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Abstract

Over the years increasingly sophisticated planning algorithms have been developed. These have
made for more efficient planners, but unfortunately these planners still suffer from combinatorial
complexity even in simple domains. Theoretical results demonstrate that planning is in the worst
case intractable. Nevertheless, planning in particular domains can often be made tractable by
utilizing additional domain structure. In fact, it has long been acknowledged that domain-independent
planners need domain-dependent information to help them plan effectively. In this work we present
an approach for representing and utilizing domain-specific control knowledge. In particular, we show
how domain-dependent search control knowledge can be represented in a temporal logic, and then
utilized to effectively control a forward-chaining planner. There are a number of advantages to
our approach, including a declarative semantics for the search control knowledge; a high degree
of modularity (new search control knowledge can be added without affecting previous control
knowledge); and an independence of this knowledge from the details of the planning algorithm. We
have implemented our ideas in the TLPLAN system, and have been able to demonstrate its remarkable
effectiveness in a wide range of planning domains. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The classical planning problem, i.e., finding a finite sequence of actions that will
transform a given initial state to a state that satisfies a given goal, is computationally
difficult. In the traditional context, in which actions are represented using the STRIPS

representation and the initial and goal states are specified as lists of literals, even restricted
versions of the planning problem are known to be PSPACE-complete [20].

Although informative, these worst case hardness results do not mean that computing
plans is impossible. As we will demonstrate many domains offer additional structure that
can ease the difficult of planning.

There are a variety of mechanisms that can be used to exploit structure so as to
make planning easier. Abstraction and the related use of hierarchical task network (HTN)
planners have been studied in the literature and utilized in planning systems [36,48,55,
62], also mechanisms for search control have received much attention. Truly effective
planners will probably utilize a number of mechanisms. Hence, it is important that each
of these mechanisms be developed and understood. This paper makes a contribution to the
development of mechanisms for search control.

Search control is useful since most planning algorithms employ search to find plans.
Planning researchers have identified a variety of spaces in which this search can be
performed. However, these spaces are all exponential in size, and blind search in any of
them is ineffective. Hence, a key problem facing planning systems is that of guiding or
controlling search.

The idea of search control is not new—the notion of search heuristics is one of the
fundamental ideas in AI. Most planning implementations use heuristically guided search,
and various sophisticated heuristics have been developed for guiding planning search [24,
30]. Knowledge-based systems for search control have also been developed. In particular,
knowledge bases of forward-chaining rules have been used to guide search (these are
in essence expert-systems for guiding search). The SOAR system was the first to utilize
this approach [38], and a refined version is a prominent part of the PRODIGY system
[59]. A similar rule-based approach to search control has also been incorporated into the
UCPOPimplementation [7], and a more procedural search control language has also been
developed [43]. A key difference between the knowledge-based search control systems
and various search heuristics is that knowledge-based systems generally rely on domain-
dependent knowledge, while the search heuristics are generally domain-independent.

The work reported on here is a new approach to knowledge-based search control.
In particular, we utilize domain-dependent search control knowledge, but we utilize a
different knowledge representation and a different reasoning mechanism than previous
approaches.

In previous work, search control has utilized thecurrentstate of theplanning algorithm
to provide advice as to what to do next. This advice has been computed either by evaluating
domain-independent heuristics on the current state of the planner, or by using the current
state to trigger a set of forward-chaining rules that ultimately generate the advice.

Our approach differs. First, the control it provides can in general depend on the entire
sequence of predecessors of the current state not only on the current state. As we will
demonstrate this facilitates more effective search control. And second, the search control
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information we use does not make reference to the state of the planning algorithm,
rather it only makes reference to properties of the planning domain. It is up to the
planning algorithm to take advantage of this information, by mapping that information
into properties of its own internal state. This means that although the control information
we utilize is domain-dependent, the provider of this information need not know anything
about the planning algorithm.

Obtaining domain-dependent search control information does of course impose a
significant overhead when modeling a planning domain.2 This overhead can only be
justified by increased planning efficiency. In this paper we will give empirical evidence
that such information can make a tremendous difference in planning efficiency. In fact, as
we will show, it can often convert an intractable planning problem to a tractable one; i.e.,
it can often be the only way in which automatic planning is possible.

Our work makes an advance over previous mechanisms for search control in two crucial
areas. First, it provides far greater improvements to planning efficiency that previous
approaches. We can sometimes obtain polynomial time planners with relatively simply
control knowledge. In our empirical tests, none of the other approaches have yielded
speedups of this magnitude. And second, although our approach is of course more difficult
to use than domain-independent search heuristics, it seems to be much easier to use than
the previous rule-based mechanisms.3 In sum, our approach offers a lower overhead
mechanism that yields superior end results.

Our approach uses a first-order temporal logic to represent search control knowledge.
By utilizing a logic we gain the advantage of providing a formal semantics for the
search control knowledge, and open the door to more sophisticated off-line reasoning
for generating and manipulating this knowledge. In other words, we have a declarative
representation of the search control knowledge which facilitates a variety of uses. Through
examples we will demonstrate that this logic allows us the express effective search control
information, and furthermore that this information is quite natural and intuitive.4

Logics have been previously used in work on planning. In fact, perhaps the earliest work
on planning was Green’s approach that used the situation calculus [25]. Subsequent work
on planning using logic has included Rosenschein’s use of dynamic logic [46], and Biundo
et al.’s use of temporal logic [10–12,53]. However, all of this work has viewed planning
as a theorem proving problem. In this approach the initial state, the action effects, and the
goal, are all encoded as logical formulas. Then, following Green, plans are generated by
attempting to prove (constructively) that a plan exists. Planning as theorem proving has to
date suffered from severe computational problems, and this approach has not yet yielded
an effective planner.

Our approach uses logic in a completely different manner. In particular, we are not view-
ing planning as theorem proving. Instead we utilize traditional planning representations for
actions and states, and we generate plans by search. Theorem provers also employ search
to generate plans. However, their performance seems to be hampered by the fact that they

2 We shall argue in Section 9 that this overhead is manageable.
3 The more recently developed procedural search control mechanisms seem to be just as hard to use [43].
4 In fact, it can be argued that this information is no different from our knowledge of actions; it is simply part of

our store of domain knowledge. Hence, there is no reason why it should not be utilized in our planning systems.
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must search in the space of proofs, a space that has no clear relation to the structure of
plans.5

In our approach we use logic solely to express search control knowledge. We then show
how this knowledge can be used to control search in a simple forward-chaining planner.
We explain why such a planner is particularly effective at utilizing information expressed
in the chosen temporal logic. We have implemented this combination of a simple forward-
chaining planner and temporal logic search control in a system we call the TLPLAN system.
The resulting system is a surprisingly effective and powerful planner. The planner is also
very flexible, for example, it can plan with conditional actions expressed using the full ADL

language [44], and can handle certain types of resource constraints. We will demonstrate
its effectiveness empirically on a number of test domains.

Forward-chaining planners have fallen out of favor in the AI planning community. This
is due to the fact that there are alternate spaces in which searching for plans is generally
more effective. Partial order planners that search in the space of partially ordered plans have
been shown to possess a number of advantages [9,41]. And more recently planners that
search over GRAPHPLAN graphs [13] or over models of propositional theories representing
the space of plans [32], have been shown to be quite effective. Nevertheless, as we will
demonstrate, the combination of domain-specific search control information, expressed
in the formalism we suggest, and a forward-chaining planner significantly outperforms
competing planners in a range of test domains. It appears that forward-chaining planners,
despite their disadvantages, are significantly easier to control, and hence the ultimate
choice of planning technology may still be open to question. The point that forward-
chaining planners are easier to control has also been argued by McDermott [40] and Bonet
et al. [14]. They have both presented planning systems based on heuristically controlled
forward-chaining search. They have methods for automatically generating heuristics, but
there is still considerable work to be done before truly effective control information can be
automatically extracted for a particular planning problem. As a result the performance of
their systems is not yet competitive with the fastest domain-independent planning systems
like BLACK BOX [33] or IPP [37] (check, e.g., the performance of the HSP planning system
[14] at the recent AIPS’98 planning competition [1]). In this paper we utilize domain-
specific search control knowledge, and present results that demonstrate that with this kind
of knowledge our approach can reach a new level of performance in AI planning.

In the rest of the paper we will describe the temporal logic we use to express domain-
dependent search control knowledge. Then we present an example showing how control
information can be expressed in this logic. In Section 4 we show how a planning algorithm
can be designed that utilizes this information, and in Section 6 we describe the TLPLAN

system, a planner we have constructed based on these ideas. To show the effectiveness of
our approach we present the results of a number of empirical studies in Section 7. There
has been other work on domain-specific control for planning systems, and HTN planners
also employ extensive domain-specific information. We compare our approach with these

5 The most promising approaches to planning as theorem proving have utilized insights from non-theorem
proving approaches to provide specialized guidance to the theorem proving search. For example, Stephan and
Biundo [53] have utilized ideas from refinement planning to guide the theorem proving process.



F. Bacchus, F. Kabanza / Artificial Intelligence 116 (2000) 123–191 127

works in Section 9. Finally, we close with some conclusions and a discussion of what we
feel are some of the important research issues suggested by our work.

2. First-order linear temporal logic

We use as our language for expressing search control knowledge a first-order version of
linear temporal logic (LTL) [19]. The language starts with a standard first-order language,
L, containing some collection of constant, function, and predicate symbols, along with a
collection of variables. We also include in the language the propositional constantsTRUE

andFALSE, which are treated as atomic formulas. LTL adds toL the following temporal
modalities:∪ (until), 2 (always),3 (eventually), and© (next). The standard formula
formation rules for first-order logic are augmented by the following rules: iff1 andf2 are
formulas then so aref1 ∪ f2, 2f1, 3f1, and©f1. Note that the first-order and temporal
formula formation rules can be applied in any order, so, e.g., quantifiers can scope temporal
modalities allowingquantifying intomodal contexts. We will call the extension ofL to
include these temporal modalitiesLT .
LT is interpreted over sequences of worlds, and the temporal modalities are used

to assert properties of these sequences. In particular, the temporal modalities have the
following intuitive interpretations:©f means thatf holds in the next world;2f means
thatf holds in the current world and in all future worlds;3f means thatf either holds
now or in some future world; andf1 ∪ f2 means that either now or in some future world
f2 holds and until that worldf1 holds. These intuitive semantics are, however, only
approximations of the true semantics of these modalities. In particular, the formulasf ,
f1, andf2 can themselves contain temporal modalities so when we say, e.g., thatf holds
in the next world we really mean thatf is true of thesequenceof worlds that starts at the
next world. The precise semantics are given below.

The formulas ofLT are interpreted over models of the formM = 〈w0,w1, . . .〉whereM
is a sequence of worlds. We will sometimes refer to this sequence of worlds as the timeline.
Every worldwi is a model for the base first-order languageL. Furthermore, we require
that eachwi share the same domain of discourseD. A constant domain of discourse across
all worlds allows us to avoid the difficulties that can arise when quantifying into modal
contexts [23].

We specify the semantics of the formulas of our language with the following set of
interpretation rules. Letwi be theith world in the timelineM, V be a variable assignment
function that maps the variables ofLT to the domainD, andf1 andf2 be formulas of
LT .
• If f1 is anatomic formula then〈M,wi,V 〉 |= f1 iff (wi,V ) |= f1. That is, atomic

formulas are interpreted in the worldwi under the variable assignmentV according
to the standard interpretation rules for first-order logic.
• The logical connectives are handled in the standard manner.
• 〈M,wi,V 〉 |= ∀x.f1 iff 〈M,wi,V (x/d)〉 |= f1 for all d ∈ D, whereV (x/d) is a

variable assignment function identical toV except that it mapsx to d .
• 〈M,wi,V 〉 |= f1 ∪ f2 iff there existsj > i such that〈M,wj ,V 〉 |= f2 and for allk,
i 6 k < j we have〈M,wk,V 〉 |= f1: f1 is true untilf2 is achieved.
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• 〈M,wi,V 〉 |= ©f1 iff 〈M,wi+1,V 〉 |= f1: f1 is true in the next state.
• 〈M,wi,V 〉 |=3f1 iff there existsj > i such that〈M,wj ,V 〉 |= f1: f1 is eventually

true.
• 〈M,wi,V 〉 |=2f1 iff for all j > i we have〈M,wj ,V 〉 |= f1: f1 is true in all states

from the current state on.
Finally, we say that the modelM satisfies a formulaf (M |= f ) iff 〈M,w0,V 〉 |= f

(i.e., the formula must be true in the initial world). It is not difficult to show that iff has
no free variables then the specific variable assignment functionV is irrelevant.

2.1. Discussion

One of the keys to understanding the semantics of temporal formulas is to realize that
the temporal modalities move us along the timeline. That is, the formulas that are inside
of a temporal modality are generally interpreted not at the current world,wi , but at some
world further along the sequence,wj with j > i. This can be seen from the semantic rules
given above. The expressiveness ofLT arises from its ability to nest temporal modalities
and thus express complex properties of the timeline.

Another point worth making is that both the eventually and always modalities are in
fact equivalent to until assertions. In particular,3φ ≡ TRUE∪ φ. That is, sinceTRUE is
“true” in all states we see that the until formula simply reduces to the requirement thatφ

eventually hold either now or in the future. Always is the dual of eventually:2φ ≡¬3¬φ.
That is, no state now or in the future can falsifyφ.

Finally, it should be noted that quantifiers require that the subformulas in their scope be
interpreted under a modified variable assignment function (this is the standard manner in
which quantifiers are interpreted). Since we can quantify into temporal contexts this means
that variable can be “bound” in the current worldwi and then “passed on” to constrain
future worlds.

Example 1. Here are examples of what can be expressed inLT .
• If M |= ©©on(A,B), thenA must be onB in the third world of the timeline,w2.
• If M |=2¬holding(C), then at no world in the timeline is it true that we are holding
C.
• If M |= 2(on(B,C)⇒ (on(B,C) ∪ on(A,B))), then whenever we enter a world in

whichB is onC it remains onC until A is onB, i.e., along this timelineon(B,C) is
preserved until we achieveon(A,B).
• If M |=2(∃x.on(x,A)⇒©∃x.on(x,A)), then whenever something is onA there is

something onA in the next state. This is equivalent to saying that once something is
onA there will always be something onA. Note that in this example the scope of the
quantifier does not extend into the “next” modal context. Hence, this formula would
be true in a timeline in which there was a different object onA in every world.
• If M |= ∀x.ontable(x)⇒ 2ontable(x), then all objects that are on the table in the

initial state remain on the table in all future states. In this example we are quantifying
into a modal context, bindingx to the various objects that are on the table in the initial
world and passing these bindings onto the future worlds.
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We need two additions to our languageLT . The first extension introduces an additional
modality, that of a “goal”, while the second extension is a syntactic one.

2.2. TheGOAL modality

We are going to useLT formulas to express domain-dependent strategies for search
control. We are trying to control search so as to find a solution to a goal; hence, the
strategies will generally need to take into account properties of the goal. In our empirical
tests we have found that making reference to the current goal is essential in writing effective
control strategies.

To facilitate this we augment our language with an additional modality, agoal modality.
The intention of this modality is to be able to assert that certain formulas are true in every
goal world. Syntactically we add the following formula formation rule to the rules we
already have: iff is a pure first-order formula containing no temporal orGOAL modalities,
thenGOAL(f ) is a formula ofLT . GOAL(f ) can thus subsequently appear as a subformula
of a more complexLT formula. To give semantics to these formulas we augment the
models of our languageLT so that they become pairs of the form(M,G), whereM is a
timeline as described above, andG is a set of worldsw with domainD. Intuitively,G is
the set ofall worlds that satisfy the agent’s goal, i.e., the agent wants to modify its current
world so as to reach a (any) world inG. Now we add the following semantic interpretation
rule to the ones given above:

• (〈M,wi,V 〉,G) |= GOAL(f1) iff for all w ∈G we have(w,V ) |= f1. 6

Finally, if f is a formula in the full language (i.e., the languageLT with the goal modality
added) containing no free variables, then we say that the model(M,G) satisfiesf ,
(M,G) |= f , iff (〈M,w0〉,G) |= f . From now on we will useLT to refer to the full
language generated by the formation rules given aboveincluding the formation rule that
allows use of the goal modality.

For example,

∀x, y.on(x, y)∧ clear(x)∧ GOAL(on(x, y)∧ clear(x))⇒©(on(x, y)∧ clear(x))

is a syntactically legal formula in the augmented language. This formula is satisfied in a
model(M,G) iff for every pair of objectsx andy such that (1)on(x, y)∧ clear(x) is true
in w0 and (2)on(x, y)∧ clear(x) is true in everyw ∈G, we have thaton(x, y)∧ clear(x)
is true in w1 (the next world in the timelineM). On the other hand,on(A,B) ∧
GOAL(©(clear(B))) is not a well formed formula, as we cannot applyGOAL to a formula
containing a temporal modality.

Note that our syntax allowsGOAL formulas to be nested inside of temporal modalities
(but not vice versa). For example,

2(∃x, y.ontable(x)∧ on(x, y)∧ GOAL(on(x, y)))

is a syntactically legal formula. It says that in every world in the timeline there must exist
a pair of blocksx andy such thatx is on the table andy is onx, and such that it is true

6 Remember that eachw is a first-order model forL andV is a variable assignment. Hence(w,V ) |= f1 can
be decided by the standard interpretation rules for first-order formulas.
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in every goal world thatx is on y. Note that for any particular instantiation ofx andy,
GOAL(on(x, y)) will be either be true in every world in the timeline or false in every world
of the timeline: the semantics ofGOAL makesGOAL formulas independent of the timeline.
However, the set of instantiations ofx andy for which we requireGOAL(on(x, y)) to be
true might change in every world of the timeline due to the outermost always modality. In
particular, the formula will be true even if a completely different pair of blocks satisfies

∃x, y.ontable(x)∧ on(x, y)∧ GOAL(on(x, y))

at each worldwi of the timeline.
It can be noted that if we assertGOAL(φ) (i.e., thatφ is our goal), then we will also have

GOAL(ψ) for anyψ logically entailed byφ. (Clearly if ψ must be true in any world in
whichφ is true, thenψ must be true in allw ∈G as well.)

2.3. Bounded quantification

In Section 4.2 we will demonstrate one method by which information expressed in our
temporal logic can be used computationally. To facilitate such usage, we eschew standard
quantification and useboundedquantification. Hence, it is convenient at this point to
introduce some addition syntax. For now we will take bounded quantification to be a
purely syntactic extension. Later we will see that some additional restrictions are required
to achieve computational effectiveness.

Definition 2.1. Let φ be any formula. Letγ be anyatomicformula or any atomic formula
inside of aGOAL modality. The bounded quantifiers are defined as follows:

(1) ∀[x:γ (x)]φ 4=∀x.γ (x)⇒ φ.

(2) ∃[x:γ (x)]φ 4=∃x.γ (x)∧ φ.

(3) For convenience we further define:∃[x:γ (x)] 4=∃x.γ (x).

It is easiest to think about bounded quantifiers semantically:∀[x:γ (x)]φ holds iff φ is
true for allx such thatγ (x) holds, and∃[x:γ (x)]φ holds iff φ is true for somex such that
γ (x) holds. That is, the quantifier boundγ (x) simply serves to limit the range over which
the quantified variable ranges. Without further restrictions bounded quantification is just
as expressive as standard quantification: simply takeγ (x) to be the propositional constant
TRUE.

We can also use atomicGOAL formulas as quantifier bounds. By the above definition,
∀[x:GOAL(γ (x))]φ is an abbreviation for∀x.GOAL(γ (x))⇒ φ, which can be seen to have
the simple semantic meaning of asserting thatφ holds for everyx such thatγ (x) is true in
every goal world.

2.3.1. Two uses of the language
We have defined a formal language that possess a declarative semantics. It is possible

to use this language as a logic, i.e., to perform inference from collections of sentences, by
defining a standard notion of entailment. Letf1 andf2 be two formulas of the full language
LT , then we can definef1 |= f2 iff for all models(M,G) such that(M,G) |= f1 we have
that(M,G) |= f2.
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We will not explore the use ofLT as a logic in this paper (except for a few words in about
the possibilities in Section 10). Rather we will explore its use as a means for declaratively
specifying search control information, and we will utilize its formal semantics to verify the
correctness of the algorithms that utilize the control knowledge.

3. An extended example

In this section we demonstrate howLT can be used to express domain-specific
information. This information can be viewed as simply being additional knowledge of the
dynamics of the domain. Traditionally, the planning task has been undertaken using very
simple knowledge of the domain dynamics. In particular, all that is usually specified in a
planning problem is information about the primitive actions: when they can be applied and
what their effects are. Given this knowledge the planner is expected to be able to construct
plans. Our experience with AI planners indicates that this problem is difficult, both from
the point of view of the theoretical worst case behaviour, and from the point of view of
practical empirical experience.7

Part of the motivation for this work is our opinion that successful planning systems will
have access to addition useful knowledge about the dynamics of the domain, knowledge
that goes beyond a simple specification of the primitive actions. Some of this knowledge
can come from the designer of the planning system, but in the long term we would expect
that much of this knowledge would be learned or computed by the system itself. For
example, human agents often use experimentation and exploration to gather additional
knowledge in dynamical domains, and we would expect that eventually an autonomous
planning system would have to do the same.

For now, however, since our work on automatically generating such knowledge is
preliminary, we will explore how to utilize such knowledge given that has been provided
by the designer of the planning system. In this section we will give an extended example,
using the familiar blocks world, that serves to demonstrate that there is often considerable
additional knowledge available to the designer. And we will advance the argument that our
temporal logicLT serves as a useful and flexible means for representing this knowledge.
In the next section we will discuss how this knowledge can be put to computational use to
reduce search during planning.

Blocks world. Consider the standard blocks world, which we describe using the four
STRIPS operators given in Table 1. Despite its age the blocks world is still a hard domain
for even the most sophisticated domain-independent AI planners. Our experiments indicate
(see Section 7) that generating plans to reconfigure 11–12 blocks seems to be the limit of
current planners.

7 It can be noted that the AI planning systems that have had the most practical impact have been HTN-style
planners. HTN (hierarchical task network) planners utilize domain knowledge (in the form of task decomposition
schema) that goes well beyond the simple knowledge of action effects utilized by classical planners [17,62]. We
discuss this point further in Section 9.
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Table 1
Blocks world operators

Operator Preconditions and deletes Adds

pickup(x) ontable(x), clear(x), handempty. holding(x).

putdown(x) holding(x). ontable(x), clear(x), handempty.

stack(x, y) holding(x), clear(y). on(x, y), clear(x), handempty.

unstack(x, y) on(x, y), clear(x), handempty. holding(x), clear(y).

Nevertheless, the blocks world does have a special structure that makes planning in this
domain easy [26,35]. And it is easy to write additional information about the dynamics of
the domain, information that could potentially be put to use during planning.

The most basic idea in the blocks world is that towers can be built from the bottom up.
That is, once we have built a good prefix of a tower we need never dismantle that prefix in
order to finish our task.

For example, consider the planning problem shown in Fig. 1. To solve this problem it
is clear that we need not unstackB from C. This tower of blocks is what can be called a
good tower, i.e., a tower that need not be dismantled in order to achieve the goal.

More generally, we can write a straightforward first-order formula that for any single
world describes when a clear block sits on top of a good tower, i.e., a tower of blocks that
does not need to be dismantled.

goodtower(x)
4=clear(x)∧¬GOAL(holding(x))∧ goodtowerbelow(x),

goodtowerbelow(x)
4= (ontable(x)∧¬∃[y:GOAL(on(x, y))])

∨∃[y:on(x, y)]¬GOAL(ontable(x))∧¬GOAL(holding(y))∧¬GOAL(clear(y))

∧∀[z:GOAL(on(x, z))]z= y ∧ ∀[z:GOAL(on(z, y))]z= x
∧goodtowerbelow(y).

A block x satisfies the predicategoodtower(x) if it is on top of a tower, i.e., it is clear, it is
not required that the robot be holding it, and the tower below it does not violate any goal
conditions. The various tests for the violation of a goal condition in the tower below are
given in the definition ofgoodtowerbelow. If x is on the table, the goal cannot require that
it be on another blocky. On the other hand, ifx is on another blocky, thenx should not
be required to be on the table, nor should the robot be required to holdy, nor shouldy be
required to be clear, any block that is required to be belowx should bey, any block that
is required to be ony should bex, and finally the tower belowy cannot violate any goal
conditions.

We can represent our insight that good towers can be preserved using anLT formula.
A plan for reconfiguring a collection of blocks is a sequence of actions for manipulating
those blocks. As these actions are executed the world passes through a sequence of states,
the states brought about by the actions. Any “good” plan to reconfigure blocks should
never dismantle or destroy a good tower, i.e., it should not generate a sequence of states in
which a good tower is destroyed. If a good tower is destroyed it would eventually have to
be reassembled, and there will be a better plan that preserved the good tower. Formulas of
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Fig. 1. A blocks world example.

LT specify properties of sequences of states, so we can write the following formula that
characterizes those state sequences that do not destroy good towers.

2(∀[x:clear(x)]goodtower(x)⇒©(clear(x)∨ ∃[y:on(y, x)]goodtower(y))
)
. (1)

If a plan generates a state sequence that wastefully destroys good towers, then that state
sequence will fail to satisfy this formula.

In the example given in Fig. 1, the state transitions caused by unstackingB from C or
by stacking any block exceptA onB will violate this formula.

Note also that by our definition ofgoodtower, a tower will be a good tower if none of its
blocks are mentioned in the goal: such a tower of irrelevant blocks cannot violate any goal
conditions. Hence, this formula also rules out state sequences that wastefully dismantle
towers of irrelevant blocks. The singleton towerF in our example satisfies our definition
of a good tower.

What about towers that are not good towers? Clearly they violate some goal condition.
Hence, there is no point in stacking more blocks on top of them as eventually we must
disassemble these towers. We can define:

badtower(x)
4=clear(x)∧¬goodtower(x).

And we can augment our characterization of good state sequences by ruling out those
which grow bad towers using the formula:

2(∀[x:clear(x)]goodtower(x)⇒©(clear(x)∨ ∃[y:on(y, x)]goodtower(y))

∧badtower(x)⇒©(¬∃[y:on(y, x)])). (2)

This formula rules out sequences that place additional blocks onto a bad tower.
Furthermore, by conjoining the new control with the previous one, the formula continues
to rule out sequences that dismantle good towers. With this formula a good sequence
can only pickup blocks on top of bad towers. This is what we want, as bad towers must
be disassembled. In our example, the tower of blocks underE is a bad tower. Hence,
any action that stacks a block onE will cause a state transition that violates the second
conjunction of formula (2).

However, formula (2) does not rule out all useless actions. In particular, by our
definitions a single block on the table that is not intended to be on the table is also a
bad tower. In our example, blockD is such a singleton bad tower.D is intended to be on
blockA but is currently on the table. Formula (2) still permits us to pick up blocks that are
on top of bad towers, however, there is no point in picking upD until we have stackedA
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on B. In general, there is no point in picking up singleton bad tower blocks unless their
final position is ready. Adding this insight we arrive at our final characterization of good
state sequences for the blocks world:

2(∀[x:clear(x)]goodtower(x)⇒©(clear(x)∨ ∃[y:on(y, x)]goodtower(y))

∧badtower(x)⇒©(¬∃[y:on(y, x)])
∧ (ontable(x)∧ ∃[y:GOAL(on(x, y))]¬goodtower(y))

⇒ ©(¬holding(x))
)
. (3)

Although we have provided some intuitions as to how anLT formula like formula (3)
can be used to rule out bad state sequences, there are a number of details that remain to be
fleshed out. We will do this in the next two sections.

4. Finding good plans

In the previous sections we have provided a formal logicLT that can be used to assert
various properties of a timeline, and we have given some examples showing that timelines
violating the asserted properties are not worth exploring. To put these logical ideas to
computational use we need to be more concrete about the data structures that will be used to
represent the timeline models(M,G), the manner in which these models are constructed,
and how we can determine whether or not formulas ofLT are satisfied or falsified by these
models. In the next two sections we will provide these details.

We will utilize an extended version of the standard STRIPSdatabase representation of the
individual worlds of a timeline. In this representation each individual world is represented
as a complete list of the ground atomic formulas that hold in that world. The closed world
assumption is employed, so that every ground atomic formula not in a world’s database
is falsified by the world. Every planning problem provides a complete STRIPS database
specification of the initial world, and actions generate new worlds by specifying a complete
set of database updates that must be applied to the current world. Thus, every sequence of
actions applied to the initial world generates a sequence of complete STRIPSdatabases.

STRIPS databases are essentially identical to traditional relational databases, and can
be viewed as being finite first-order models [57]. First-order formulas can be evaluated
against such models,8 and in the next section we will provide the details of the evaluation
algorithm. This algorithm allows us to determine whether or not an individual world
satisfies or falsifies any first-order formula.

In general we need to deal with formulas ofLT which go beyond standard first-order
formulas by their inclusion of temporal andGOAL modalities. We will treat theGOAL

modality formulas in the next section. In this section we will show how to deal with the
temporal modalities. The method we will present builds on the ability to evaluate atemporal
formulas on individual worlds.

8 The fact that evaluating database queries in relational databases is essentially the same as evaluating logical
formulas against finite models is a central theme in database theory [31].
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Our approach to usingLT formulas to guide planning search involves testing whether
or not a candidate plan falsifies the formula. We will first formalize the notion of a plan
satisfying anLT formula, then we will describe a mechanism for checking a plan prefix to
see if all of its extensions necessarily falsify a givenLT formula, and finally we describe
a planning algorithm that can be constructed from this mechanism.

4.1. Checking plans

Actions map worlds to new worlds. Hence a plan, which we take to be a finite sequence
of actions, generates a finite sequence of worlds: the worlds that would arise as the plan is
executed. Since each of these worlds is a standard STRIPSdatabase, a plan in fact produces
a finite sequence of first-order models—almost a suitable model forLT .

The only difficulty is that models ofLT are infinite sequences of first-order models.
Intuitively, our plan is intended to control the agent for some finite time, up until the time
the agent completes the execution of the plan.9

In classical planning it is assumed that the agent executing the plan is the only source
of change. Since this paper addresses the issue of search control in the context of classical
planning, we adopt the same assumption. This means that once execution of the plan is
completed the world remains unchanged, or to use the phrase common in the verification
literature, the world idles [39]. We can model this formally in the following manner:

Definition 4.1. Let plan P be the finite sequence of actions〈a1, . . . , an〉. Let S =
〈w0, . . . ,wn〉 be the sequence of worlds such thatw0 is the initial world andwi = ai(wi−1).
S is the sequence of worlds visited by the plan. Then theLT model corresponding toP
andw0 is defined to be〈w0, . . . ,wn,wn, . . .〉, i.e.,S extended to an infinite sequence by
infinitely replicating the final world. In the verification literature this is know asidling the
final world.

Therefore, every finite sequence of actions we generate corresponds to auniquemodel
in which the final state is idling. Thus, given any formula ofLT a given plan will either
falsify or satisfy it.

Definition 4.2. Let P be a plan andw0 be the initial world. We say that(P,w0) satisfies
(or falsifies) a formulaφ ∈LT just in case the model corresponding toP andw0 satisfies
(or falsifies)φ.

Given a formula like the blocks world control formula (formula (3) above) designed to
characterize good sequences of blocks world transformations, we can then check any plan
to see if it is a good plan. That is, given anLT control formulaφ, we say that a planP
is a good plan if(P,w0) satisfiesφ. Unfortunately, although it can be tractable to check

9 Work on reactive plans [6] and policies [15,18,54] has concerned itself with on-going interactions between the
agent and its environment. However, there are still many applications where we only want the agent to accomplish
a task that has a finite horizon, in which case plans that are finite sequences of actions can generally suffice.
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whether or notP satisfies an arbitrary formulaφ 10 knowing this does not directly help us
when searching for a plan.

When we are searching for a plan we need to be able to test partially constructed plans,
as these are the objects over which we are searching. Furthermore, we need to be able to
determine if a good plan could possible arise from any further expansion of a partial plan.
With such a test we will be able to mark partial plans as dead ends, pruning them from the
search space; thus avoiding having to search any of their successors.

One of the contributions of this paper is a method for doing this in the space of partial
plans searched by a forward-chaining planner.

4.2. Checking plan prefixes

A forward-chaining planner, searches in the space of world states. In particular, it
examines all executable sequences of actions that emanate from the initial world, keeping
track of the worlds that arise as the actions are executed. Such sequences, besides
being plans in their own right, are prefixes of all the plans that could result from their
expansion.

We have developed an incremental mechanism for checking whether or not a plan prefix,
generated by forward-chaining, could lead to a plan that satisfies an arbitraryLT formula.
Our method is subject to the restriction that all quantifiers in the formula must range over
finite sets, i.e., the quantifier bounds in the formula must specify finite sets. Clearly this
restriction is satisfied when as in our application worlds are specified by finite STRIPS

databases and the quantifier bounds are atomic formulas involving described predicates.11

The key to our method is the progression algorithm given in Table 2. This algorithm takes
as input anLT formula and produces a new formula as output. As can be seen from
clauses (8) and (9), the algorithm handles quantification by expanding all instances. This is
where our assumption about bounded quantification comes into play; the algorithm must
iterate over all instances of the quantifier bounds.12 It can be noted that the algorithm
relies on an ability to evaluate atemporal formulas against individuals worlds (case (1)),
the next section will provide the algorithm for this test.

The progression algorithm also does Boolean simplification on its intermediate results
at various stages. That is, it applies the following transformation rules:

(1) [FALSE∧ φ|φ ∧ FALSE] 7→ FALSE,
(2) [TRUE∧ φ|φ ∧ TRUE] 7→ φ,
(3) ¬TRUE 7→ FALSE,
(4) ¬FALSE 7→ TRUE.

10 In particular, it is tractable to check whether or not a plan satisfies various formulas when we have that
(1) there is a bound on the size of the sets over which any quantification can range,
(2) there is a bound on the depth of quantifier nesting in the formulas, and
(3) it is tractable to test at any worldwi visited by the plan whether or notwi satisfies any groundatomic

formula.
11 As defined in Section 5 described predicates are those predicates all of whose positive instances appear

explicitly in the STRIPSdatabase.
12 This is very much like the technique of expanding the universal base used in the UCPOPplanner [61], and in

a similar manner UCPOPmust assume that the universal base is finite.
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Table 2
The progression algorithm

Inputs: An LT formulaf and a worldw.

Output: A newLT formulaf+ representing the progression off through the worldw.

Algorithm Progress(f,w)

Case

(1) f = φ ∈L (i.e.,φ contains no temporal modalities):

f+ := TRUE if w |= f, FALSE otherwise.

(2) f = f1∧ f2: f+ := Progress(f1,w)∧Progress(f2,w)

(3) f =¬f1: f+ := ¬Progress(f1,w)

(4) f =©f1: f+ := f1

(5) f = f1∪ f2: f+ := Progress(f2,w)∨ (Progress(f1,w)∧ f )
(6) f =3f1: f+ := Progress(f1,w)∨ f
(7) f =2f1: f+ := Progress(f1,w)∧ f
(8) f = ∀[x:γ (x)]f1: f+ :=∧{c:w|=γ (x/c)} Progress(f1(x/c),w)

(9) f = ∃[x:γ (x)]f1: f+ :=∨{c:w|=γ (x/c)} Progress(f1(x/c),w)

These transformations allow the algorithm to occasionally short circuit some of its
recursive calls. For example, if the first conjunct of an∧ connective progresses toFALSE,
there is no need to progress the remaining conjuncts.

The key property of the algorithm is characterized by the following theorem:

Theorem 4.3. Let M = 〈w0,w1, . . .〉 be anyLT model. Then, we have for anyLT
formulaf in which all quantification is bounded,〈M,wi〉 |= f if and only if〈M,wi+1〉 |=
Progress(f,wi).

Proof. We prove this theorem by induction on the complexityf .
• When f is an atemporal formula then〈M,wi〉 |= f iff wi |= f . Line (1) of the

algorithm applies, soProgress(f,wi)= TRUE or FALSE dependent on whether or not
wi |= f . Every world satisfiesTRUE and none satisfyFALSE. Hence,〈M,wi+1〉 |=
Progress(f,wi) iff 〈M,wi〉 |= f as required.
• Whenf is of the formf1∧f2, then〈M,wi〉 |= f iff 〈M,wi〉 |= f1 and〈M,wi〉 |= f2,

iff (by induction) 〈M,wi+1〉 |= Progress(f1,wi) and〈M,wi+1〉 |= Progress(f2,wi),
iff 〈M,wi+1〉 |= Progress(f1,wi)∧Progress(f2,wi), iff (by line (2) of the algorithm)
〈M,wi+1〉 |= Progress(f,wi).
• Whenf is of the form¬f1. This case is similar to the previous one.
• When f is of the form ©f1, then 〈M,wi〉 |= f iff (by the semantics of©)
〈M,wi+1〉 |= f1, iff (by line (4) of the algorithm)〈M,wi+1〉 |= Progress(f,wi).
• Whenf is of the formf1 ∪ f2, then〈M,wi〉 |= f iff (by the semantics of∪) there

existswj (j > i) such that〈M,wj 〉 |= f2 and for allk (i 6 k < j) 〈M,wk〉 |= f1,
iff 〈M,wi〉 |= f2 (f2 is satisfied immediately) or〈M,wi〉 |= f1 and〈M,wi+1〉 |= f
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(the current state satisfiesf1 and the next state satisfies the entire formulaf ), iff (by
induction)〈M,wi+1〉 |= Progress(f2,wi) ∨ (Progress(f1,w1) ∧ f ), iff (by line (5))
〈M,wi+1〉 |= Progress(f,wi).
• Whenf is of the form2f1 or3f1. Both cases are similar to previous ones.
• Whenf = ∀[x:γ (x)]f1, then〈M,wi〉 |= f iff 〈M,wi〉 |= f1(x/c) for all c such that
w |= γ (x/c), iff (by induction) 〈M,wi+1〉 |= Progress(f1(x, c),wi) for all suchc,
iff (since by assumptionγ (x) is only satisfied by a finite number of objects inwi )
〈M,wi+1〉 satisfies the conjunction of the formulasProgress(f1(x/c),wi) for all such
c (if there are not a finite number of suchc the resulting conjunction would be infinite
and not a valid formula ofLT ), iff (by line (8)) 〈M,wi+1〉 |= Progress(f,wi).
• Whenf = ∃[x:γ (x)]f1. This case is similar to the previous one.2
Say that we wish to check plan prefixes to determine whether or not they could satisfy

an LT formula φ0 starting in the initial worldw0. By Theorem 4.3, any plan starting
fromw0 will satisfy φ0 if and only if the subsequent sequence of worlds it visits satisfies
φ1= Progress(φ0,w0). If φ1 is the formulaFALSE, then we know that no plan starting in
the worldw0 can possibly satisfyφ1, as no model can satisfyFALSE. Similarly, if φ1 is
the formulaTRUE then every plan starting in the worldw0 will satisfy φ, as every model
satisfiesTRUE. Otherwise, we will have to check the subsequent sequences against the
progressed formulaφ1. The progression throughw0 serves to check the null plan, which is
a prefix of every plan.

Now suppose we apply actiona in w0 generating the successor worldw1. If we compute
φ2 = Progress(φ1,w1), then we know that any plan starting with the sequence of worlds
〈w0,w1〉 (i.e., any plan starting with the actiona)will satisfyφ0 if and only if the sequence
of worlds it visits afterw1 satisfiesφ2. Once again ifφ2 is FALSE then no such plan can
satisfyφ, and if φ2 is TRUE then every such plan satisfiesφ. Otherwise, we will have to
continue to check all extensions of the action sequence〈a〉 against the formulaφ2.

It is not difficult to see that this process can be iterated to yield a mechanism that given
any plan prefix (a sequence of actions) continually updates the original formulaφ0 to a new
formulaφi that characterizes the property that must be satisfied by the subsequent actions
in order that the entire action sequence satisfyφ0. If at any stage the progressed formula
becomes one ofTRUE or FALSE, we can stop, as we then have a definite answer about any
possible extension of the current plan prefix. The above reasoning yields:

Observation 4.4. Let 〈w0,w1, . . . ,wn〉 be a finite sequence of worlds(generated by some
finite sequence of actions〈a1, . . . , an〉 applied tow0 the initial world). Letφ0 be a formula
of LT labelingw0, and letφi be the output of Progress(φi−1,wi−1) (i.e., the result of
iteratively progressingφ0 through the sequence of worldsw0, . . . ,wi−1). If φn is the
formulaFALSE, then no sequence of worlds starting with〈w0, . . . ,wn〉 can satisfyφ0.

This shows that the progression algorithm issound. That is, if it rules out a plan prefix
〈a1, . . . , an〉 then we are guaranteed that there is no extension of〈a1, . . . , an〉 that could
satisfy the originalLT formulaφ0.

Progression is a model checking algorithm: it operates by progressing anLT formula
over a particular finite sequence of worlds (a finite prefix of a timeline); it does not reason
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about timelines in general. Although progression often has the ability to give us an early
answer to our question, it cannot always give us a definite answer. That is, progression is
notcomplete.

In the verification literature the class ofsafetyformulas has been defined [39]. These
formulas are a subset of the set of linear temporal logic (LTL) formulas13 that have the
property that every violation of a safety formula occurs after a finite period of time. More
precisely,φ0 is a safety formula if wheneverM 6|= φ0 (i.e., a timelineM falsifiesφ0) there
is some finite prefix ofM such that all extensions of this prefix falsifyφ0. More generally,
we might have a formulaφ0 that is the conjunction of a safety formula and a liveness (non-
safety) formula. In this case, some prefixes will falsify the safety component ofφ0, and
some infinite timelines will falsify the liveness component ofφ0. 14

The progression algorithm has, to a certain extent, the ability to model check the safety
component of the initialLT formulaφ0. In particular, the progression algorithms has the
ability to detect some of the finite prefixes that falsify the safety component ofφ0. The
algorithm is not, however, complete, so there may be plan prefixes all of whose extensions
falsify φ0 that are not ruled out by progression (i.e.,φ0 might not progress toFALSE on
these prefixes).

There are two components to this incompleteness. First, progression cannot check the
liveness component of formulas. For example, it cannot check liveness requirements like
the achievement of eventualities in the formula. Given just the current world it does not
have sufficient information to determine whether or not these eventualities will be achieved
in the future. So it could be that all the extensions of a particular plan prefix fail to satisfy
the liveness requirements ofφ0. This cannot be detected by the progression algorithm. For
example, one of the actions in the prefix might use up an unrenewable resource that is
needed to satisfy one of the liveness requirements): progression will not be able to detect
this.15

The second source of incompleteness arises from the fact that progression does not
employ theorem proving. For example, if we have theLT formula 3φ where φ is
unsatisfiable, then progressing this formula will never discover this. When we apply
progression we obtainProgress(φ,w) ∨ 3φ. The algorithm may be able to reduce
Progress(φ,w) to FALSE, but then it would still be left with the original formula3φ. It will
not reduce this formula further. We know that that no world in the future can ever satisfy an
unsatisfiable formula, so from the semantics of3 we can see that in fact no plan can satisfy
this formula. In general, detecting ifφ is unsatisfiable requires a complete theorem prover.
The advantage of giving up this component of completeness is computational efficiency.
Ignoring quantification, the progression algorithm has complexity linear in the size of the
formula (assuming that the tests in line (1) can be performed in time linear in the length of
the formulaφ). 16 While the complexity of validity checking for quantifier freeLT (i.e.,
propositional linear temporal logic) is known to be PSPACE-complete [51].

13LT is a first-order version of LTL with an addedGOAL modality.
14 Some syntactic characterizations of safety formulas exists, but in general testing if a propositional LTL

formula is a safety formula is a PSPACE-complete problem [50].
15 Unless the user can specify a safety formula prohibiting conditions that make liveness requirements

impossible to achieve.
16 We will return to the issue of quantification and the tests in line (1) later.
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It should be noted however, that progression does have the ability to detect unsatisfiable
formulas when they are not buried inside of an eventuality. For example, if we have the
formula2φ whereφ is atemporal and unsatisfiable, then the progression of this formula
through any worldw will be FALSE. The progression ofφ will (due to case (2) of the
algorithm) returnFALSE∧2φ which will be simplified toFALSE. In this case progression
is model checking the atemporal formulaφ against the modelw and determining it to
be falsified byw. This is not the same as proving thatφ is falsified by every world, a
process that requires a validity checker. Model checking a formula against a particular
world is a much more tractable computation than checking its validity (see [27] for a further
discussion of this issue).

Example 2. Say that we progress the formula2on(A,B) through the worldw in which
on(A,B) is true. This will result in the formulaTRUE∧2on(A,B), which will be reduced
to 2on(A,B). On the other hand, says thatw falsifies on(A,B), then the progressed
formula would beFALSE∧ 2on(A,B), which will be reduced toFALSE. This example
shows that2 formulas generate a test on the current world and propagate the test to the
next world.

As another example say that we progress the formula2(on(A,B) ⇒ ©clear(A))
through the worldw in which on(A,B) is true. The result will be the formula2(on(A,B)⇒ ©clear(A)) ∧ clear(A). That is, the always test will be propagated to
the next world, and in addition the next world will be required to satisfyclear(A) since
on(A,B) is currently true. On the other hand, ifw falsified on(A,B) the progressed
formula would simply be2(on(A,B)⇒©clear(A)). That is, we would simply propagate
the constraint without any additional requirements on the next world.

It is possible to add to the progression algorithm an “idling” checking algorithm so that
we can receive a definite answer to the question of whether or not a plan prefix satisfies an
LT formula in the sense of Definition 4.2, see [2] for details. However, for the purposes of
search control this is not necessary. In particular, the plan prefixes we are checking are not
the final plan; all that we want to know is if they could possibility lead to a good final plan.
For this purpose the partial information returned by progression is sufficient.

4.3. The planning algorithm

The progression algorithm admits the planning algorithm shown in Table 3. This
algorithm is used in the TLPLAN system described in Section 6.

The algorithm is described non-deterministically, search will have to be performed to ex-
plore the correct choice of actiona to apply at each worldw. This algorithm is essentially
a simple forward-chaining planner (a progressive world-state planner by the terminology
of [61]). The only difference is that every world is labeled with anLT formulaf , with the
initial world being labeled with a user supplied formula expressing a control strategy for
this domain. When we expand a worldw we progress its formulaf throughw using the
progression algorithm, generating a new formulaf+. This new formula becomes the label
of all of w’s successor worlds (the worlds generated by applying all applicable actions to
w). If f progresses toFALSE, (i.e.,f+ is FALSE), then Theorem 4.3 shows that none of the
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Table 3
The planning algorithm

Inputs: A world w, anLT formulaf a goalG, a set of domain actionsA, and the current plan prefixP . To start
planning we call TLPLAN(w0,f0,G,A,〈〉), wherew0 is the initial world,f0 is the initialLT control formula,
and the current plan prefix is empty.

Output: A plan (a sequence of actions) that will transformw0 into a world that satisfiesG.

Algorithm TLPLAN(w,f,G,A,P )

(1) if w satisfiesG thenreturn P .

(2) Letf+ =Progress(f,w).

(3) if f+ is FALSE return failure.

(4) choosean actiona from the set of actionsA whose preconditions are satisfied inw.

(5) if no such action existsreturn failure.

(6) Letw+ be the world that arises from applyinga tow.

(7) return TLPLAN(w+, f+,G,A, P + a).

sequences of worlds emanating fromw can satisfy ourLT formula. Hence, we can imme-
diately markw as a dead-end in the search space and avoid exploring any of its successors.

5. Evaluating atemporal formulas in individual worlds

The previous section showed how we can checks plan prefixes to determine whether
or not they (and thus all of their extensions) falsify an initialLT control formula. The
process was proved to be sound but incomplete.17 The progression algorithm makes two
assumptions:

(1) each of the plan prefixes generated during search consist of sequences of first-order
models, and

(2) for any formulaφ of LT containing no temporal modalities and any of the models in
this sequencew we can determine whetherw satisfiesφ (case (1) of the algorithm).

In this section we will show that these assumptions are satisfied in the planning system
we construct. First, as mentioned in the previous section, we represent each state in the plan
as a STRIPS database (with some extensions described below) and once the closed world
assumption is employed such databases are formally first-order models.18 Furthermore,
our actions are modeled as performing database updates (this also follows the STRIPS

17 Note that incompleteness does not pose a fundamental difficulty in our approach. Incompleteness means that
we fail to prune away some of the invalid plan prefixes. The real issue, however, is whether or not we can prune
away a sufficient number of prefixes to make search more computationally feasible. In Section 7 we will provide
extensive evidence that we can.
18 The pure STRIPS database is a finite first-order model. However the evaluator we describe below also has

facilities to range variables over any finite set of integers and to evaluate numeric predicates and functions. This
implies that our system is actually implicitly dealing with infinite models. In particular, it is checking formulas
over a first-order model determined by the STRIPSdatabase conjoined with the integers.
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model). Thus each action maps a database to a new database, i.e., a first-order model
to a new first-order model. Hence, assumption (1) is trivially satisfied—each plan prefix
consists of a sequence of first-order models.

To satisfy assumption (2) we simply need to specify an algorithm for evaluating
atemporalLT formulas in these models (STRIPS databases). The formula evaluator
algorithm is specified below. Once these two assumptions are satisfied we have that the
progression algorithm is sound (in the sense of Observation 4.4).

The planning algorithm specified in Table 3 searches for plans that transforms the
initial world to a world satisfying the goal. It searches for this plan in the space of action
sequences emanating from the initial world and eliminating from that search space some
set of plan prefixes. We have the guarantee that any plan prefix eliminated from the search
space has no extension satisfying the initialLT formula.

The planning algorithm is trivially sound. That is, if a plan is found then that plan does
in fact correctly transform the initial state to a state satisfying the goal.19 The planning
algorithm will be complete, i.e., it will return a plan if one exists, when

(1) the underlying search algorithm is complete, and
(2) whenever a plan exists a plan that does not falsify the initialLT formula exists.20

The formula evaluator checks the truth of formulas in individual worlds. Each world
is represented as an extended version of a STRIPS database. In particular, there are a
distinguished set of predicates called thedescribedpredicates. Each world has a database
containing all positive ground instances of the described predicates that hold in the world.
The closed world assumption is employed to derive the negations of ground atomic facts.

In addition to the described predicates a world might also include a set of described
functions. These also are specified by a database, a database storing the value the described
function has given various arguments.

Actions map worlds to worlds, and their effects are ultimately specified as updates to
thedescribedpredicates functions. This is the standard operational semantics for STRIPS

actions, and in fact these semantics are also applicable to ADL actions.21

Building on the database of described predicates we add defined predicates and
functions. These are predicates and functions whose value is defined by a first-order
formula. And we also add computed predicates, functions and generators. These are
mainly numeric predicates and functions that rely on computations performed by the
underlying hardware. Thus the evaluator can evaluate complex atemporal formulas that
involve symbols not appearing in the underlying database of described predicates.

The formula evaluator is given in Tables 4–6.
The lowest level of the recursive algorithm isEvalTerm(Table 6) which is used to

convert complex first-order terms (containing functions and variables) into constants.
Variables are easy, we simply look up their value in the current set of variable bindings.

19 Actions have a precise representation and a precise operational semantics (discussed below). The plan
returned will be correct under specific interpretation of the action effects.
20 The first condition is a standard one for any algorithm that employs search. The second condition means that

it is up to the user to specify sensible control knowledge, i.e., control knowledge that only eliminates redundant
plans.
21 ADL actions can have more complex first-order preconditions along with conditional add/deletes. However,

the set of add/deletes each action generates is always a set of ground atomic facts.
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Table 4
The formula evaluator

Inputs: An atemporalLT formulaf , a worldw, and a set of variable bindingsV .

Output: TRUE or FALSE dependent on whether or not(w,V ) |= f .

Algorithm Eval(f,w,V )

Case

(1) f = P (t1, . . . , tn) (an atomic formula)

return (EvalAtomic(P (EvalTerm(t1,w,V ), . . . ,EvalTerm(tn,w,V ))),w)

(2) f = f1∧ f2: if not Eval(f1,w,V ) then return (FALSE)

else return (Eval(f1,w,V ))

(3) f =¬f1: return (not Eval(f1,w,V ))

(3.1) Similar processing for the other boolean connectives.

(4) f =∀[x:γ (x)]f1: generator:= make-generator(γ (x),w,V )

tval := TRUE

while (c := generator.next()∧ tval)

tval := tval∧ Eval(f1,w,V ∪ {x = c})
return (tval)

(5) f = ∃[x:γ ]f1: generator:= make-generator(γ (x),w,V )

tval := FALSE

while (c := generator.next()∨¬tval)

tval := tval∨ Eval(f1,w,V ∪ {x = c})
return (tval)

(6) f = (x := t): V (x) := EvalTerm(t,w,V )

return (TRUE)

It is not hard to see that as long as the top level formula passed toEval contains no free
variables (i.e., it is a sentence), the set of bindings will have a value for every variable by
the time that variable must be evaluated.22

EvalTerm allows for three types of functions: computed, described and defined
functions. Computed functions can invoke arbitrary computations on a collection of
constant arguments (the arguments to the function are evaluated prior to being passed as
arguments). The value of the function can depend on the current world or the function
may be independent of the world. For example, it is possible to declare all of the standard
arithmetic functions to be computed functions. Then when the evaluator encounters a term
like t1 + t2 it first recursively evaluatest1 and t2 and then invokes the standard addition
function to compute their sum.

22 The quantifier clauses inEval will set the variable values prior to their use.
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Table 5
Evaluating atomic formulas

Inputs: An ground atomic formulaP (c1, . . . , cn) and a worldw.

Output: TRUE or FALSE dependent on whether or notw |= P (c1, . . . , cn).
Algorithm EvalAtomic(P (c1, . . . , cn),w)

Case

(1) P is a described predicate:

return (lookup(P (c1, . . . , cn),w))

(2) P is defined by a computed predicate:

return (P (c1, . . . , cn,w)).

(3) P is defined by the formulaφ:

Let x1, . . . , xn be the arguments ofφ.

return (Eval(φ,w,V ∪ {x1 = c1, . . . , xn = cn})).

Table 6
Evaluating terms

Inputs: A term t , a worldw, and a set of variable bindingsV .

Output: A constant that is the value oft in the worldw.

Algorithm EvalTerm(t,w,V )

Case

(1) t = x wherex is a variable:

return (V (x)) (i.e., returnx’s binding)

(2) t = c wherec is a constant:

return (c).

(3) t = f (t1, . . . , tk) wheref is a described function:

return (lookup(f (EvalTerm(t1,w,V ), . . . ,EvalTerm(tk,w,V )),w)).

(4) t = f (t1, . . . , tk) wheref is a computed function:

return (f (EvalTerm(t1,w,V ), . . . ,EvalTerm(tk,w,V ),w)).

(5) t = f (t1, . . . , tk) wheref is defined by the formulaφ:

For i = 1, . . . , k, let ci = EvalTerm(ti ,w,V ), xi be the arguments forφ,

andV ′ = V ∪ {f =?, x1 = c1, . . . , xk = ck}
Eval(φ,w,V ′)
return (V ′(f ))

Every world contains a database of values for each described function, and these
functions can be evaluated by simple database lookup. The user must ensure that these
function values are specified in the initial state and that the action descriptions properly
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update these values. For example, in the blocks world we could specify a functionbelow
such thatbelow(x) is equal to the object that is below of blockx in the current world (using
the convention that the table is below itself). The initial state would specify the initial values
for below, and the actionsstackandputdownwould have to update these function values.
Updating function values by an action is accomplished by utilizing the ADL representation
of actions that allows for the specification of updates to function values [44].

Defined functions are functions whose value is defined by a formula. Evaluating such
functions requires a recursive call to the top level of the formula evaluator. Hence, we
describe the rest of the evaluator prior to describing defined functions.

The next level up from terms is the evaluation of atomic formulas (ground atomic
formulas since all terms are evaluated prior to evaluating the formula). The evaluator allows
for described, computed, and defined predicates. Described predicates are the standard
type. Each world maintains a database of all positive instances of such predicates, and the
truth of any ground instance can be determined by a database lookup. As is standard the
initial state must specify all positive instances of the described predicates and the actions
must specify correct adds and deletes to keep the database up to date.

Computed predicates, like computed functions, can be used to invoke an arbitrary
computation (which in this case must return true or false). In this way we can include,
e.g., arithmetic predicates in our formulas. For example,weight(A) > weight(B), would
be a legitimate formula given thatweighthas been declared to a function. The formula
evaluator would first evaluate the termsweight(A) and weight(B) prior to invoking the
standard numeric comparison function to compare the two values.

Finally, the most interesting type of predicate are the defined predicates. Like the defined
functions these predicates are defined by first-order formulas. The predicategoodtower
(defined in Section 3) is an example of a defined predicate. Defined predicates can be
evaluated by simply recursively invoking the formula evaluator on the formula that defines
the predicate (with appropriate modifications to the set of bindings). The key feature is
that this mechanism allows us to write and evaluate recursively defined predicates. For
example, we can defineaboveto be the transitive closure ofon:

above(x, y)
4=on(x, y)∨ ∃[z:on(z, y)]above(x, z). 23

At the top level the evaluator simply decomposes a formula into an appropriate set of
atomic predicate queries. The decomposition is determined by the semantics of the formula
connectives.

Quantifiers are treated in a special manner. As previously mentioned our implementation
utilizes bounded quantification. The formula specifying the quantifier bound is restricted:
it can only be an atomic formula involving a described predicate, a goal atomic formula
involving a described predicate, or a special computed function. Inside of the evaluator
this is implemented by using each quantifier bound to construct a generator of instances
over that bound. The function make-generator does this, and every time we send the
returned generator a “next” message it returns the next value for the variable. When a

23 Of course the user has to write their recursively defined predicates in such a manner that the recursion
terminates. The short circuiting of booleans and quantifiers (e.g., not evaluating the remaining disjunctions of
a∨ once one of the disjunctions evaluates to true) is essential to this process.
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described predicate is used as a quantifier bound, a generator over its instances is easy to
construct given the world’s database: the generator simply returns the positive instances
of that predicate contained in the database one by one. The implementation also allows
for computed generators which invoke arbitrary computations to return the sequence
of variable bindings.24 There is considerable generality in the implementation.N -ary
predicates can be used as generators. Such generators will bind tuples of variables; e.g.,
when evaluating the formula “∀[x, y:on(x, y)] . . .” a generator of all pairs(x, y) such
that on(x, y) holds in the current world will be constructed. The generators will also
automatically take into account previously bound variables. For example, when evaluating
“∀[x:clear(x)]∃[y:on(x, y)] . . .”, the outer generator will successively bindx to each clear
block and the inner generator will bindy to the single block that is below the block
currently bound tox.

The last clause of the formula evaluator algorithm is used to deal with defined functions.
We will discuss defined functions in Section 6.1.1.

5.1. EvaluatingGOAL formulas

As mentioned in Section 2.2 the language utilized to express control formulas (and
action preconditions in ADL formulas) includes aGOAL modality. In practice the user
specifies the goal as some first-order formulaΦ. This generally means that if we can
transform the initial state toany world satisfyingΦ we have found a solution to our
problem. Hence, formally, the set of goal worldsG used to interpretGOAL formulas (see
Section 2.2) should be taken to be the set of all first-order models satisfyingΦ.

By the semantics forGOAL given in Section 2.2 and the above interpretation of the set of
goal worlds, we have thatGOAL(φ) is true iffΦ |= φ. When the temporal control formula
includes a goal modality (most control formulas do), then at every world when we progress
the control formula through that world we may have to invoke the evaluator to determine
the truthGOAL formulas, and hence the truth ofΦ |= φ for variousφ. To be of use in
speeding up search we must be able to efficiently evaluateGOAL formulas. In general,
checking entailment (i.e., checkingΦ |= φ) is not efficient.

When GOAL formulas are used in the control formulas (or as preconditions of ADL

actions) we must enforce some restrictions in our implementation to ensure that they can
be evaluated efficiently. In particular, ifGOAL formulas are to be used we require that the
goal,Φ, be specified as a list of ground atomic facts involving only described predicates,
{α1, . . . , αk}, and we restrict theGOAL formulas that appear in the domain specification
to be of the formGOAL(α) whereα is an atomic formula involving a described predicate.
Under these restrictions we can evaluateGOAL formulas efficiently with a simple lookup
operation. Any set of ground atomic formulas has a model that falsifies every atomic
formula not in the set. Hence, under these restrictionsGOAL(α) will be true if and only
if α ∈ Φ. We can also efficiently utilizeGOAL formulas in bounded quantification: all
instances in the quantifier range must be instances that explicitly appearinΦ.

24 This is often useful when we want a quantified variable to range over a finite set of integers.
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Example 3. Let the goal be the set of ground atomic facts{ontable(A),clear(A)}.
• GOAL(ontable(A)) will evaluate to true.
• GOAL(ontable(C)) will evaluate to false.
• ∀[x:ontable(x)]GOAL(ontable(x)) will evaluate to true iff all the blocks on the table

in the current world are equal toA. The quantifier is evaluated in the current worldw,
andx is successively bound to every instance satisfyingontablein w. If x is bound to
A, i.e., if ontable(A) is true inw, thenGOAL(ontable(x)) will evaluate to true. It will
evaluate to false for every other binding. Hence, the formula will be true if there are
no blocks on the table inw or if the only block on the table isA.
• ∀[x:GOAL(ontable(x))]ontable(x), in this case the quantifier is evaluated in the goal

world, and the only binding forx satisfying the bound is{x =A}. Hence, this formula
will evaluate to true in a worldw iff A is on the table inw. There may be any number
of other blocks on the table inw.

5.2. Correctness of the evaluator

Since the evaluator breaks down formulas according to their standard first-order
semantics, it is not difficult to see that if it evaluates atomic formulas and quantifier bounds
correctly it will immediately follow that it evaluates all formulas correctly. First we deal
with the quantifier bounds:

(1) If the quantifier bound isGOAL(P (Ex)), then by the previous restrictionsP must
be a described predicate. Furthermore, a bindingEc for the sequence of variablesEx
satisfies the quantifier bound if and only ifP(Ex/Ec) is in the list of ground atomic
facts that specifies the goal. Hence iterating over this list of facts will correctly
evaluate the quantifier bound.

(2) If the quantifier bound isP(Ex) whereP is a described predicate, then a binding
Ec for the variablesEx satisfies the quantifier bound if and only ifP(Ex/Ec) is in
the world’s database of positiveP instances. Iterating over the world’s database
correctly evaluates the quantifier bound.

(3) If the quantifier bound is a computed generator then whatever function the user
supplies it must generate some sequence of bindings given the current world and
current set of bindings. We take this sequence to be the definition of the set of
satisfying instances of the quantifier bound. Thus by definition computed generators
are correctly evaluated.25

Atomic formulas require usingEvalTermto evaluate the terms they contain:
(1) If the term is a variable, then its value is its the current binding which will have

been set by the generator for the quantifier bound. It has been shown above that the
generators operate set these bindings correctly.

(2) Constants are their own value, thusEvalTermcorrectly evaluates such terms.

25 The system cannot ensure the user supplied generator function implements what the user intended. Rather
all it can do is provide a specific semantics as to how the output of that function will be used, and ensure that it
correctly implements those semantics. This is the same approach as that taken by, e.g., programming languages
compilers. The language specifies a specific semantics for every language construct and the compiler is correct
if it correctly maps programs to this specified semantics. Whether or not the program implements what the user
intended is a separate matter.
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(3) If the term is a described function, then the STRIPS database contains all of the
values of that function and a simple lookup will correctly evaluate such terms.

(4) If the term is a computed or defined function then we take the value returned to
define the function. (The operational semantics of defined functions is described in
the next section.) Hence, such terms are evaluated correctly by definition.

Finally, we have the atomic formulas.
(1) If the atomic formula involves a described predicate, then the STRIPS database

contains all positive instances of the predicate. Such predicates can be evaluated
by a simple database lookup procedure.

(2) If the atomic formula involves a defined predicate then its evaluation is can be shown
to be correct by induction (with the base case being the atomic predicates that are
not defined predicates).26

(3) If the atomic formula is a computed predicate, then again we take the value returned
by the computation to define the predicate.

6. The TLPLAN system

We have constructed a planning system called the TLPLAN system that utilizes the
planning algorithm shown in Table 3. In this section we describe the system and supply
some final details about the design of the system.

TLPLAN is a very simple system, as the diagram of its components shown in Fig. 2
demonstrates. The distinct components of the system are:
• A search engine which implements a range of search algorithms.
• A goal tester that is called by the search engine to determine if it has reached a goal

world. The goal tester in turn calls the formula evaluator to implement this test.
• A state expander that is called by the search engine to find all the successors of a

world. The state expander in turn calls the formula evaluator to determine the actions
that are applicable at a world. It also calls the formula progressor to determine the
formula label of these new worlds.
• A formula progressor which implements the progression algorithm shown in Table 2.

The progression algorithm uses the formula evaluator to realize line 1 of the algorithm.
• A formula evaluator which implements the algorithm shown in Tables 4–6.
Forward-chaining planners like TLPLAN are inherently simple. Nevertheless, is it worth

pointing out that all of the functionality needed in such a planner can be implemented using
the evaluator. As Fig. 2 shows, this is the design used by TLPLAN. A properly designed
formula evaluator also provides considerable additional flexibility and expressiveness
to the system, and understanding its operation provides insights into the worst case
complexity of the planner’s basic operations.

26 There is a subtlety when the defined predicate is recursive. In this case we need fixpoints to give a precise
semantics to the predicate. It goes beyond the scope of this paper to supply such semantics, but many approaches
to this problem have been developed by those concerned with providing semantics to database queries (which can
be recursive), e.g., see [58].



F. Bacchus, F. Kabanza / Artificial Intelligence 116 (2000) 123–191 149

Fig. 2. The TLPLAN system.

6.1. Utilizing the evaluator’s operational semantics

It was shown in the previous section that the formula evaluator correctly determines
the truth of any atemporalLT formula. However, there is another way to view of the
evaluator: the evaluator can be viewed as being an interpreter for a language, a language
whose syntactic structure is that of the atemporal component ofLT . When viewed as an
interpreter the evaluator has an operational semantics [28] that is precisely specified by the
algorithm given in Tables 4–6.

In particular, when the evaluator is given a formula to evaluate it will perform a precise
sequence of computations determined by the syntactic structure of the formula and the
properties of the world against which the formula is being evaluated. For example, say
we evaluate the formulaon(A,B) ∧ on(B,C) in a worldw in which on(A,B) holds and
on(B,C) does not. The evaluator will perform the following computations:

(1) It will evaluateon(A,B) in w. This will evaluate toTRUE.
(2) It will then evaluateon(B,C) in w. This will evaluate toFALSE.
(3) It will return FALSE.

On the other hand if we evaluate the formulaon(B,C)∧on(A,B) the evaluator will never
perform the computation of evaluatingon(A,B) in w.

This behaviour stems from the fact that the evaluator utilizes early termination
of boolean connectives and quantifiers. From the point of view of correctness early
termination makes no difference; the evaluator returns the same value no matter how the
formula is written. However, early termination can be a very useful control flow mechanism
when we add additional computed predicates.

Computed predicates and functions invoke a user defined computation in order to return
a value to the evaluator. Great economy in the implementation can be achieved by taking
advantage of this fact. In particular, much of the implementation is realized by simply
supplying an additional set of computed predicates and functions. These predicates and
functions return specific values, but they are mainly designed to invoke useful computation
when they are evaluated.

Printing is a good example. The system defines a computed “print” predicate (taking an
arbitrary number of arguments). This predicate always returns true as its truth value, thus
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any formula containingprint can always be rewritten by replacing all instances ofprint
with TRUE. However, when the evaluator evaluates theprint predicate the computation
it invokes generates I/O as a side effect. Such predicates have a trivial declarative
semantics (usually they are equivalent to the propositional constantTRUE). Their effects are
determined by the computation they invoke when evaluated and the evaluator’s operational
semantics (which determines under what conditions they will be invoked).

For example, in the worldw used in the example above the formula

on(A,B)∧ print(“on(A,B) holds!”)∧ on(B,C)∧ print(“on(B,C) holds!”)

will evaluate toFALSE just as before, but its evaluation will print out the string “on(A,B)
holds!” as a side effect, while the formula

on(B,C)∧ print(“on(B,C) holds!”)∧ on(A,B)∧ print(“on(A,B) holds!”)

will also returnFALSE but will not generate any I/O since its evaluation will terminate prior
to the first print statement being evaluated.

This example shows that viewing the evaluator as an interpreter makes formula
evaluation more syntax-dependent, but in no way affects the correctness of the final value
it returns.27 Despite this drawback, by utilizing the evaluator as an interpreter we can
implement many of the remaining components of the planner quite easily. We discuss these
components next.

6.1.1. Defined functions
The operational semantics of the evaluator provides a mechanism that allows the user

to specify defined functions. Such functions are handled by the last clause of the formula
evaluator algorithm (Table 4).

Consider a functiondepth(x) that returns the depth of a blockx, where clear blocks have
depthzero. Such a function can be computed by evaluating the following formula:

depth(x)
4=

clear(x)⇒ depth:= 0

∧∃[y:on(y, x)]⇒ depth:= 1+ depth(y).

That is, the depth ofx is zero ifx is clear, otherwise there must exist another blocky that
is on top ofx and then the depth ofx is one more than the depth ofy.

Formulas defining functions utilize the computed assignment predicate “:=”. This
predicate is handled by the last clause of the evaluator’s algorithm. Assignment always
returnsTRUE and as a side effect it sets the binding of a variable to be equal to the value of
the term on the left hand side.

Defined functions use the convention of assigning values to the function’s name as
a shorthand for setting the return value. The value of the function is the last value
assigned to its name. Internally, defined functions are handled by adding the function

27 It should also be noted that if we are thinking of the evaluator as an interpreter it should not be too surprising
that, e.g., the order of the conjunctions in a formula make a difference. The order of statements makes a difference
in most programming languages.
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name as a new unassigned variable to the set of variable bindings (see clause (5) of the
EvalTermalgorithm Table 6). We then evaluate the formula defining the function using
this augmented set of variable bindings. When the evaluator encounters an assignment
“predicate” likedepth:= 0 it modifies the binding of that variable. Thus, after the evaluator
has processed the defining formula, the function’s name variable has been set to a value,
and that value is returned as the function’s value. This simple mechanism adds considerable
flexibility when defining a planning domain.28

It should also be noted that this formula definingdepthhas been written so that its
interpretation by the evaluator will yield the correct value fordepth. In particular, the
consequent of each of the implications (i.e., the assignments) will only be evaluated when
the antecedent evaluates toTRUE.

6.1.2. The progression algorithm
As shown in Table 2 case one of the progression algorithm needs to evaluate whether

or not various subformulas holds in the current world. This is accomplished by calling the
formula evaluator. A useful illustration of the working of the progression algorithm and the
formula evaluator is provided by the following example.

Example 4. Consider a control formula from the blocks world:

2(∀[x:clear(x)]ontable(x)∧¬∃[y:GOAL(on(x, y))]⇒©(¬holding(x))
)
. (4)

This formula asserts that a good plan will never pickup a blockx from the table if that
block is not required to be on another blocky. Say that we wish to progress this formula
through a worldw in which the{ontable(a), ontable(b)}, and{clear(a), clear(b)}, are the
set ofontableandclear facts that hold inw. Further, say that the goal is specified by the set
{on(b, a)}. On encountering the2 modality the progressor will compute the progression
of

∀[x:clear(x)]ontable(x)∧¬∃[y:GOAL(on(x, y))]⇒©(¬holding(x)), (5)

and then return the conjunction of the result and the original formula (4) (case (7) of
Table 2).

To progress the subformula the evaluator will be called to make a generator of the
instances ofclear(x) that hold inw, and for each of these instances the progressor will
progress the subformula

ontable(x)∧¬∃[y:GOAL(on(x, y))]⇒©(¬holding(x)). (6)

The first call to this generator will return{x = a}. Using this binding subsequent calls to
the evaluator will return true forontable(x), and then true for¬∃[y:GOAL(on(x, y))], as
there are no instantiations fory that satisfyon(a, y) in the goal world. This terminates the
progression of the antecedent of the implication. Since the antecedent is true the progressor
is forced to progress the consequent of the implication©(¬holding(x)). The end result of
the first instantiation forx is the progressed formula¬holding(a).

28 Our implementation extends this mechanism to allow defined functions (and predicates) to have local variables
that can be assigned to. Local variables are not essential, but they can speed up certain computations.
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The next call to the top level generator returns the binding{x = b}. Under this new
bindingontable(x) evaluates to true but¬∃[y:GOAL(on(x, y))] evaluates to false, as the
binding {y = a} satisfies the existential. Thus the conjunction evaluates to false, and the
entire implication then progresses to true.

The final result is the formula

¬holding(a)∧
2(∀[x:clear(x)]ontable(x)∧¬∃[y:GOAL(on(x, y))]⇒©(¬holding(x))

)
,

which says that in the subsequent state we should not be holdinga (remember that the
progressed formula is used to label all of the successor worlds ofw).

6.1.3. Implementing the operators
Actions are specified as either STRIPS or ADL operators. When we instantiate the

parameters of the operators we obtain an action instance with instantiated precondition,
add, and delete clauses. An action can be applied to the current world if its instantiated
precondition is satisfied in the world.

It is easy to use the formula evaluator to determine if an action precondition is satisfied
in the current world. However, we can go further than this. By utilizing the evaluator as
an interpreter and adding some appropriate computed predicates, we can use the formula
evaluator to fully implement the operators.

This process is best illustrated by an example. Consider the STRIPS operatorunstack
specified in Table 1. Its precondition list is{on(x, y),clear(x),handempty}, its add list
is {holding(x),clear(y)}, and its delete list is{on(x, y),clear(x),handempty}. We can
represent this operator as a formula. When this formula is evaluated in the current world
it will, as a side effect of some of its computed predicates, correctly construct all of the
successor worlds that could be generated by various executable instances of the operator.
The formula forunstackis

handempty∧
∀[x:clear(x)]∀[y:on(x, y)]MakeNewWorld

∧Del(on(x, y))∧Del(clear(x))∧Del(handempty)

∧Add(holding(x))∧Add(clear(y)).

When this formula is evaluated in the current world the first thing that is done by
the evaluator is to test ifhandemptyis true. If it is not then no instance ofunstack
is applicable and no further computation is necessary. Then the quantified subformulas
are evaluated. The variablesx and y will be instantiated to objects that satisfy the
preconditions of the operator; i.e., by representing the operator’s parameters as quantified
variables we can use the standard processing of quantifiers to find all executable
actions. The new computed-predicates we need are “MakeNewWorld”, “Add”, and “Del”.
“MakeNewWorld”, generates a new copy of the current world, and “Add” and “Del”
modify the databases that describe the instances of the various predicates that hold in that
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copy.29 (All of these predicates evaluate toTRUE in every world.) That is, by “evaluating”
these predicates the world generated by applying the current action (given by the current
bindings ofx andy) is computed. It is not difficult to see that any STRIPSoperator can be
translated into a formula of this form.30

Using the same mechanism it is also easy to handle ADL operators (in their full
generality). ADL operators can take arbitrary first-order formulas as their preconditions,
and have conditional add and delete lists. Furthermore, these operators can update function
values. Every ADL operator is converted into a formula with the following form

∀Ex.φ(Ex)
⇒MakeNewWorld

∧∀Ey1.ψ1(Ex, Ey1)⇒ Add(`1(Ex, Ey1))

...

∧∀Eyn.ψn(Ex, Eyn)⇒Del(`n(Ex, Eyn)).
The formulaφ(Ex) is the precondition of the operator. It contains a vector of free variables
Ex. Ever instantiation ofEx that makesφ(Ex) true in the current world specifies a single
executable action. For every action all of the conditional updatesψi(Ex, Eyi) are activated.
Each of these conditional updates can potentially add or delete many instances of a
predicatè i . That is, for a fixed instantiation ofEx there may be many instantiations of
Eyi that satisfy the conditional update formulaψi(Ex, Eyi). The action instance will add or
delete an instance of the predicate`i for every distinct instantiation ofEyi that satisfies
ψi(Ex, Eyi) (in the current world).

Function updates are handled in a uniform manner using equality as the predicate. That
is, a term like Add(f (c)= y) will update the functionf so that its value onc is equal to
y (i.e., the current binding ofy). Since functions have unique values, the add of a function
value automatically deletes the old value.

The actual ADL and STRIPSoperators are specified using a slightly more standard syntax
and then translated to the above form. Once in this form we can make direct use of the
formula evaluator to apply these operators to the current world.

6.2. Testing goal achievement

As discussed above the goal is usually specified as a list of ground atomic facts
{`1, . . . , `k}. To test if a worldw satisfies the goal we evaluate the conjunction`1∧· · ·∧`k
in w. Thus the evaluator is used directly to test for goal achievement.

As we will point out below checking arbitrary formulas against a world is efficient. So
we could in principle give the planner goals,Φ, expressed as complex first-order formulas.

29 Add and Del are syntactically unusual in that they actually take atomic formulas as arguments. If we wanted
to be pedantic we would say that they are computed modalities not computed predicates.
30 An interesting point is that since we convert operator into formulas universally quantified by the operator

parameters, there is never any need to do unification. In particular, the unification algorithm plays no role in the
TLPLAN system.
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The planner can perform search and at every world evaluate the formulaΦ in the current
world to see if the goal has been achieved. This would produce a planner capable of
generating plans for achieving, e.g., disjunctive or quantified goals, and in fact TLPLAN

can be configured to accept an arbitrary first-order formula as its goal.
The only problem with general goals of this form is that ifφ is an arbitrary formula,

then checking ifGOAL(φ) holds for variousφ (i.e., checking ifΦ |= φ) becomes hard
(it requires theorem proving). For this reason TLPLAN does not accept formulas as goals
when the domain utilizesGOAL formulas.

6.3. Complexity of the planner’s components

The domain specifications accepted by TLPLAN are sufficiently general so that it is
quite possible to write specifications which cause the planner’s basic operations to be
intractable. Nevertheless, we have found that in practice the planner is very efficient in
its basic operations. Since the formula evaluator is at the heart of the system, we start by
examining its complexity.

6.3.1. Evaluating formulas
Evaluating a formula is usually very efficient. In particular, ifφ is a quantifier free

formula in which no computed or defined functions or predicates appear, then evaluatingφ

has complexity linear in the length ofφ. The basic set of described functions and predicates
in φ can be evaluated in near constant time,31 as can the boolean connectives.

Whenφ contains computed predicates or functions nothing can be said in general about
the performance of the evaluator, since such predicates and functions can invoke arbitrary
computations. In our test domains have we found computed predicates and functions to be
very useful, but have never found a need to define ones that were particularly expensive to
compute.

Once we allowφ to contain quantifiers, formula evaluation becomes PSPACE-complete.
This is easily shown by reduction to the quantified boolean formula problem, which is
known to be PSPACE-complete [29]. A quantified boolean formula is a formula of the
form

Q1x1.Q2x2 . . .Qkxk(F (x1, x2, . . . , xj )),

where eachQi is either a universal or existential quantifier, eachxi is a boolean variable,
andF is a boolean expression involving thexi . The problem is to determine whether or not
this formula is true. For example,∀x.∃y.x ∨ y is a true formula, as no matter what valuex
takes there exists a value fory (namelyTRUE) that makes the formulax ∨ y true. On the
other hand,∀x, y.x ∨ y is false, as the valuesx = FALSE andy = FALSE makex ∨ y false.

Consider a worldw in which we have two predicates, a type predicateBool, and a
“truth” predicateT . The only positive instances of these two predicates true inw are
Bool(TRUE), Bool(FALSE), andT (TRUE). We can convert any quantified boolean formula

31 Using indexing or hashing techniques we can perform these database lookups in near constant time. In the
actual implementation, however, we found that a simpler albeit log-time binary tree representation of the world
databases gives excellent performance.
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φ to a first-order formula by replacing each universal (existential) quantifier∀x (∃x) in
φ by the bounded quantification∀[x:Bool(x)] (∃[x:Bool(x)]). Similarly in φ’s boolean
expressionF(x1, . . . , xn) we replace every variablexi by the atomic formulaT (xi). For
example, the quantified boolean formula∀x.∃y.x ∨ y becomes the formula

∀[x:Bool(x)]∀[y:Bool(y)]T (x)∨ T (y).
It is not difficult to see that the converted formula evaluates to true in the worldw if
and only if the original quantified boolean formula was true. This shows that evaluating
quantified formulas is PSPACE-hard. That the algorithm is in PSPACE is also an easy
observation: although we may need to test many different sets of bindings for the quantified
variables, at any stage the algorithm need store only one set of bindings.

This observation indicates that we can easily write quantified formulas that would be
intractable for the formula evaluator. However, in practice things are not as bad. LetN be
the total number of objects in the domain, and let the deepest level of quantifier nesting
in the formulaφ be k. Then at worst, evaluatingφ will take time O(Nk). The PSPACE
result holds because we can write formulas withk nested quantifiers in length O(k). Every
increase in quantifier nesting adds to the size of the exponent. In practice we have rarely
found a need to nest quantifier more than 3 deep, in which case evaluating these formulas
remains polynomial in complexity, O(N3) in fact. The formula evaluator has not been a
performance bottleneck in any of our test domains.

There is one area, however, where we must be careful about evaluating quantified
formulas. As mentioned above, we determine the set of actions that can be executed in
the current world by evaluating a formula in which the operator’s parameters are converted
into quantified variables. The way in which we convert the operator description into a
quantified formula can make a significant difference in the planner’s performance. This is
best illustrated by an example.

Consider the formula that encodes theunstackoperator (previously given in Sec-
tion 6.1.3):

handempty∧
∀[x:clear(x)]∀[y:on(x, y)]MakeNewWorld

∧Del(on, x, y)∧Del(clear, x)∧Del(handempty)

∧Add(holding, x)∧Add(clear, y).

An alternate encoding of this operator would be the formula

∀[x:clear(x)]∀[y:on(x, y)]handempty

⇒MakeNewWorld

∧Del(on, x, y)∧Del(clear, x)∧Del(handempty)

∧Add(holding, x)∧Add(clear, y).

This formula is logically equivalent, yet far less efficient. In worlds wherehandemptyis
false, the evaluator can immediately recognize that no instance ofunstackis applicable
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when using the first formula. When using the second formula, however, the evaluator must
iterate over every pair of objectsx, y such thatclear(x) andon(x, y). For every iteration,
the evaluation ofhandemptywill fail to produce an applicable instance ofunstack. Thus
the first formula evaluates in constant time, while the second takes O(N2) whereN is the
number of blocks in the domain.

Since the action formulas must be evaluated at every world in the forward-chaining
search such differences can have a significant impact on the planner’s efficiency. The
issues involved in choosing which of the logically equivalent formulas to generate when
converting an action into a formula (e.g., how to choose the ordering of two adjacent
universal quantifiers) are essentially the same as the issues that arise in the area of query
optimization in databases. And needless to say there is a considerable body of work in
this area that could be applied to this problem. Our implementation employs some simple
heuristics along these lines when it converts operators into formulas.

The final issue that arises when examining the complexity of the formula evaluator is that
of defined predicates. As mentioned above, defined predicates invoke the evaluator on the
formula that defines the predicate. This formula can be recursive. This means that a single
predicate instance in a formula may end up invoking considerable additional computation
as the evaluator recourses over its definition. Again it is easy to see that there can be no
a-priori bound on the complexity of this process. However, as in the previous cases we
have not found this to be a particular problem in our test domains.

6.3.2. State expansion and goal testing
As described above, state expansion (i.e., finding and applying the set of actions that can

be applied to the current world) and testing for goal achievement both involve utilizing the
formula evaluator. Hence, the complexity of these two components is determined by the
complexity of the formula evaluator.

6.3.3. Progressing formulas
The process of progressing formulas is another area where expensive computations

might be invoked. As can be seen from Table 2, the progression algorithm is generally
quite efficient. In particular, except for quantification the process is essentially linear in the
size of the input formula.32 With quantification, however, it is possible to specify a short
formula that takes a long time to progress.

The difficulty with progression lies not so much with progressing a formula once, but
rather with the repeated progression of a formula through a sequence of worlds. During
planning when we explore a sequence of statesw0, . . . ,wk we have to progress the original
temporal control formulak times, one through every worldwi . The formula might grow in
length with each progression, and if we are not careful this can lead to excessive space and
time requirements. For example, consider the progression of the temporal formula

P(a)∪ (P(b)∪ (P (c)∪Q(a)))
32 Progression also invokes the evaluator on atemporal subformulas, and, as noted above, this also has the

potential to be intractable.
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through a worldw in which P(a), P(b), andP(c) all hold, butQ(a) does not. The
progression algorithm yields the new formula

P(c)∪Q(a)
∨P(b)∪ (P(c)∪Q(a))
∨P(a)∪ (P(b)∪ (P (c) ∪Q(a))).

Formulas of this form progress to formulas that have grown quadratically in size.
Furthermore, the formula grows even longer as we progress it through multiple worlds.

The key to an efficient implementation of the progression algorithm is to realize that
the progressed formula has many subformulas in common with the original formula.
Hence, considerable efficiency can be gained by sharing these subformulas. In fact,
in the above example, if we share substructures the progressed formula only requires
us to store two new top level “∨” connectives. Structure sharing is a well known
technique in automated theorem provers, and we have employed similar techniques in our
implementation. In addition to space efficiency structure sharing also yields computational
efficiency. Progression distributes over the logical connectives (e.g.,Progress(φ ∧
ψ) = Progress(φ) ∧ Progress(ψ)). Hence, once we have computed the progression of
subformula that progression can be spliced in where ever the subformula appears, i.e.,
we need only compute the progression of a subformula once. In the above example, if we
have to progress the new formula one more time we only need to progress the subformula
“P(c)∪Q(a)” once, even though it appears three times in the formula.

With these structure sharing techniques it is quantification that has the main impact on
the efficiency of progression in practice. Consider the formula

2∀[x:object(x)]3P(x).
If we progress this formula through a worldw in which no object satisfiesP andobject(a),
object(b), andobject(c) all hold, then we get the new formula

2∀[x:object(x)]3P(x)
∧3P(a)∧3P(b)∧3P(c).

Since the progression algorithm deals with quantifiers by expanding each of the particular
instances, we see that the progression of the formula grows in length by a factor determined
by the number of objects satisfyingobject that currently fail to satisfyP . When there
are k nested quantifiers the progressed formula can be of length O(Nk), whereN is
the number of objects in the domain. This behaviour is analogous to the behaviour of
the formula evaluator in the face of nested quantification. However, as in that case, we
have rarely found a need to nest quantifiers more than 3 deep in our temporal control
formulas.

Furthermore, many natural control formulas do not continue to grow continually length.
Consider, for example, the control formula specified for the blocks world (formula (3)).
This formula when progressed through any world will generate a collection of conditions
that must hold in the next world. In particular, there will be a collection of good towers
that must be preserved, a collection of bad towers that nothing can be placed on top of,
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and a collection of blocks that cannot be held in the next state. These conditions are
all checked anddischargedin the next world. Thus, the length of the control formula
grows and shrinks, but never grows monotonically as we progress it through a sequence of
worlds.

In summary, TLPLAN allows for very expressive domain specifications. It is sufficiently
expressive that it is quite possible to express domains in which the basic operations of
the planner become intractable. In practice, however, we have have found the planner’s
expressiveness to be a boon not a bane. It allows for a easy specification of domains and
the potential of intractability of the basic operations has not been a major issue so far.
Note that the tractability of planning in any domain is a separate issue from the tractability
of the planner’s basic operations. That is, although tractability of the basic operations is
a necessary condition for tractable planning, it is by no means sufficient. Our empirical
results (Section 7), however, do show that with the right control knowledge TLPLAN can
plan very effectively in many test domains.

7. Empirical results

We have implemented a range of test domains to determine how easy it is specify control
information in our formalism and how effective that information is in controlling planning
search.

In our empirical tests we ran TLPLAN on a Pentium Pro 200 MHz machine with 128 MB
of RAM. This amount of memory was more than sufficient for TLPLAN in all of the tests.
We also ran various tests using the BLACK BOX [33], IPP [37], SATPLAN [32], PRODIGY

[59], and UCPOP[7] systems.
BLACK BOX and SATPLAN are similar systems both of which encode planning problems

as satisfiability problems. SATPLAN uses a different encoding that can be more efficient,
while BLACK BOX employs various simplification steps interleaved with its generation of
the encodings. IPP is based on the GRAPHPLAN [13] algorithm, but has been optimized in
various ways and extended to handle a subset of the ADL language. BLACK BOX and IPP
are both state of the art planning systems. They were the best performers in the AIPS’98
planning competition [1] and are both coded in C (as is TLPLAN). However both of these
systems have tremendous appetites for memory, and so we ran them on a SUN Ultra 2
296 MHz machine with 256 MB of RAM. This still was not sufficient memory for these
systems, but we were careful in recording the CPU time used so as not to count the time
taken by swapping. Furthermore, fairly clear trends were already established by time the
problems became large enough to start excessive thrashing. It should be noted however
that BLACK BOX’s and IPP’s high memory consumption is not something that should
be ignored. Space can be as much of a limiting resources as time, and in some cases
more so.

The older systems UCPOPand PRODIGY are coded in lisp, and so we ran them on a
196 MHz SUN Ultra 2 that had support for lisp. However, the performance difference be-
tween these systems and the others was so great that recoding in C and running of the faster
machine would not have helped much.
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7.1. Blocks world

TLPLAN’s performance with the three different control formulas, (formulas (1)–(3)
given in Section 3), using depth-first search is shown in Fig. 3. Each(x, y) data point
represents the average timey taken to solve 10 randomly generated blocks world problems
involving x blocks. In particular, for each value ofx we generated a random initial
configuration of blocks and asked the planner to transform this configuration to a randomly
generated goal configuration.

The graph also shows the time taken by the planner when it employed breadth-first
search using the final control strategy, and the time taken by blind breadth-first search.
(Blind breath-first outperforms blind depth-first search in this domain.) The data shows
that control information acts incrementally, as we add more clauses to the control formula
the planner is able to search more efficiently by pruning more paths from the search space.
It also shows just how effective the search control can be—TLPLAN is able to solve 100
blocks problems in about 8 minutes when using depth-first search and Control strategy 3
(compare this with the performance of other state of the art planners shown in Fig. 5).

The data generated by the breadth-first search represent the time to find optimal plans.33

The data shows that control strategies can be a considerable aid in solving the optimization
problem as well. Using Control 3 TLPLAN is able to generate optimal plans for 18 block
problems in reasonable time (42 seconds on average), while without control optimal 6
block problems are about the limit (7 blocks take more than 1000 seconds). Nevertheless,
generating optimal plans in the blocks world is known to be NP-hard [26], and even the
control strategies are insufficient for generating optimal solutions to all of the 19 blocks
problems.

In the blocks world depth-first search can always find a solution,34 but the solution
may be very long. Fig. 4 shows the length of the plan found by the planner using the
different control strategies. (Control 2 generates identical plans to Control 3, but takes
longer.) The data also shows that the plans generated by Control 3 are quite high quality
plans (measuring quality by plan length). They are only slightly longer then the optimal
length plans. In fact, it can be show that the plans generated by Control 3 (and Control 2)
are no longer than 2 times the length of the optimal plan.35 Furthermore, TLPLAN is
able to generate plans using these strategies without backtracking. Hence, these control
strategies yield a polynomial time blocks world planner with a reasonable plan quality
guarantee.

The blocks world remains a very difficult domain for current domain-independent
planners. Fig. 5 shows how a range of the other planning systems perform in the blocks
world.

33 A control strategy could eliminate optimal plans from the search space: if no optimal plan satisfies the control
strategy the strategy will stop the planner from finding an optimal plans. However, it is easy to show that no
optimal plan is eliminated by these blocks world control strategies.
34 In the blocks world every state is reachable from every other state, so any cycle-free depth-first path must

eventually reach the goal.
35 Control 3 encodes a strategy very similar to the reactive strategy given by Selman in [49], and he proves that

this reactive strategy never exceeds the optimal by more than a factor of 2.
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Fig. 3. Performance of TLPLAN search control in the blocks world.

Fig. 4. Length of plans generated by TLPLAN in the blocks world.
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Fig. 5. Performance of other planners in the blocks world.

7.2. Briefcase world

The briefcase world is a very simple domain invented by Pednault to illustrate his
ADL action representation [44]. In this domain we have a briefcase that can be moved
between different locations. Objects can be put in and taken out of the briefcase, and when
they are in the briefcase they are moved with it. There is a simple and intuitive search
control formula that can be written for this domain. What is most interesting however,
is that the ideas in this search control appear almost unchanged in another popular test
domain, the logistics domain (see below). We have found that there are many “meta-level”
strategies that are applicable across different domains under slightly different concrete
realizations.

The operators in this domain are given in Table 7.
The operators are given in TLPLAN’s input language, which is basically first-order logic

written in a lisp syntax. Two types of operators are accepted, standard STRIPS operators
and ADL operators. Each consists of a sequence of clauses. The first clause is the name of
the operator, and it may contain variables (e.g.,?x in the “take-out” operator).36

Taking something out of the briefcase can be specified as a simple STRIPS-style operator
with a precondition, an add and a delete list. Each of these is a list of atomic predicates. The
other two operators, “move-briefcase” and “put-in” are specified as ADL-style operators.

36 Variables in TLPLAN are always prefixed with “?”.
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Table 7
The briefcase world operators

(def-adl-operator (MOVE-BRIEFCASE ?to) (def-adl-operator (PUT-IN ?x)
(pre (pre

(?from) (at briefcase ?from) (?loc) (at briefcase ?loc)
(?to) (location ?to) (?x) (at ?x ?loc)

(not (= ?from ?to))) (and (not (= briefcase ?x))
(add (at briefcase ?to)) (not (in-briefcase ?x))))
(del (at briefcase ?from)) (add (in-briefcase ?x)))
(forall (?z) (in-briefcase ?z)

(and (def-strips-operator (TAKE-OUT ?x)
(add (at ?z ?to)) (pre (in-briefcase ?x))
(del (at ?z ?from))))) (del (in-briefcase ?x)))

ADL operators are specified by using a precondition clause that acts exactly like a
quantifier clause. In particular, all of the variables in the clause must be specified first
(as with all quantifiers). All quantification is bounded quantification, so we must spec-
ify a quantifier bound for each of these variables. For example, for the “put-in” opera-
tor, ?loc ranges over all of the locations the briefcase is at (there is in fact only one
such location), while?x ranges over all objects that are at that location. Note that?x is
scoped by?loc . Thus for each binding of?loc we compute a distinct range of bind-
ings for ?x . After the variable bindings the precondition can include an additional for-
mula that can test the variable bindings and any other required features of the current
world. Note that this formula can be an arbitrary first-order formula, it may include dis-
junction, other quantifiers, etc.37 For example, the operator “put-in” includes the formula
(and (not (= briefcase ?x)) (not (in-briefcase ?x))) . Each bind-
ing of the precondition variables that satisfies the precondition formula generates a unique
instance of the operator (an operator instance is also called an action). The bindings of
the variables appearing in the operator name are then used to give each action a unique
name.38

Subsequent to the precondition formula come a sequence of clauses. These clauses are
all scoped by the precondition’s variables (and thus may access their bindings) and they
are each individually evaluated by the formula evaluator (see Section 6). During evaluation
any “add” or “del” clause always evaluates toTRUE and has the side-effect of modifying
the new world. The current state of the world as well as the manner in which the evaluator
works (i.e., its rules for the early termination of formula evaluation) precisely specifies the
set of adds and deletes generated by this instance of the operator.

Thus, in the “move-briefcase” action, we add the briefcase’s new location and delete its
old location.39 Then a universal quantifier is used to successively bind?z to all objects
that are currently in the briefcase. For each such binding the body of the universal is

37 Other planning systems that accept ADL specified actions, e.g., UCPOPand IPP, accept only a restricted
subset of the ADL specification. For example, disjunctive preconditions are usually not allowed.
38 Every operator instance need not have a unique name. Sometimes it is useful to treat different instances as

being the same action.
39 TLPLAN internally reorders the adds and deletes so that all deletes are executed prior to any adds.
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Table 8
The briefcase world control strategy

(always
(and

(forall (?l) (at briefcase ?l)
(forall (?x) (at ?x ?l)

(implies (not (= ?x briefcase))
(and

;; 1.
(implies (goal (at ?x ?l))

(until (at briefcase ?l) (not (in-briefcase ?x))))
;; 1.
(implies (not (goal (at ?x ?l)))

(until (at briefcase ?l) (in-briefcase ?x)))
;; 2.
(implies (and (in-briefcase ?x) (not (goal (at ?x ?l))))

(next (in-briefcase ?x)))
;; 3.
(implies (and (goal (at ?x ?l)) (not (in-briefcase ?x)))

(next (not (in-briefcase ?x))))))))

(forall (?l) (location ?l)
;; 4.
(implies

(and
;;If we are not at location ?l
(not (at briefcase ?l))
;;and we don’t need to deliver something in the

briefcase to ?l
(not (exists (?x) (in-briefcase ?x) (goal (at ?x ?l))))
;;and we don’t need to pickup something from that location
(not (exists (?x) (at ?x ?l)

(or
(exists (?gl) (goal (at ?x ?gl))

(not (= ?gl ?l)))
(goal (in-briefcase ?x)))))

;;and we don’t need to move briefcase there
(not (goal (at briefcase ?l))))

;;Then don’t go there
(next (not (at briefcase ?l)))))))

evaluated. The body of the universal is a conjunction, so we evaluate the first add. All
terms in the add clause are evaluated, and in this case the variables?z and?to evaluate
to the objects they are currently bound to (see Table 6). This results in a ground atomic
fact being added to the world database.40 The add clause always evaluates toTRUE, so the
evaluator moves on to evaluate the second conjunct, the delete. The end result is that we
update the locations of the briefcase and all the objects in the briefcase.

40 All of the predicates and functions that appear inside of an add or a delete must be described symbols, as only
these can be directly updated.
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Table 9
Performance of TLPLAN and IPP in the briefcase world

Problem name TLPLAN time CPU seconds IPP time CPU seconds

getpaid 0.002 0.01

getpaid3 0.004 0.02

ex3a 0.009 0.05

ex3b 0.005 0.01

ex4a 0.020 0.52

ex4b 0.009 0.04

ex4c 0.009 0.05

ex4d 0.021 0.51

ex4f 0.022 0.36

ex4g 0.022 0.20

ex4h 0.029 0.15

ex4i 0.020 0.09

ex4j 0.026 0.11

ex5 0.046 0.91

ex5a 0.029 37.50

ex5b 0.030 22.23

ex5c 0.039 7.85

ex5d 0.043 15.46

ex5e 0.042 03.95

ex5max 0.045 0.92

ex10 0.174 >1669.9

ex12a 0.029 571.52

ex12b 0.030 691.47

ex12c 0.046 21.85

ex12d 0.026 14.85

ex13a 0.051 1057.65

ex13b 0.051 1887.27

t1 0.002 0.01

t2 0.004 0.01

t3 0.008 0.04

t4 0.021 0.52

t5 0.029 35.32

t6 0.047 3094.26

t7 0.070 >11053.00

t8 0.098 >7178.20

t9 0.131 >7639.00

t10 0.186 >3288.50
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Search control formulas for this domain are easy to write. They embody the following
obvious ideas:

(1) Don’t move the briefcase from its current location if there is an object that needs to
be taken out or put into the briefcase.

(2) Don’t take an object out of the briefcase if the briefcase is not at the object’s goal
location.

(3) Don’t put objects that don’t need to be moved into the briefcase.
(4) Don’t move the briefcase to an irrelevant location. In this domain a location is

irrelevant if there is no object to be picked up there, there is no object in the briefcase
that needs to be dropped off there, and it is not a goal to move the briefcase to that
location.

The control formula given in Table 9 realizes these rules. We give the formula exactly
as it is input to the planner. The planner can take as control input any formula ofLT . The
only differences are that

(1) we use a prefix lisp syntax, and
(2) all of the logical symbols and modalities are given text names, e.g., the universal

quantifier “∀” is specified byforall .
The performance of TLPLAN using this control rule is demonstrated in Table 9. The

table shows the planning time in seconds required by TLPLAN and by IPP to solve a
suite of problems taken from the IPP distribution. (Briefcase world requires ADL actions,
so cannot be solved with the current version of BLACK BOX; UCPOP can handle ADL

actions but its performance is far worse than IPP.) The suite of problems includes the
standard “getpaid” problem (the briefcase, a dictionary, and a paycheque are at home with
the paycheque in the briefcase, and we want the take the dictionary to the office along
with the briefcase, but leave the paycheque at home), “ti” problems that involve picking
up i objects ati different locations and taking them home, and “exi” problems that involve
permuting the locations ofi objects.

TLPLAN is faster on all of these problems. In fact, none of them is difficult for TLPLAN.
However, IPP was unable to solve a number of the larger problems. The entries with values
> n for somen indicate that IPP was aborted after that many seconds of CPU time without
having found a plan.

7.3. Logistics world

A popular test domain is the logistics world. In this domain we have two types of
vehicles: trucks and airplanes. Trucks can be used to transport goods within a city, and
airplanes can be used to transport goods between two airports. The problems in this domain
typically start off with a collection of objects at various locations in various cities, and the
goal is to redistribute these objects to their new locations. If the object’s new location is in
the same city it can be transported solely by truck. If its new location is in a different city
it might have to be transported by truck to the city’s airport, and then by plane to the new
city, and then by truck to its final location within the new city.

The operators in this domain are given in Table 10. We have encoded this domain
using ADL operators, simply because we find them to be easier to write than STRIPS

operators. However, these operators can written as standard STRIPS operators as they
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Table 10
The logistics world operators

(def-defined-predicate (vehicle ?vehicle)
(or

(truck ?vehicle)
(airplane ?vehicle)))

(def-adl-operator (load ?obj ?vehicle ?loc)
(pre

(?obj ?loc) (at ?obj ?loc)
(?vehicle) (at ?vehicle ?loc)
(and

(vehicle ?vehicle) (object ?obj)))
(add

(in ?obj ?vehicle))
(del

(at ?obj ?loc)))

(def-adl-operator (unload ?obj ?vehicle ?loc)
(pre

(?obj ?vehicle) (in ?obj ?vehicle)
(?loc) (at ?vehicle ?loc))

(add
(at ?obj ?loc))

(del
(in ?obj ?vehicle)))

(def-adl-operator (drive-truck ?truck ?from ?to)
;;; We only allow trucks to move around in the same city.
(pre

(?truck) (truck ?truck)
(?from) (at ?truck ?from)
(?city) (loc-at ?from ?city)
(?to) (loc-at ?to ?city)
(not (= ?from ?to)))

(add
(at ?truck ?to))

(del
(at ?truck ?from)))

(def-adl-operator (fly-airplane ?plane ?from ?to)
;;; Airplanes may only fly from airport to airport.
(pre

(?plane) (airplane ?plane)
(?from) (at ?plane ?from)
(?to) (airport ?to)
(not (= ?from ?to)))

(add
(at ?plane ?to))

(del
(at ?plane ?from)))
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have simple preconditions, modify no function values, and have no conditional effects.
We have also compressed theload andunload operators into a single case by using
a defined predicate that tells us that an object is a vehicle when it is either a truck
or an airplane. The standard STRIPS encoding would have four actionsload-truck ,
unload-truck , load-plan , and unload-plane . It should be apparent that the
search space is identical (e.g., whenever an instance of one of ourload operators is
executable with?vehicle bound to a truck, an equivalent instance of aload-truck
operator will be executable). The other planners we ran were supplied with the standard
STRIPSencoding.

A control strategy very similar to the briefcase world is applicable in the logistics world
(and in fact in many domains that involve transporting goods the same meta-level principles
appear). In particular, we can write a control strategy that embodies the following ideas:

(1) Don’t move a vehicle if there is an object at the current location that needs to be
loaded into it. Similarly, don’t move a vehicle if there is an object in it that needs to
be unloaded at the current location.

(2) Don’t move a vehicle to a location unless, (1) the location is a where we want the
vehicle to be in the goal, (2) there is an object at that location that needs to be picked
up by this kind of vehicle, or (3) there is an object in the vehicle that needs to be
unloaded at that location.

(3) Don’t load an object into a vehicle unless it needs to be moved by that type of
vehicle.

(4) Don’t unload an object from a vehicle unless it needs to be unloaded at that location.
There are two types of vehicles, each used for a distinct purpose. So it is helpful to define

a collection of auxiliary predicates.41

(def-defined-predicate (in-wrong-city ?obj ?curr-loc ?goal-loc)
;;TRUE IFF an object in ?curr-loc with goal location
;;?goal-loc is in right city. (loc-at ?loc ?city) is true
;;if ?loc is located in city ?city.
;;
(exists (?city) (loc-at ?curr-loc ?city)

(not (loc-at ?goal-loc ?city))))

(def-defined-predicate (need-to-move-by-truck ?obj ?curr-loc)
;;We need to move an object located at curr-loc by truck iff
;;the object is in the wrong city and is not at an airport
;;or the object is in the right city but not at the right
;;location.
;;
;;Note if there is no goal location we don’t need to move
;;by truck.
;;
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(if-then-else

41 The logical connective(if-then-else f1 f2 f3) is simply short hand for(and (implies f1
f2)(implies (not f1) f3)) .
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(in-wrong-city ?obj ?curr-loc ?goal-loc)
(not (airport ?curr-loc))
;;in right city
(not (= ?curr-loc ?goal-loc)))))

(def-defined-predicate (need-to-unload-from-truck
?obj ?curr-loc)

;;We need to unload an object from a truck at the current
;;location iff, ?curr-loc is the goal location of the object,
;;or the object is in the wrong city and the
;;current-location is an airport.
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(or
(= ?curr-loc ?goal-loc)
(and (in-wrong-city ?obj ?curr-loc ?goal-loc)

(airport ?curr-loc)))))

(def-defined-predicate (need-to-move-by-airplane
?obj ?curr-loc)

;;We need to move an object at curr-loc by airplane iff
;;the object is in the wrong city.
;;
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(in-wrong-city ?obj ?curr-loc ?goal-loc)))

(def-defined-predicate (need-to-unload-from-airplane
?obj ?curr-loc)

;;We need to unload an object from an airplane at the
;;current location iff, ?curr-loc is in the right city.
(exists (?goal-loc) (goal (at ?obj ?goal-loc))

(not (in-wrong-city ?obj ?curr-loc ?goal-loc))))

With these predicates we can define the following control strategy that realizes the above
rules.

(always
(and

(forall (?x ?loc) (at ?x ?loc)
(and

(implies (vehicle ?x)
(and

;;; don’t move a vehicle if there is an object that
;;; needs to be moved by it, or if there is an object that
;;; needs to be unloaded from it at the current location.
(implies

(exists (?obj) (object ?obj)
(or

(and
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(at ?obj ?loc)
(implies (truck ?x)

(need-to-move-by-truck ?obj ?loc))
(implies (airplane ?x)

(need-to-move-by-airplane ?obj ?loc)))
(and

(in ?obj ?x)
(implies (truck ?x)

(need-to-unload-from-truck ?obj ?loc))
(implies

(airplane ?x)
(need-to-unload-from-airplane ?obj ?loc)))))

(next (at ?x ?loc)))
;;;Similarly when we move a vehicle one of these
;;;conditions should be meet.
(next

(exists (?newloc) (at ?x ?newloc)
;;at the next location of the vehicle

(or
;;either we didn’t move it.
(= ?newloc ?loc)
;;or the location was a goal location for the vehicle
(goal (at ?x ?newloc))
;;or there is an object such that
(exists (?obj) (object ?obj)

(or
;;the object is at the new location and needs a
;;pickup.
(and

(at ?obj ?newloc)
(implies (truck ?x)

(need-to-move-by-truck ?obj ?newloc))
(implies
(airplane ?x)
(need-to-move-by-airplane ?obj ?newloc)))

;;or the object is in the vehicle and needs to be
;;unloaded
(and

(in ?obj ?x)
(implies (truck ?x)

(need-to-unload-from-truck ?obj ?newloc))
(implies

(airplane ?x)
(need-to-unload-from-airplane ?obj ?newloc)))))

)))))

(implies (object ?x)
(and

;;;don’t load into a vehicle unless we need to move by
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;;;that type of vehicle.
(forall (?truck) (truck ?truck)

(implies (not (need-to-move-by-truck ?x ?loc))
(next (not (in ?x ?truck)))))

(forall (?plane) (airplane ?plane)
(implies (not (need-to-move-by-airplane ?x ?loc))

(next (not (in ?x ?plane)))))))))

;;;Finally, don’t unload objects unless we need to.
(forall (?obj ?vehicle) (in ?obj ?vehicle)

(exists (?loc) (at ?vehicle ?loc)
(implies

(or
(and (truck ?vehicle)

(not (need-to-unload-from-truck ?obj ?loc)))
(and (airplane ?vehicle)

(not (need-to-unload-from-airplane ?obj ?loc))))
(next (in ?obj ?vehicle)))))

))

With this control rule we obtain the performance shown in Fig. 6. The data shows the
planner solving problems where there aren objects to be moved (plotted on thex-axis). In
the initial state we place 3 objects in each city (and thus we havebn/3c different cities), one
truck per city, two locations per city (a post-office and an airport), andbn/10c airplanes.

Fig. 6. Performance of various planners in the logistics world.
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Table 11
Performance of TLPLAN and BLACK BOX on logistics problems

Problem TLPLAN BLACK BOX TLPLAN BLACK BOX

time time length length

log001 0.260 0.575 25 25

log002 0.281 95.977 27 31

log003 0.245 98.998 27 28

log004 1.371 130.748 51 71

log005 1.105 231.938 42 69

log006 1.918 321.272 51 82

log007 5.547 264.046 70 96

log008 6.844 317.422 70 110

log009 3.792 1609.455 70 121

log010 2.427 84.046 41 71

log011 2.245 137.93 46 68

log012 1.936 136.229 38 49

log013 6.543 165.844 66 85

log014 9.348 77.749 73 89

log015 5.364 424.369 63 91

log016 1.146 926.967 39 85

log017 1.242 758.471 43 83

log018 9.270 152.35 46 105

log019 2.660 149.224 45 78

log020 10.180 538.220 89 113

log021 6.838 190.490 59 87

log022 6.406 846.842 75 111

log023 4.693 173.966 62 85

log024 4.714 74.832 64 87

log025 4.099 73.995 57 84

log026 3.646 233.406 55 80

log027 5.529 145.164 70 97

log028 14.533 867.349 74 118

log029 5.998 89.515 45 84

log030 3.482 495.373 51 92
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Fig. 7. Length of plans generated in the logistics world.

The final locations of the objects are chosen at random from the 2× bn/3c different
locations. Each data point shows the average time require to solve 10 random problems
of that size.

Fig. 6 also shows how well the other planners perform in this domain. It can be seen
that the control strategy gives TLPLAN a multiple order of magnitude improvement in
performance over these planners.

BLACK BOX’s performance was hindered by the fact that our machine only had 256 MB
of RAM, although it was significantly slower than TLPLAN even on smaller problems prior
to the onset of thrashing. The timing routines do a fairly good job of accounting just for
the CPU time taken (i.e., the time taken by the program while waiting for a page to be
swapped in is not counted), but to check whether or not this was a significant bias we ran a
suite of 30 problems that come with the BLACK BOX distribution. BLACK BOX’s solutions
to these problems also come with the distribution, and were generated on a machine that
is slightly faster than the machines used in our experiments (judging by the solution times
for the smaller problems on which BLACK BOX was not thrashing) and more significantly
had sufficient main memory to avoid thrashing. Table 11 shows TLPLAN’s performance on
this test suite (run on our 128 MB machine). (TLPLAN had no difficulty completing much
larger problems than these while using less than 128 MB or RAM.) The results show that
the memory bottleneck was not a significant factor in our experiments: TLPLAN with this
control strategy remains significantly faster than BLACK BOX.

Finally, Fig. 7 compares the total number of actions in the plans generated by the three
planners. Again we see that TLPLAN is generating very good plans, as good as the other
two planners. These other planners both search for a plan incrementally, looking for shorter
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plans first. Hence, we would expect them to be generating relatively short plans. TLPLAN

employs no such strategy. It simply does a depth-first search. It is the control strategy
that stops “stupid” moves from being included in the plan. Similar results can be seen in
Table 11, where again TLPLAN is generating shorter plans than BLACK BOX. 42

7.4. Tire world

The tire world is another standard test domain due originally to Russell [47]. In this
domain the general task is to change a flat tire with a sequence of actions involving jacking
the wheel up, loosening and tightening nuts, etc. The branching factor in this domain is
large in the forward direction with 14 different operators. We wrote a control strategy for
this domain that included the following ideas:

(1) Only fetch an object from a container if you need it. This rule involved defining
predicates that determine, e.g., when one needs the wrench, the jack, the pump, etc.

(2) A number of rules to deal with the wheels and nuts:
• Don’t inflate a wheel unless it needs to be inflated.
• Don’t jack up a wheel unless it needs to be jacked up.
• Keep correctly placed wheels on their current hubs, and don’t place a wheel on

an incorrect hub.
• If a wheel needs to be removed from a hub, don’t undo any of the removal steps.
• Keep a hub jacked up until its wheel is on and the nuts are tight.
• Execute the actions for putting wheels on hubs and removing them from hubs in

a particular order.
(3) Only open containers that contain something you need.
(4) Don’t put away any objects until you don’t need them anymore.
(5) Keep containers open until you have removed everything you need and everything

that needs to be stored there has been returned.
Each of these rules is fairly intuitive, and their encoding as formulas ofLT is
straightforward (albeit lengthy).

With this control strategy we obtain the performance shown in Fig. 8. We designed a
suite of test problems that involved changing an increasing number of tires using one set of
tools. The data shows the planner solving problems in which the goal hasn literals (plotted
on thex-axis). Asn increases we need to increase the number of tires in order to generate
n different goal literals. Each data point shows the time required to solve the problem of
that size. The final problem (n= 74 involved changing 15 tires). The data also shows the
performance of the IPP and BLACK BOX planners on these problems.

Once again since we are generating plans using depth-first search we compare the length
of the generated plans in Fig. 9. The data shows that TLPLAN once again is able to achieve
exceptional performance once it is given an appropriate control strategy.

42 BLACK BOX employs a stochastic search for a plan once it has constructed a GRAPHPLAN graph ofk time
steps. Thus, even though a plan ofk time steps might exist it could fail to find it if its stochastic search runs out
of time.
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Fig. 8. Performance of TLPLAN and other planners in the tire world.

Fig. 9. Length of plans generated in the tire world.
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7.5. Schedule world

The schedule world involves scheduling a set of objects on various machines in order
to achieve various effects, e.g., shaping the object, painting it, polishing it, etc. Some of
the operations undo the effects of other operations, and sometimes make other operations
impossible. This domain has 8 operators, and when the number of objects climbs so does
the branching factor in the forward direction.

It is worth while noting that in this domain the actions are inherently concurrent. Every
machine can be run in parallel. This is not a problem for TLPLAN even though it explores
linear sequences of actions. In particular, the sequence of worlds we explore can have
whatever structure we choose, so a linear sequence of worlds need not correspond to a
linear sequence of times in the domain being modeled. In this domain we added a time
stamp to the world, the time stamp denotes the current time in the partial schedule. The
actions generate new worlds by scheduling currently unscheduled objects on currently
unscheduled machines (i.e., neither the object nor the machine can be marked as being
scheduled in the current time step). When no further scheduling actions are possible, or
desirable, there is an action that can increment the time stamp. This has the effect of making
all of the objects and machines available for scheduling (in the new current time step).43

In other words, TLPLAN explores a sequence of worlds in which there are a sequence of
scheduling actions that schedule a concurrent set of operations, followed by a time step,
followed by another sequence of scheduling actions that schedule the next set of concurrent
operations. Other types of concurrent actions can be modeled in this manner, e.g., we have
implemented a job-shop scheduling domain that solves the standard job-shop scheduling
problems using TLPLAN.

The performance of TLPLAN is shown in Fig. 10. The data shows the planner solving
problems where there aren objects andn randomly chosen properties involving those
objects to be achieved (a single object might be randomly selected to require more than
one property).n forms thex-axis. Each data point represents the average time required to
solve 10 random problems of that size. The graph also shows the performance of IPP in
this domain. The domain requires ADL-actions so we were unable to run BLACK BOX in
this test.

The control strategy used by TLPLAN included the following ideas:
(1) Never schedule an operation twice. This is a particularly simple scheduling domain

in which there is never a need to perform an operation twice: there is always a better
plan in which the operations are sequenced in such a manner that no needed effects
are undone.

(2) All scheduled operations must achieve at least one unachieved goal.
(3) Once a goal condition has been achieved do not allow it to be destroyed. In this

domain we never need to undo achieved goals.

43 There are two common versions of this domain, a much simplified one that first appeared in the UCPOP

distribution. The UCPOPversion discarded all notion of time, it simply computes what operations need to be run
on what objects. The original version that appeared in the PRODIGY distribution involves a nontrivial use of time.
We coded the PRODIGY version for our tests, both in TLPLAN and IPP, and ran this version in our experiments.
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Fig. 10. Performance of TLPLAN and IPP in the schedule world.

Fig. 11. Length of plans generated the schedule world.
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(4) Some ordering constraints on goal achievements:
• Rolling (to make an object cylindrical) destroys a number of things that can

never be reachieved after rolling (as the object’s temperature goes up). So prohibit
rolling if one of these conditions is a goal.
• Do any shaping operations prior to any surface conditioning operations, as these

destroy the surface condition.
• Do any grinding or lathing prior to painting, as these destroy the paint.

Fig. 11 shows the average number of actions in the plans generated by the two different
planners. Once again we see that the search control allows TLPLAN to construct good plans
using depth-first search. In this case TLPLAN is able to generate slightly shorter plans than
IPP. IPP employs a deterministic search for a plan on eachk-step GRAPHPLAN graph, so it
will find a plan that has shortest GRAPHPLAN parallel length.44 However, the plan it finds
might still include redundant actions (as long as the redundant actions can be executed in
parallel). In a similar manner however the plans found by TLPLAN need not be of shortest
parallel length. Plan length is at best a rough estimate of plan quality.

7.6. Bounded blocks world

Another interesting problem is the bounded blocks world in which the table has a limited
amount of space. It is easy to specify and plan in the bounded blocks world using TLPLAN.
However, none of the other standard domain-independentplanners can deal effectively with
resource constraints, even simple ones like this.45

In this domain, it is easier to use a single operator that simply moves blocks from one
location to another (thus avoiding the intermediate “holding” a block state present in the
blocks world specification used in Section 3). Table 12 gives the domain’s operator. In
this case the operator’s precondition is quite simple, we must move the object?x to a
new location, we cannot move the table, and if we move?x to the table there must be
space on the table. For this domain,table-space is a 0-ary described function that
must be specified in the initial state and must be properly updated by the operator. The
term (table-space) evaluates to the quantity of space on the table in the current
world (table-space= n means that there is space forn more blocks on the table), and
the precondition simply tests to ensure that there is space on the table if that is where we
intend on moving?x .

This gives an example of TLPLAN ability to handle functions. In particular, by adding
the equality predicate(add (= (table-space) (- (table-space) 1))) we
are specifying that the function(table-space) is to have the new value given by
its current value minus one. All terms inside of the add and deletes are evaluated in the
current world prior to being committed. The evaluator computes the value of the term
(- (table-space) 1) by looking up the current value of(table-space) and
subtracting 1 from it using the standard computed function ‘−’.

44 GRAPHPLAN graphs only handle a limited kind of action concurrency, so shortest GRAPHPLAN parallel
length need not be shortest parallel length.
45 HTN-style planners often have some facilities for dealing with resource constraints, e.g., [62].
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Table 12
The bounded blocks world operators

(def-adl-operator (puton ?x ?y)
(pre

(?x) (clear ?x)
(?y) (clear ?y)
(?z) (on ?x ?z)
(and

(not (= ?z ?y)) ;Don’t put it back where it came from
(not (= ?x ?y)) ;Can’t put a block on itself
(not (= ?x table)) ;Can’t move the table
(implies (= ?y table) ;can move to table only if

(> (table-space) 0)))) ;table has space.

(add (on ?x ?y))
(del (on ?x ?z))
(implies (= ?y table)

(add (= (table-space) (- (table-space) 1))))
(implies (= ?z table)

(add (= (table-space) (+ (table-space) 1))))
(implies (not (= ?y table))

(del (clear ?y)))
(implies (not (= ?z table))

(add (clear ?z))))

The conditional updates are specified using “implies”. In particular, since the evaluator
short-circuits the evaluation of formulas, the consequent of the implication (in this case the
adds and deletes) will not be executed if the antecedent evaluates toFALSE.

Fig. 12 illustrates the performance of TLPLAN in this domain. Each data point represents
the average time taken to solve 10 randomly generated bounded blocks problems, were
we have only 3 spaces on the table. The data shows that this domain, like the standard
blocks world, is very hard without domain-specific search control. There are two different
control strategies that can be easily specified for this domain. First, the meta-level notion
of a goodtowercontinues to be useful in this modified version of the blocks world. It has,
however, a slightly different realization. In particular, we may now need to dismantle a
tower of blocks to free some space on the table. We can define an appropriately modified
version ofgoodtoweras follows:

(def-defined-predicate (goodtower ?x)
;;Note this goodtower takes into account table space.
;;In particular, goodtowers must not occupy needed
;;tablespace.
(and

(clear ?x)
(if-then-else

(= ?x table)
;;then
(> (table-space) 0)
;;table is a goodtower if it has space.
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;;else
(goodtowerbelow ?x))))

(def-defined-predicate (goodtowerbelow ?x)
(or

(and (on ?x table) (goal (on ?x table)))
(and (on ?x table)

(not (exists (?y) (goal (on ?x ?y))))
(forall (?z) (goal (on ?z table)) (on ?z table)))

(exists (?y) (on ?x ?y)
(and

(not (goal (on ?x table)))
(not (goal (clear ?y)))
(forall (?z) (goal (on ?x ?z)) (= ?z ?y))
(forall (?z) (goal (on ?z ?y)) (= ?z ?x))
(goodtowerbelow ?y)))))

In this version, we classify the table as being agoodtowerif it can be stacked on (i.e., if
there is space). The main difference lies ingoodtowerbelow, where a block on the table
is a goodtowerif it needs to be on the table, or there is nowhere else it need be and all
other blocks that must be on the table are already there. In both of these cases the goal can
be achieved without moving that block from the table. The recursive case is just as in the
standardgoodtowerbelowgiven in Section 3.

Fig. 12. Search control in the bounded blocks world.
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Now we can define the following predicate:

(def-defined-predicate (can-move-to-final ?x)
;;we can move ?x to its final location when it has
;;a final location location and that final location is
;;a goodtower.
(and

(clear ?x)
(exists (?y) (goal (on ?x ?y))

(and
(not (on ?x ?y))
(goodtower ?y)))))

This predicate is true of a block when it can be moved to its final location. Withcan-
move-to-final we can define the following very simple control strategy:

(define bbw-control1
;;simple trigger control.
(always

(and
;;never destroy goodtowers.
(forall (?x) (clear ?x)

(implies (and (not (= ?x table)) (goodtower ?x))
(next (goodtowerbelow ?x))))

;;if a block exists that can be moved immediately,
;;move it.
(implies

(exists (?x) (clear ?x)
(can-move-to-final ?x))

(exists (?x) (clear ?x)
(and (can-move-to-final ?x)

(next (goodtower ?x)))))
)))

This control strategy is a simple “trigger” control. If we are at a state where a block can be
moved to its final location do so. Note that if there are multiple blocks that can be moved
to their final location the trigger (the existential condition) will remain active until all have
been moved. The choice of which block to move first is “non-deterministic”.46 The strat-
egy also involves the obvious of not dismantling towers that don’t need to be dismantled.

Fig. 12 shows that the trigger control is quite effective for small problems, and serves
to illustrate the fact that considerable gain can often be achieved with minor effort.
Nevertheless, although the trigger control knows what to do if it finds certain fortuitous
situations, it has no idea of how to achieve those fortuitous situations. Hence, as we increase
the size of the problems it becomes less and less useful.

A more complete strategy can also be written. This strategy is more complex, but it is
able to solve problems quite effectively without requiring any backtracking. Again the idea

46 Of course, the implementation picks the blocks in a particular order.
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is quite simple. The strategy has four components. The first two are taken from the previous
strategy.

(1) Never dismantle goodtowers.
(2) If there are blocks that can be moved to their final positions we pick one such block

and move it to its final position.
(3) If locations exists that can be stacked on (i.e., they are goodtowers that are waiting

for their next block) then we pick one such location and clear the block that is
intended to go there while keeping the location clear. Once the next block is clear
we are back to a situation where the previous rule applies: there is a block that can
be moved into its final location.

(4) If there are no clear locations that can be stacked on, we pick one such location and
clear it. Once we have achieved this we are in a situation where rule (3) applies.

To facilitate the implementation of this strategy we make the following definitions:

(def-defined-predicate (can-stack-on ?x) ()
;;this block is ready to be stacked on.
(and

(goodtower ?x)
(exists (?y) (goal (on ?y ?x))

(not (on ?y ?x)))))

(def-defined-function (depth ?x) ()
;;return the depth of location ?x

(if-then-else
(clear ?x)
;;then
(:= depth 0)
;;else
(exists (?y) (on ?y ?x)

(:= depth (+ 1 (depth ?y))))))

;;;A function to find a location that would become
;;;a can-stack-on location if it was clear.
;;;
(def-defined-function (find-can-stack-on-if-clear) ()

;;pick the table if that is possible
(or

(if-then-else
(and (= (table-space) 0)

(exists (?x) (goal (on ?x table))
(not (on ?x table))))

;;then return the table
(:= find-can-stack-on-if-clear table)
;;else return the top of a goodtower prefix
(exists (?x) (on ?x table)

(and (goodtowerbelow ?x)
(exists (?y) (= ?y (top-of-goodblocks ?x))

(and
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;;such that the tower is incomplete.
(exists (?z) (goal (on ?z ?y))

(not (on ?z ?y)))
(:= find-can-stack-on-if-clear ?y))))))

;;first clause fails, so no stackable location exists.
(:= find-can-stack-on-if-clear *NOSUCHLOCATION*)))

(def-defined-function (top-of-goodblocks ?x) ()
;;If we pass this function a block (which should be a block
;;that has a goodtower below it) it will examine the tower
;;above the block looking for the top of the longest good
;;tower above.

(if-then-else
(clear ?x)
;;if ?x is clear then it is the top of the goodtower
;;prefix.
(:= top-of-goodblocks ?x)
;;else there is a block on ?x
(exists (?y) (on ?y ?x)

(if-then-else
(and

(not (goal (on ?y table)))
(not (goal (clear ?x)))
(forall (?z) (goal (on ?y ?z)) (= ?z ?x))
(forall (?z) (goal (on ?z ?x)) (= ?z ?y)))

;;if the block on top does not violate any
;;goal on-relations, then recurse upwards.
(:= top-of-goodblocks (top-of-goodblocks ?y))
;;else stop at ?x.
(:= top-of-goodblocks ?x)))))

The predicatecan-stack-on is true of a location?x if that location is ready to be
stacked on; it is used to implement rule (3) of the strategy. The functiondepth has
already been explained. The functionfind-can-stack-on-if-clear is a function
that returns a location that once cleared can be stacked on; it is used to implement rule (4)
of the strategy. The function checks to see if the table is such a location (e.g., when we
have a tower of blocks that we have not yet started to build) and returns that if possible.
Otherwise it employs the recursive functiontop-of-goodblocks to find the top block
of a partly completed goodtower. If we can clear that top block we will once again have a
location that can be stacked on. One thing to notice in the functionfind-can-stack-
on-if-clear is the use of a functional binding of the existential variable?y in the line:

(exists (?y) (= ?y (top-of-goodblocks ?x))

This line specifies that the variable?y is to range over the set of objects that are equal to

(top-of-goodblocks ?x) .
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There is of course only one such object, and it is computed by evaluating the function (?x
has already been bound at this point).

With these definitions the second strategy can be specified as follows:

(define bbw-control2
;;more complex control

(always
(and

;;1. never destroy goodtowers.
(forall (?x) (clear ?x)

(implies (and (not (= ?x table)) (goodtower ?x))
(exists (?y) (on ?x ?y)

(next (on ?x ?y)))))

;;2. Immediate moves
(implies

;;if We can make an immediate move.
(exists (?x) (clear ?x)

(can-move-to-final ?x))
;;pick one and do it.
(exists (?x) (clear ?x)

(and (can-move-to-final ?x)
(next (goodtower ?x)))))

;;3. Clear a next block.
(if-then-else

;;if there is a stackable-location (including the table)
(exists (?x) (clear ?x)

(can-stack-on ?x))
;; then make progress towards uncovering the next block of
;; at least one such location. We do this by asserting
;; that there is one such block, and an unachieved
;; (on ?y ?x)
;; relation such that until we achieve it we decrease the
;; depth of ?y (i.e., we uncover ?y) while keeping ?x
;; clear.
(exists (?x) (clear ?x)

(and
(can-stack-on ?x)
;;Need also to pick the next block to clear as if ?x is
;;the table there could be more than one ‘‘next block’’
(exists (?y) (goal (on ?y ?x))

(and (not (on ?y ?x))
(until

(and
(can-stack-on ?x) ;;Keep ?x clear
(exists (?d) (= ?d (depth ?y)) ;;and decrease

(next (or (on ?y ?x) (< (depth ?y) ?d)))))
(on ?y ?x)))))) ;;?y’s depth the
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;;constraint
;;is active
;;until we
;;achieve
;;(on ?y ?x)

;;4. else we are either completed or we should pick
;;a location that once clear will become a can-stack-on
;;location and clear it. (This might include the table).

(exists (?loc) (= ?loc (find-can-stack-on-if-clear))
(or

(= ?loc *NOSUCHLOCATION*)
(exists (?x) (on ?x ?loc)

(and
(implies (= ?loc table) (not (goodtowerbelow ?x)))
(until

(exists (?d) (= ?d (depth ?x))
(next (or (can-stack-on ?loc)

(< (depth ?x) ?d))))
(can-stack-on ?loc))))))

))))

The specification is a fairly straightforward translation of the four components mentioned
above. There are two similar clauses in the strategy, the second one of which is

(until
(exists (?d) (= ?d (depth ?x))

(next (or (can-stack-on ?loc) (< (depth ?x) ?d))))
(can-stack-on ?loc))

where?x is on?loc .
This clause asserts a condition that must be true of every state until we reach a state

where(can-stack-on ?loc) . Its intent is to force the planner to uncover?x so that
we reach a state where we can clear it off?loc in one move. The formula is made a bit
cumbersome by the fact that?loc can be the table, thus we cannot simply force a decrease
in the depth of?loc —depth does not apply to the table.

The uncovering of?x is accomplished by asserting that every state, prior to the state
where(can-stack-on ?loc) , the depth of?x decreases. One thing to be careful
about, however, is that once we reach a state where?x is clear, its depth will not decrease
in the next state. Instead in the next state we remove?x from ?loc . Hence, we have the
disjunction as thenext condition.

This example shows that our approach can represent a wide range of control strategies.
In the previous examples the control strategies expressed obvious “myopic” information
about what was bad to do in various situations. The control strategy above is migrating
towards a domain-specific program, specifying (in a loose manner) an entire sequence of
activities. There are couple of points to be made about such complex strategies. First, our
data shows that simple strategies like the trigger strategy can offer a tremendous improve-
ment. So it could be that simple strategies are sufficient to solve the size of problems we are
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faced with. Second, from a pragmatic point of view there is no reason why a planner should
not be able to take advantage of a detailed domain-specific strategy if one is available.

8. Writing the control knowledge

The key issue raised in our approach is that of obtaining appropriate control knowledge.
The examples given in the previous section demonstrate that with the appropriate
knowledge we can obtain tremendous performance gains. However, these example
domains sometimes require quite lengthy control formulas. So the question arises as to
just how easy and practical it is to write the required control knowledge.47

We cannot provide any definitive answers to this question, at least not until a wider base
of users and domains have been examined. Nevertheless, we have a number of reasons for
believing that our approach is practical.

The most compelling evidence is anecdotal evidence from student projects. At the Uni-
versity of Waterloo we have used the TLPLAN system in an undergraduate AI course for
a number of years. This course is taught to 4th year undergraduates, and is generally their
first course in AI. Part of the course evaluation involves a project in which the students
implement a planning system for some domain using the TLPLAN system. A quite impres-
sive array of different domains have been implemented, and the students have been very
successful at writing effective search control knowledge in the formalism presented here.

For example, in one implementation a car pool planner was developed [56]. This domain
allows one to specify a number of locations (providing their(x, y) coordinates), people,
cars, and car capacities. There are operators for driving the car, for loading and unloading
passengers, deadlines for people’s arrival times, and the possibility of dropping passengers
at near by locations from which they can walk. The control formulas written by the student
included failure detection rules that terminate a plan prefix if a deadline is already missed;
rules to stop the car from being driven to useless locations; and always performing a pickup
or a dropoff at any location driven to. With this control knowledge the planner was able
to generate plans involving 50 steps in about 60 seconds. Most importantly, the control
knowledge was effective in pruning away over 80% of the worlds generated during search.

The second piece of evidence comes from the fact that we have found, both in the
domains we have implemented and also reflected in the student projects, that there is
considerable “reuse” of control knowledge. For example, in almost every transportation-
style domain (the car pooling domain is another example of a transportation-style domain)
control ideas that were developed for the logistics domain, like not moving vehicles to
irrelevant location and doing all of the necessary actions at a location prior to moving, can
be reused. Similarly, the idea of preserving a condition that it would be wasteful to destroy
is quite common in many domains: in the blocks world good towers are to be preserved
and in the tire domain we want to preserve having various tools until they are no longer

47 Ultimately we will of course like to develop mechanisms for automatically generating the appropriate control
knowledge. Research on various learning mechanisms and techniques for static domain analysis is ongoing.
However, since this research is currently preliminary, the system still requires the user to write good control
knowledge and hence the question of how easy it is to do this remains.
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required. In other words various widely applicable meta-control principles seem to exist.
Categorizing and formalizing such principles is an interesting topic for future research.

Finally, the last piece of evidence we can supply has to do with the fact that our ap-
proach supports a powerful incremental style of development. In particular, it is very easy
to modify the control formula and run the planner to determine the difference in perfor-
mance. Because the control formula has a compositional semantics, the changes are quite
modular. For example, if we add a new conjunct that new conjunct will not alter the prun-
ing achieved by the previous components of the formula. In this manner one can examine
the state sequences searched by the planner, often determine if these sequences are doing
something that can be avoided, and then modify the control formula to eliminate that be-
havior. This incremental improvement can be stopped at any time if the planner works well
enough for the problem sizes being contemplated. As shown in the previous section, often
simple control formulas can yield dramatic improvements.

9. Other approaches to utilizing domain information

Our work is by no means the first to suggest the use of domain-specific information in
planning. One of the longest traditions in AI planning has been work on HTN planning
[48,55,62], and more recently work has been done on formalizing the ideas on which HTN
planning is based [21]. HTN planning requires specifying much more information about
the planning domain than does classical planning. In particular, in addition to the primitive
operators the planner must be given a collection of tasks and task decompositions. These
tasks identify common sub-plans in the domain and their decompositions describe the var-
ious ways that these sub-plans can be solved. By working down from the top level task to
the primitive actions, HTN planners can avoid large parts of the search space. In particu-
lar, they will only explore the primitive action sequences that arise from some sequence of
task decompositions. Such a hierarchical arrangement can yield an exponential speedup in
search time.

The specified task decompositions provide the planner with search control knowledge.
In particular, the decompositions eliminate a large number of physically feasible primitive
action sequences, much like the search control formulas used in this work. This view of
HTN planners was made very clear by Barrett and Weld [8] who showed how the specified
task decompositions could be used to prune partially ordered plans composed of primitive
actions. The pruning was accomplished with a parsing algorithm.

The language and representation used by HTN planners for their control knowledge is
quite distinct from that suggested here, but both seem to be useful. Some pieces of con-
trol knowledge seem to be most naturally represented as a hierarchical decomposition of
tasks, while other pieces of knowledge seem to be most naturally expressed as information
about “bad state sequences” using our formalism. It would seem that there is scope for
both types of information, and an interesting topic for future research would be to examine
mechanisms for combining both types of information.

Another early planning system to take the issue of control information seriously was the
PRODIGY system [16]. PRODIGY employs search control rules, which act like an expert
system for guiding search. The PRODIGY approach to specifying control information has
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two main disadvantages. First, the approach is very hard to use. In particular, their control
rules required one to understand the planning algorithm, as many of the rules had to do
with algorithmic choices made by the algorithm. That is, unlike the approach presented
here, simple knowledge of the domain is not sufficient to write these control rules. And
second, although the control rules give some speedups, these speedups were not that great:
even with search control PRODIGY remains a relatively slow planner.

The blocks world illustrates these difficulties well. PRODIGY employed 11 rules for the
blocks world. For example, one of the rules is

(CONTROL-RULE SELECT-BINDINGS-UNSTACK-CLEAR
(if (and (current-goal (clear <y>))

(current-ops (UNSTACK))
(true-in-state (on <x> <y>))))

(then select bindings ((<ob> . <x>)
(<underob> . <y>))))

This rule says that if the planner is currently working on a goal of clearing a blocky, x
is ony in the current state, and it is currently considering regressing the goal through an
unstack operator, then it should select a specific binding for the unstack operator. Such
“binding” rules require the user to understand how the planner utilizes bindings during
planning search. The notion of a binding has nothing to do with the domain, rather it has
to do with the planning algorithm.

Another example is the rule

(CONTROL-RULE ARM-EMPTY-FIRST
(if (and (candidate-goal (arm-empty))

(true-in-state (holding <x>))))
(then select goal (arm-empty)))

This rule says that if the planner is considering the goal of having the robot have its hand
empty, and it is true in the current state that it is holding a blockx, then it should commit
to working on the goal hand empty. Again this rule requires that the user know about the
difference between a candidate goal and the current goal, and how this difference can affect
the planner’s operation.

Even with these 11 rules, PRODIGY was unable to solve any of our random blocks world
problems that involved more than 9 blocks (and it failed to solve 6 out of the 10 problems
involving 9 blocks).

On the other hand, PRODIGY’s rules were designed to be learned automatically, so per-
haps transparency is not such a critical issue. Nevertheless, current learning algorithms
have not yet reached the stage where they can generate truly effective control rules. This
often leaves the user of the system with no choice but to attempt to construct some control
rules by hand, and as indicated above this can be a very difficult task. A lot of innova-
tive work on learning and reasoning with planning domains has come out of the PRODIGY

project, but performance of the scale demonstrated by our approach has not been achieved.
There has also been some more recent work on utilizing domain-dependent control

knowledge by Srivastava and Kambhampati [52] and by Kautz and Selman [34]. Srivastava
and Kambhampati present a scheme for taking domain-specific information similar to that
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used by TLPLAN and using that information as input to a complex program synthesis
system. The end result is an semi-automatically constructed planning system that is
customized for that domain. For example, in the logistics domain some of the domain-
specific information they utilize includes:

(1) Planes should not make consecutive flights without loading or unloading a package.
(2) Once a package reaches its goal location it should not be moved.

The reader will recognize these rules as part of the domain information we encoded in
TLPLAN. In fact, TLPLAN’s representation is more general than that allowed by Srivastava
and Kambhampati, and all of the domain-specific information mentioned in their paper can
easily be encoded in the logic TLPLAN utilizes. Unlike TLPLAN however, their approach
requires a complex program synthesis step to make use of this information (a customized
planner must first be synthesized). In TLPLAN the control information is simply part of the
planner’s input. Furthermore, the empirical results presented in [52] show performance that
is orders of magnitude inferior to TLPLAN. For example, their customized planners took
about one minute each to solve the standard tire “fixit” problem, a 12 package logistics
problem, and a 14 block problem. TLPLAN takes 0.06 seconds to solve the tire fixit prob-
lem, about 3 seconds on average to solve 12 package logistics problems, and about 0.24
seconds on average to solve 14 block problems. Nevertheless, the methods they developed
for synthesizing customized planners demonstrate an interesting alternative approach to
utilizing domain-specific information.

Finally, Kautz and Selman [34] have recently investigated the use of domain-specific
information in their SATPLAN paradigm. Like us they have adopted an approach in
which the domain information is logically represented and is independent of the planner’s
operation. Specifically, they represent extra domain knowledge as additional propositional
clauses, and like us they have noticed that a state-based representation seems to be the most
promising for exploiting such knowledge. Their results are still preliminary, but show some
promise. In particular, they also show that speedups are possible, but do not attain a speedup
that is competitive with TLPLAN’s performance. The major hurdle that their approach
faces, if it is to be scaled up to the size of problems TLPLAN can handle, is the size of the
propositional theories it generates. More effective ways need to be found for dealing with
theories of this size or for incrementally simplifying these theories so that smaller theories
can be generated. For example, in our experiments we found that logistics problems with
16 packages generated theories containing more than 106 clauses and 105 variables. With
theories of this size even polynomial time processing takes a considerable amount of time.

10. Conclusions and future work

In this paper we have presented a rich representation for domain-specific control
knowledge and we have shown how such knowledge can be utilized by an AI planning
system to make planning more efficient. Our empirical evidence indicates that

(1) such information is available in many, if not most, domains and that
(2) with such information we can reach a new level of planning performance.

We believe that the size of problems TLPLAN can solve has never been approached before.
Given the success of this approach the natural and most pressing question becomes:

where does the control information come from? In this paper we have taken a pragmatic



F. Bacchus, F. Kabanza / Artificial Intelligence 116 (2000) 123–191 189

approach, and have assumed that it will come from the user just like the other forms of
knowledge the user needs to specify when developing a planning domain. Our empiri-
cal studies show that this is not an unreasonable approach, and that some form of control
knowledge is usually available. Nevertheless, it is equally clear that much of this knowl-
edge has a more abstract form—many of the domains have similar meta-level strategies.
Furthermore, it is also clear that some of this knowledge could be automatically derived
from the operator descriptions (in conjunction, perhaps, with the initial state). So an im-
portant area for future research will be to employ learning and reasoning techniques to
automatically generate this domain-specific knowledge. There is a considerable body of
work that can be built on in this area, e.g., [22,36,42,45]. The work by McDermott [40]
and Bonet et al. [14] can also be viewed in this light. In these works search heuristics are
computed dynamically during search. These heuristics try to estimate whether or not the
search is making progress towards the goal. Potentially, similar ideas could be used for the
off-line construction of search control formulas that provide the same effect as we obtain
with our use of theGOAL modality.

Another area in which work could be done is to develop ways in which the tempo-
ral logic developed here can be utilized to control other kinds of planning algorithms. It
should be relatively easy convert the temporal logic expressions into propositional logic
(once we have a fixed initial and goal state), and thus find ways to use our representation
in SATPLAN-based approaches.

Finally, we are actively working on methods for extending our approach beyond classi-
cal planning. The basic system already handles resources, but we still have empirical work
to do to test how effective it can be in domains that make heavy use of resource reasoning.
We have extended our approach to generate plans that satisfy temporally extended goals
[4]. Such goals generalize the safety and maintenance goals mentioned in [60]. And most
recently we have developed a STRIPS database approach to planning and sensing under
incomplete knowledge [5]. In future, work we plan to combine this with search control to
construct a planner capable of planning and sensing under incomplete knowledge.

11. On-line material

The TLPLAN planning system, all of the test suites, and the raw data collected in our
experiments is available via the web site http://www.cs.toronto.edu/˜fbacchus.
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