Hoare's axioms for an imperative language

Axioms and program state
- Only commands alter program state
- Only commands need axioms
- General scheme:

\[(p)C(q)\]

Pre-condition

Syntactic form

Post-condition

Partial correctness
- If \(p \) is true before \(C \) and \(C \) terminates, then \(q \) is true after \(C \) finishes

- For a whole program: \((p)P(q) \), \([p,q] \) is the specification for \(P \)
- Can we prove that \([p,q] \) is the correct specification for \(P \)? Yes, if it is true.
Weak and strong

- Pre-conditions should be as weak (general) as possible – hopefully even just true, i.e. no constraints at all on program state
- Post-conditions should be as strong (specific) as possible – we would like to prove real results for programs – even though we could prove more general results

The axioms

- \{p\}nop\{p\} nop does nothing
- \{p[E]]I:=E\{p\} for assignment
 - This is counter-intuitive. Adding an assertion after the assignment will not work. e.g. \{x>4\} x := 2(x>4 \land x=2) is false from true
 - However:
 - \{x>0[2|x]|x:=2\} is correct since 2>0

Control structures: sequence

- Sequence: \{p\}C_1\{r\} \{r\}C_2\{q\}
 \{p\}C_1;C_2\{q\}
 - e.g. x := 2; y := x plus 1
 - Post-condition is \(y > x\)
 - ‘push this back’ through the second command:
 - \((x+1)+x\) y := x plus 1 \(y > x\)
 - And again through the first one:
 - \((x+1)+x\) x := 2 \((x+1)+x\)
 - This is true, so \{true\} x := 2; y := x plus 1 \(y > x\) using the sequence axiom
Control structures: conditional

- Axiom: \(\{ p \land b \} C \{ q \} \quad \{ p \land \neg b \} C_2 \{ q \} \quad \{ p \} \) if \(B \) then \(C_1 \) else \(C_2 \) end \(\{ q \} \)

- e.g. if \(x \) less 0 then \(x := 1 \) else \(x := 2 \) end
- We can prove \(x>0 \) by proving each branch separately:
 - \(\{ 1>0 \} \ x := 1 \{ x>0 \} \)
 - \(\{ 2>0 \} \ x := 2 \{ x>0 \} \)
- The test \(b \) is irrelevant since the pre-condition is already as weak as possible, so:
 - \(\{ true \} \) if \(x \) less 0 then \(x := 1 \) else \(x := 2 \) end \(\{ x>0 \} \)

Conditional: example

- More interesting:
 - \(\{ true \} \) if \(x \) less 0 then \(y := x \) plus 1 else \(y := \neg x \) end \(\{ y \leq 0 \} \)
 - \(\{ x+1<0 \} \ y := x \) plus 1 \(\{ y \leq 0 \} \) and
 - \(\{ -x<0 \} \ y := \neg x \{ y \leq 0 \} \)
 - Need to show that \(\{ x+1<0 \} \) is the same as \(\{ x<0 \} \)
 - and that \(\{ -x<0 \} \) is the same as \(\{ \neg(x<0) \} \)
 - \(x+1<0 \) is \(x<-1 \) which is \(x<0 \) and
 - \(-x<0 \) is \(x<=0 \) which is \(\neg(x<0) \)
 - So the goal is true

Axiom: the while loop

- Need to express the repetition of the body, and the exit condition:
- There must be an invariant assertion that is true for each repetition – the exit test will be false after the loop finishes:

\[
\{ p \land b \} C \{ p \} \quad \{ p \} \) while \(B \) do \(C \) end \{ \neg b \}
\]
Loop example
- while x greater 0 do x := x minus 1 end
- Invariant is x >= 0
- {x-1>=0} x := x minus 1 {x>=0}
- x-1>=0 is x>=1 which is x>0, so we need to show that x=0 \land x>0 is the same as x>0
- They are identical in every case (for every value of x) so the loop is proved:
- {x>=0} while x greater 0 do x := x minus 1 end {x>=0 \land \neg(x>0)}
- The post-condition is x>=0 \land x<0 which clearly means that x=0

Loop second example
- while y greater x do y := y minus 1; x := x plus 1 end
- Post-condition: y=x \lor y=x-1
- Invariant: y>x-2
- Loop body:
 - \{(y-1)>(x+1)-2\} y := y minus 1; x := x plus 1 \{(y>2-x)\}
- Pre-condition is y>x
- But this is implied by y>x \land y>x, so the invariant is proved
- So:
 - {y>x-2} while y greater x do y := y minus 1; x := x plus 1 \{(y>x-2 \land \neg(y>x))\}
- Then show that post-condition is same is y=x \lor y=x-1 (hard)

Strengthening and weakening
- Strengthen the pre-condition: \[p \Rightarrow r \]
- \[\{r\} \Rightarrow \{q\} \]
- Weaken the post-condition:
 - \[\{p\} \Rightarrow \{r\} \]
 - \[r \Rightarrow q \]
 - \[\{p\} \Rightarrow \{q\} \]
- Instead of proving e.g. \(x \geq 0 \land x \leq 0 \) \Rightarrow (x = 0)
- Only need to prove the implication (might be easier):
 - \((x \geq 0 \land x \leq 0) \Rightarrow (x = 0) \)