Planning with Sensing Actions using 0-approximation

Chitta, Tuan, Xin
Department of Computer Science
Arizona State University
Action Representation

- A planning problem: P = (A, O, I, G) where
 - A: set of fluents; O: set of actions; I, G: initial and goal states
- Two types of actions: non-sensing & sensing actions
 - Non-sensing action a:
 - Precondition Pre_a: a set of fluent literals
 - Positive effects Add_a: a set of fluents
 - Negative effects Del_a: a set of fluents
 - Sensing action a:
 - Precondition Pre_a: a set of fluent literals and u-fluents u(f)
 - Sensing effects Sens_a: a set of fluents
- Example:
 Walk: Pre: ~near, Add: near
 Sense-lock: Pre: near, Sens: locked
Types of Goals and Plan

- Two types of goals:
 - Achievement goal: making some fluents true, some fluents false;
 - Find out goal: figure out what the value for some fluents;

- Conditional Plan:
 - An empty sequence of action, $[\]$, is a conditional plan;
 - If a is an action then a is a conditional plan;
 - If $c_1;\ldots; c_n$ ($n \geq 1$) are conditional plans and $\square 1, \ldots, \square n$ are conjunction of fluent literals (which are mutually exclusive but not necessarily exhaustive), then the following is a conditional plan:
 - Case
 - $\square 1 \in c_1$;
 -
 - $\square n \in c_n$;
 - If c_1, c_2 are conditional plans then $c_1; c_2$ is a conditional plan;
State Model in Progression Search

A brief reminder: (Chitta & Son AIJ’01)

- In A_k, a c-state is $<s, \square>$;
- An a-state is $\square = <T; F>$;
- Let $\square_1 = <T_1; F_1>$ and $\square_2 = <T_2; F_2>$ we define:
 - $\square_1 \subseteq \square_2$ if $T_1 \subseteq T_2$ and $F_1 \subseteq F_2$
 - $\square_1 \setminus \square_2$ denotes $T_1 \setminus T_2 \supseteq F_1 \setminus F_2$
 - For a set of fluents X:
 - $X \setminus <T; F>$ denotes $X \setminus T \supseteq F$
- f is true (resp. false) in \square if $f \in T$ (resp. F)
- f is unknown in \square if $f \in T \supseteq F$
State Model in Progression Search

- An a-state is \(\mathcal{A} = \langle T; F \rangle \);
- A planning problem P defines a state-space
 \[S = \langle \mathcal{A}, s_0, S_G, A(\cdot), \text{Progress}, c \rangle \]

where
- \(\mathcal{A} \) is a set of a-state \(\mathcal{A} = \langle T, F \rangle \);
- The initial state \(s_0 \) is the a-state I;
- The goal states are a-states \(S_G \) such that \(G \in S_G \);
- The actions \(a \in A(\cdot) \) are actions that are executable in \(s \);
- The progression function Progress maps a pair of a-states and actions into a-states or sets of a-states;
- All action cost \(c(a, \mathcal{A}) \) are 1.
Given an a-state $s = <T; F>$ and any action a, we say that a is executable in s if Pre_a holds in s.

A transition function $\text{Progress}(s; a)$ is defined as follows:

- if a is not executable in s then $\text{Progress}(s; a) = \emptyset$;
- if a is executable in s and a is a non-sensing action:
 $$\text{Progress}(s; a) = <T \setminus \text{Del}_a \uparrow \text{Add}_a; F \setminus \text{Add}_a \downarrow \text{Del}_a >$$
- if a is executable in s and a is a sensing action:
 $$\text{Progress}(s; a) = \{s' | s \in s' \text{ and } \text{Sens}_a \downarrow s = s' \downarrow \}$$
Extended Transition Function

The extended transition function of Progression, denoted by Progression*, which maps a pair of a-states and conditional plans into a-states, is defined as follows:

- Progression*(∅; []) = ∅.
- For an action a, Progression*(∅; a) = Progression(∅; a).
- For p is a plan of the form:
 - Case
 - Case 1: c1;
 -
 - Case n: cn...
 - Progression*(∅; p) = Progression*(∅; ci) if ⃗i holds in ∅
 - if none of ⃗i holds in ∅
 - For p = c1;c2 where c1 c2 are conditional plans
 - Progression*(∅; p) = Progression*(Progression*(∅,c1), c2)
 - Progression*(∅,p) = ∅ for every p.
State Model in Regression Search

- P defines a regression state-space
 \[S =<\mathcal{P}, s_0, S_g, A(.), \text{Regress}, c> \]

where:
- \(\mathcal{P} \) is a set of partial a-states \(\mathcal{P} = [T,F] \), where \(\Phi \) represents a set \(\Phi = \{<T', F'> | T \notin T' \text{ and } F \notin F'\} \) – extension set of \(\Phi \);
- The initial state \(s_0 \) is the partial a-state \(G \);
- The goal states are partial a-state \(\mathcal{P}_G \) such that \(I \notin \mathcal{P}_G \);
- The actions \(a \in A(\mathcal{P}) \) are actions that are applicable in \(\mathcal{P} \);
- The regression function \(\text{Regress} \) maps a pair of partial a-states (or sets of partial a-states) and actions into partial a-states;
- All action cost \(c(a, \mathcal{P}) \) are 1.
State Model in Regression Search Cont’d

Given a partial a-state $\mathcal{a} = [T; F]$.

- Let a be a non-sensing action. We say that a is applicable in \mathcal{a} if
 \[\text{Add}_a \neg T \neq \emptyset \text{ or } \text{Del}_a \neg F \neq \emptyset; \quad \text{Add}_a \neg F = \emptyset; \quad \text{Del}_a \neg T = \emptyset; \]
 \[\text{Pre}^+_a \neg F \rightarrow \text{Del}_a; \quad \text{and } \text{Pre}^-_a \neg T \rightarrow \text{Add}_a \]

- Let $\mathcal{a}_1; \ldots; \mathcal{a}_n$ be a set of distinct partial a-states which differ only on a subset of fluents s_a' sensed by a sensing action a, where $s_a' \in \text{Sens}_a$.
 \[n = 2^{\text{Isa'}} \text{, and } \text{Isa'} \text{ is the length of sense list of action } a. \]

- We say that a is applicable to $\{\mathcal{a}_1; \ldots; \mathcal{a}_n\}$ if
 \[\text{Pre}^+_a \mathcal{a}_i \neg F = \emptyset \quad \text{and } \text{Pre}^-_a \mathcal{a}_i \neg T = \emptyset, \text{ for any } i \]
State Model in Regression Search Cont’d

Given a partial a-state \(s = [T; F] \).

- For a non-sensing action, \(\text{Regress} \) maps a pair of a partial a-state and an action to another partial a-state:
 \[
 \text{Regress}(s; a) = [T \setminus \text{Add}_a \sqcup \text{Pre}_a^{+}; F \setminus \text{Del}_a \sqcup \text{Pre}_a^{-}]
 \]

- For a sensing action, \(\text{Regress} \) maps a set of partial a-states and an action to a partial a-state. For a sensing action \(a \) applicable in \(\{s_1; \ldots; s_n\} \); and any \(i \in \{1, \ldots, n\} \):
 \[
 \text{Regression}(\{s_1; \ldots; s_n\}; a) = [s_i; T \setminus \text{Sens}_{a'} \sqcup \text{Pre}_{a'}^{+}; F \setminus \text{Sens}_{a'} \sqcup \text{Pre}_{a'}^{-}]
 \]

- if \(a \) is not executable in \(s \) then \(\text{Regression}(s; a) = s \);
Extended Transition Function

The extended transition function of Regression, denoted by Regression*, which maps a pair of a-states and conditional plans into a-states, is defined as follows:

- Regression*(∅; []) = ∅.
- For a non-sensing action a, Regression*(∅; a) = Regression(∅; a).
- For a sensing action a and a set of partial a-states \(s_1; \ldots; s_n \), Regression*(\{\(s_1; \ldots; s_n \}; a) = Regression(\{\(s_1; \ldots; s_n \}; a).
- For \(p \) is a plan of the form:
 - Case
 - \(1 \) \(c_1 \);
 -
 - \(n \) \(c_n \). ...
 - Regression*(∅; p) = \{Regression*(∅; c_1); \ldots; Regression*(∅; c_n)\}
 where \(i \) is known to be true in Regression*(∅; c_i); (i = 1; \ldots; n).
- For \(p = c_1; c_2 \), where \(c_1; c_2 \) are conditional plans,
 - Regression*(∅; p) = Regression*(Regression*(∅; c_2); c_1);
- Regression*(∅; p) = ∅ for every plan \(p \).
A Small Example

Fluents: open, locked

Actions:

• push:
 • Prec+: {}
 • Prec-: {locked}
 • Add: {open}
 • Del: {}

• flip1:
 • Prec+: {locked}
 • Prec-: {}
 • Add: {}
 • Del: {locked}

• flip2:
 • Prec+: {}
 • Prec-: {locked}
 • Add: {locked}
 • Del: {}

• SenLock:
 • Prec+: {}
 • Prec-: {}
 • SenList: {lock}
Lemma 1 – Regression for Non-sensing actions

- For partial a-states \(s \) and \(s' \), and a non-sensing action \(a \),

\[
\text{Regression}(s; a) = s' \\
\text{implies} \\
\{\text{Progression}(s_1'; a); \ldots; \text{Progression}(s_n'; a)\} \\ \\
\text{where} \\
\{s_1', \ldots, s_n'\} \text{ is the extension of } s' \text{, and} \\
\{s_1^{''}, \ldots, s_m^{''}\} \text{ is the extension of } s'.
\]
Corollary

For partial a-states s and s', and a sequence of non-sensing actions $c = a_1; \ldots; a_n$,

$$\text{Regression}(s; c) = s'$$

implies

$$\{\text{Progression}(s''_1; c); \ldots; \text{Progression}(s''_m; c)\} \subseteq s'$$

where

$s'' = \{s'_1, \ldots, s'_k\}$ is the extension of s, and

$s''' = \{s''''_1, \ldots, s''''_m\}$ is the extension of s'.
Lemma 2 – Sensing Actions

For a set of partial a-states \{s_1, ..., s_n\} and a partial a-state \(s'\), and a sensing action \(a\),

\[
\text{Regression}(\{s_1, ..., s_n\}; a) = s' \\
\text{implies for every extension } s'' \text{ of } s', \\
\text{Progression}(s'', a) \models s'_{1} \quad \cdots \quad s'_{n}
\]

where

\(s'_{i}\) is the extension of \(s_i\) .
Lemma 3 -- Plans

- For a planning problem, given initial state I and goal states G, and a conditional plan c.
- Let $D = \text{Regression}^*(G; c)$,

$I \subseteq D$ implies

$\text{Progression}^*(I; c) \subseteq G_D$

where G_D is an extension of G.

where D is an extension of $D = \text{Regression}^*(G; c)$,
Algorithm on Regression

- S: partial a-state
- N: set of open nodes in search, each node is a partial a-state
- O: set of actions
- I: Initial state
- G: goal state

S := I; N := G;

Plan(I,N)
 - OldN := N;
 - if exists s ∈ N & I ⊆ s
 - then return s;
 - New := Regression(N,O);
 - N := N ∪ New
 - if N ≠ OldN then
 - Plan(I,N);
 - else
 - return Failure; //cannot regress further
Regression Algorithm Cont’d

Regression(N,O)
 M := empty;
 for each o ∈ O
 if(o is nonsensing action)
 select s ∈ N where o is applicable in s;
 s' = Regression(s,o);
 s'.action := s.action ▷ o;
 else
 select set S = {s1, ..., sn} of N where o is applicable in S;
 s' = Regress(S,o);
 s'.action := {s1.action + ... + sn.action} ▷ o;
 if s' ∈ M := M ▷ s';
 endForEach
 return M;

When a plan is found, a returned state will have all actions of a plan in backward order.
Fluents: open, locked
Actions:

• push:
 • Prec+: {}
 • Prec-: {locked}
 • Add: {open}
 • Del: {}

• flip1:
 • Prec+: {locked}
 • Prec-: {}
 • Add: {}
 • Del: {locked}

• flip2:
 • Prec+: {}
 • Prec-: {locked}
 • Add: {locked}
 • Del: {}

• SenLock:
 • Prec+: {}
 • Prec-: {}
 • SenList: {lock}
Future Work

- Heuristics: on-going
- Implementation