Recap

- Database:
 - collection of data central to some enterprise that is managed by a Database Management System
 - reflection of the current state of the enterprise
 - constantly changes

Transaction

- Programs that execute to update the information stored in a database
 - Deposit money into bank account
 - Register for a course
 - Get approval for credit card use

Transaction Manager

- Responsible for the consistency of database
 - changes in the real-world are reflected correctly in the database
 - every time a real-world event happens, a transaction occurs to cause the corresponding changes in the database
- Definition: A transaction is an application program with special properties – see next slides – to guarantee it maintains database correctness

Properties of Transactions (ACID)

- Atomicity: ALL-or-NOTHING execution (a sequence of primitive commands that needs to be executed ALL or NONE).
- Isolation: No two transactions should be executed at the same time.
- Durability: Effects of a transaction can never be lost
- Consistency: Constraints are satisfied all the time

What should be stored in a database?
Examples of databases

• Airline reservation system
• Banking system
• Student registration system
• Supermarket
• Corporate record

Airline reservation system

• Data: Information about flights
 – Flight number, type of aircraft
 – Date, time, departure airport, arrival airport
 – Number of seats (1st, 2nd class if applicable)
 – Lists of itineraries, their reservation
 – Ticket prices, number of available seats
• Operations (Queries/Transactions):
 – Customer inquires about the availability of a flight, ticket for a flight
 – Customer makes a reservation
 – Customer cancels a reservation
• Properties:
 – Large number of transactions (very frequently)
 – Cannot be processed in batch mode (on-line transaction processing)
 – Concurrency required

Banking system

• Data: Account information
 – Customer information (name, address, accounts, balances)
 – Relationship between customers and accounts
• Operations (Queries/Transactions):
 – Customer inquires about the balance of one of its accounts
 – Customer makes a deposit
 – Customer withdraws
• Properties:
 – Large number of transactions (very frequently)
 – Cannot be processed in batch mode (on-line transaction processing)
 – Concurrency required
 – Recovering from failures

Student Registration System

• Data: Information about students and courses
 – Student information (name, address, SSN, status, major, minor, courses taken and grade, courses enrolled, balance, picture)
 – Course information (name, call number, number, credit hours, department, instructor, date and time, location, number of students)
• Operations (Queries/Transactions):
 – Students ask for a transcript, list of enrolled classes
 – Adding/Dropping classes
 – Prerequisites enforcement
• Properties:
 – Large number of transactions at the beginning and end of semester
 – Batch mode processing possible (better with on-line transaction processing)
 – Concurrency required

Databases (Now vs. Then)

• Relational model using SQL - high-level view of data
 – Older systems presented low-level view
• Might contain multimedia data
 – Older systems restricted to alphanumeric data
• On-line: database accessed at time of event
 – Older systems were off-line, batch

Databases (Now vs. Then)

• Concurrent - multiple transactions execute simultaneously
 – Older systems processed transactions sequentially
• Distributed computation - different parts of the application execute on different computers
 – Older systems were centralized
Databases (Now vs. Then)

- Distributed data - different parts of the data are stored in different databases on different computers
 - Older systems were centralized
- Heterogeneous - involves HW and SW modules from different manufacturers
 - Older systems were homogeneous
- Accessed by everyone (e.g., e-commerce)
 - Older systems restricted to trained personnel

Database (System) Requirements

- **High Availability**: on-line => must be operational while enterprise is functioning
- **High Reliability**: correctly tracks state, does not lose data, controlled concurrency
- **High Throughput**: many users => many transactions/sec
- **Low Response Time**: on-line => users are waiting

Requirements (cont.)

- **Long Lifetime**: complex systems are not easily replaced
 - Must be designed so they can be easily extended as the needs of the enterprise change
- **Security**: sensitive information must be carefully protected since system is accessible to many users
 - Authentication, authorization, encryption

People in Design, Implementation, and Maintenance of a Database

- **System Analyst** - specifies system using input from customer; provides complete description of functionality from customer’s and user’s point of view
- **Database Designer** - specifies structure of data that will be stored in database
- **Application Programmer** - implements application programs (transactions) that access data and support enterprise rules

People (cont.)

- **Database Administrator** - maintains database once system is operational: space allocation, performance optimization, database security
- **System Administrator** - maintains transaction processing system: monitors interconnection of HW and SW modules, deals with failures and congestion
Database System Studies

Design of databases
- how to design a database
- what should be stored
- which structure for the data
- what assumptions should be made
- how is the connection between data

Database programming
- how to write queries on the database
- how to use other capabilities of a DBMS in an application
- how is database programming combined with conventional programming

Database System Implementation
- how to build a DBMS (query processing, transaction processing, storage manager etc.)

This will not be discussed in this course.

Application of Database

Decision Support System (OLTP vs. OLAP)
- On-line Transaction Processing (OLTP)
 - Day-to-day handling of transactions that result from enterprise operation
 - Maintains correspondence between database state and enterprise state
- On-line Analytic Processing (OLAP)
 - Analysis of information in a database for the purpose of making management decisions
On-Line Analytical Processing

- Analyzes historical data (terabytes) using complex queries
- Due to volume of data and complexity of queries, OLAP often uses a data warehouse
- **Data Warehouse** - (offline) repository of historical data generated from OLTP or other sources
- **Data Mining** - use of warehouse data to discover relationships that might influence enterprise strategy

Exp – Airline reservation system

- **OLTP**
 - Event: customer A books tickets from ELP to NY; update database to reflect that event
- **OLAP**
 - During the last holiday season, how many customers fly from ELP to Dallas and NY?
- **Data Mining**
 - Are there any airports in which more than 50% of travelers from ELP need to change their flight?