A partial correctness proof that is “incorrect”

- Some proofs have pre-conditions that are too weak
- They are dependent on the “if the program terminates” condition
- E.g. the division by repeated subtraction algorithm

```plaintext
q := 0;
r := x;
while r greater y minus 1 do
  q := q plus 1;
r := r minus y
end
```

The invariant is:
\[\{x=q*y+r \land r \geq 0 \} \]

Partial correctness of the division algorithm

- With this invariant we can prove the specification:
 \[[x \geq 0, x=q*y+r \land y \geq 0] \]
- This is clearly correct, but what about a constraint on y?
- If y is -ve, the loop diverges (r grows, rather than reducing)

- Really we need the added constraint: y \geq 1 to strengthen the pre-condition
- The post-condition remains the same, and the proof is essentially the same
Total correctness

- We can actually prove that the loop terminates by finding an expression just like $r \geq 0$ in the previous example.
- Floyd's method is in three parts:
 1. Prove partial correctness
 2. Find an expression that can be mapped onto the natural numbers
 3. Show that the value of the expression starts out positive and reduces to zero every time through the loop body

Well-foundedness

- This works because the natural numbers are a well-founded set.
- Properties of a well-founded set:
 - Members can be compared with a relation $>$ (or $<$).
 - $>$ is transitive: $a > b \land b > c \implies a > c$
 - $>$ is asymmetric: $a > b \implies \neg(b > a)$
 - $>$ is irreflexive: $\neg(a > a)$
 - There is a least element: $\forall x \exists y. x \leq y \land (x \not= y)$

Examples of well-founded sets

- Natural numbers: $0 < 1 < 2 < 3 < 4 \ldots$, where $<$ is $<$.
- Substrings of a finite string: "" < "c" < "bc" < "abc" \ldots, where $<$ is substring.
- Proper subsets of a finite set: $\varnothing < \{a\} < \{a, b\} < \{a, b, c\} \ldots$, where $<$ is \subset.
Total correctness of exponentiation

\[e := 1; \]
\[t := y; \]
while \(t \) greater 0 do
\[e := e \cdot x; \]
\[t := t - 1 \]
end

- Partial correctness first
- Specification is \([y \geq 0, e = x^y] \)
- Invariant is:
 \[\{e = x^{(y-t)} \land y \geq t \geq 0\} \]

Floyd expression

- Trivial in this case: just \(t \)
 - We can prove it by proving \(t \geq 0 \) based on the initial pre-condition and the loop entry condition
 - i.e. \(p_0, I \land b \vdash F \geq 0 \) (\(\vdash \) is the provability relation)
 - The reasoning is that if we can prove the well-foundedness of the Floyd expression from the initial pre-condition and it is true inside the loop, then it is the right expression
 - In this case: \(y \geq 0, I \land t > 0 \land t \geq 0 \)
 - This is trivially true since the invariant contains \(t \geq 0 \)

Proving loop termination

- In general, we need to examine all possible paths through the loop body, and show that the Floyd expression reduces in value along every path. Again based on the initial pre-condition and the loop entry condition.
 - i.e. \(p_0, I \land b \vdash F_{path \ start} > F_{path \ end} \) for all paths
 - In this case there is only one path, so we need to show: \(y \geq 0, I \land t > 0 \land t > [t-1] \)
 - This is trivially true because \(t > t-1 \) for any \(t \)
 - Thus the loop will terminate with the value of the Floyd expression = 0, i.e \(t = 0 \)