Revision Programming with Preferences

by

Inna Pivkina, Enrico Pontelli, Tran Cao Son
Outline

1. Basic concepts of revision programming (RP).

2. Two approaches to express preferences
 (a) Control program
 - Example
 - Syntax and Semantics
 - Properties
 (b) Soft revision rules with weights
 - Examples
 - Definitions
 - Implementation
Formalism for describing and enforcing constraints on databases

Database - a collection of atomic facts from some universe.

Revision rules
- specify constraints on a database,
- specify a preferred way to satisfy constraints.

Arbitrary initial database.

Justified revisions
- satisfy all constraints,
- all changes are justified by revision rules.
Basic concepts

- Revision literals: $in(a), out(a)$ ($a \in U$).
- Revision rules:

 $$in(a) \leftarrow in(a_1), \ldots, in(a_m), out(b_1), \ldots, out(b_n),$$
 \hfill \text{(in-rule)}

 $$out(a) \leftarrow in(a_1), \ldots, in(a_m), out(b_1), \ldots, out(b_n),$$
 \hfill \text{(out-rule)}

 where $a, a_i, b_i \in U$ ($1 \leq i \leq n$).
- Revision program - collection of revision rules.
Necessary change

- α^D - dual of a literal α. $\text{in}(a)^D = \text{out}(a)$, $\text{out}(a)^D = \text{in}(a)$.
- A set of literals is coherent if it does not contain a pair of dual literals.
- P – a revision program. The necessary change of P, $NC(P)$, is the least model of P, treated as a Horn program built of independent propositional atoms of the form $\text{in}(a)$ and $\text{out}(b)$.
- Coherent $NC(P)$ specifies a revision.

Example.

$P : \text{in}(Ann) \quad \leftarrow \quad NC(P) = \{\text{in}(Ann), \text{out}(Bob)\}$

$\text{out}(Bob) \quad \leftarrow \quad \text{in}(Ann)$

$\text{out}(Tom) \quad \leftarrow \quad \text{out}(Ann)$
Justified revisions

- Given a database I and a coherent set of literals L, define
 \[I \oplus L = (I \cup \{a: \text{in}(a) \in L\}) \setminus \{a: \text{out}(a) \in L\}. \]

- Inertia set for databases I, R:
 \[I(I, R) = \{\text{in}(a) : a \in I \cap R\} \cup \{\text{out}(a) : a \notin I \cup R\}. \]

- Reduct of P with respect to (I, R) (denoted $P_{I,R}$) – the revision program obtained from P by eliminating from the body of each rule in P all literals in $I(I, R)$.

- P - a revision program, I and R - databases. R is called a P-justified revision of I if $NC(P_{I,R})$ is coherent and $R = I \oplus NC(P_{I,R})$.
Example

\[P : \]

\begin{align*}
& \text{in}(Ann) \leftarrow \text{out}(Bob) \\
& \text{in}(Bob) \leftarrow \text{out}(Ann) \\
& \text{in}(David) \leftarrow \text{in}(Tom) \\
& \text{out}(Tom) \leftarrow \text{out}(David) \\
& \text{out}(Ann) \leftarrow \text{in}(David) \\
& \text{out}(David) \leftarrow \text{in}(Bob)
\end{align*}

\[P_{I,R} : \]

\begin{align*}
& \text{in}(Ann) \leftarrow \text{out}(Bob) \\
& \text{in}(Bob) \leftarrow \\
& \text{in}(David) \leftarrow \text{in}(Tom) \\
& \text{out}(Tom) \leftarrow \text{out}(David) \\
& \text{out}(Ann) \leftarrow \text{in}(David) \\
& \text{out}(David) \leftarrow \text{in}(Bob)
\end{align*}

Initial database: \(I = \{David, Tom\}. \)

Revision: \(R = \{Bob\}. \)

Inertia (no justification is needed): \(\text{out}(Ann). \)

Necessary change: \(\text{in}(Bob), \text{out}(David), \text{out}(Tom). \)

Updating \(I: \) \((I \cup \{Bob\}) \setminus \{David, Tom\}. \)
Basic properties

1. If a database R is a P-justified revision of I, then R is a model of P.

2. If a database B satisfies a revision program P then B is a unique P-justified revision of itself.

3. If R is a P-justified revision of I, then $R \div I$ is minimal in the family $\{B \div I : B$ is a model of $P\}$.
Relation to Logic Programming

P-justified revisions of \emptyset coinside with stable models of the logic program with constraints, $lp(P)$, obtained from P by replacing revision rules of the form

\[in(a) \leftarrow in(a_1), \ldots, in(a_m), out(b_1), \ldots, out(b_n) \]

by

\[a \leftarrow a_1, \ldots, a_m, \neg b_1, \ldots, \neg b_n \]

and replacing revision rules of the form

\[out(a) \leftarrow in(a_1), \ldots, in(a_m), out(b_1), \ldots, out(b_n) \]

by constraints

\[\leftarrow a, a_1, \ldots, a_m, \neg b_1, \ldots, \neg b_n. \]
Shifting

$I \subseteq J$

$W = I \div J = (I \setminus J) \cup (J \setminus I)$

W - a set of atoms that change status

Define a W-transformation (shift) as follows.

For a literal α ($\alpha = in(a)$ or $\alpha = out(a)$), $T_W(\alpha) = \begin{cases} \alpha^D, & \text{when } a \in W \\ \alpha, & \text{when } a \notin W. \end{cases}$

For a set of literals L, $T_W(L) = \{ T_W(\alpha) : \alpha \in L \}$.

For a set of atoms X, $T_W(X) = \{ a : in(a) \in T_W(\{ in(b) : b \in X \} \cup \{ out(b) : b \notin X \}) \}$.

For a revision program P, $T_W(P)$ is obtained from P by applying T_W to each literal in P.
Shifting theorem

For any databases I_1 and I_2, database R is a P-justified revision of I_1 if and only if $T_{I_1} \div I_2(R)$ is a $T_{I_1} \div I_2(P)$-justified revision of I_2.

Corollary. For each I and R, R is P-justified revision of I if and only if $T_I(R)$ is $T_I(P)$-justified revision of \emptyset.
Computing justified revisions

by means of LP

1. Given P and I, apply T_I to obtain $T_I(P)$ and \emptyset.
2. Convert $T_I(P)$ into the logic program $lp(T_I(P))$.
3. Compute its answer sets.
4. Apply T_I to the answer sets to obtain the P-justified revisions of I.
A robot is equipped with sensors which provide observations:

\[\text{observation}(Par, Value, Sensor) \]

View of the world has exactly one value for each parameter:

\[\text{world}(Par, Value, Sensor) \]

RP updates the view of the world, consists of rules of types:

\[\text{in}(\text{observation}(Par, Value, Sensor)) \leftarrow \]

\[\text{in}(\text{world}(Par, Value, Sensor)) \leftarrow \text{in}(\text{observation}(Par, Value, Sensor)). \]

\[\text{out}(\text{world}(Par, Value, Sensor)) \leftarrow \text{in}(\text{world}(Par, Value1, Sensor1)). \]

(\text{where Sensor} \neq \text{Sensor1} \text{ and/or Value} \neq \text{Value1})
An ordered revision program is a pair \((P, \mathcal{L})\) where \(\mathcal{L}\) is a function which assigns to revision rules in \(P\) unique labels. \(\mathcal{L}(P)\) - set of labels in \(P\).

\[
l : \alpha_0 \leftarrow \alpha_1, \ldots, \alpha_n
\]

A preference on rules in \((P, \mathcal{L})\) is an expression of the form

\[
\text{prefer}(l_1, l_2) \leftarrow \text{initially}(\alpha_1, \ldots, \alpha_k), \alpha_{k+1}, \ldots, \alpha_n,
\]

where \(l_i\) are labels, \(\alpha_j\) are revision literals.

A revision program with preferences is a triple \((P, \mathcal{L}, S)\), where \((P, \mathcal{L})\) is an ordered revision program and \(S\) is a set of preferences on rules in \((P, \mathcal{L})\).

\(S\) - the control program.
\((P, \mathcal{L}, S)\) is translated into ordinary RP:

\[U^{\mathcal{L}(P)} = U \cup \{\text{ok}(l), \text{defeated}(l), \text{prefer}(l, l') : l, l' \in \mathcal{L}(P)\} \]

Define \(P^{S,I}\) over \(U^{\mathcal{L}(P)}\) to be a revision program consisting of rules:

- for each \(l \in \mathcal{L}(P)\)

 \[
 \begin{align*}
 \text{head}(l) & \leftarrow \text{body}(l), \text{in}(\text{ok}(l)) \\
 \text{in}(\text{ok}(l)) & \leftarrow \text{out}(\text{defeated}(l))
 \end{align*}
 \]

- for each preference

 \[
 \text{prefer}(l_1, l_2) \leftarrow \text{initially}(\alpha_1, \ldots, \alpha_k), \alpha_{k+1}, \ldots, \alpha_n,
 \]

 in \(S\) such that \(\alpha_1 \ldots, \alpha_k\) are satisfied by \(I\)

 \[
 \begin{align*}
 \text{in}(\text{prefer}(l_1, l_2)) & \leftarrow \alpha_{k+1}, \ldots, \alpha_n \\
 \text{in}(\text{defeated}(l_2)) & \leftarrow \text{body}(l_1), \text{in}(\text{prefer}(l_1, l_2))
 \end{align*}
 \]
(\(P, \mathcal{L}, S\))-justified revisions

A database \(R\) is a \((P, \mathcal{L}, S)\)-justified revision of \(I\) if there exists \(R' \subseteq U^\mathcal{L}(P)\) such that \(R'\) is a \(P^S,I\)-justified revision of \(I\), and \(R = R' \cap U\).
Properties

- Justified revision semantics for revision programs with preferences extends justified revision semantics for ordinary revision programs
- Shifting property holds
- Not every \((P, \mathcal{L}, S)\)-justified revision is a model of \(P\)
When \((P, L, S)\)-justified revisions are models of \(P\)?

Two rules \(r, r'\) of \(P\) are in conflict if one of the following conditions is satisfied:

1. \((\text{head}(r))^D \in \text{body}(r')\) and \((\text{head}(r'))^D \in \text{body}(r)\); or

2. \(\text{body}(r) \cup \text{body}(r')\) is incoherent.

A set of preferences is conflict-resolving if it contains only preferences between conflicting rules.

Theorem. Let \((P, L, S)\) be a revision program with preferences where \(S\) is a set of conflict-resolving preferences and is cycle-free. For every \((P, L, S)\)-justified revision \(R\) of \(I\), \(R\) is a model of \(P\).
Soft revision rules with weights

Revision program is divided into hard and soft rules: \(P = HR \cup SR \)

All hard rules must be satisfied.

Only a subset of soft rules may be satisfied.

The subset of soft rules that is satisfied is optimal with respect to some criteria.
Maximal number of rules

Definition 1 \(R \) is a \((HR, SR)\)-preferred justified revision of \(I \) if \(R \) is a \((HR \cup S)\) - justified revision of \(I \) for some \(S \subseteq SR \), and for all \(S' \) if \(S \subseteq S' \subseteq SR \), then there are no \((HR \cup S')\)-justified revisions of \(I \).
For each I, translate $P = HR \cup SR$ into an smodels program $lp(T_I(HR)) \cup lp'(T_I(SR))$.

lp' translates a rule

$$in(a) \leftarrow in(p_1), \ldots, in(p_m), out(s_1), \ldots, out(s_n)$$

into the rules

$$\{rule_i\} : - p_1, \ldots, p_m, not s_1, \ldots, not s_n.$$

$$a : - rule_i$$

lp' translates a rule

$$out(a) \leftarrow in(p_1), \ldots, in(p_m), out(s_1), \ldots, out(s_n)$$

into the rules

$$\{rule_i\} : - p_1, \ldots, p_m, not s_1, \ldots, not s_n.$$

$$: - rule_i, a.$$
Implementation, cont’d

smodels statement

\texttt{maximize\{rule_1, \ldots, rule_k\}.}

$(k$ is the number of rules in $SR)$

allows to compute one (not all) (HR, SR)-preferred justified revision, which has max size.
Weighted rules

Each \(r \in SR \) is assigned a weight, \(w(r) \) (its importance).

Definition 2 \(R \) is called a rule-weighted \((HR, SR) \)-justified revision of \(I \) if the following two conditions are satisfied:

1. there exists a set of rules \(S \subseteq SR \) such that \(R \) is a \((HR \cup S) \)-justified revision of \(I \), and

2. for any set of rules \(S' \subseteq SR \), if \(R' \) is a \((HR \cup S') \)-justified revision of \(I \), then the sum of weights of rules in \(S' \) is less than or equal than the sum of weights of rules in \(S \).
Implementation

Same translation of soft rules into smodels program, but different maximize statement:

\[
\text{maximize}[\text{rule}_1 = w(1), \text{rule}_2 = w(2), \ldots, \text{rule}_k = w(k)].
\]
Weighted atoms.

Each \(a \in U \) is assigned a weight \(w(a) \)
(the more the weight the less we want to change its status)

Definition 3 \(R \) is called an atom-weighted \((HR, SR)\)-justified revision of \(I \) if
the following two conditions are satisfied:

1. there exists a set of rules \(S \subseteq SR \) such that \(R \) is a \((HR \cup S)\)-justified
 revision of \(I \), and

2. for any set of rules \(S' \subseteq SR \), if \(Q \) is a \((HR \cup S')\)-justified revision of \(I \),
 then the sum of weights of atoms in \(I \div Q \) is greater than or equal to the
 sum of weights of atoms in \(I \div R \).
Implementation

Same translation of soft rules into `smodels` program, but different `maximize` statement:

\[
\text{minimize}[a_1 = w(a_1), a_2 = w(a_2), \ldots, a_n = w(a_n)]
\]

where \(a_1, \ldots, a_n\) are all the atoms in \(U\).
Definition 4 \(R \) is called a minimal size difference \(P \)-justified revision of \(I \) if the following two conditions are satisfied:

1. \(R \) is a \(P \)-justified revision of \(I \), and

2. for any \(P \)-justified revision \(R' \), the number of atoms in \(R \div I \) is less than or equal to the number of atoms in \(R' \div I \).
Implementation

Use minimize statement:

\[
\text{minimize}\{a_1, a_2, \ldots, a_n\}
\]

where \(a_1, \ldots, a_n\) are all the atoms in \(U\).