Search

CS 475

March 10, 2003

Search is an important part of our problem solving process. Practically, we search for a solution every time we try to solve a problem. Search is often needed when we do not have a step-by-step algorithm but we know what is a solution. Examples:

- **Travesing salesman** Given n cities, distance between every pair of two cities. A salesman needs to visit these cities, each at least one. Find for him a shortest route through the cities.

- **Knap-sack problem** Given n items, the weight and value of each item, and a knap-sack and its capacity. Find the most valuable way to pack the items into the knap-sack.

- **Navigation path** Find a path connecting the two points on a map for a robot.

- **SLD derivation** Given a goal g, find a SLD derivation for g.

Definition 0.1 Search is an enumeration of a set of potential partial solutions to a problem so that they can be checked to see if they truly are solutions, or could lead to a solutions.

To carry out a search, we need:

- A definition of a potential solution.
- A method of generating the potential solutions (hopefully in a clever way).
- A way to check whether a potential solution is a solution.

1 Graph Searching

Use to present general mechanism of searching. To solve a problem using search, we translate it into a graph searching problem and use the graph searching algorithms to solve it.

Definition 1.1 A graph consists of a set N of nodes and a set A of ordered pairs of nodes, called arcs.

Two possible ways to represent a problem as a graph:

- **State-space graph**: each node represents a state of the world and an arc represents changing from one state to another.

- **Problem-space graph**: each node represents a problem to be solved and an arc represents alternate decomposition of the problems.
Example:

- **State-space graph**: finding path for robot – each node is a location. The state of the world is the location of the robot.

- **Problem-space graph**: SLD resolution – each node is a goal. Connection from one node to the other represents that the second one is obtained from the other through a SLD resolution.

Node n_2 is a **neighbor** of n_1 if there is an arc from n_1 to n_2. That is, if $(n_1, n_2) \in A$. An arc may be labeled.

A **path** is a sequence of nodes $\langle n_0, n_1, ..., n_k \rangle$ such that $(n_{i+1}, n_i) \in A$.

A **cycle** is a nonempty path such that the end node is the same as the start node. A graph with out cycle is called **directed acyclic graph** or **DAG**.

Given a set of start nodes and goal nodes, a solution is a path from a start node to a goal node. (See example in the book: Fig. 4.2)

The **forward branching factor** of a node is the number of arcs going out from the node, and the **backward branching factor** of a node is the number of arcs going into form the node.

2 A Generic Searching Algorithm

Given a graph, the set of start nodes, and the set of goal nodes. A path between a start node and a goal node is a solution. Searching algorithms provide us a way to find a solution.

Idea: Incrementally explore paths from start nodes. Maintaining a **frontier** or **fringe** of paths from the start nodes that have been explored.

The algorithm:

Input: a graph,
a set of start nodes,
Boolean procedure `goal(n)` that tests if n is a goal node.

```plaintext
frontier := \{<s> : s is a start node\};

while frontier is not empty:
    select and remove path $<n_0, \ldots, n_k>$ from frontier;
    if `goal(nk)`
        return $<n_0, \ldots, n_k>$;
    for every neighbor $n$ of $nk$
        add $<n_0, \ldots, n_k, n>$ to frontier;
end while
```

2.1 Implementation

The algorithm returns an answer. We can implement it in such a way that when more answers are needed, the implementation will continue.

- Which value is selected from the frontier at each stage defines the search strategy.
• The neighbors defines the graph.
• is_goal defines what is a solution.

The implementation: we need following predicates:

• is_goal(N) – N is a goal
• neighbours(X,L) – the set of neighbors of X is L
• add_to_frontier(LN,F,NF) – add the list of nodes LN to the frontier F and create a new frontier NF
• select(N,F,NF) – select a node N from the frontier F and the remaining nodes of the frontier is NF
• search(F) – there exists a path from one element of the frontier to a goal node.

Example 1: The delivery robot.

The graph:

neighbours(o103,[ts,12d3,o109]).
neighbours(ts,[mail1]).
neighbours(mail1,[]).
neighbours(o109,[o111,o119]).
neighbours(o111,[]).
neighbours(o119,[storage,o123]).
neighbours(storage,[]).
neighbours(o123,[r123,o125]).
neighbours(o125,[]).
neighbours(12d1,[13d2,12d2]).
neighbours(12d2,[12d4]).
neighbours(12d3,[12d1,12d4]).
neighbours(12d4,[o109]).
neighbours(13d2,[13d3,13d1]).
neighbours(13d1,[13d3]).
neighbours(13d3,[]).
neighbours(r123,[]).

The goal: is_goal(r123).

search(F) :- select(N,F,F1), is_goal(N).
search(F) :- select(N,F,F1), neighbours(N,NF),
 add_to_frontier(NF,F1,F2),
 search(F2).

select(N,[N|F1],F1).

add_to_frontier(NF,F1,F2):- append(NF,F1,F2).

This implementation ignores the paths that lead to the goal. It only says that there exists a path from the frontier to a goal. To find the paths, we need to change the following:
• For each node \(N \) in the frontier we must store the path that leads to \(N \).

• When we add a node \(N_1 \) to the frontier because it is a neighbor of \(N_2 \), we add the path lead to \(N_2 \) by extending the path that leads to \(N_1 \) with \(N_2 \). This could be done by representing a path as a list and use the function ’append’.

• We need a second parameter that allows us to store the paths that lead to the goal.

• We need to change the checking of goal in the first clause because element of the frontier is now a path rather than a node. We should check for the last node of being a goal.

• We need to change the way we expand the frontier.

\[
\text{search(F,[N]):= select(N,F,_,is_good_path(N)).}
\]

\[
\text{search(F,[N|P]):= select(N,F,F1),}
\text{ last_of(N,Node), neighbours(Node,NF), create_path(N,NF,NN),}
\text{ add_to_frontier(NN,F1,F2),}
\text{ search(F2,P).}
\]

\[
\text{select(N,[N|F1],F1).}
\]

\[
\text{create_path(N, [], []).}
\]

\[
\text{create_path(N, [H|T], [H1|T1]):=}
\text{ append(N, [H], H1), create_path(N, T, T1).}
\]

\[
\text{is_good_path(P):= last_of(P, N), is_goal(N).}
\]

\[
\text{last_of([L], L).}
\]

\[
\text{last_of([H|T], L):= length(T) >= 1, last_of(T, L).}
\]

2.2 Cost

Associated cost to each arc by using atoms of the form

\[
\text{cost(o103,ts,8).}
\]
\[
\text{cost(o103,o109,12).}
\]

\[
\text{....}
\]

\text{add_to_frontier} \text{ can be modified so that the cost of each path in the frontier is attached to it as well.}

3 Blind Search Strategies

So far, we do not pay attention to the detail of how to select the next node when expand the frontier (the predicates \text{select} and \text{add_to_frontier}). The algorithm does not specify how they should be implemented. In our implementation, we use a list to store the frontier and always select the first element of the list. When we add new elements to the frontier, we put it to the end.

\text{Definition.} A \text{search strategy} specifies how \text{select} and \text{add_to_frontier} should be implemented.

\text{Definition.} A \text{blind search strategy} is a search strategy that does not take into account where the goal is.