CS571

- Notes 18
- Compiled denotations and Program Properties

“Compiling” a program

- Instead of expressing the denotation as a result (from Nat) we can express it as a function of \(n \in \text{Nat} \)
- \(P[Z := 1; \text{if } A = 0 \text{ then diverge}; Z := 3] \)
 = \(\lambda n. \text{let } s = \text{update } [A] n \text{ newstore in} \)
 \(\text{let } s' = E \text{ in} \)
 \(\text{let } s'' = \text{update } Z s' \text{ in} \)
 \(\text{access } [Z] s'' \)
 Where E = \(C[Z := 3]; (\text{if } A = 0 \text{ then diverge}); (C[Z := 1]; s) \)
- i.e.
 \(((\lambda s.3).((\lambda s'.(\text{access } [A] s') \text{ equals zero} \rightarrow (\lambda s'',\text{update } [Z] s'') s''))) \)

A more readable version

- Convert strict lambdas to lets (same property of strictness)
- \(P[Z := 1; \text{if } A = 0 \text{ then diverge}; Z := 3] \)
 = \(\lambda n. \text{let } s = \text{update } [A] n \text{ newstore in} \)
 \(\text{let } s_1 = \)
 \(\text{let } s_2 = \)
 \(\text{let } s_3 = \)
 \(\text{update } [Z] s_1 \text{ one } s_1 \text{ in} \)
 \(\text{(access } [A] s_2 \text{ equals zero} \rightarrow (\lambda s_3) s_3 \text{ in} \)
 \(\text{update } [Z] \text{ with } s_3 \text{ in} \)
 \(\text{access } [Z] s_3 \)
Simplify the code (optimize)

- Since `newstore` is proper, we can apply the update for `A`, and the first update for `Z`.
- Simplify to:
 \[
 \lambda n. \text{let } s' = \text{let } s_3 = (\text{access}[A] s_2) \text{ equals zero } \rightarrow \text{update}[A] s_2 \text{ in access}[Z] \text{ three } s_2 \text{ in access}[Z] s'
 \]
 - Where \(s_2 = \text{update}[Z] \text{ one (update}[A] n \text{ newstore}) \)
 - We can use (by extensionality of functions):
 let \(s = (e_1 \rightarrow \bot \rightarrow e_2) \) in \(e_3 \) is the same as \(e_1 \rightarrow \bot \square [e_2] e_3 \) to simplify further

Final simplification

- \(\lambda n. \text{let } s' = (n \text{ equals zero } \rightarrow \bot \square \text{ update}[Z] \text{ three } s_2 \) in access}[Z] s'\)
- We can apply the same simplification again:
 \(\lambda n. n \text{ equals zero } \rightarrow \bot \square \text{ access}[Z] \text{ (update}[Z] \text{ three } s_2) \)
- Finally:
 \(\lambda n. n \text{ equals zero } \rightarrow \bot \square \text{ three} \)
- Here all identifiers have been optimized away; stores have been used where they are proper (not bottom); the final result is very intuitive as to the core meaning of the program

Proving program properties

- If two denotations are equal, then the two programs with those denotations are equivalent
- Since denotations can be functions, we need to show that two functions are the same
- Use extensionality principle:
 - If \(f \ x = g \ x \) for all \(x \), then \(f \) and \(g \) are the same function
Program equivalence example

Prove:

\[\text{X := 0; Y := X + 1 and} \]
\[\text{Y := 1; X := 0 are equivalent} \]

We can do this if:

\[\text{P} [\text{X := 0; Y := X + 1}] \text{ and} \]
\[\text{P} [\text{Y := 1; X := 0}] \text{ are the same function} \]

Program equivalence example

\[\text{P}[\text{X := 0; Y := X + 1}] \]
Relies on
\[\text{C}[\text{X := 0; Y := X + 1}][\text{X} = \text{zero}] \]
\[\text{= C}[\text{X := 0; Y := X + 1}][\text{X} = \text{zero}] \]
\[\text{= update}[\text{Y := one}][\text{X} = \text{zero}] \]
\[\text{= [Y := one][X := zero s]} \]

\[\text{P}[\text{Y := 1; X := 0}] \]
Relies on
\[\text{C}[\text{Y := 1; X := 0}][\text{X} = \text{zero}] \]
\[\text{= C}[\text{Y := 1; X := 0}][\text{X} = \text{zero}] \]
\[\text{= update}[\text{X := 0}][\text{Y} = \text{one}] \]
\[\text{= [X := 0][Y := one s]} \]

These two are different functions, but are extensionally equivalent because they produce the same result for \([X] \) (zero) and for \([Y] \) (one) and for any other argument \([I] \) (s(I))