
CENTRO PER LA RICERCA
SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy
Tel.: +39 0461 314312
Fax: +39 0461 302040
e−mail: prdoc@itc.it − url: http://www.itc.it

CONDITIONAL PLANNING UNDER PARTIAL OBSERVABILITY
AS HEURISTIC−SYMBOLIC SEARCH IN BELIEF SPACE

Bertoli P., Cimatti A.,
Roveri M.

August 2001

Technical Report # 0108−01

 Istituto Trentino di Cultura, 2001

LIMITED DISTRIBUTION NOTICE

This report has been submitted for
publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for
early dissemination of its contents. In view of the transfert of copy right to
the outside publisher, its
distribution outside of ITC prior
to publication should be limited to peer communications and specific
requests. After outside publication,
material will be available only in
the form authorized by the copyright owner.

Conditional Planning under Partial Observability
as Heuristic-Symbolic Search in Belief Space

�

Piergiorgio Bertoli
�
, Alessandro Cimatti

�
, Marco Roveri

��� �
�

ITC-IRST, Via Sommarive 18, 38055 Povo, Trento, Italy�
bertoli,cimatti,roveri � @irst.itc.it�

DSI, University of Milano, Via Comelico 39, 20135 Milano, Italy
Phone: +39 0461 314 517. Fax: +39 0461 302 040.

Abstract. Planning under partial observability is one of the most significant and challenging planning problems.
It combines the need to deal with belief states, as in conformant planning, with the need for and-or search, typical
of conditional planning. In this paper, we tackle the problem of planning under partial observability within the
framework of planning via symbolic model checking. We propose a new algorithm for planning under partial
observability, able to generate conditional plans that are guaranteed to achieve the goal despite of the uncertainty
in the initial condition, the uncertain effects of actions, and the partial observability of the domain. The proposed
algorithm implements and-or search in the space of beliefs, by combining heuristic search with symbolic BDD-
based techniques, and can tackle significant problems. The experimental evaluation compares the heuristic-symbolic
algorithm with a recently proposed approach based on a depth-first search (DFS) style. We show that, while DFS

search may often result in deep plans, and suffers sometimes from inefficiencies resulting from a “bad” initial
choice, heuristic-symbolic search, even considering only a fixed simple selection function, constructs plans of better
quality, and, for certain classes of problems, may significantly improve the efficiency of the search.

Keywords: Planning under Uncertainty, Conditional Planning, Binary Decision Diagrams,
Symbolic Model Checking.

�
This paper has not already been accepted by and is not currently under review for a journal or another conference, nor will it be
submitted for such during ECP’s review period.

1 Introduction

Research in planning is more and more focusing on the problem of planning in nondeterminis-
tic domains and with incomplete information, see for instance [PC96; KBSD97; WAS98; CRT98;
Rin99a; BG00]. A crucial assumption, upon which the search mechanism and the structure of the
generated plans depend, is how information is available at run-time. For instance, the approaches
in [KBSD97; CRT98] construct conditional plans under the assumption of full observability, i.e.
the state of the world can be completely observed at run-time. At the other end of the spectrum,
conformant planning [SW98; BG00; CR00; BCR01] constructs sequential plans that are guaran-
teed to solve the problem assuming that no information at all is available at run-time.

In this paper, we tackle the problem in the middle of the spectrum, i.e. planning under par-
tial observability, the general case where only part of the domain information is available at run
time. This problem is significantly more difficult than the two limit cases of fully observable and
conformant planning. Compared to planning under full observability, planning under partial ob-
servability must deal with uncertainty about the state in which the actions will be executed. This
makes the search space no longer the set of states of the domain, but its powerset, i.e. the space of
“belief states” [BG00]. Compared to conformant planning, the structure of the plan is no longer se-
quential, but tree-shaped, in order to represent a conditional course of actions. Several approaches
have been previously proposed, based e.g. on the extension of non linear planning [PC96] and of
GraphPlan [WAS98], or as Partially Observable Markov Decision Processes (POMDP) [BG00].

We propose a new algorithm for planning under partial observability, able to generate condi-
tional plans that are guaranteed to achieve the goal despite of the uncertainty in the initial condition,
the uncertain effects of actions, and the partial observability of the domain. The algorithm is based
on a general model of partial observability, that can represent both observations resulting from the
execution of sensing actions [PC96; WAS98] and automatic sensing that depends on the current
state of the world [TK00]. The planning algorithm performs a search of the (possibly cyclic) and-
or graph induced by the domain, and generates conditional, acyclic plans. The planning algorithm
combines the advantages of the symbolic, BDD-based techniques, with a heuristic-style search
amenable to the use of selection functions. We call the approach heuristic-symbolic planning. The
algorithm is implemented in the MBP planner [BCP � 01].

A recent approach to planning under partial observability has been proposed in [BCRT01]. Its
distinguishing feature is the depth-first style of the search (DFS), that allows to explore one path at
a time, and makes it easy to deal with cycles. The experimental evaluation presented in [BCRT01]
shows that DFS is very efficient, and outperforms the other conditional planners. There are, how-
ever, shortcomings related to DFS. In certain cases, the plans are extremely deep. Furthermore, the
algorithm is very sensitive to initial bad choices: for instance, if it enters a portion of state space
that admits no solution, the algorithm has to complete the exploration before being able to back-
track and consider a different portion of state space. Furthermore, DFS is not fully amenable to the
use of selection functions. The heuristic-symbolic algorithm presented in this paper gives up the
DFS exploration style building explicitly the and-or graph, and allows for the exploration of many
paths at the time, combined with the use of selection functions. The experimental evaluation shows
that the heuristic-symbolic algorithm constructs better plans and, for certain classes of problems,
significantly improves the performance with respect to DFS.

The paper is organized as follows. In Section 2 we provide a formal definition of partially
observable planning domains and of conditional planning. In Section 3 we present the planning

algorithm, and, in Section 4, its implementation in the MBP planner. In Section 5 we report on the
experimental evaluation, and in Section 6 discuss further related work, and draw some conclusions.

2 Domains, Plans, and Planning Problems

We consider nondeterministic domains under the hypothesis of partial observability, i.e. where a
limited amount of information can be acquired at run time.

Definition 1. A partially observable planning domain is a tuple
�����������	��
���������

, where

–
�

is a finite set of propositions;
–
���������������

is the set of states;
–
�

is a finite set of actions.
–

�� ��!"�#!$�

is the transition relation.
–
�

is a finite set of observation variables;
–
�&%'�)(�*�+�,�-��!"�.! �0/���1 � � is the observation relation.

Intuitively, a state is a collection of the propositions holding in it. The transition relation describes
the effects of action execution. An action 2 is applicable in a state 3 iff there exists at least one state
354 such that

6� 3 � 2 � 374 � . The set
�

contains observation variables, whose value can be observed
at run-time, during execution. Without loss of generality, we assume that observation variables
are boolean. We use

�
to denote observation variables. We call

�8���9�
, written

�;:
in the following,

the observation relation of
�
. Given an action (that has been executed) and the resulting state,

��:
specifies what are the values that can be assumed at run-time by the observation variable

�
. In a

state 3=< � after an action 2>< � , an observation variable
� < � may convey no information: this

is specified by stating that both
�?:�� 3 � 2 ��/�� and

�@:7� 3 � 2 ��1*� hold, i.e. both the true and false values
are possible. In this case, we say that

�
is undefined in 3 after 2 . If

�;:A� 3 � 2 ��/*� holds and
�@:7� 3 � 2 ��1*�

does not hold, then the value of
�

in state 3 after 2 is true. The dual holds for the false value. In
both cases, we say that

�
is defined in 3 after 2 . An observation variable is always associated with

a value, i.e. for each 3�< � and for each 2�< � , at least one of
�B:�� 3 � 2 ��/�� and

�C:�� 3 � 2 �D1�� holds.
Consider the example of a simple robot navigation domain in Figure 1, in the upper left cor-

ner, containing a 2x2 room with an extra wall. The propositions of the domain are NW, NE, SW,
and SE, corresponding to the four positions in the room. Exactly one of them holds in each of
the four states in

�
. The robot can move in the four directions (deterministic actions GoNorth,

GoSouth, GoWest and GoEast), provided that there is not a wall in the direction of motion. The
action is not applicable, otherwise. At each time tick, the information of walls proximity in each
direction is available to the robot (observation variables WallN, WallS, WallW and WallE). For
instance, we have that for any action 2 of the domain

�@EGFIHJHLK0�-MONP� 2 ��1*� and
�QEGFIHJHRE9��MSNP� 2 ��/�� . In this

case, every observation variable is defined in every state and after the execution of any action of the
domain. We call action-independent the observation variables that provide useful information auto-
matically, independently of the previous execution of an action. We require an action-independent
observation variable

�
to satisfy, for any 2 � � 2 � < � and any 3*< � , the following condition:

�L�C:7� 3 � 2 � ��/*�UT"�C:A� 3 � 2 � �D/��V�UWX�L�C:�� 3 � 2 � ��1*�UT"�C:A� 3 � 2 � �D1��V�

In the following, we write
�?:Y�Z�[! �0/���1 � when

�
is action-independent. In a different formu-

lation of the domain, an action (e.g. ObsWallE) could be required in order to acquire the value

Bs 1 Bs 2 Bs 3

Bs 4

Bs 6

Bs 5

Bs 3 Bs 6

G

O

A

L

G

O

A

L

I

I

T

N

SW SE

NW NE

Bs 1 Bs 1

L
O
O
P

B
A
C
K

L
O
O
P

B
A
C
K

Bs 4

L
O
O
P

B
A
C
K

Bs 4

Bs 4

L
O
O
P

B
A
C
K

GoWestGoSouth

GoWest

GoEast WallN?

N1

GoWest

N2

N4

N5

N7

N8

N9

N10

WallW?

N3 N6

GoWest

N11

GoEast

N11

GoNorth

GoSouth

GoEast

N12

GoNorth

Fig. 1. A simple robot navigation domain

of a corresponding variable (e.g. WallE). In this case, WallE would be defined in any state af-
ter the action ObsWallE, and undefined otherwise. Such observation variables are modeled as
action-dependent. Action-independent observation variables model “automatic sensing” [TK00],
i.e. information that can always be acquired, as usual in embedded controllers, where a signal
from the environment is sampled and acquired at a fixed rate, latched and internally available.
Action-dependent observations are used in most observation-based approaches to planning (e.g.
[WAS98]), where the value of a variable can be observed as the explicit effect of an action, like
ObsWallW.

We consider conditional plans, that branch on the value of observable variables. A plan for a
domain � is either the empty plan � , an action 2 < � , the concatenation � ��� � � of two plans � �
and � � , or the conditional plan

��� � � % � � (read “if
�

then � � else � � ”), with
� < � . Consider,

for the example domain in Figure 1, the plan �	��
	�	�� ;
N ����� M��=� �	����������� � �	� N�� �� �;% � ��� N�� �� � .

The corresponding execution, starting from the uncertain initial condition NW or SW, is outlined in
Figure 1 (solid lines). The initial condition is represented by node N1, where the set of the two
possible initial states is depicted. After the action GoEast, in node N2, the robot is guaranteed to
be either in NE or SE. The plan then branches on the value of WallN. The observation allows to
distinguish between state NE, when the value associated with WallN is

/
, and state SE, when the

value is
1

. When the robot is in NE, in node N4, then it moves south, ending in node N7, and then
it moves west, ending in node N10. When the robot is in SE, it simply moves west, ending in node
N11. At this point, the robot is guaranteed to be in SW, regardless of the uncertainty in the initial
condition.

The execution described above takes into account, at each node, an uncertainty condition, rep-
resented by a set of states that can not be distinguished. Such a set is called a “belief state”. We say

that an action 2 is applicable to a non empty belief state ��3 iff 2 is applicable in all states of ��3 .
In order to formalize the notion of plan execution, we define

�;:�� /�� 2����� � 3�< ��% �C:7� 3 � 2 ��/*� �
as the set of states in

�
where

�
is true, and

�?:�� 1 � 2����� � 3�< ��% �C:7� 3 � 2 ��1*� � as the set of
states in

�
where

�
is false. If

�
is undefined in a state 3 after 2 , then 3 < �;:	� /�� 2
����C:�� 1 � 2� . In the case of action-independent observations, we have

�;:�� / ���� � 3�< ��% �C:7� 3 ��/*� � ,
and
�@:	� 1 ���� � 3*< � % �C:7� 3 ��1*� � . We now formalize the notion of plan execution in the case of

action-independent observations.

Definition 2. Let ���� ��3 � � . The execution of a plan in a set of states is defined as follows:

1. Exec
� ��� � � � �� � ;

2. Exec
� 2�� � ��3 � �� � 374��
6� 3 � 2 � 354 � � with 3*<���3 � ,

if 2 is applicable in �,3 ;
3. Exec

� 2�� � ��3 � �� � , if 2 is not applicable in ��3 ;
4. Exec

� ��� � ��3 � �� �,3 ;
5. Exec

� � ��� � � � � ��3 � �� Exec
� � � � � Exec

� � � � � ��3 ��� ;
6. Exec

� � � � � % � � � � ��3 � ��
Exec

� � � � � ��3�� �@:�� / � ��� Exec
� � � � � ��3�� �C:�� 1 � � , if

(a) if ��3�� �@:�� / ���� � , then Exec
� � � � � ��3�� �C:	� / � � �� �

(b) if ��3�� �@:�� 1 ���� � , then Exec
� � � � � ��3�� �C:	� 1 � � �� �

7. Exec
� � � � � % � � � � ��3 � �� � otherwise.

We say that a plan � is applicable in �,3��� � iff Exec
� ��� � ��3 � �� � . If the plan is applicable, then its

execution is the set of all states that can be reached after the execution of the plan. For conditional
plans, we collapse into a single set the execution of the two branches (item 6). The conditions (a)
and (b) guarantee that both branches are executable. Definition 2 can be extended to the case of
action-dependent observations by replacing

�B:�� / � with
�C:�� /�� 2�� and

�C:�� 1 � with
�@:	� 1�� 2�� , where

2 is the last action executed in the plan. Notice that, at starting time, action-dependent observation
variables must be undefined since no action has been previously executed. For lack of space, we
omit the explicit formal definition. We formalize the notion of planning problem under partial
observability as follows.

Definition 3 (Planning Problem and Solution). A planning problem is defined as a 3-tuple���B���C� � � , where � is a planning domain, ���� ����� is the set of initial states, and � �� � ��� is
the set of goal states. The plan � is a solution to the problem

���B���C� � � iff �!�� Exec
� ��� �"� �@�#� .

3 Planning under Partial Observability

3.1 The Search Space

When planning under partial observability, the search space can be seen as an and-or graph, recur-
sively constructed from the initial belief state, expanding each encountered belief state by every
possible combination of applicable actions and observations. The graph is possibly cyclic, i.e. it is
possible to return in the same belief state, representing the same condition of uncertainty. In order to
rule out cyclic behaviors, however, the exploration can be limited to the acyclic prefix of the graph.
Figure 1 depicts the finite prefix of the search space for the problem

���B��� � , where
�

is
�%$'& ��(�& �

and
�

is
� (& � . Each node in the prefix is associated with a path, describing how the node has

been reached, and with a corresponding belief state. The path is basically a sequence of actions, and
assignments to observation variables. For instance, node N2 is associated with the path GoEast,
and with the belief state Bs2, that is the result of the execution of GoEast in the belief state Bs1
associated with N1. Node N5 is associated with the path GoEast;(WallN =

1
). The associ-

ated belief state Bs3 is the result of the fact that, in N2, WallN is observed, and it has value
1

. Bs3
is indeed Bs

� � � EGFIHJH��0�L1*� . Similarly, node N5 is associated with path GoEast;(WallN =
/
).

The prefix is constructed by expanding each node in all possible ways, each represented by an
outgoing arc. Single-outcome arcs correspond to simple actions (action execution is deterministic
in belief space). For instance, N4 expands into N7 and N8; the corresponding paths are obtained
by appending the actions GoSouth and GoWest to path of N4. In general, consider a node

$
associated with path � and belief state ��3 . $ can be expanded with an action � if � is applicable
in �,3 , and results in a node associated with the path � � � and with the belief state Exec

� � � � ��3 � .
Multiple outcome arcs correspond to observations. For instance, node N2 results in nodes N4 and
N5, corresponding to the observation of WallN. The application of an observation is what gives
the “and” component in the search space: we have a solution for (the belief state associated with)
N2 if we have a solution for both N4 and N5. In Node N1, the arc labeled as WallW?, stands for a
non-informative observation: it leads to node N3, with the same belief states as N1 (and to a cross
representing the emptyset). This is due to the fact that the states of Bs1 are indistinguishable via
observation, i.e. the observation variable WallW? has the same value in the different states of Bs1.
Actually, none of the variables in

�
is informative, and therefore the other links are not explicitly

reported. If we expand node
$

by considering the observation variable
�
, we obtain the two nodes

associated with paths � � �R� � /*� and � � �R� � 1*� , and the belief states
� �,3 � �B:�� / � � and

� ��3 ��C:�� 1 � � , respectively. The argument can be generalized to the case where � observations are taken
into account at once, and result in (at most)

���
paths. (In the case of action-dependent observations,

the last action of the path of the expanded node must be taken into account to guarantee that
meaningful information is acquired.)

In the following, we use the notions of father and ancestor node, and the dual notions of son
and descendent, in the obvious way. For instance, N2 is the father of N4, N5 and N6, while N1
is ancestor for all nodes. We call “brothers” all the nodes that result from the same observation
expansion of the same node. For instance, N4 and N5 are brothers, but N4 and N6 are not.

The expansion of nodes is halted under the following conditions. First, a node is a associated
with a belief state contained in the goal. Second, a node is a loop back, i.e. it has an ancestor node
with the same belief state. For instance, node N6 loops back onto node N1, while node N11 loops
back onto node N4. Node N9 and N10 are associated with the goal belief state.

3.2 The Planning Algorithm

The planning algorithm for conditional planning under partial observability is described in Fig-
ure 2. It takes in input the initial belief state and the goal belief state, while the domain representa-
tion is assumed to be globally available to the subroutines. The algorithm proceeds by incremen-
tally constructing the finite acyclic prefix described above.

The algorithm relies on an extended data structure, stored in the 	�
92��� variable, that is a direct
representation of the prefix. Each node is associated with a belief state and a path. Furthermore,
the graph has a tree component that, for each node, allows to retrieve the sons, brothers, and father

HEURSYMCONDPLAN(� , �)
1 �������
	 := MKINITIALGRAPH(� , �);
2 while (GRAPHROOTMARK(��������) ��������������������� ����� � � ���)
3 "!�# � := EXTRACTNODEFROMFRONTIER(�$���%��);
4 if (SUCCESSPOOLYIELDSSUCCESS("!�# � , ��������))
5 MARKNODEASSUCCESS(&!�# �);
6 NODESETPLAN(&!�# � ,RETRIEVEPLAN("!�# � , ��������));
7 PROPAGATESUCCESSONTREE("!�# � , �$���%�
);
8 PROPAGATESUCCESSONEQCLASS("!�# � , �'������);
9 else
10 !�� ��(� := EXPANDNODEWITHACTIONS("!�# �);
11 �� "# �%(� := EXPANDNODEWITHOBSERVATIONS("!�# �);
12 EXTENDGRAPHOR(!�� ��(� , "!�# � , �������
);
13 EXTENDGRAPHAND(�� "# �%(� , "!�# � , �������
);
14 if (SONSYIELDSUCCESS("!�# �))
15 MARKNODEASSUCCESS(&!�# �);
16 NODESETPLAN(&!�# � ,BUILDPLAN(&!�# �));
17 PROPAGATESUCCESSONTREE(&!�# � , �������
);
18 PROPAGATESUCCESSONEQCLASS("!�# � , ��������);
19 else if (SONSYIELDFAILURE("!�# �))
20 MARKNODEASFAILURE("!�# � , ��������);
21 NODEBUILDFAILUREREASON("!�# � , �������
);
22 PROPAGATEFAILUREONTREE("!�# � , ��������);
23 PROPAGATEFAILUREONEQCLASS(&!�# � , �������
);
24 end while
25 if (GRAPHROOTMARK(�������
) =

�������������
)

26 return GRAPHROOTPLAN(��������);
27 else
28 return � �)��� � � � ;

Fig. 2. The planning algorithm

nodes. The graph also contains a frontier of the nodes that have not yet been expanded. Finally,
it contains the equivalence classes of nodes that share the same belief state. The graph is also
annotated with a success pool, that contains the belief states for which a plan guaranteed to reach
the goal has been found.

At line 1, the algorithm initializes the graph, by constructing the root node corresponding to the
initial belief state, and the success pool with the goal belief state. Then, at lines 2-24, the iteration
proceeds by selecting a node and expanding it, until a solution is found or the absence of a solution
is detected. After the main loop, either a plan or a failure are returned (lines 25-28).

With the first step in the loop, at line 3, a node is selected for expansion, and is extracted
from the frontier. The EXTRACTNODEFROMFRONTIER primitive embodies the selection criterion
and is responsible for the style (and the effectiveness) of the search being carried out. Then, at
line 4, we check whether the belief state associated to the selected node is entailed by the pool
of previously solved belief states. The primitive SUCCESSPOOLYIELDSSUCCESS checks if there
exists a node *,+ , stored in the success pool, such that the associated belief state contains the belief
state of the node being analyzed. If so, the algorithm takes care of the newly solved node. In
particular, (the node stored in) * �.-0/ is marked as success, and inserted in the success pool (line
5). Then, it is associated with the plan that has been previously computed for *1+ (line 6). (As a
consequence, the plan constructed by the algorithm is a DAG rather than a tree.) At line 7, the
PROPAGATESUCCESSONTREE primitive propagates success backwards. If * �&-2/ is the result of

an action expansion, the father node *�� is marked as success, and the open descendents of *�� are
marked as removed and deleted from the frontier, since their expansion is no longer necessary.
If * �&-2/ is the result of an observation, the above process is carried out only if all the brothers
of * �&-0/ are already marked as success. In this case, *�� is associated with a conditional plan. If
*�� is marked as success, the success propagation process is recursively iterated, until either an
observation branching with at least one non-success node is reached, or the root of the graph is
marked as success, in which case the problem is solved. Then, the success of * �.-0/ is propagated to
the equivalence class, i.e. to any other node *�� having the same belief state of * �&-0/ . This recursive
success propagation is activated for each node in the equivalence class. This simplification can be
seen as an optimization of the conceptually simple exploration of the tree-shaped search space.

If the success of * �&-0/ is not entailed by the success pool, then the expansion of * �.-0/ is at-
tempted, computing the nodes resulting from possible actions (line 10) and observations (line 11).
Let �,3 be the belief state associated with * �.-0/ . Then, the result of EXPANDNODEWITHACTIONS,
stored in variable

�
 /�� � , is a list of belief state-action pairs
� �,3��
	 � � , where ��3�� is the result of the

execution of � in ��3 . Similarly, EXPANDNODEWITHOBSERVATIONS returns a list of observation
results, each composed of an observation mask, describing what variables are being observed, and
a list of the resulting belief states, corresponding to the associated observation results. The graph
extension steps, at lines 12-13, construct the nodes associated to the expansion, and add them to the
graph, also doing the bookkeeping operations needed to update the frontier and the links between
nodes. In particular, for each node, the associated status is computed. For instance, if a newly con-
structed node has a belief state that is already associated with a plan, then the node is marked as
success1. Newly constructed nodes are also checked for loops, i.e. if they have an ancestor node
with the same belief state then they are marked as failure.

If it is possible to state the success of * �&-0/ based on the status of the newly introduced sons
(primitive SONSYIELDSUCCESS at line 14), then the same operations at line 5-8 for success prop-
agation are executed. At line 19, the SONSYIELDFAILURE primitive tries to state if a * �.-0/ is a
failure. This can happen, for instance, if no action is applicable in the associated belief state, and
observations are non-informative (i.e. both

�
 /�� � and
/ * -0/�� � are empty). In this case, it is possible

to store the failure of the node in such a way that it can be reused in the following search attempts.
Notice however that, differently from success, a failure can not be associated with the belief state
of the node, but it depends on the node path. For instance, in a subsequent search attempt it could
be possible to reach a belief state with a non-cyclic path. Therefore, each belief state is associated
with a set of belief states representing the failure reason. Intuitively, the failure reason contains the
sets of belief states that caused a loop in all the search attempts originating from the belief state
marked with failure.

Figure 3 describes a possible behavior of the algorithm for the example of Figure 1 as a se-
quence of tree expansion steps. Each line represents a (meaningful) step in the algorithm. The first
column in the table contains the set of nodes in the frontier. The highlighted node is the one ex-
tracted for expansion. The second column contains a description of the nodes resulting from the
expansion of the selected node. For instance, the expansion of node N2 gives either N4 and N5,
or N6. The other columns contain the marking of the nodes, highlighted when they are introduced

1 This operation is weaker than checking success entailment from the success pool. Although in principle it could be possible to
access the success pool for each newly created node, we perform this operation only for the node being expanded since entailment
is rather expensive.

Frontier Sons N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 Expl.
N1 N2 C
N2 (N4,N5),N6 C C O O F(1) LD
N4, N5 N7,N8 C C C O F O O
N5, N7, N8 N11 C C C O F O O F(4) LD

C C C O F O F(4) F FPT
N5, N7 N10, N12 C C C O F C F S F O Goal

C C S O F S F S F R SPT
C C S S F S F S F R SPEC
S S S S F S F S F R SPT

Fig. 3. The behavior of the algorithm for the example.

or changed, where C stands for “computing”, O for “open”, F for “failure”, R for “removed”, and
S for “success”. Failure nodes are also annotated with the failure reason(s) associated with their
belief state. The last column contains an explanation for the new marking of nodes. For instance,
N6 is marked as failure because of loop detection (LD) with reason belief state 1. N8 are marked
as failure because of a loop detection on belief state 4, while N4 is marked as failure during the
subsequent failure propagation on tree (FPT), inheriting the same failure reason; N10 is marked
success because it has a goal belief state; N7 and N4 are marked success during propagation of
success on tree (SPT); N5 is marked success for propagation of success over equivalence class
(SPEC); finally, N2 and N1 are marked as success by the last SPT. Notice that the algorithm does
not expand non-informative observations (therefore N3 is not generated), and that the information
propagation phases (either over the search tree or over equivalence classes) may prevent certain
frontier nodes from being expanded (thus, N9 is not expanded). Plan reconstruction is left to the
reader.

The algorithm presented above is guaranteed to terminate, based on the fact that the explored
search space is finite. Upon termination, it either returns a solution plan, if the problem admits
a solution, or a failure. Depending on the selection function, it is possible for the algorithm to
explore the search space with different search styles, e.g. depth-first, breadth-first, or with other
more sophisticated search strategies. By maintaining a frontier, search can be switched from one
direction to another, considering, at each time, the most promising node among the ones on the
frontier. The problem of finding an effective selection functions appears to be very hard. Given
that the search is an and-or, and is carried out in belief space, several parameters could be used to
determine what is a promising node, or a more promising expansion. A “bold” strategy, favoring
actions over observations, would limit the number of subgoals resulting from “and” branching,
but would give larger belief states to deal with. On the other hand, a “coward” strategy, observing
whenever possible, may give smaller belief states, but generates a larger number of and nodes.
The distance from the goal of each state in a belief state could also be of help. We have currently
experimented with a simple structural selection function, that gives high scores to nodes having
an equivalence class with a large intersection on the frontier. In the following we call HSEQC the
search algorithm controlled by that selection function. Although the heuristic is extremely simple,
it appears to work quite well.

4 BDD-based Implementation within the MBP Planner

The algorithm described above is integrated in MBP [CRT98; BCP � 01]. MBP is a general planner
for nondeterministic domains, based on a two-stages architecture. In the first stage, a general de-

DFS HSEQC
ST PL NBS APL TRB BF UvR ST PL NBS APL TRB BF UvR

OER(2) 0.000 2 6 1.000 4 1.692 1 / 12 0.010 2 6 1.000 4 1.692 1 / 12
OER(3) 0.000 6 15 2.667 9 1.351 6 / 21 0.010 7 16 3.556 9 1.289 7 / 21
OER(4) 0.010 16 33 10.000 16 1.117 13 / 39 0.050 10 27 6.125 16 1.190 11 / 35
OER(5) 0.020 23 46 15.360 25 1.078 17 / 54 0.160 15 49 10.960 25 1.122 23 / 55
OER(6) 0.020 31 60 23.000 36 1.070 29 / 68 0.350 19 58 13.556 36 1.103 21 / 70
OER(7) 0.030 47 82 35.306 49 1.033 27 / 94 0.700 24 93 17.020 49 1.099 46 / 97
OER(8) 0.030 57 98 46.781 64 1.037 43 / 110 1.290 31 124 21.062 64 1.082 70 / 116
OER(9) 0.070 79 126 63.259 81 1.018 37 / 142 2.280 34 154 23.506 81 1.077 92 / 149
OER(10) 0.090 91 144 78.640 100 1.023 57 / 160 3.420 41 181 27.720 100 1.068 119 / 173
OER(11) 0.080 119 178 99.223 121 1.011 47 / 198 4.520 45 202 31.736 121 1.093 158 / 185
OER(12) 0.120 133 198 118.542 144 1.015 71 / 218 6.390 49 241 33.458 144 1.063 183 / 225
OER(13) 0.130 167 238 143.195 169 1.008 57 / 262 8.160 56 261 38.343 169 1.063 240 / 235
OER(14) 0.160 183 260 166.469 196 1.011 85 / 284 11.090 64 297 41.827 196 1.095 253 / 297
OER(15) 0.190 223 306 195.173 225 1.006 67 / 334 14.650 66 349 44.907 225 1.061 320 / 293
OER(16) 0.210 241 330 222.414 256 1.008 99 / 358 17.110 69 371 44.508 256 1.065 355 / 373
OER(17) 0.260 287 382 255.156 289 1.004 77 / 414 21.930 74 402 50.567 289 1.053 429 / 354
OER(18) 0.300 307 408 286.370 324 1.007 113 / 440 27.360 80 460 54.790 324 1.051 539 / 374
OER(19) 0.340 359 466 323.141 361 1.003 87 / 502 33.030 84 447 55.424 361 1.064 567 / 431
OER(20) 0.380 381 494 358.335 400 1.005 127 / 530 102.040 89 559 61.115 400 1.046 699 / 427

Table 1. Results for the Original Empty Room

scription of a nondeterministic domain is processed, and the corresponding internal representation
is built. Then, for the domain description being processed, MBP allows for conditional planning un-
der full observability [CRT98], also considering temporally extended goals [PT01], for conformant
planning [CR00; BCR01], and for partial observability based on DFS [BCRT01]. MBP is based on
the use of symbolic model checking techniques [McM93]. In particular, we rely on Binary Decision
Diagrams (BDD) [Bry92], that allow for a compact representation of sets of states, and an efficient
analysis of the search space. For lack of space, we do not describe BDDs, and the use of symbolic
model checking techniques to planning (see [CR00] for an introduction). We simply remark that
the problem of searching in the space of beliefs requires a significant departure from the standard
symbolic model checking techniques, where the search space is

�
, i.e. the set of states, and one

single BDD is used to represent a portion of the visited search space. Here, each visited belief state
is represented by a unique BDD, while a hashing structure is used to efficiently implement the
marking mechanism described in previous section. The machinery used to tackle partially observ-
able planning is a generalization of the one used to do conformant planning [BCR01] as search in
the space of belief states: the main difference is that deterministic search is enough for conformant
planning, while partially observable planning requires and-or search.

The primitives for the expansion of nodes by means of actions and of observations used by the
algorithm presented in previous section are based on the same primitives of the implementation of
the DFS algorithm, and take full advantage of BDDs (see [BCRT01]). With respect to the algorithm
in Figure 2, that is presented at a certain level of detail for the sake of clarity, additional mechanisms
can be activated to increase efficiency. For instance, a preliminary step of conformant planning can
be carried out backwards from

�
towards

�
, in order to enlarge the pool of target belief states.

This is sometimes convenient given that conformant planning can be carried out very efficiently
in this framework (see [CR00; BCR01]). The drawback, however, is that a long sequential plan
can be obtained where a “smart” conditional plan is available. Furthermore, the success pool is
maintained in form of a list of maximal successful belief states. This avoids to test for inclusion
with all the successful visited belief states, and minimizes the size of the list. This idea is based on
the lattice structure induced by set inclusion. Finally, when a success plan is found, it is sometimes
very useful to backward simulate the plan, in order to identify the maximal belief state where it
is applicable and for which it guarantees success. This operation tries to propagate the results of a
successful search branch.

DFS HSEQC
ST PL NBS APL TRB BF UvR ST PL NBS APL TRB BF UvR

VER(2) 0.000 2 2 2.000 1 1.000 0 / 2 0.010 2 2 2.000 1 1.000 0 / 2
VER(3) 0.000 7 8 4.500 2 1.111 1 / 8 0.000 3 4 2.500 2 1.200 1 / 4
VER(4) 0.000 8 9 7.500 2 1.067 1 / 9 0.010 5 6 4.500 2 1.143 1 / 6
VER(5) 0.010 18 19 17.500 2 1.029 1 / 19 0.030 5 6 4.500 2 1.143 1 / 6
VER(6) 0.010 22 23 21.500 2 1.023 1 / 23 0.070 9 10 8.500 2 1.062 1 / 10
VER(7) 0.080 26 27 25.500 2 1.020 1 / 27 0.200 11 12 10.500 2 1.053 1 / 12
VER(8) 0.110 30 31 29.500 2 1.017 1 / 31 0.430 13 14 12.500 2 1.043 1 / 14
VER(9) 4.210 34 35 33.500 2 1.015 1 / 35 0.220 17 18 16.500 2 1.033 1 / 18
VER(10) 14.310 56 57 55.500 2 1.009 1 / 57 0.260 19 20 18.500 2 1.029 1 / 20
VER(11) M.O. 0.530 19 20 18.500 2 1.030 1 / 20
VER(12) 0.530 21 22 20.500 2 1.027 1 / 22

VER(19) 2.470 35 36 34.500 2 1.016 1 / 36
VER(20) 3.190 37 38 36.500 2 1.015 1 / 38

Table 2. Results for the Variated Empty Room

DFS HSEQC
ST PL NBS APL TRB BF UvR ST PL NBS APL TRB BF UvR

ERS(6,7) 0.010 20 22 19 4 1.041 2 / 22 0.050 8 16 7 4 1.097 3 / 16
ERS(6,8) 0.460 20 22 19 4 1.041 2 / 22 0.050 8 16 7 4 1.097 3 / 16
ERS(6,9) T.O. 0.050 8 16 7 4 1.097 3 / 16
ERS(6,10) 0.040 8 16 7 4 1.097 3 / 16

ERS(6,800) 0.050 8 16 7 4 1.097 3 / 16
ERS(6,1000) 0.050 8 16 7 4 1.097 3 / 16

ERS(20,20) 0.080 174 176 173 4 1.004 2 / 176 0.190 20 28 19 4 1.038 3 / 28
ERS(20,21) 0.120 174 176 173 4 1.004 2 / 176 0.190 20 28 19 4 1.038 3 / 28
ERS(20,22) T.O. 0.190 20 28 19 4 1.038 3 / 28
ERS(20,25) 0.190 20 28 19 4 1.038 3 / 28

ERS(20,800) 0.210 20 28 19 4 1.038 3 / 28
ERS(20,1000) 0.210 20 28 19 4 1.038 3 / 28

Table 3. Results for the Empty Room with Sink

5 Experimental Evaluation

We compare the heuristic-symbolic HS approach described in this paper (HSEQC) with the DFS

approach of [BCRT01]. The comparison with other systems for planning under partial observabil-
ity is discussed in next section. The experiments were run on a Pentium II 300MHz with 512Mb
of memory running Linux, fixing a memory limit of 450Mb and timeout to 1 hour CPU. When re-
porting the results, we write T.O. for “time out” and M.O. for “memory out”. We consider several
parameterized problem classes. In order to focus on the properties of the algorithms, we report the
search time (ST, in seconds), and not the time needed to preprocess the domain descriptions. We
also report information on the DAG structure of the returned plan: the maximum and the average
plan length (MPL and APL); the number of belief states associated with the execution of the plan
(NBS); the branching factor (BF); the total number of Relevant Branches (TRB) associated with
the plan (reuse of plans can result in branches that are never followed for some belief states); the
Unreused vs Reused subplans (UvR), that gives an idea of the “remerging” in the plan.

The problems considered in the comparison are the original empty room (OER) and the MAZE
navigation problems, and RING problem, from [BCRT01]. Furthermore, we consider two varia-
tions of the empty room domain, called VER and ERS. Notice that, in the experimental evaluation,
the same algorithm configuration was used for the all the problems (e.g. the preliminary call to
conformant planning was not activated, a structural, problem independent selection function was
used). Performance and results can be greatly improved by “tuning” the search on the problem at
hand. In the OER, the problem is moving to a given corner position from any position in a * ! *
empty room. The results are reported in Table 1. DFS is extremely fast. This can be explained

DFS HSEQC
ST PL NBS APL TRB BF UvR ST PL NBS APL TRB BF UvR

MAZE(3) 0.000 6 9 3.857 7 1.429 5 / 21 0.000 6 9 3.857 7 1.429 5 / 21
MAZE(5) 0.010 12 9 7.529 17 1.265 26 / 47 0.040 12 9 7.529 17 1.265 26 / 47
MAZE(7) 0.040 27 36 14.226 31 1.191 38 / 91 0.140 25 27 13.581 31 1.272 52 / 84
MAZE(9) 0.060 41 29 23.388 49 1.148 117 / 128 0.240 45 32 24.776 49 1.204 119 / 112
MAZE(11) 0.070 55 65 29.310 71 1.096 128 / 179 0.880 55 84 29.479 71 1.071 75 / 211
MAZE(13) 0.080 75 55 41.794 97 1.104 173 / 228 1.320 75 64 42.103 97 1.126 266 / 205
MAZE(15) 0.140 87 143 53.504 127 1.076 205 / 298 5.280 89 156 52.260 127 1.055 140 / 313
MAZE(17) 0.220 114 212 62.398 161 1.049 268 / 339 2.760 114 171 63.453 161 1.056 333 / 326
MAZE(19) 0.270 169 202 79.623 199 1.043 383 / 449 11.880 171 160 79.935 199 1.050 261 / 493
MAZE(21) 0.350 157 345 91.983 241 1.036 459 / 488 14.730 161 351 92.017 241 1.028 265 / 512
MAZE(23) 0.410 184 401 99.314 287 1.036 528 / 556 17.390 184 301 99.167 287 1.028 305 / 597
MAZE(25) 0.580 194 386 104.522 337 1.028 588 / 653 22.190 199 295 104.617 337 1.055 387 / 653
MAZE(27) 0.740 204 476 116.780 391 1.028 655 / 719 26.690 205 431 116.703 391 1.032 530 / 759
MAZE(29) 0.840 266 581 153.189 449 1.023 886 / 836 34.210 267 549 153.024 449 1.024 690 / 865
MAZE(31) 1.100 292 499 168.706 511 1.024 1098 / 89 46.620 293 552 168.945 511 1.024 787 / 951
MAZE(33) 1.580 324 659 177.764 577 1.019 1152 / 10 63.610 344 654 179.047 577 1.021 849 / 116
MAZE(35) 1.560 352 636 197.689 647 1.019 1273 / 11 64.420 343 565 197.427 647 1.018 969 / 120
MAZE(37) 1.850 381 939 215.448 721 1.017 1374 / 12 81.070 379 761 215.933 721 1.019 1188 / 13
MAZE(39) 2.010 363 933 213.203 799 1.020 1671 / 12 113.550 367 747 213.488 799 1.018 990 / 145
MAZE(41) 2.490 480 970 257.140 881 1.015 1840 / 14 106.880 481 810 258.059 881 1.015 1249 / 15
MAZE(43) 2.960 501 836 264.820 967 1.015 2010 / 15 121.670 493 743 266.681 967 1.016 1729 / 17
MAZE(45) 4.000 549 969 290.155 1057 1.014 2146 / 17 130.340 567 518 292.384 1057 1.017 1812 / 19
MAZE(47) 4.550 544 1130 330.248 1151 1.013 2297 / 19 175.570 563 1232 330.619 1151 1.013 1635 / 19
MAZE(49) 4.540 682 1319 374.328 1249 1.011 2397 / 20 181.870 697 1309 376.051 1249 1.012 2031 / 20
MAZE(51) 4.990 760 1509 408.448 1351 1.011 3117 / 22 189.680 761 1447 409.754 1351 1.012 2198 / 23

Table 4. Results for the Maze

DFS HSEQC
ST PL NBS APL TRB BF UvR ST PL NBS APL TRB BF UvR

RING(2) 0.010 7 1 4.333 9 1.343 5 / 18 0.010 6 14 3.889 9 1.341 9 / 16
RING(3) 0.020 15 1 7.815 27 1.335 25 / 41 0.010 8 14 5.000 27 1.433 5 / 17
RING(4) 0.060 24 1 11.580 81 1.282 64 / 82 0.020 11 19 7.000 81 1.430 7 / 23
RING(5) 0.150 32 1 16.872 243 1.297 161 / 146 0.040 15 25 10.000 243 1.425 9 / 30
RING(6) 0.470 53 1 22.372 729 1.251 359 / 300 0.060 18 30 12.000 729 1.427 11 / 36
RING(7) 1.210 64 1 29.031 2187 1.276 801 / 519 0.070 21 35 14.000 2187 1.428 13 / 42
RING(8) 4.330 87 1 36.152 6561 1.242 1718 / 10 0.110 24 40 16.000 6561 1.428 15 / 48
RING(9) 18.290 100 1 45.170 19683 1.245 3604 / 19 0.150 27 45 18.000 19683 1.429 17 / 54
RING(10) 68.510 129 1 53.154 59049 1.227 7528 / 38 0.190 30 50 20.000 59049 1.429 19 / 60
RING(11) 273.800 155 1 63.739 177147 1.229 15535 / 7 0.250 33 55 22.000 177147 1.429 21 / 66
RING(12) 1118.520 182 1 75.083 531441 1.207 31852 / 1 0.300 36 60 24.000 531441 1.429 23 / 72
RING(13) 4415.530 219 1 86.010 1594323 1.204 65034 / 2 0.390 39 65 26.000 1594323 1.429 25 / 78
RING(14) T.O. 0.480 42 70 28.000 4782969 1.429 27 / 84
RING(16) 0.670 48 80 32.000 43046721 1.429 31 / 96

RING(48) 18.480 144 240 96.000 79766443076872514306048 1.429 95 / 288
RING(50) 20.810 150 250 100.000 717897987691852578422784 1.429 99 / 300

Table 5. Results for the Ring

considering that (the implementation of) DFS tends to privilege observations over actions. Given
that the starting point is completely unspecified, in most cases observations are informative. The
maximal length of the returned plan, however, is up to five times longer than the maximal length
of the plan constructed by HSEQC. In the VER, the problem is moving to the same given posi-
tion from an initial belief state containing two states in the center of the room. Table 2 shows that
HSEQC significantly outperforms DFS. Differently from DFS, the search strategy of HSEQC does
not try to re-enter the same portion of the search space over and over from different paths. The
plans returned by HSEQC are also significantly shorter. In Table 3 we report the results for the
ERS(, *) (ER with a Sink). The idea is that, in a room of size * , a portion of the room (size *��)
is a sink, i.e. once entered, it can not be left. The tackled problem is solvable. While HSEQC is able
to reconsider potentially bad initial choices (e.g. entering the sink), DFS is bound to the complete
exploration of the sink, once it is entered. Table 4 shows that DFS is extremely effective with the
MAZE problem. Most likely, this is due to the nature of the problem, that severely constraints the
search space. The plans constructed by the two algorithms are indeed very similar. As reported
in [BCRT01], the RING problem is hard for DFS. Table 5 shows that HSEQC is able to tackle very
large instances of the problem, since it focuses on remerging attempts. Notice also that the plans

constructed by HSEQC are extremely close to optimal, while the plans constructed by DFS are
very far from that.

In summary, DFS appears to behave extremely well with highly constrained problems, but
suffers from the inability to deal with bad initial choices. Heuristic-symbolic search, on the other
hand, even with a simple selection function, is able to solve problems that are out of reach for DFS.

6 Related Work and Conclusions

In this paper we have presented a new algorithm for conditional planning under partial observabil-
ity. The planning algorithm is based on the exploration of a (possibly cyclic) and-or graph induced
by the domain. The algorithm departs from heuristic search algorithms like AO*, that are based on
the assumption that and-or search graphs are acyclic. Given the exhaustive style of the exploration,
the algorithm can decide whether the problem admits an acyclic solution, i.e. a plan guaranteed to
reach the goal in a finite number of steps. The algorithm takes full advantage from the combination
of BDD-based symbolic model checking techniques with the heuristic style of the search. The ex-
perimental evaluation shows that, even with a problem independent, structural selection function,
the HS approach can outperform the DFS approach both in terms of efficiency and in the quality
of the returned plans.

A comparison against other conditional planners follows from the experimental evaluation
in [BCRT01], where the DFS algorithm outperforms the SGP and GPT conditional planners. An-
other interesting system is QBFPLAN [Rin99a], that extends the SAT-based approach to planning
to the case of nondeterministic domains. The planning problem is reduced to a QBF satisfiabil-
ity problem, that is then given in input to an efficient solver [Rin99b]. QBFPLAN relies on a
symbolic representation, but the approach seems to be limited to plans with a bounded execu-
tion length. The search space is significantly reduced by providing the branching structure of the
plan as an input to the planner. The problem of planning under partial observability has been
deeply investigated in the framework of Partially Observable MDP (see, e.g., [CKL94; HZ98;
PB00]). Methods that interleave planning and execution [KS98; GN93] can be considered alter-
native (and orthogonal) approaches to the problem of planning off-line with large state spaces.
However, these methods cannot guarantee to find a solution, unless assumptions are made about
the domain. For instance, [KS98] assumes “safely explorable domains” without cycles. [GN93]
describes an off-line planning algorithm based on a breadth-first search on an and-or graph. The
paper shows that the version of the algorithm that interleaves planning and execution is more effi-
cient than the off-line version, both theoretically and experimentally.

Future research will be directed to the definition of more effective preprocessing techniques
and heuristic functions, with the goal to obtain “smarter” behaviors from the heuristic-symbolic
algorithm. For instance, an accurate selection function should be able to take into account, in
addition to the distance from the goal, the degree of uncertainty in the belief state being analyzed,
and also the point in the and-or search. Another direction of future research is the extension of the
partially observable approach presented in this paper to strong cyclic solutions [CRT98], and for
temporally extended goals [KBSD97; PT01].

References

[BCP
�

01] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a Model Based Planner. In Proc. of the IJCAI’01
Workshop on Planning under Uncertainty and Incomplete Information, Seattle, August 2001. To appear.

[BCR01] P. Bertoli, A. Cimatti, and M. Roveri. Heuristic Search + Symbolic Model Checking = Efficient Conformant Planning.
In Proc. ���

�
International Joint Conference on Artificial Intelligence (IJCAI-01). AAAI Press, August 2001.

[BCRT01] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in Nondeterministic Domains under Partial Observability
via Symbolic Model Checking. In Proc. ���

�
International Joint Conference on Artificial Intelligence (IJCAI-01). AAAI

Press, August 2001.
[BG00] B. Bonet and H. Geffner. Planning with Incomplete Information as Heuristic Search in Belief Space. In S. Chien,

S. Kambhampati, and C.A. Knoblock, editors, ���
�

International Conference on Artificial Intelligence Planning and
Scheduling, pages 52–61. AAAI-Press, April 2000.

[Bry92] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys,
24(3):293–318, September 1992.

[CKL94] A. Cassandra, L. Kaelbling, and M. Littman. Acting optimally in partially observable stochastic domains. In Proc. of
AAAI-94. AAAI-Press, 1994.

[CR00] A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checking. Journal of Artificial Intelligence
Research (JAIR), 2000. Accepted for publication. To appear.

[CRT98] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based Generation of Universal Plans in Non-Deterministic
Domains. In Proceeding of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin,
1998. AAAI-Press. Also IRST-Technical Report 9801-10, Trento, Italy.

[GN93] M. Genesereth and I. Nourbakhsh. Time-saving tips for problem solving with incomplete information. In Proceedings
of the National Conference on Artificial Intelligence, 1993.

[HZ98] E. A. Hansen and S. Zilberstein. Heuristic search in cyclic and-or graphs. In Proceedings of the National Conference
on Artificial Intelligence, 1998.

[KBSD97] F. Kabanza, M. Barbeau, and R. St-Denis. Planning control rules for reactive agents. Artificial Intelligence, 95(1):67–
113, 1997.

[KS98] S. Koenig and R. Simmons. Solving robot navigation problems with initial pose uncertainty using real-time heuristic
search. In Proceedings of the International Conference on Artificial Intelligence Planning and Scheduling, 1998.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.
[PB00] P. Poupart and C. Boutilier. Value-directed belief state approximation for pomdps. In UAI-2000, 2000.
[PC96] L. Pryor and G. Collins. Planning for Contingency: a Decision Based Approach. J. of Artificial Intelligence Research,

4:81–120, 1996.
[PT01] M. Pistore and P. Traverso. Planning as Model Checking for Extended Goals in Non-deterministic Domains. In Proc.

� �
�

International Joint Conference on Artificial Intelligence (IJCAI-01). AAAI Press, August 2001.
[Rin99a] J. Rintanen. Constructing conditional plans by a theorem-prover. Journal of Artificial Intellegence Research, 10:323–

352, 1999.
[Rin99b] J. Rintanen. Improvements to the Evaluation of Quantified Boolean Formulae. In T. Dean, editor, 16th Iinternational

Joint Conference on Artificial Intelligence, pages 1192–1197. Morgan Kaufmann Publishers, August 1999.
[SW98] David E. Smith and Daniel S. Weld. Conformant graphplan. In Proceedings of the 15th National Conference on Artificial

Intelligence (AAAI-98) and of the 10th Conference on Innovative Applications of Artificial Intelligence (IAAI-98), pages
889–896, Menlo Park, July 26–30 1998. AAAI Press.

[TK00] C. Tovey and S. Koenig. Gridworlds as testbeds for planning with incomplete information. In Proceedings of the
National Conference on Artificial Intelligence, 2000.

[WAS98] Daniel S. Weld, Corin R. Anderson, and David E. Smith. Extending graphplan to handle uncertainty and sensing
actions. In Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98) and of the 10th Conference
on Innovative Applications of Artificial Intelligence (IAAI-98), pages 897–904, Menlo Park, July 26–30 1998. AAAI
Press.

