Domain-Dependent Knowledge in Answer Set Planning
The Block World Experiment
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In the block world domain, given stacks of blocks on an infinite table, we need to find plans for a robot
hand to move the blocks into a desired arrangement. The fluents in the domain and their meanings are
described as follows.

on(X,Y) - block X is on block Y.
on(X,table) - block X is on the table.
clear(X) - block X is clear, that is, there is no block on X.

holding(X) - block X is being held in the robot hand.

There are three actions in the domain as follows.

take(X) - block X is picked up.

e placeOn(Y) - the block held in the robot hand is put on block Y.

e placeOn(table) - the block held in the robot hand is put on the table.

The domain description includes the following propositions.

,

causes(take(X), “handempty, {})
causes(take(X), ~clear(X),{})

causes(take(X), holding(X), {})
causes(take(X), clear(Y), {on(X,Y)})
causes(take(X), 7on(X,Y),{on(X,Y)})
causes(placeOn(Y"), handempty, {})
causes(placeOn(Y), clear(X), {holding(X)})
causes(placeOn(Y), —holding(X), {holding(X)})
causes(placeOn(Y), ~clear(Y),{})
causes(placeOn(Y),on(X,Y), {holding(X)})
executable(take(X), {clear(X), handempty})
executable(placeOn(Y), {clear(Y), —handempty})
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In the above propositions, X denotes a block, Y denotes a block or the table. Again, a proposition with
variables denotes the set of its ground instances. Let G is the set of goal block positions, that is, G =
{on(X,Y)|X ison Y in the goal state }. We define the following procedural control knowledge for the blocks
world domain:



(control : while (—goal) do (build|remove))
(build : pick((X,Y), Block?, buid_good_tower(X,Y))
(remove : pick(Z, Block,remove_bad_block(Z))
S =< (build_good_tower(X,Y) : if (good_tower(Y) A -on(X,Y) A clear(X))
then (take(X);placeOn(Y))) else null
(remove_bad_block(Z) : if (to_be_clear(Y) A on_top(Z,Y))
then (take(Z);placeOn(table))) else null

\

where Block denotes the set of all block constants and Block? denotes the set of all pairs of block constants
and goal, good_tower(X), to_be_clear(Y), on_top(Z,Y’) are formula names. The formulae associated to them
are defined below!.

goal Non(x,vyeq o(X,Y)

good_tower(X) def ((on(X,table) € G) A on(X, table))
V(@AY : (on(X,Y) € G) Aon(X,Y) A good_tower(Y'))

to_be_clear(X) def right_place_but_blocked(X) \/ to_move_but_blocked(X)
\/ to_move_onto_table(X)

right_place_but_blocked(X) def good_tower(X) A —clear(X) A(VY : on(Y,X) € G = -on(Y, X))
to-move_but_blocked(X) def (Y : (on(X,Y) € G) A good_tower(Y') A clear(Y))
N\ —clear(X) \ —holding(X)
to_move_onto_table(X) def (on(X, table) € G) A\ —on(X,table) \ —clear(X) \ —holding(X)
on_top(X,Y) def above(X,Y) A clear(X)
above(X,Y) def on(X,Y)V(3Z : block(Z) A above(X, Z), above(Z,Y))

Intuitively, goal becomes true once all the blocks are in their goal positions; good_tower(X) is true when
X and all the blocks under X (in the same tower) are in the goal positions; to_-be_clear(X) says that block
X must become clear; right_place_but_blocked(X) means the block on X is blocking some block Y from
achieving the goal position on(Y, X); to_move_but_blocked(X) (or to_move_onto_table(X)) says that X can
not move to its goal position on(X,Y) (or on(X,table)) although Y (or the table) is clear; on_top(X,Y)
states that block X is the top block of the tower containing Y; above(X,Y) is true if X and Y are in the
same tower where X lies above Y.

Again, we run the program with and without the control knowledge. We ran our experiment under Windows
XP on a desktop with 256Mb RAM and an Intel Celeron 2.2 GHz processor, using lparse version 1.0.4
(Windows, build Apr 5, 2001) and smodels version 2.26. The results are described in the following table.

1For easy of reading, we write the formulae using the conventional operators such as A,V,=> etc. The left hand side of an

. def ,, . . . . .
expression “. = .” is the name assigned to the formula on the right hand side of the expression.



Problem | With Control Knowledge | Without Control Knowledge
Length Time Length Time
4-0 6 0.313 12 0.531
4-1 10 0.312 10 0.421
4-2 6 0.313 12 0.547
5-0 12 0.641 16 1.562
5-1 10 0.671 16 1.343
5-2 16 0.671 16 0.889
6-0 12 1.156 20 5.296
6-1 10 1.156 20 6.062
6-2 20 1.156 20 4.905
7-0 20 1.984 24 64.078
7-1 22 1.952 24 110.281
7-2 20 1.999 24 57.343
8-0 18 3.045 28 34.795
81 20 3.046 28 417.437
8-2 16 3.141 28 1060.515
90 30 4578 n/a n/a
9-1 28 4.64 n/a n/a
9-2 26 4.499 n/a n/a
10-2 34 6.578 n/a n/a
11-0 32 9.141 n/a n/a
11-1 30 9.313 n/a n/a
11-2 34 9.217 n/a n/a
12-0 34 12.202 n/a n/a
12-1 34 12.921 n/a n/a
13-0 42 17.578 n/a n/a
13-1 44 17.313 n/a n/a
14-0 38 21.343 n/a n/a
14-1 36 22.421 n/a n/a
15-0 40 27.265 n/a n/a
15-1 52 28.547 n/a n/a
16-1 54 36.843 n/a n/a
16-2 52 36.39 n/a n/a
17-0 46 45.171 n/a n/a

We can see from the table that in the experiment, planning with control knowledge yield better time per-
formance as well as plan quality. For each of the problems from number 9-0 to number 17-0, the smodels
program did not return after 2 hours and we decided to abort in these case.



