ASet-Prolog: A-Prolog with Sets and Aggregates

Presented By

by

Veena S. Mellarkod

August 21, 2003
Structure

The talk is structured as follows:

- Language
- Implementation Details
- Future Work
ASet-Prolog

- ASet-Prolog is an extension of A-Prolog by sets and functions from sets to natural numbers (aggregates).

- There are 3 kinds of atoms in the language: \(r \) – atoms, \(s \) – atoms and \(f \) – atoms.
Atoms

r-atoms: regular atoms of A-Prolog.

s-atoms: expressions of the form,

\[\{ \overline{X} : p(\overline{X}) \} \subseteq \{ \overline{X} : q(\overline{X}) \} \]

f-atoms: expressions of the form,

\[t = f(\{ \overline{X} : p(\overline{X}) \}) \]

\(f \) can be card, sum, max, min etc.,
Programs

An ASet-Prolog program is a collection of rules of the form:

\[l_0 : - l_1, \ldots, l_m, \text{not } l_{m+1}, \ldots, \text{not } l_n. \]

where \(l_1, \ldots, l_n \) are arbitrary atoms and \(l_0 \) is either an \(r - \text{atom} \) or \(s - \text{atom} \) in ASet-Prolog.

Example:

\[\Pi_0 \left\{ \begin{array}{l}
 p(a), \ p(b), \\
 \{X : q(X)\} \subseteq \{X : p(X)\}.
\end{array} \right\} \]

Answer Sets:

\{ p(a), p(b) \}
\{ p(a), p(b), q(a) \}
\{ p(a), p(b), q(b) \}
\{ p(a), p(b), q(a), q(b) \}
Examples

\[\Pi_1 \begin{cases} p(a). \ p(b). \\ \{X : q(X)\} \subseteq \{X : p(X)\}. \\ :- \ T = \text{card}(\{X : q(X)\}), T \leq 1. \end{cases}\]

Answer Set: \{ p(a), p(b), q(a), q(b) \}

\[\Pi_2 \begin{cases} p(a). \ p(b). \ r(a). \\ s(a) :- \ {X : r(X)} \subseteq {X : p(X)}. \end{cases}\]

Answer Set: \{ p(a), p(b), r(a), s(a) \}
Semantics

Let S be a set of ground r-atoms in Σ_Π.

1. An r-atom l, in Σ_Π is true in S, if $l \in S$

2. An s-atom is true in S, if for any sequence \overline{x} of ground terms of Σ_Π, either

 • $p(\overline{x}) \notin S$ or

 • $q(\overline{x}) \in S$.

3. An f-atom is true in S, if value of the aggregate of the set $\{\overline{x} : p(\overline{x}) \in S\}$ is equal to t.
Answer Sets of ASet

Let S be a collection of ground r–atoms. $se(\Pi, S)$ is the program obtained by:

1. removing from Π all the rules whose bodies contain s–atoms or f–atoms not satisfied by S;

2. removing all remaining s–atoms and f–atoms from the bodies of the rules;

3. replacing rules of the form $l \leftarrow \Gamma$ where l is an s–atom not satisfied by S by rules $\leftarrow \Gamma$;

4. replacing the remaining rules of the form:
 \[\{x : p(x)\} \subseteq \{x : q(x)\} \leftarrow \Gamma\] by the rules
 \[p(t) \leftarrow \Gamma\] for each $p(t)$ from S.

S is an answer set of Π if it is an answer set of $se(\Pi, S)$.
Example

$$\prod_{3} \left\{ \begin{array}{l}
p(1), p(2), r(1).
q(a) : - \{X : p(X)\} \subseteq \{X : r(X)\}.
q(b) : - \{X : r(X)\} \subseteq \{X : p(X)\}.
q(c) : - T = card(\{X : r(X)\}), T > 1.
q(d) : - T = sum(\{X : r(X)\}), T = 1.
\{X : r(X)\} \subseteq \{X : p(X)\}.
\end{array} \right\}$$
Example Contd.

Let $S = \{p(1), p(2), r(1), q(b), q(d)\}$ then $se(\Pi_0, S)$ is:

$p(1). \ p(2). \ r(1).
q(b) : -
q(d) : -
r(1) : -$

S is a stable model of $se(\Pi_0, S)$.

Example Contd.

Let $S_1 = \{p(1), p(2), r(1), r(2), q(a), q(b), q(c)\}$ then $se(\Pi_0, S_1)$ is:

\[
p(1), p(2), r(1), q(a), q(b), q(c), r(1), r(2)
\]

S_1 is a stable model of $se(\Pi_0, S_1)$.
Example Contd.

Let $S_2 = \{p(1), p(2), r(1), q(a), q(c)\}$ then $se(\Pi_0, S_2)$ is:

$p(1). \ p(2). \ r(1).
q(b) : -$
$q(d) : -$
$r(1) : -$

S_2 is not a stable model of $se(\Pi_0, S_2)$.

Coloring of Graphs

Given a graph G defined by a set of facts of the form $\text{node}(X)$ and $\text{edge}(X,Y)$ and a set C of colors $\text{color}(\text{red}), \text{color}(\text{green})$ etc., The coloring problem can be represented by a program Π:

$$\{C : \text{colored}(X, C)\} \subseteq \{C : \text{color}(C)\} : - \text{node}(X).$$

$$:- N = \text{card}(\{C : \text{colored}(X, C)\}), N \neq 1.$$

$$:- \text{colored}(X, C), \text{colored}(Y, C), \text{edge}(X, Y).$$
Course Pre-requisites

Given a record of courses passed by a student s, as facts: passed(s,c1), passed(s, c2) and passed(s, c3) and a list of pre-requisites for each class as facts: prereq(c1,c4), prereq(c2,c4), and prereq(c4,c5), the rule that a student S is allowed to take class C if he passed all the pre-requisites for C and didn’t pass C yet, can be written as:

\[\text{can_take}(S, C) : - \]
\[\{X : \text{prereq}(X, C)\} \subseteq \{X : \text{passed}(S, X)\}, \]
\[\text{not passed}(S, C).\]
Sets and Choice Rules

An Smodels Program:

\[
\begin{align*}
&d_1(1). \\
&d_2(1). \quad d_2(2). \\
&\{p(X) : d_1(X)\}. \\
&\{p(X) : d_2(X)\}.
\end{align*}
\]

Stable Models of the Program:

\[
\begin{align*}
&\{\} \\
&\{p(1)\} \\
&\{p(2)\} \\
&\{p(1), p(2)\}
\end{align*}
\]
Sets and Choice Rules

An ASET-Prolog Program:

\[
\begin{align*}
&d_1(1). \\
&d_2(1). \quad d_2(2). \\
&\{X : p(X)\} \subseteq \{X : d_1(X)\}. \\
&\{X : p(X)\} \subseteq \{X : d_2(X)\}.
\end{align*}
\]

Answer sets of the Program:

\[
\begin{align*}
&\{\} \\
&\{p(1)\}
\end{align*}
\]
Difference between Sets and Choice Rules

Example:

\[\Pi \left\{ \begin{array}{l}
 d_1(1). d_2(2).
 a.
 \{X : p(X)\} \subseteq \{X : d_1(X)\} : - a.
 p(X) : - d_2(X).
\end{array} \right\} \]

ASet Returns: No Answer Set.

Smodels Returns:

\{ p(2), d2(2), d1(1), a \}
\{ p(2), p(1), d2(2), d1(1), a \}
Implementation Details

Improved Mary’s Implementation:

- any number of bound variables can be included in the sets.

- max and min aggregates

- sum, max and min of i^{th} bound variable.
Example

Given a record of scores obtained by each student in a course as: score(s1,56,c1), score(s2,98,c1), etc., We can find the average score of the class as:

\[
\text{average}(A, C) :\leftarrow \text{course}(C),
\]

\[
N = \text{card}(\{S, M : \text{score}(S, M, C)\}),
\]

\[
T = \text{sum}(\{M, S : \text{score}(S, M, C)\}),
\]

\[
A = T/N.
\]
A Motivating Example

\[q(0..100). \]

\[\{ X : p(X) \} \subseteq \{ X : q(X) \}. \]

\[a : - N = \text{sum}(\{ X : p(X) \}), N < 100. \]

The third rule will be grounded to get:

\[a : - 0 = \text{sum}(\{ X : p(X) \}). \]
\[: \]
\[a : - 99 = \text{sum}(\{ X : p(X) \}). \]

of which, only one rule is fired.
Another Example

\[q(0..100). \]

\[\{ X : p(X) \} \subseteq \{ X : q(X) \}. \]

\[ps\text{sum}(N) : - N = \text{sum}(\{ X : p(X) \}). \]
Implementation on Surya

currently, I am working implementing sets and aggregates on System Surya using these ideas.