

Sets, Functions, and Domains

Functions are fundamental to denotational semantics. This chapter introduces functions
through set theory, which provides a precise yet intuitive formulation. In addition, the con-
cepts of set theory form a foundation for the theory of semantic domains, the value spaces
used for giving meaning to languages. We examine the basic principles of sets, functions, and
domains in turn.

2.1 SETS __

A set is a collection; it can contain numbers, persons, other sets, or (almost) anything one
wishes. Most of the examples in this book use numbers and sets of numbers as the members
of sets. Like any concept, a set needs a representation so that it can be written down. Braces
are used to enclose the members of a set. Thus, { 1, 4, 7 } represents the set containing the
numbers 1, 4, and 7. These are also sets:

{ 1, { 1, 4, 7 }, 4 }

{ red, yellow, grey }

{ }

The last example is the empty set, the set with no members, also written as ∅ .
When a set has a large number of members, it is more convenient to specify the condi-

tions for membership than to write all the members. A set S can be defined by S= { x | P(x) },
which says that an object a belongs to S iff (if and only if) a has property P, that is, P(a) holds
true. For example, let P be the property ‘‘is an even integer.’’ Then { x | x is an even integer }
defines the set of even integers, an infinite set. Note that ∅ can be defined as the set
{ x | x≠x }. Two sets R and S are equivalent, written R = S, if they have the same members.
For example, { 1, 4, 7 } = { 4, 7, 1 }.

20

2.1 Sets 21

These sets are often used in mathematics and computing:

1. Natural numbers: IN = { 0, 1, 2, . . . }
2. Integers: Z| = { . . . , −2, −1, 0, 1, 2, . . . }
3. Rational numbers: Q| = { x | for p∈ Z| and q∈ Z| , q ≠ 0, x= p/q }
4. Real numbers: IR = { x | x is a point on the line

−2 −1 0 1 2

}
5. Characters: C| = { x | x is a character}
6. Truth values (Booleans): IB = { true, false }

The concept of membership is central to set theory. We write x∈ S to assert that x is a
member of set S. The membership test provides an alternate way of looking at sets. In the
above examples, the internal structure of sets was revealed by ‘‘looking inside the braces’’ to
see all the members inside. An external view treats a set S as a closed, mysterious object to
which we can only ask questions about membership. For example, ‘‘does 1∈ S hold?,’’ ‘‘does
4∈ S hold?,’’ and so on. The internal structure of a set isn’t even important, as long as
membership questions can be answered. To tie these two views together, set theory supports
the extensionality principle: a set R is equivalent to a set S iff they answer the same on all
tests concerning membership:

R= S if and only if, for all x, x∈ R holds iff x∈ S holds

Here are some examples using membership:

1∈ { 1, 4, 7 } holds
{1} ∈ { 1, 4, 7 } does not hold
{1} ∈ { {1}, 4, 7 } holds

The extensionality principle implies the following equivalences:

{ 1, 4, 7 } = { 4, 1, 7 }

{ 1, 4, 7 } = { 4, 1, 7, 4 }

A set R is a subset of a set S if every member of R belongs to S:

R⊆ S if and only if, for all x, x∈ R implies x∈ S

For example,

{1}⊆ { 1, 4, 7 }

{ 1, 4, 7 }⊆ { 1, 4, 7 }

{ }⊆ { 1, 4, 7 }

all hold true but {1} ⊆/ { {1}, 4, 7 }.

22 Sets, Functions, and Domains

2.1.1 Constructions on Sets __

The simplest way to build a new set from two existing ones is to union them together; we
write R∪ S to denote the set that contains the members of R and S and no more. We can define
set union in terms of membership:

for all x, x∈ R∪ S if and only if x∈ R or x∈ S

Here are some examples:

{ 1, 2 } ∪ { 1, 4, 7 } = { 1, 2, 4, 7 }

{ } ∪ { 1, 2 } = { 1, 2 }

{ { } } ∪ { 1, 2 } = { { }, 1, 2 }

The union operation is commutative and associative; that is, R∪ S = S∪ R and
(R∪ S) ∪ T = R ∪ (S∪ T). The concept of union can be extended to join an arbitrary number of

sets. If R0 , R1 , R2 , . . . is an infinite sequence of sets,
 i=0
∪
 ∞

 Ri stands for their union. For exam-

ple, Z| =
 i=0
∪
 ∞

 { −i, . . . ,−1, 0, 1, . . . , i } shows how the infinite union construction can build an

infinite set from a group of finite ones.
Similarly, the intersection of sets R and S, R∩ S, is the set that contains only members

common to both R and S:

for all x, x∈ R∩ S if and only if x∈ R and x∈ S

Intersection is also commutative and associative.
An important concept that can be defined in terms of sets (though it is not done here) is

the ordered pair. For two objects x and y, their pairing is written (x,y). Ordered pairs are use-
ful because of the indexing operations fst and snd, defined such that:

fst(x,y) = x
snd(x,y) = y

Two ordered pairs P and Q are equivalent iff fst P = fst Q and snd P = snd Q. Pairing is useful
for defining another set construction, the product construction. For sets R and S, their product
R× S is the set of all pairs built from R and S:

R× S = { (x,y) | x∈ R and y∈ S }

Both pairing and products can be generalized from their binary formats to n-tuples and n-
products.

A form of union construction on sets that keeps the members of the respective sets R and
S separate is called disjoint union (or sometimes, sum):

R+ S = { (zero, x) | x∈ R } ∪ { (one, y) | y∈ S }

Ordered pairs are used to ‘‘tag’’ the members of R and S so that it is possible to examine a
member and determine its origin.

2.2 Functions 23

We find it useful to define operations for assembling and disassembling members of
R+ S. For assembly, we propose inR and inS, which behave as follows:

for x∈ R, inR(x) = (zero, x)
for y∈ S, inS(y) = (one, y)

To remove the tag from an element m ∈ R+ S, we could simply say snd(m), but will instead
resort to a better structured operation called cases. For any m∈ R+ S, the value of:

cases m of
isR(x) → . . . x . . .

[] isS(y) → . . . y . . .

end

is ‘‘ . . . x . . . ’’ when m = (zero, x) and is ‘‘ . . . y . . . ’’ when m = (one, y). The cases operation
makes good use of the tag on the sum element; it checks the tag before removing it and using
the value. Do not be confused by the isR and isS phrases. They are not new operations. You
should read the phrase isR(x) → . . . x . . . as saying, ‘‘if m is an element whose tag component
is R and whose value component is x, then the answer is . . . x’’ As an example, for:

f(m) = cases m of
isIN(n) → n+1
[] isIB(b) → 0
end

f(inIN(2)) = f(zero, 2) = 2 + 1 = 3, but f(inIB(true)) = f(one, true) = 0.
Like a product, the sum construction can be generalized from its binary format to n-sums.
Finally, the set of all subsets of a set R is called its powerset:

IP(R) = { x | x ⊆ R }

{ } ∈ IP(R) and R∈ IP(R) both hold.

2.2 FUNCTIONS __

Functions are rather slippery objects to catch and examine. A function cannot be taken apart
and its internals examined. It is like a ‘‘black box’’ that accepts an object as its input and then
transforms it in some way to produce another object as its output. We must use the ‘‘external
approach’’ mentioned above to understand functions. Sets are ideal for formalizing the
method. For two sets R and S, f is a function from R to S, written f : R→ S, if, to each member
of R, f associates exactly one member of S. The expression R→ S is called the arity or func-
tionality of f. R is the domain of f; S is the codomain of f. If x∈ R holds, and the element
paired to x by f is y, we write f(x) = y. As a simple example, if R = { 1, 4, 7 }, S = { 2, 4, 6 }, and
f maps R to S as follows:

24 Sets, Functions, and Domains

R S

f

1 2

4 4

7 6

then f is a function. Presenting an argument a to f is called application and is written f(a). We
don’t know how f transforms 1 to 2, or 4 to 6, or 7 to 2, but we accept that somehow it does;
the results are what matter. The viewpoint is similar to that taken by a naive user of a com-
puter program: unaware of the workings of a computer and its software, the user treats the
program as a function, as he is only concerned with its input-output properties. An exten-
sionality principle also applies to functions. For functions f : R→ S and g: R→ S, f is equal to
g, written f = g, iff for all x∈ R, f(x) = g(x).

Functions can be combined using the composition operation. For f : R→ S and g : S→ T,
g ° f is the function with domain R and codomain T such that for all x: R, g ° f(x) = g(f(x)).
Composition of functions is associative: for f and g as given above and h : T→ U,
h ° (g ° f) = (h ° g) ° f.

Functions can be classified by their mappings. Some classifications are:

1. one-one: f : R→ S is a one-one (1-1) function iff for all x∈ R and y∈ R, f(x) = f(y) implies
x = y.

2. onto: f : R→ S is an onto function iff S = { y | there exists some x∈ R such that f(x)=y }.
3. identity: f : R→ R is the identity function for R iff for all x∈ R, f(x) = x.
4. inverse: for some f : R→ S, if f is one-one and onto, then the function g : S→ R, defined

as g(y) = x iff f(x) = y is called the inverse function of f. Function g is denoted by f−1 .

Functions are used to define many interesting relationships between sets. The most
important relationship is called an isomorphism: two sets R and S are isomorphic if there exist
a pair of functions f : R→ S and g : S → R such that g ° f is the identity function for R and f ° g
is the identity function for S. The maps f and g are called isomorphisms. A function is an iso-
morphism if and only if it is one-one and onto. Further, the inverse f−1 of isomorphism f is
also an isomorphism, as f−1 ° f and f ° f−1 are both identities. Here are some examples:

1. R = { 1, 4, 7 } is isomorphic to S = { 2, 4, 6 }; take f : R→ S to be f(1)=2, f(4)=6, f(7)=4; and
g : S→ R to be g(2)=1, g(4)=7, g(6)=4.

2. For sets A and B, A × B is isomorphic to B × A; take f : A × B → B × A to be f(a,b) = (b,a).
3. IN is isomorphic to Z| ; take f : IN → Z| to be:

f(x) =

�
�
� −((x +1)/2)

x/2
 if x is odd

if x is even

You are invited to calculate the inverse functions in examples 2 and 3.

2.2.1 Representing Functions as Sets 25

2.2.1 Representing Functions as Sets __

We can describe a function via a set. We collect the input-output pairings of the function into
a set called its graph. For function f : R→ S, the set:

graph(f) = { (x, f(x)) | x∈ R }

is the graph of f. Here are some examples:

1. f : R → S in example 1 above:
graph(f) = { (1,2), (4,6), (7,4) }

2. the successor function on Z| :
graph(succ) = { . . . , (−2,−1), (−1,0), (0,1), (1,2), . . . }

3. f : IN → Z| in example 3 above:
graph(f) = { (0,0), (1,−1), (2,1), (3,−2), (4,2), . . . }

In every case, we list the domain and codomain of the function to avoid confusion about
which function a graph represents. For example, f : IN→ IN such that f(x)=x has the same graph
as g : IN → Z| such that g(x)=x, but they are different functions.

We can understand function application and composition in terms of graphs. For applica-
tion, f(a)=b iff (a,b) is in graph(f). Let there be a function apply such that
f(a) = apply(graph(f), a). Composition is modelled just as easily; for graphs f : R→ S and
g : S→ T:

graph(g ° f) = { (x,z) | x∈ R and there exists a y∈ S

such that (x,y)∈ graph (f) and (y,z)∈ graph(g) }

Functions can have arbitrarily complex domains and codomains. For example, if R and S
are sets, so is R × S, and it is reasonable to make R × S the domain or codomain of a function.
If it is the domain, we say that the function ‘‘needs two arguments’’; if it is the codomain, we
say that it ‘‘returns a pair of values.’’ Here are some examples of functions with compound
domains or codomains:

1. add : (IN × IN) → IN
graph (add) = { ((0,0), 0), ((1,0), 1), ((0,1), 1), ((1,1), 2), ((2,1), 3), . . . }

2. duplicate : R→ (R×R), where R = { 1, 4, 7 }
graph(duplicate) = { (1, (1,1)), (4,(4,4)), (7, (7,7)) }

3. which-part : (IB+IN) → S, where S = { isbool, isnum }
graph (which-part) = { ((zero, true), isbool), ((zero, false), isbool),

((one, 0), isnum), ((one,1), isnum),
((one, 2), isnum), . . . , ((one, n), isnum), . . . }

4. make-singleton : IN → IP(IN)
graph (make-singleton) = { (0, {0}), (1, {1}), . . . , (n, {n}), . . . }

5. nothing : IB∩ IN → IB
graph (nothing) = { }

The graphs make it clear how the functions behave when they are applied to arguments.
For example, apply(graph(which-part), (one, 2)) = isnum. We see in example 4 that a function

26 Sets, Functions, and Domains

can return a set as a value (or, for that matter, use one as an argument). Since a function can be
represented by its graph, which is a set, we will allow functions to accept other functions as
arguments and produce functions as answers. Let the set of functions from R to S be a set
whose members are the graphs of all functions whose domain is R and codomain is S. Call
this set R→ S. Thus the expression f : R→ S also states that f’s graph is a member of the set
R→ S. A function that uses functions as arguments or results is called a higher-order func-
tion. The graphs of higher-order functions become complex very quickly, but it is important
to remember that they do exist and everything is legal under the set theory laws. Here are
some examples:

6. split-add : IN → (IN → IN). Function split-add is the addition function ‘‘split up’’ so that it
can accept its two arguments one at a time. It is defined as split-add(x) = g, where
g : IN → IN is g(y) = add (x,y). The graph gives a lot of insight:

graph (split-add) = { (0, { (0,0), (1,1), (2,2), . . . }),
(1, { (0,1), (1,2), (2,3), . . . }),
(2, { (0,2), (1,3), (2,4), . . . }), . . . }

Each argument from IN is paired with a graph that denotes a function from IN to IN. Com-
pare the graph of split-add to that of add; there is a close relationship between functions
of the form (R × S) → T to those of the form R → (S → T). The functions of the first form
can be placed in one-one onto correspondence with the ones of the second form— the
sets (R × S) → T and R → (S → T) are isomorphic.

7. first-value : (IN → IN) → IN. The function looks at the value its argument produces when
applied to a zero; first-value(f) = f(0), and:

graph (first-value) = { . . . , ({ (0,1), (1,1), (2,1), (3,6), . . . }, 1),
. . . , ({ (0,49), (1,64), (2,81), (3,100), . . . }, 49),
. . . }

Writing the graph for the function is a tedious (and endless) task, so we show only two
example argument, answer pairs.

8. make-succ : (IN → IN) → (IN → IN). Function make-succ builds a new function from its
argument by adding one to all the argument function’s answers: make-succ(f)= g, where
g : IN → IN and g (x) = f(x)+1.

graph (make-succ)= { . . . ,
({ (0,1), (1,1), (2,1), (3,6), . . . },

{ (0,2), (1,2), (2,2), (3,7), . . . }),
. . . ,

({ (0,49), (1,64), (2,81), (3,100), . . . },
{ (0,50), (1,65), (2,82), (3,101), . . . })

. . . }

9. apply : ((IN → IN) × IN) → IN. Recall that apply (f,x) = f(x), so its graph is:

2.2.2 Representing Functions as Equations 27

graph (apply) = { . . . , (({ (0,1), (1,1), (2,1), (3,6), . . . }, 0), 1),
(({ (0,1), (1,1), (2,1), (3,6), . . . }, 1), 1),
(({ (0,1), (1,1), (2,1), (3,6), . . . }, 2), 1),
(({ (0,1), (1,1), (2,1), (3,6), . . . }, 3), 6),
. . . ,

(({ (0,49), (1,64), (2,81), (3,100), . . . }, 0), 49),
(({ (0,49), (1,64), (2,81), (3,100), . . . }, 1), 64),
. . . }

The graph of apply is little help; things are getting too complex. But it is important to
understand why the pairs are built as they are. Each pair in graph (apply) contains an
argument and an answer, where the argument is itself a set, number pair.

2.2.2 Representing Functions as Equations __

The graph representation of a function provides insight into its structure but is inconvenient to
use in practice. In this text we use the traditional equational format for specifying a function.
Here are the equational specifications for the functions described in examples 1-5 of Section
2.2.1:

1. add: (IN × IN) → IN
add(m,n) = m + n

2. duplicate: R→ (R × R)
duplicate(r) = (r, r)

3. whichpart : (IB + IN) → S
which-part(m) = cases m of

isIB(b) → isbool
[] isIN(n) → isnum
end

4. make-singleton : IN → IP(IN)
make-singleton(n) = {n}

5. nothing : IB ∩ IN → IB has no equational definition since its domain is empty

The equational format is so obvious and easy to use that we tend to take it for granted.
Nonetheless, it is important to remember that an equation f(x) = α, for f : A→ B, represents a
function. The actual function is determined by a form of evaluation that uses substitution and
simplification. To use f’s equational definition to map a specific a0 ∈ A to f(a0)∈ B, first, sub-
stitute a0 for all occurrences of x in α. The substitution is represented as [a0/x]α. Second, sim-
plify [a0/x]α to its underlying value.

Here is the process in action: to determine the the value of add(2,3), we first substitute 2
for m and 3 for n in the expression on the right-hand side of add’s equation, giving add(2,3)
= [3/n][2/m]m+n = 2+3. Second, we simplify the expression 2+3 using our knowledge of the
primitive operation + to obtain 2+3 = 5. The substitution/simplification process produces a

28 Sets, Functions, and Domains

value that is consistent with the function’s graph.
Often we choose to represent a function f(x) = α as f = λx. α; that is, we move the argu-

ment identifier to the right of the equals sign. The λ and . bracket the argument identifier.
The choice of λ and . follows from tradition, and the format is called lambda notation.
Lambda notation makes it easier to define functions such as split-add : IN → (IN → IN) as
split-add(x) = λy. x+y or even as split-add = λx.λy. x+y. Also, a function can be defined without
giving it a name: λ(x,y). x+y is the add function yet again. Functions written in the lambda
notation behave in the same way as the ones we have used thus far. For example,
(λ(x,y). x+y)(2,3) = [3/y][2/x]x+y = 2+3 = 5. Section 3.2.3 in the next chapter discusses lambda
notation at greater length.

As a final addition to our tools for representing functions, we will make use of a function
updating expression. For a function f : A→ B, we let [a0 ||→ b0]f be the function that acts just
like f except that it maps the specific value a0 ∈ A to b0 ∈ B. That is:

([a0 ||→ b0]f)(a0) = b0

([a0 ||→ b0]f)(a) = f(a) for all other a∈ A such that a≠ a0

2.3 SEMANTIC DOMAINS __

The sets that are used as value spaces in programming language semantics are called semantic
domains. A semantic domain may have a different structure than a set, but sets will serve
nicely for most of the situations encountered in this text. In practice, not all of the sets and set
building operations are needed for building domains. We will make use of primitive domains
such as IN, Z| , IB, . . ., and the following four kinds of compound domains, which are built
from existing domains A and B:

1. Product domains A× B
2. Sum domains A + B
3. Function domains A→ B
4. Lifted domains A|_, where A|_ = A ∪ { |−}

The first three constructions were studied in the previous sections. The fourth, A|_, adds a spe-
cial value |− (read ‘‘bottom’’) that denotes nontermination or ‘‘no value at all.’’ Since we are
interested in modelling computing-related situations, the possibility exists that a function f
applied to an argument a∈ A may yield no answer at all— f(a) may stand for a nonterminating
computation. In this situation, we say that f has functionality A→ B|_ and f(a) = |−. The use of
the codomain B|_ instead of B stands as a kind of warning: in the process of computing a B-
value, nontermination could occur.

Including |− as a value is an alternative to using a theory of partial functions. (A partial
function is a function that may not have a value associated with each argument in its domain.)
A function f that is undefined at argument a has the property f(a) = |−. In addition to dealing
with undefinedness as a real value, we can also use |− to clearly state what happens when a
function receives a nonterminating value as an argument. For f : A|_ → B|_, we write f = λ__x. α to
denote the mapping:

2.3 Semantic Domains 29

f(|−) = |−
f(a) = [a/x]α for a∈ A

The underlined lambda forces f to be a strict function, that is, one that cannot recover from a
nonterminating situation. As an example, for f : IN|_ → IN|_, defined as f = λ__n.0, f(|−) is |−, but for
g : IN|_ → IN|_, defined as g = λn.0, g(|−) is 0. Section 3.2.4 in the next chapter elaborates on non-
termination and strictness.

2.3.1 Semantic Algebras __

Now that the tools for building domains and functions have been specified, we introduce a for-
mat for presenting semantic domains. The format is called a semantic algebra, for, like the
algebras studied in universal algebra, it is the

30 Sets, Functions, and Domains

grouping of a set with the fundamental operations on that set. We choose the algebra format
because it:

1. Clearly states the structure of a domain and how its elements are used by the functions.
2. Encourages the development of standard algebra ‘‘modules’’ or ‘‘kits’’ that can be used

in a variety of semantic definitions.
3. Makes it easier to analyze a semantic definition concept by concept.
4. Makes it straightforward to alter a semantic definition by replacing one semantic algebra

with another.

Many examples of semantic algebras are presented in Chapter 3, so we provide only one
here. We use pairs of integers to simulate the rational numbers. Operations for creating,
adding, and multiplying rational numbers are specified. The example also introduces a func-
tion that we will use often: the expression e1 → e2 [] e3 is the choice function, which has as
its value e2 if e1 = true and e3 if e1 = false.

2.1 Example: Simulating the rational numbers

Domain Rat = (Z| × Z|)|_

Operations

makerat: Z| → (Z| → Rat)
makerat= λp.λq. (q=0) → |− [] (p,q)

addrat : Rat→ (Rat→ Rat)
addrat= λ__(p1 ,q1).λ__(p2 ,q2). ((p1∗ q2)+(p2 ∗ q1), q1 ∗ q2)

multrat : Rat→ (Rat→ Rat)
multrat= λ__(p1 ,q1).λ__(p2 ,q2). (p1 ∗ p2 , q1 ∗ q2)

Operation makerat groups the integers p and q into a rational p/q, represented by (p,q). If the
denominator q is 0, then the rational is undefined. Since the possibility of an undefined
rational exists, the addrat operation checks both of its arguments for definedness before per-
forming the addition of the two fractions. Multrat operates similarly.

The following chapter explains, in careful detail, the notion of a domain, its associated
construction and destruction operations, and its presentation in semantic algebra format. If
you are a newcomer to the area of denotational semantics, you may wish to skip Chapter 3 and
use it as a reference. If you decide to follow this approach, glance at Section 3.5 of the
chapter, which is a summary of the semantic operations and abbreviations that are used in the
text.

Suggested Readings 31

SUGGESTED READINGS __

Naive set theory: Halmos 1960; Manna & Waldinger 1985
Axiomatic set theory: Devlin 1969; Enderton 1977; Lemmon 1969

EXERCISES __

1. List (some of) the members of each of these sets:

a. IN ∩ Z|
b. Z| − IN
c. IB × (C| + IB)
d. IN − (IN ∪ Z|)

2. Give the value of each of these expressions:

a. fst(4+2, 7)
b. snd(7, 7+fst(3−1, 0))
c. cases inIN(3+1) of isIB(t) → 0 [] isIN(n) → n+2 end
d. { true } ∪ (IP(IB) − { {true} })

3. Using the extensionality principle, prove that set union and intersection are commutative
and associative operations.

4. In ‘‘pure’’ set theory, an ordered pair P = (x,y) is modelled by the set P' = { { x }, { x,y } }.

a. Using the operations union, intersection, and set subtraction, define operations fst' and
snd' such that fst'(P') = x and snd'(P') = y.

b. Show that for any other set Q' such that fst'(Q') = x and snd'(Q') = y that P' = Q'.

5. Give examples of the following functions if they exist. If they do not, explain why:

a. a one-one function from IB to IN; from IN to IB.
b. a one-one function from IN × IN to IR; from IR to IN × IN.
c. an onto function from IN to IB; from IB to IN.
d. an onto function from IN to Q| ; from Q| to IN.

6. For sets R and S, show that:

a. R × S ≠ S × R can hold, but R × S is always isomorphic to S × R.
b. R + S ≠ R ∪ S always holds, but R + S can be isomorphic to R ∪ S.

7. Prove that the composition of two one-one functions is one-one; that the composition of
two onto functions is onto; that the composition of two isomorphisms is an isomorphism.
Show also that the composition of a one-one function with an onto function (and vice

32 Sets, Functions, and Domains

versa) might not be either one-one or onto.

8. Using the definition of split-add in Section 2.2.1, determine the graphs of:

a. split-add(3)
b. split-add(split-add(2)(1))

9. Determine the graphs of:

a. split-sub : Z| → Z| → Z| such that split-sub(x) = g, where g : Z| → Z| is g(y) = x − y
b. split-sub : IN → IN → Z| , where the function is defined in part a.

10. The previous two exercises suggest that there is an underlying concept for ‘‘splitting’’ a
function. For a set D, we define curryD : ((D × D) → D) → (D → (D → D)) to be
curryD(f) = g, where g(x) = h, where h(y) = f(x,y). Write out (part of) the graph for
curryIB : ((IB × IB) → IB) → (IB → (IB → IB)).

11. For IB = { true, false } and IN = { 0, 1, 2, . . . }, what are the functionalities of the func-
tions represented by these graphs?

a. { (true, 0), (false, 1) }
b. { ((true, 0), (true, true)), ((true, 1), (true, false)), ((true, 2), (true, false)),

 . . . , ((false, 0), (false, true)), ((false, 1), (false, false)), ((false, 2),
(false, false)), . . . }

c. { ({ (true, true), (false, true) }, true), ({ (true, true), (false, false) }, false),
 . . . , ({ (true, false), (false, true) }, true), . . . }

12. Use the definitions in Section 2.2.2 to simplify each of the following expressions:

a. make-singleton(add(3,2)) ∪ { 4 }
b. add(snd(duplicate(4)), 1)
c. which-part(inIN(add(2,0)))
d. ([3||→ { 4 }]make-singleton)(2)
e. ([3||→ { 4 }]make-singleton)(3)

13. For the equational definition fac(n) = (n=0) → 1 [] n∗ fac(n−1), show that the following
properties hold (hint: use mathematical induction):

a. For all n ∈ IN, fac(n) has a unique value, that is, fac is a function.
b. For all n ∈ IN, fac(n+2) > n.

14. List the elements in these domains:

a. (IB × IB)|_

b. IB|_ × IB|_

c. (IB × IB) + IB
d. (IB + IB)|_

Exercises 33

e. IB|_ + IB|_

f. IB → IB|_

g. (IB → IB)|_

15. Simplify these expressions using the algebra in Example 2.1:

a. addrat (makerat (3) (2)) (makerat (1) (3))
b. addrat (makerat (2) (0)) (multrat (makerat (3) (2)) (makerat (1) (3)))
c. (λr. one) (makerat (1) (0))
d. (λ__r. one) (makerat (1) (0))
e. (λ(r, s). addrat(r) (s)) ((makerat (2) (1)), (makerat (3) (2)))
f. (λ(r, s). r) ((makerat (2) (1)), (makerat (1) (0)))

16. The sets introduced in Section 2.1 belong to naive set theory, which is called such
because it is possible to construct set definitions that are nonsensical.

a. Show that the definition { x | x ∈/x } is a nonsensical definition; that is, no set exists
that satisfies the definition.

b. Justify why the domain constructions in Section 2.3 always define sensical sets.

