Davis, M.; Logemann, G.; and Loveland, D. 1962. A machine program for theorem proving. Communi-
cations of the ACM 5:394-397.

20

Dean, T., and Givan, R. 1997. Modd minimization in markov decision processes. In Proc. Fourteenth
National Conference on Artificial Intelligence, 106-111. AAAI Press.

Dean, T., and Lin, S-H. 1995. Decomposition techniques for planning in stochastic domains. In Proc.
14th International Joint Conference on Artificial Intelligence, 1121 — 1127. Montréal, Quebec: Morgan
Kaufmann.

Dean, T.; Kadbling, L. P; Kirman, J.; and Nicholson, A. 1993. Planning with deadlines in stochastic
domains. In National Conference on Artificial Intelligence, National Conference on Artificia Intelligence.

Dean, T.; Kaelbling, L.; Kirman, J.; and Nicholson, A. 1995. Planning under time constraintsin stochastic
domains. Artificial Intelligence 76(1-2):35-74.

Draper, D.; Hanks, S.; and Weld, D. 1994. Probahilistic planning withinformation gathering and contingent
execution. InHammond, K., ed., Proc. Second Inter national Conference on Artificial Intelligence Planning
Systems, 31-37. University of Chicago, Illinois: AAAI Press.

Feldman, J. A., and Sproull, R. F. 1977. Decision theory and artificia intelligenceii: The hungy monkey.
Cognitive Science 1:158-192.

Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence 2:189-208.

Friedland, P. E., and Iwasaki, Y. 1985. The concept and implementation of skeletal plans. Journal of
Automated Reasoning 1(2):161-208.

Givan, R., and Dean, T. 1997. Model minimization, regression, and propositiona strips planning. In Proc.
15th International Joint Conference on Artificial Intelligence. Nagoya, Japan: Morgan Kaufmann.

Goldman, R. P, and Boddy, M. S. 1994. Epsilon-safe planning. In de Mantaras, R. L., and Poole, D.,
eds., Proc. Tenth Conference on Uncertainty in Artificial Intelligence, 253-261. Sesitle, WA: Morgan
Kaufmann.

Goodwin, R., and Simmons, R. 1998. Search control of plan generation in decision-theoretic planning. In
Reid Simmons, M. V., and Smith, S., eds., Proc. Fourth International Conference on Artificial Intelligence
Planning Systems, 94-101. Carnegie Mellon University, Pittsburgh, PA: AAAI Press.

Haddawy, P, and Hanks, S. 1998a. Utility models for goal-directed decision-theoretic planners. Compu-
tational Intelligence 14(3):392-429.

Haddawy, P, and Hanks, S., eds. 1998b. Working notes of the AAAI Spring Symposium on Interactive and
Mixed-Initiative Decision-Theoretic Systems. Stanford: AAAI Press.

Haddawy, P, and Suwandi, M. 1994. Decision-theoretic refinement planning using i nheritance abstraction.
In Hammond, K., ed., Proc. Second International Conference on Artificial Intelligence Planning Systems.
University of Chicago, Illinois: AAAI Press.

Haddawy, P; Doan, A.; and Goodwin, R. 1995. Efficient decision-theoretic planning: Techniques and
empirical anaysis. In Besnard, P, and Hanks, S., eds., Proc. Eleventh Conference on Uncertainty in
Artificial Intelligence, 229-326. Montreal, Quebec: Morgan Kaufmann.

Haddawy, P; Doan, A.; and Kahn, C. E. 1996. Decision-theoretic refinement planning in medical decision
making: Management of acute deep venous thrombosis. Medical Decision Making 16(4):315-325.

Howard, R. A. 1960. Dynamic Programming and Markov Processes. MIT Press.

Kautz, H. A., and Sdiman, B. 1996. Pushing the envelope: Planning, propositional logic, and stochastic
search. In Proc. Thirteenth National Conference on Artificial Intelligence. AAAI Press.

21

Knoblock, C. A. 1991. Automatically Generating Abstractions for Problem Solving. Ph.D. Dissertation,
Carnegie Méellon University.

Kushmerick, N.; Hanks, S.; and Weld, D. 1994. An algorithm for probabilisticleast-commitment planning.
In Proc. Twelfth National Conference on Artificial Intelligence, 1073-1078. AAAI Press.

Kushmerick, N.; Hanks, S;; and Weld, D. 1995. An algorithm for probabilistic planning. Artificial
Intelligence 76:239 — 286.

Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The computational complexity of probabilistic
planning. Journal of Artificial Intelligence Research 9:1-36.

Littman, M. L. 1996. Algorithms for Sequential Decision Making. Ph.D. Dissertation, Department of
Computer Science, Brown University.

Luce, R. D., and Raiffa, H. 1957. Games and Decisions: Introduction and Critical Survey. Wiley.

Majercik, S. M., and Littman, M. L. 1998. Maxplan: A new approach to probabilistic planning. In
Reid Simmons, M. V., and Smith, S., eds., Proc. Fourth International Conference on Artificial Intelligence
Planning Systems, 86—93. Carnegie Mellon University, Pittsburgh, PA: AAAI Press.

McDermott, D. 1992. Transformational planning of reactive behavior. Technical Report
YALEU/CSD/RR/941, Yae University.

Newell, A., and Simon, H. A. 1963. Gps: a program that simulates human thought. In Feigenbaum, E. A.,
and Feldman, J., eds., Computers and Thought, 279-293. New York: McGraw-Hill.

Onder, N., and Pollack, M. 1997. Contingency selection in plan generation. In European Conference on
Planning.

Parr, R., and Russdll, S. 1995. Approximating optimal policies for partially observable stochastic
domains. In Proc. 14th International Joint Conference on Artificial Intelligence. Montréal, Quebec:
Morgan Kaufmann.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.

Penberthy, J. S., and Weld, D. S. 1992. Ucpop: A sound, complete, partial order planner for adl. In Third
International Conference on Principles of Knowledge Representation and Reasoning, 103-114.

Peot, M. A., and Smith, D. E. 1992. Conditional nonlinear planning. In Hendler, J.,, ed., Proc. First
International Conference on Artificial Intelligence Planning Systems, 189-197. College Park, Maryland:
Morgan Kaufmann.

Pérez, M. A., and Carbonell, J. 1994. Control knowledge to improve plan quality. In Hammond, K., ed.,
Proc. Second International Conference on Artificial Intelligence Planning Systems, 323-328. University
of Chicago, Illinois: AAAI Press.

Pryor, L., and Collins, G. 1996. Planning for contingencies. A decision-based approach. Journal of
Artificial Intelligence Research 4:287-339.

Puterman, M. 1994. Markov Decision Processes : Discrete Stochastic Dynamic Programming. John
Wiley & Sons.

Smith, D. E., and Weld, D. 1998. Conformant graphplan. In Proc. Fifteenth National Conference on
Artificial Intelligence, 889-896. AAAI Press.

Tash, J. K., and Russell, S. 1994. Control strategies for a stochastic planner. In Proc. Twelfth National
Conference on Artificial Intelligence, 1079-1085. AAAI Press.

22

Tate, A. 1977. Generating project networks. In International Joint Conference on Artificial Intelligence.

Veloso, M.; Carbonell, J.; Pérez, A.; Borrgjo, D.; Fink, E.; and Blythe, J. 1995. Integrating planning and
learning: The prodigy architecture. Journal of Experimental and Theoretical Al 7:81-120.

Weld, D.; Anderson, C.; and Smith, D. E. 1998. Extending graphplan to handle uncertainty and sensing
actions. In Proc. Fifteenth National Conference on Artificial Intelligence, 897-904. AAAI Press.

Weld, D. 1994. A gentle introduction to |east-commitment planning. Al Magazine.

Wellman, M. P; Breese, J. S;; and Goldman, R. P 1992. From knowledge bases to decision models.
Knowiedge Engineering Review 7(1):35-53.

Wellman, M. P. 1990. Formulation of Tradeoffsin Planning Under Uncertainty. Pitman.

Wilkins, D. E.; Myers, K. L.; Lowrance, J. D.; and Wesley, L. P. 1995. Planning and reacting in uncertain
and dynamic environments. Journal of Experimental and Theoretical Al to appear.

Williamson, M., and Hanks, S. 1994. Optima planning with aagoa -directed utility model. In Hammond,
K., ed., Proc. Second International Conference on Artificial Intelligence Planning Systems, 176-181.
University of Chicago, Illinois: AAAI Press.

23

