CS571

Notes 09

Representation languages for axiomatic semantics

Three languages

- The Hoare axioms are logical rules just like operational rules
- Programs will be annotated with (logical) assertions about program state
- We need languages:
 - For representing programs
 - For representing arithmetic expressions
 - For representing assertions

Arithmetic expressions

- Expressions are composed of:
 - Variables
 - Values
 - Relational operators
- Their semantics could be given operationally, but we could also be more primitive
Basic Number Theory

- We could be more "primitive" and use an axiomatization of arithmetic, but this is hard, and largely unnecessary for what we need.
- For instance, starting with the number 0 and two operators succ and pred, we could represent the integers by:
 - 1 is shorthand for succ(0)
 - 2 is shorthand for succ(succ(0)) and so on
 - -1 is shorthand for pred(0)
 - -2 is shorthand for pred(pred(0))
- Axioms can then define higher operators like + and *
- Eventually we could build the whole of arithmetic.
- We choose not to do this (see proof later for an example).

Abstract syntax of expressions

- EI ::= n | id | o_p(Ei) | (EI ob EI)
- ou ::= - | abs
- ob ::= + | - | * | ** | / | mod
- n ::= … -2 | -1 | 0 | 1 | 2 …
- id ::= x | y | z | …
- Expressive enough for most programming languages e.g. ((x-1)*2+z)/(u+v)
- Note that these variables are not programming language variables.

Substitution

- We will need a way to represent the changes in program state.
- Since arithmetic expressions are just symbolic, we use substitution to change them.
- Notation: E[E’/id] (substitute E’ for id in E)
- E.g. (x+y*3)((z-1)y) is (x+(z-1)*3)
- Also E[E’\E’] for substituting whole expressions.
- E.g. ((x’*2)+1/(x’*2))[(y-1)\(x’*2)] is ((y-1)+1/(y-1))
- Why this is necessary will be seen in the assignment axiom.
Assertions

- To the arithmetic expression language we add relational operators and logic
 - $A ::= (E1 r E1') | \neg A | (A \land A') | \forall X A | \exists X A$
 - $r ::= = | > | < | \geq | \leq$
 - $cb ::= \land | \lor | \Rightarrow$

- Now we can express constraints like $x > 0 \land y > 1$
- The quantifier variables (upper case X, Y, Z, ...) are logical variables; now we have three kinds of variables: program, arithmetic, logical

Natural deduction

- The annotated program will produce a proof using natural deduction techniques
- Sometimes there is "gluing" to do between commands
- Have to prove $A_{n-1} \Rightarrow A_n$
- This can be hard

Example “simple” proof from axiomatization of arithmetic

- To prove: $\forall X.0+X=X$

 Given axioms:
 - $\forall X.X+0=X$ (we do not have $\forall X,Y. X+Y=Y+X$)
 - $\forall X,Y. X+(Y+1) = (X+Y)+1$ (associativity of +)
 - Substitution axioms of identity – can always substitute equals for equals, and transitivity of equals
Proof

- Induction: from a base expression B, prove B(0), then prove ∀X.B(X)⇒B(X+1)
- Choose expression from goal statement: B(x) is
 1. 0+x=x
- Use transitive axiom:
 2. x+(y+1)=(x+y)+1 (remove quantifiers – x and y are arbitrary)
- Substitute 0 for x and x for y:
 3. 0+(x+1)=(0+x)+1
 4. (0+x)+1=(0+x)+1 (identity)
 5. (0+x)+1=1x+1 (from B(x))
 6. 0+(x+1)=x+1 (from 5 and 3)
 6. This is B(x+1)
 6. B(x) ⇒ B(x+1) (conditional proof)
 7. ∀X.B(X)⇒B(X+1) (since x is not special)
 QED

This was hard enough, others involving inequalities are harder

Justifications

- We will not prove every step, especially the “glue”
- Instead we will rely on algebra and other simple reasoning methods
- e.g. if we are trying to prove:
 x>y ∴ y<0 ⇒ x>0
 we can substitute 0 for y in x>y and we get the right hand side, so it is true, but not really proved
- Other techniques include mechanical proof checking and even “creative” theorem proving programs